	

[image: image22.png]f(telenor R&I Research Report

	R&I Research Report
	R 37/2007

	Title
	High level architecture for support of CO services

	Author(s)
	Inge Grønbæk, Sune Jakobsson

	ISBN / ISSN
	82-423-0612-5/1500-2616

	Security group
	OPEN

	Date
	2007.11.27

	Abstract

	This document describes the core of a service oriented architecture offering generic functionality for Connected Objects (CO). The architecture supports network and/or end system based services and service features. Development of in-house and third party services is facilitated by application of a set of functional components accessed via a CO API. This gives flexibility to offer both network related functionality and external P2P type functionality. The architecture allows and supports the external P2P type of services and the network centric type of services including the combination thereof.
The architecture supports this functionality via the API by adopting a minor set of new generic functional entities. These include a gateway and an anchor point. The gateway can be instantiated for interconnect of a rich class of diverse COs, including layer two proprietary COs. It can also be designed to support interoperability for native GPRS devices on GPRS networks. The second entity class serves as an anchor point for global mobility and mobile M:N multicast. These new entities additionally support presence and location based services. Locations of COs can be identified and the set of COs at a specified location may be found. Privacy is also handled by the same entities.
The architecture is functionally layered, with protocols and components identified for each layer of the well known OSI stack. Diverse protocol stacks are supported by relating the stack profile and the CO identity. Deployed Internet protocols and protocols under the development by the Internet Engineering Taskforce (IETF) are adopted.
The following functionality is within the scope of the architecture, and may be offered to applications conditional to service requirements:
· Ubiquitous (cross administrative domain) support of CO services:
· New services require only additional data definitions and build on existing service components accessed via standard API.

· New application layer functionality and protocol elements may be introduced without change to the API or to the architecture.

· Application Layer Gateway (ALG) support.

· Name and addressing flexibility, e.g. not limited by IP constraints.

· CO-service connectivity with UMTS/GPRS.

· Access to OSA Parlay functionality.

· Security.

· Privacy (in terms of location and identity).

· Mobility management (including network mobility).

· M:N multicast also for mobile objects.

· Events, Presence, Location and Notification

· Efficient interfacing of proprietary and/or power constrained devices:
· Protocol-stack flexibility.

· Topological hierarchy.
The initial focus is on the telemetric type of services, but streaming is also supported.
Hosting, accounting and billing are also within the scope of the architecture. The development and offering of such functionality depends on commercial decisions.
The key enabler for ubiquitous deployment is standardisation.

	Keywords

	Architecture, M2M, Connected Objects.

(Telenor ASA 2007.11.27
All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher.
Preface
The main purpose of “Ubiquitous architecture and connectivity” is to define an architectural framework for connected objects. This architecture is based on generic CO-service requirements, without making assumptions of a specific market segment. The objectives are:

· Define the functionality and protocols required to support the connec​tion​less part of the abstract API defined in the first phase of the project [API].

· Select solutions that may be implemented with little effort while still meeting the core of the requirements set out in [API].
· To provide a basis for definition of a pilot together with Telenor Business Units and other interested parties.

The presentation given is based on the assumption that the reader has an understanding of protocols in general and familiarity with major existing and new protocols in particular from the Internet Engineering Taskforce (IETF).
Contents
41
Introduction

72
Architectural overview

83
Architectural components

103.1
Network topology model

113.2
Core routing alternatives

133.3
Protocol layers

133.3.1
End-system (CO) protocol stack

154
Application component sub-layer

154.1
Namespaces, identifiers and addresses

174.2
Name Resolution

174.3
Event reporting

194.4
Presence and registration

215
Abstract Presentation layer

215.1
Complementary protocols and architecture

215.1.1
Protocols for control and monitoring

215.1.2
CO-leaf architecture for control and monitoring

225.1.3
Architecture for Electronic Product Code (EPC)

225.1.4
Codec support

236
Session layer

236.1
Initial implementation

236.1.1
Session control primitive message mapping

246.1.2
Registration

257
Transport layer

257.1
Connectionless data

257.2
Connection based real-time data

257.3
Connection based delay-tolerant data

257.4
Streaming and video

268
Network layer

268.1
Namespace and IPv4 address depletion

268.2
Mobility

278.3
Multicast

278.4
Location & status

278.4.1
Location of COs

288.4.2
Find COs at a location

288.4.3
End-system request for CO location

288.4.4
Autonomous reporting of CO location

288.5
QoS control

298.6
Accounting and logging

298.7
Security

298.8
Efficient streaming and video

309
Basic IP bearer

3110
Reference points and interfaces

3110.1
Interface at reference point A

3210.2
Interface at reference point B

3210.3
Interface at reference point C

3210.4
Interface at reference point D

3310.5
Interface at reference point E

3310.6
Interface at reference point F

3310.7
Interface at reference point G

3310.8
Interface at reference point H

3411
Common functions and servers

3411.1
HIT gateway

3511.2
HIT Radio gateway

3611.3
Rendezvous server (RVS)

3611.4
Name resolution

3611.4.1
DONA resolution handlers (RH)

3811.4.2
Object Naming Service (ONS)

3811.4.3
Domain Name Server (DNS)

3911.4.4
Initial name resolution implementation

3911.5
GPRS HIT gateway

3911.6
Hosting

3911.7
Application Layer Gateway (ALG)

4011.8
Topology/Complexity hiding

4011.9
Legal intercept

4112
Management

4112.1
Orchestration

4112.2
Software upgrades

4112.3
Functional configuration

4212.4
Error reporting

4212.5
CRM channels, Provisioning/fulfilment

4212.6
Assurance/fault handling

4313
Home networks and CPE

4313.1
Residential network interfaces

4313.2
Residential Gateway (RG)

4313.3
Plug and play CPE

4514
Significance for industry

46References

48Appendix A – Namespaces and HIP architecture

48Overview

48Background

50Transport Associations and End-points

50End-host Mobility and Multi-homing

51Rendezvous Mechanism

51IPsec

51Administrative infrastructure needed

53Appendix B – Interconnect with GPRS

53GPRS and GTP

54Connections from PLMN to other IP based networks

55HIP based global mobility management

57Appendix C – Interconnect of native GPRS objects

57GPRS HIT gateway

57Control plane mapping (mobility management)

58User plane mapping

59Appendix D – Alternative to DNS

59Data-Oriented Network Architecture [DONA]

59Naming

60Resolution handlers (RHs)

62Key uniqueness test

62Paths crossing multiple addressing domains

63Session Initiation

63Multicast State Establishment

64Appendix E – Catalysts for architectural realization

64Partner candidates

64Sources of software

64Test-beds

64Standards bodies and interests groups

66Appendix F – EPC Global Network

661. EPC

672. ID System (RFID Tags and Readers)

673. Object Naming Service (ONS)

674. EPC Information Services (EPC IS)

675. Discovery Services (EPC-DS)

1 Introduction
This core of the architecture for support of Connected Objects (CO) focuses on the connectionless mode of operation. Simplicity has been focused in order to allow implementation and deployment within a timeframe of 18 to 24 months. Service elements are provided in the form of an API as defined in [API]. Only existing Internet protocols and protocols under the development by the Internet Engineering Taskforce (IETF) are adopted for use. This architecture is a vehicle for efficient implementation of specific applications like surveillance, control, automatic meter reading, and other telemetric types of services. Architectural components for session oriented services (e.g. streaming) are also included. However, session oriented functionality is not focussed since it initially is con​sidered to be of lower priority (i.e. streaming is well supported in existing and evolving networks). However, the mechanisms for short data transfer may also be applied for certain streaming applications where efficiency is not the primary requirement.
Applications and functional components may be implemented either according to a network centric or an end-system centric (p2p) paradigm.

The telemetric monitoring or control protocols, carried in the payload of data and events (i.e. by the service elements of the API), may be proprietary, e.g. supporting current sensors or controllers. The standardization of control proto​cols is highly desirable, and ongoing efforts are identified. The project proposes to use Common Base Event as a specification for events generated by the more advanced nodes in this context.
Figure 1 shows the interconnection structure for ubiquitous CO networks. The range of network topologies which has to be supported by the architecture is extensive, stretching from the smallest Personal Area Network (PAN) to cor​porate clusters and operator networks. All sorts of physical bearers may be applied by different network segments, and the COs may themselves range from miniature sensors and actuators to large devices e.g. fitted in trains or cars. This represents two distinct operational environments for COs, i.e. power constrained (e.g. battery powered sensors and actuators) and power abundant. The architecture is designed for efficient support of both environments.
[image: image1.png]Server cluster Home cluster

e e = -
~
~ Ve ~
-
- ~ 4
~ N
-,

~

~
7 N
\ 7/ = & N
Y \ ! i ‘/I/ g \
<
' - Lo ‘
/) | | |
; -
|

!)
Remote personal devices

/
, N C Corporate cluster
\ 4 \\ s —-— =
N Pid ~ . P
AN N) ‘___
~ -~ N i
S~ -7 N N y \
N \ 1 |
AN A | !
Smart building N \\ | |
- T~ N '
hd N
// \\ \ N \ 2
’ N \ N v N -
/ . \ \ N / ~_ _ -7~
" S— ') S -
! Local L- -
| ~ i
\ -Z_foreign

Interconnecting structure _
\ devices n

Internet, UMTS, WLAN
Ad Hoc, etc
I

// /Q

!

I

‘ g
\

\

Personal PAN

Figure 1 CO interconnection structure
Connectivity may vary such that fixed and mobile devices need to have the option of communicating directly or via private or public infrastructure(s).
Consequently there is no one size fits all solution and flexibility and simplicity have been the main design targets for the architecture. Furthermore, harmonisa​tion will increase volumes and reduce cost. This should be a driving force for evolving the architecture towards the use of a common set of protocols implemented in silicone for use by all or most CO applications.

Gateways are introduced to achieve the required flexibility and interoperability. One gateway may mediate between the CO core network (e.g. the Internet) and the UMTS for interconnect of (non HIT based) GPRs nodes. Another is designed for mediation between incompatible devices, e.g. interconnected at the link layer, and the standard IP protocols for interconnection of ubiquitous services. A specific version of this gateway is used for CO (cluster) access to cellular (GPRS) networks. Furthermore, a generic anchor point is introduced that may incorporate functionality for mobility management, multicast and address resolution. The DNS may still be used and enhanced with new func​tionality to support flat addressing. However, the new route-by-name resolution architecture [DONA] may develop quicker, starting from a very light weight implementation as needed for local CO applications. This may represent the best migration path from the DNS which suffers the inherited design flaw of binding names to location and domain.
The ability to meet the requirements as stated in a specific Service Level Agreement will depend on the underlying infrastructure. This implies that Service Level Agreements must reflect the actual capabilities of a specific service. Interconnect, e.g. between premium and low quality services, generally renders the level of end-to-end Quality of Service at the level of the least capable segment. This implies e.g. that mobile Connected Objects may experience varying service levels depending on point of attachment.
Commercial analysis is outside the scope of this document, and the following architectural components are not adequately covered by this presentation of the core architecture:

· Business support systems (e.g. customer relations management)
· Billing

· Logging
· Events
· Hosting (e.g. persistent third party storage and retrieval)
· Operations support systems (OSS)

· Home networks and CPE (The architecture for the Residential Gateway is defined in this document.)
Standardisation of the CO architecture with its API represents an urgent next step.

The implementation of the architecture should be based on the API definition given in [API] with WSDL definitions available for Parlay-X. This represents a significant benefit as it additionally ensures access to Parlay-X services that in many cases are more functionally rich than the basic functionality of the CO architecture. The following [OSA] web services have particular relevance to the implementation of the architecture:
· Part 8:
“Terminal Status”;

· Part 9:
“Terminal Location”;

· Part 14:
“Presence”;

· Part 16:
“Geocoding”.
These specifications are not explicitly referenced since their functional structuring deviates from the structure of this document.

The initial implementation of the architecture could be facilitated by adoption of a Web services (WS) engine. There are, as an example, two implementations available of the Apache [AXIS2] (Apache Axis2/Java and Apache Axis2/C). Apache Axis2 supports SOAP 1.1 and SOAP 1.2, in addition to the REST style of WS. The same application logic implementation can therefore offer both a WS style interface and a REST style interface simultaneously. Use of the [SYNAPSE] proxy development tool should also be considered for gateways and proxies (e.g. for the HIT gateway and the RVS/RH server defined as part of the architecture).
2 Architectural overview

Figure 2 shows an example service scenario which can be built and operated within the framework of the CO architecture.

[image: image2.emf]Service C

Service B

Service A

Business logic

Serv ice provider B

Public Network

Service Platform

Data Repos.

co

Business logic

co

Telco / Newco position

Service provider A

 Device Network

Telco hub

Mobile or Fixed

co

co

co

co

co

API

API

Figure 2 Example scenario
The Application Programming Interface (API), as depicted in the figure, supports secure communications directly between Connected Objects (CO), between COs and servers and indirectly via hubs and gateways.
Privacy, presence, multicast and mobility are natively supported by the archi​tecture. Application level functionality is extendable and allows the use of web services including Parlay-X.

The next chapter describes the functional components supporting the archi​tecture.
3 Architectural components
The functional entities identified in order to support the requirements for Connected Objects are shown in Figure 3. The following chapters describe the protocol layers and relate their functionality to the components identified for the architecture.

[image: image3.emf]

HIT Radio GW

HIT GW

RVS RH ONS

DNS Bootstrap

GPRS

IP network, e.g. Internet

CO - leaf

”Sensors”

Applications & Hosting

IMS Parlay - X

Logging , Rating, Billing

CRM

CO

CO

CO

CO

CO - leaf

”Sensors”

GPRS HIT GW

Figure 3 Architectural components and their relation

HIT gateway

The HIT gateway allows global addressing of COs while maintaining the use of IPv4 addresses. This is achieved by allocating a single public IP-address to a potentially large group of COs under control of a single HIT gateway. This is the address of the HIT gateway. This is similar to a care of address in mobile IPv4. The gateway applies the HIT (Host Identity Tag) for addressing and/or identi​fying the actual CO. The HIT gateway also supports localized mobility manage​ment as the IP-address of a CO would only change when the CO moves outside the control of its current gateway. The HIT gateway shall keep track of the location of all COs under its control. Each gateway shall be allocated a coverage area allowing identification of objects within that area. Each gateway shall furthermore keep track of all its physical neighbours to allow extended area search for COs.

HIT Radio gateway

This gateway is functionally equivalent to the HIT gateway except for applying a radio interface (e.g. GSM, EDGE, UTRAN) for access to the GPRS network from single COs or CO clusters.
GPRS HIT gateway

The GPRS HIT gateway offers interconnect of HIT based COs, on e.g. the Internet, and UMTS/GPRS native (non HIT) devices.

Rendezvous Server (RVS)

The basic functionality of the Rendezvous Server (RVS) is to offer mobility anchoring, i.e. Maintenance of the HIT to address bindings. It may also be engaged in traffic forwarding in cases where privacy is required. Event report​ing shall also be handled by the RVS serving the target CO (i.e. the CO at which events are monitored for reporting). This implies that the registrar and notification functionality also shall be implemented at the RVS.

Resolution Handler (RH)

The Resolution Handler (RH) is an RVS extension offering generic name resolu​tion from a flat namespace (e.g. HIT to address resolution). Retrieval of CO characteristics is part of the functionality (e.g. identification of protocol stack).

The RH may be implemented as a self contained unit or integrated with the RVS. The RH is based on the Data-Oriented Network Architecture [DONA] introduced to obtain e.g. persistence in naming of data and services together with strong authentication. This functionality is not implemented in the legacy DNS based name resolution. In DONA RHs are networked and tiered, and the architecture is claimed to scale to serve the complete Internet.

The discovery mechanism is inherently any-cast and can be used for load sharing and for location of e.g. the closest appearance of a service or data item.

Additionally DONA can enable IP to use path labels rather than globally routable addresses. This is obtained by resolving from the HIT name space to the indi​vidual address spaces applied for local domains. An individual RH is required for each separate address-domain. This allows establishment of inter-domain path setup across domains applying incompatible (i.e. local) addressing schemes. The routing shall be based on collecting the onward addresses resolved for each individual domain during path setup. The reversed address list shall be applied for the return path routing.
Object Naming Service (ONS)

The Object Naming Service (ONS) is part of the EPC Global Network as described in Appendix F. ONS is the first component of EPC Discovery Services, which provides a pointer to the EPC-IS of the owner of the EPC manager code. The ONS may be allocated to a separate network element or be integrated with the RVS.

There are defined two levels of ONS service. The Root ONS service finds the local ONS server belonging to the manager code for any given EPC. It is the local ONS server, then, that returns the actual URL for the EPC-IS. This is a distributed and scalable approach, since the Root ONS only needs to keep track of the mapping of manager codes to local ONS servers.

DNS and name resolution
DNS is generally required for ubiquitous CO services. DNS must be amended to manage names in the Host Identity namespace, alternatively supported by the [DONA] architecture for this purpose. A Host Identifier (HI) represents a statistically globally unique name for naming any system with an IP stack. A system can have multiple identities, some “well known”, some unpublished or “anonymous”. The public key, in a public/private key pair, is well suited to serve as a HI. The DNS or [DONA] shall serve the purpose of resolving the IP address from the HI and HIT (a 128 bit hash of the HI). This address either locates the RVS representing a CO or the CO itself. HIs are mathematically generated and convey no human understandable information. It is therefore required to introduce human understandable and easy to use names (or aliases) for COs. Universal Resource Identifiers (URIs) shall fill this purpose. The following resolution mechanisms are therefore required:

URI -> HI -> HIT -> IP address

Both the resolution and its reverse may be implemented by the Domain Name System (DNS) and/or by local name servers.

Customer Relations Management (CRM)

Customer Relations Management (CRM) is not covered in depth in this presen​ta​tion. However, the harmonized data structures defined in [ITU] shall be applied for service management.
Logging, Rating, Billing and Events
Logging, Rating and Billing is not further described in this presentation. Events and event models are described in chapter 4.3. The required functionality described in [API] covers logging of statistics, e.g. for planning purposes, and the information shall be sufficient as the basis for rating and billing. Real time rating is required to support Advice of Charge (AoC) and Prepaid.
Hosting

Hosting, e.g. for third parties, shall be based on evolving technologies for virtual​ization as described by [XEN]. Both persistent storage and service hosting shall be considered.
IMS and Parlay-X

IMS shall allow the COs access to network supplied information from IMS/GPRS based networks. Information shall also be accessible by COs (roaming) outside the GPRS. This is described in more detail in [API]. Specific HIT(s) have to be defined to allow access to the Parlay-X service.
Bootstrap

Bootstrap functionality shall be available to cover functionality like:

· Dynamic Host Configuration (DHCP) for COs including identity management.

· Service discovery

· Network discovery

The detailed description of the uncoloured entities in Figure 3 (e.g. bootstrapping) is left for separate documents.
3.1 Network topology model

The interconnected topologies are represented by the abstract Universal Modelling language (UML) diagram in Figure 4. PN represents the inter​connec​tion infrastructure (i.e. the public network) without revealing any intrinsic detail except for the fact that more PNs may be interconnected. A User node typically represents a mobile CO that may be connected to a Public Network and/or to a local cluster. A local cluster typically represents residential communication. In this case the GW node, as a local node in the cluster, represents the Residential Gateway (RG) interconnecting the local cluster with the public network. A local device typically represents a sensor or actuator in the local cluster.

[image: image4.emf]

Local node

PN

Local node

Local device GW node

Local c luster

0..* 0..*

0..*

1..*

1

1 1

1

1

1

Figure 4 Relation between elements in the CO architecture
PN denotes Public Network
The model implies that local clusters may be nested “recursively” to any depth. Combined with mobility this implies that mobile clusters may contain other (mobile) clusters. An example would be a moving train with a moving passenger accompanied with a Personal Area Network.
3.2 Core routing alternatives
There are two different addressing alternatives. The simplest is characterised by uniform addressing across the administrative domains (AS1-AS3 in the
Figure 5) of the core. Addressing could be based on e.g. IPv6, which allows direct addressing across the core. The resolution from the HIT to destination address needs only be carried out once at the ingress node. This resolution may be carried out by the Resolution Handler (RH) or by applying the DNS.

[image: image5.emf]

HIT GW

Core network

CO - leaf B

”Sensors”

CO

CO

CO

HIT GW

CO - leaf A

”Sensors”

AS1 AS2 AS3

RH

Figure 5 Addressing, domains and routing
The more complicated case, which may be the reality of the future Internet, allows local addressing in each domain (i.e. AS1, AS2, and AS3 in the figure). In this case the RH would need to resolve the HIT into an AS number together with the local address at that AS.
In this approach, when a client sends the first packet (e.g. a [DONA] FIND), its source address is originally just its domain-specific address. As the packet is forwarded from client to server, next-hop domain path instructions may be appended to this source address. Each such instruction has purely local meaning; for instance, as the packet passes from domain AS1 to domain AS2, an annotation is added to the path instruction that tells AS1 that the next-hop domain is AS2 and, vice-versa, tells AS2 that, in the reverse direction, the next hop is AS1. This instruction need only be understood by the two connected domains. When the packet arrives at the destination server, the server appends its domain-specific address to the path description. It can then reverse these path instructions and use them for its response to the client (since reversing the order just gives the path in the opposite direction). Similarly, when the server’s packets arrive at the client, the client can again reverse the path in order to send packets to the server. Because these per-hop path instructions only need to distinguish between the various next-hop domains (i.e. ASes), they can be quite short (say, in the order of a few bytes).
There are more possible variants to this scheme. The routing tables at the AS level may be including all ASes, or only the neighbour ASes as proposed in [DONA]. Furthermore, the resolution to find the destination AS may be done once, with the recording of the resulting AS in the initial packet at the ingress, or alternatively resolution can be carried out at the ingress of each new domain, avoiding carrying the destination AS in the payload of the packet. Avoiding repeated resolutions is considered the preferred solution. In case the AS level routing tables contains all ASes there is no absolute need (except for policy based routing) to record the AS path in the packet. However, this solution would require use of an AS level routing protocol like BGP.
3.3 Protocol layers
The architecture allocates functionality to end systems (Connected objects) and to CO servers according to the layers of the ISO model for communications systems. The following chapters identify protocols and protocol functionality for each of the (sub) layers. This is done in order to allow allocation of functionality to architectural entities.
The service provided between Connected Objects via the service [API] shall be flexible in offering subsets of the functionality stated by the generic service requirements. The idea is to apply the simplest and most efficient protocol stack meeting the service requirements, with no or minimum processing and transmission overhead. It shall further be possible to increase the level of functionality by adding or including functional (sub) layers or entities as required, but not dynamically in this initial design. The instantiation of only the minimum functionality required will allow very simple and optimised implement​a​tions for e.g. small, cheap power constrained sensors. However, a standard solution shipped in large quantities may allow inclusion of functionality for all layers on a single silicon ship. Only the functionality required would actually be used, according to a defined profile. Such profiles must be identifiable from the CO identity.
In local implementations it shall be possible to support the abstract service API without including the basic IP bearer (e.g. providing the service directly above the link layer). Such an approach will however require interconnect arrange​ment to allow communication services to extend the local area, beyond the reach of the applied link layer protocol.
Management is in general applicable to all layers and across the layers. Manage​ment of Customer Premises Equipment (CPE) may turn out to be the key to potential service offerings and operational expenses. Management is therefore treated separately.

3.3.1 End-system (CO) protocol stack

Figure 6 shows the aggregated functionality offered to CO applications from the set of instantiated protocol entities and layers constituting the protocol stack. (Any of the protocol entities shown may be non-existing depending on the protocol stack profile. Only two communicating end-systems are shown, i.e. no intermediaries or support servers (e.g. AAA, DNS).)

[image: image6.emf]

CO application components -------------------------------------- Presentation -------------------------------------- Session -------------------------------------- Transport -------------------------------------- IP bearer Mul ticast / Broadcast Mobility QoS control of IP bearer Identification / authentication, accounting and security (AAA) -------------------------------------- Basic IP bearer -------------------------------------- Link -------------------------------------- Ph ysical -------------------------------------- CO application components -------------------------------------- Presentation -------------------------------------- Session -------------------------------------- Transport ----------------------------------- --- IP bearer Multicast / Broadcast Mobility QoS control of IP bearer Identification / authentication, accounting and security (AAA) -------------------------------------- Basic IP bearer -------------------------------------- Link ------------------------ -------------- Physical --------------------------------------

CO applications

M2M (CO) comunicating p rotocol entities

Physical PDU exchange

CO applications

Logical PDU exchange

Aggregated API functionality

M2M (CO) comunicating p rotocol entities

L ogical PDU exchange

Figure 6 Logical protocol stack

Protocol Data Unit (PDU) exchanges take place only for protocol entities instan​tiated as part of the stack profile.
The functionality described in the following, for each (sub) layer, represents the functional increment provided to the next layer above or to the application itself.

4 Application component sub-layer

The functionality of the application component sub-layer may be offered as complete services or additional building blocks for in-house or third party services. This functionality may be allocated to servers run by operators offering hosted third party functionality like:

· Persistent third party storage and retrieval.

· Supply of service components as building blocks.
· Hosting of service logic.

· Identity management and routing.

· Name resolution.
· Event reporting.
· Presence.
· Accounting.
· Billing.

· The service shall be able to support service related charging data.

· The billing service shall be able to correlate the charging information generated at Transport, Service and Content levels, and by various entities.
· Customer Relation Management (CRM).

The specification of this functionality, except for Name Resolution, Event reporting, and Presence is outside the scope of this document, and needs separate treatment. However, the requirements and service primitives defined in [API] shall be taken as the baseline. Explicit mapping of application com​ponent sub-layer to Parlay-X is not shown.
4.1 Namespaces, identifiers and addresses

There are two principal namespaces in use in the Internet [HIPA]: IP numbers and Domain Names. Domain Names provide hierarchically assigned names for some computing platforms and some services. Each hierarchy is delegated from the level above; there is no anonymity in Domain Names. Email, HTTP, and SIP addresses all reference Domain Names.
IP numbers are a confounding of two namespaces, the names of a host's net​working interfaces and the names of the locations (i.e. point of attachment). There are three critical deficiencies with this. First, dynamic readdressing cannot be directly managed. Second, anonymity is not provided in a consistent, trustable manner. Finally, authentication for systems and data is not provided. All of these deficiencies arise because computing platforms are not well named with the current namespaces. An independent namespace for computing platforms (e.g. Connected Objects) should be used in end-to-end operations independent of the evolution of the internetworking layer and across the internetworking layers.

The following specific requirements apply:

· There is a need for more namespaces for COs. These could be local, overlapping, or globally unique. Name-spaces must cover IP addresses (v4/v6), URIs, Host Identities (HIs) and their Tags (HITs), Ethernet addresses (MAC), E.164 (MSISDN) numbers, Electronic Product Codes (EPC), and more.

· There must be a relation/binding between a CO namespace/ID and the protocol profile it applies. (A CO could obviously be allowed to support more protocol stacks in parallel.)

The major challenge is to define and standardise a globally unique namespace supporting ubiquitous CO-services with the flexibility as stated above. A solution is proposed by [HIPA] and [DONA] which introduces a new flat name​space based on public and private key pairs. This namespace is called the Host Identity namespace in this presentation. This fills the gap between the IP and DNS namespaces. The Host Identity namespace consists of Host Identifiers (HIs). A Host Identifier is cryptographic in its nature; it is the public key of an asymmetric key-pair. Each host will have at least one Host Identity, but it will typically have more than one. Each Host Identity uniquely identifies a single host; i.e., no two hosts have the same Host Identity. The Host Identity, and the corresponding Host Identifier, can be either public (e.g., published in the DNS) or unpublished e.g. for maintaining privacy. Client systems (e.g. COs) may have both public and unpublished Identities. (Use of unpublished identities may be restricted in order to enable legislated law enforcement.)

For efficiency purposes a Host Identity Tag (HIT) is defined. This is a 128-bit representation for a Host Identity. It is created by taking a cryptographic hash over the corresponding Host Identifier. A HIT presents the identity in a con​sistent format to the protocol independent of the cryptographic algorithms used.

In the Host Identity Protocol [HIPA] HITs identify the sender and recipient of a packet. Consequently, a HIT should be unique in the whole IP universe as long as it is being used. In the extremely rare case of a single HIT mapping to more than one Host Identity, the Host Identifiers (public keys) will make the final difference. Furthermore, the [DONA] architecture could be used to test HITs for uniqueness.
A Local Scope Identifier (LSI) is also introduced [HIPA]. This is a 32-bit local​ized representation for a Host Identity. The purpose of an LSI is to facilitate using Host Identities in existing protocols and APIs, e.g. for representing IPv4 addresses. LSI’s advantage over HIT is its size; its disadvantage is its local scope.

The Host Identities are used to create the needed IPsec Security Associations (SAs) and to authenticate the hosts. When IPsec is used, the actual payload IP packets do not differ in any way from standard IPsec protected packets. This is because the IPsec Security Parameter Index (SPI), in Encapsulating Security Payload (ESP), provides a simple compression of (or reference to) the HITs. This does require per-HIT-pair SAs with corresponding SPIs.

It is important that “end-point or CO names” based on Host Identities are dif​ferent from interface names. A Host Identity can be simultaneously reachable through several interfaces.

In some environments (e.g. for local COs), it is possible to use HIP opportunist​ic​ally, without any infrastructure. However, to gain full benefit from HIP in support of ubiquitous communications, the HIs must be stored in the DNS or other name resolution infrastructure, e.g. [DONA] as described in Appendix D. DONA adds a label L to the HIT (HIT:L) to enhance the functionality and to ensure uniqueness.
4.2 Name Resolution
COs shall be identified by means of their Host Identities (HIs) and Host Identity Tags (HIT or HIT:L). HIs and HITs are mathematically generated and convey no human understandable information. It is therefore required to introduce human understandable and easy to use names (or aliases) for COs. Universal Resource Identifiers (URIs) shall fill this purpose. The following resolution mechanisms are therefore required:
URI -> HI -> HIT -> IP address
The following reverse resolution may be needed in cases where the URI is not sent explicitly over the network (i.e. when HTTP is not used):
HIT -> HI -> URI
Required authentication and security shall, when available, be carried out by applying lower layer mechanisms (e.g. via a HIP based security association).
Both the resolution and its reverse may be implemented by extensions to the Domain Name System (DNS) and/or by resolution handlers as proposed by [DONA].

4.3 Event reporting

Event reporting shall be handled by the Rendezvous server (RVS) serving the target CO (i.e. the CO at which events are monitored for reporting). This implies that the registrar and notification functionality shall be implemented at the RVS.
The following primitives are used for event subscription at the Registrar-CO-ID (i.e. the RVS-CO-ID) for events at the Target-CO-ID (both could be the same CO):

· Event-Subscription-Send (Target-CO-ID, Parameters)

· Event-Subscription-Receive (Subscriber-CO-ID, Target-CO-ID, Parameters)

The Registrar-CO-ID is deduced from the Target-CO-ID. This may be done by the RVS. An event subscription shall be confirmed by an event notification from the Registrar. The event notification indicates an event at the Target-CO-ID, or a subscription for events at the Target-CO-ID.

· Event-Notification-Send (Subscriber-CO-ID, Target-CO-ID, Parameters)

· Event-Notification-Receive (Registrar-CO-ID, Target-CO-ID, Parameters)

The Event-Report primitives are used for carrying reports from a CO (e.g. a simple sensor) to the recipient (e.g. event server).

· Event-Report-Send (Registrar-CO-ID, Parameters)

· Event-Report-Receive (CO-ID, Parameters)

The Parameters may specify a distinct value or a set of values (e.g. represent​ing upper and lower limits, change of address, etc.).

Required authentication and security shall be carried out by applying lower layer mechanisms (e.g. via a HIP based security association).

An event, which is the occurrence of a situation, can take a variety of forms. These forms include business, autonomic, management, tracing and logging events. Events encapsulate message data and are therefore the foundation on which complex distributed systems operate. Data elements of these events need to be in a consistent format to enable correlation and to facilitate the effective intercommunication among disparate enterprise applications in such systems. For CO we propose to adopt the Common Base Event model [CBE], so that data collected or logged from CO leafs are distributed in a standardized form using a standardized meta-model.

The Common Base Event model is a standard for events among the different types of distributed applications. This standard proposes consistency of data elements that comprise these events, both in the elements themselves and in their format.

The Common Base Event definition ensures completeness of the data by provid​ing properties to publish general information, which is collectively referred to as the 3-tuple, whenever a situation occurs.
The following elements constitute the 3-tuple:

1. The identification of the component that is reporting the situation

2. The identification of the component that is affected by the situation (which may be the same as the component reporting the situation)

3. The situation itself

The Common Base Event data can later be stored as is and used for statistical purposes, or for generation of presence information or new events.
The meta-model for Common Base event is shown in Figure 7.
[image: image7.jpg]Commonasévent
gextensioname String
Qlocallnstanceld : String
aloballnstanceld :String
gereationTime :String 1 +reporterCompprentld
geverity short P
1| opriority: short +sourceCompqnentld
+msgDataElefnent IS HL - 1 0.1
repestCount : short
- elapsedTime : long Compone ntidentifiation
sequenceNumber : long Qlocation :String
MsgDat£lement Wuersion :String =101 GlocationType : String
msgld : String QotherData : Stringll Gapplication : String
omsgldType :String GexecutionEnironment :String
gmsgeatalogld :String 3 i Ocamponent :String
gmsgCatalogTakens : Stringl 1 ! A @subComponent : String
msgCatalog : String +resolveldEvent @eomponentldType : String
omsglocale :String Cinstanceld :String
msgCatalogType : String Opracessld :String
threadid :String
GeompanentType : String
StartSituation +situgtion +associatadEvents
1
QsuccessDisposition :String 1 0.n, R
OsituationQualifer String Sittation I .
eategoryName : String Cor DA Bemat
StopSituation 2 FT
GsuccessDisposition :String ! otype Sting
situationQualifer String opame : rng
gpontentyalue : Sting
ConnectSituation +assogationEnginelio
P ssituation Type +associationEngine sextendedDataElements
situationDisposition : String 1 1, o.n 1
SituationTyge Ass ociatio nEngine ExtendedDataElement | .l
ReportSituation QreasoningScope :String | | gid :String Oname :String
Qname :String @type :String 0.n
ArsporiCitsaony: String Qtype :String (values : Stringl
Ohexalue : bytel
FeatureSituation

AvailableSituation

aturaDisposition :Strin
ke b 4 QoperationDisposition : String

OprocessingDisposition :String

ailbilityDisposition : Strin
Configureituation el bt 0

OsuccessDisposition :String

Requestsituation

DependenciSituation GsuccessDisposition :String

tustionQualifer St
odzpendencyDisposition : String it et oty

CreateSituation OtherSituation

successDispasition ; String amyData : Stringl

Destroysitustion

gsuccessDisposition :String

Figure 7 Common Base Event meta-model
4.4 Presence and registration
The following primitives are used for dynamic CO presence registration (the RVS shall implement the Registrar):

· Register-Send (Registrar-CO-ID, Parameters)

· Register-Receive (CO-ID, Parameters)

A registration shall be conformed by an event notification to the registering party, and to all parties having subscribed on this registration event. Deregistration is managed by the following primitives:

· Deregister-Send (Registrar-CO-ID, Parameters)

· Deregister-Receive (CO-ID, Parameters)

The Parameters represents the set of registration parameters, i.e. the profile, e.g. including the IP address of the registering CO.

Required authentication and security shall be carried out by applying lower layer mechanisms (e.g. via a HIP based security association).

Presence state can also be derived from a collection of Common Base Events, if they are accumulated in a persistent storage, like a database.

5 Abstract Presentation layer
This layer defines the vocabulary for (control of) CO service applications. That is the data structures and commands required for Connected Objects to inter​operate and cooperate e.g. for carrying out advanced control and surveillance applications.
The actual monitoring or control protocol may be proprietary, related to actual sensors or controllers, or standards may be applied.
Required authentication and security shall be carried out by applying lower layer mechanisms (e.g. via a HIP based security association).

The allocation of this functionality is at the discretion of the control system designer.

5.1 Complementary protocols and architecture
This paragraph is included to identify CO related development and standards which are complementary to the architecture as defined in this document.

5.1.1 Protocols for control and monitoring
Standardisation of protocols for control and monitoring is evolving, e.g. in the open source [M2MXML], where the goal is to allow a Telemetry Service Provider (TSP) to offer, for a monthly fee, all of the interfaces to carriers, data storage, web interfaces, and other back-end functions. Thus allowing the server side of an M2M application to be purchased as a service rather than architected at great expense and effort. The missing piece is a widely adopted protocol allow​ing embedded code to be written for the commercially available hardware to talk to the server-side application available for hire at the TSP. If this protocol existed, especially as an open standard, device manufacturers as well as third parties could write the embedded applications to interface to any TSP that implemented the protocol. Complete M2M applications could then be con​structed from three potentially off the shelf components: back-end services, device hardware, and embedded code. The end users would be able to choose to buy the entire application as a package, implement one or more of the components themselves, or acquire them from different sources. They would all be able to interface because they relied on a standard protocol. [M2MXML] is being developed as an open standard to be this protocol. The standard, along with supporting code libraries is being developed in the open-source community and is hosted at http://www.m2mxml.org.

5.1.2 CO-leaf architecture for control and monitoring

Architecture for the CO-leaf, as defined in Figure 3, is developed by [RUNES] as depicted in Figure 8.
[image: image8.emf]
Figure 8 RUNES CO-leaf architecture

5.1.3 Architecture for Electronic Product Code (EPC)

Architecture is defined in [EPC]. The main focus is related to applications of Electronic Product Code (EPC). In the EPCglobal Network Architecture, the unique identity is the Electronic Product Code, defined by the EPCglobal Tag Data Specification. EPCs are defined in terms of abstract structure, which has several concrete realizations. Especially important are the binary realization that is used on RFID tags and the Universal Resource Identifier (URI) realization that is used for data exchange. The primary vehicle for data exchange between EPCglobal Subscribers in the EPCglobal Architecture Framework is EPC Information Services (EPCIS). EPCIS encompasses both interfaces for data exchange and specifications of the data itself. EPCIS data is information that trading partners share to gain more insight into what is happening to physical objects in locations not under their direct control.

5.1.4 Codec support

The following codecs are selected for potential CO applications. These codecs will be supported by the ETSI/TISPAN NGN in gateways etc.:

Narrowband speech (3.1 kHz bandwidth):

G.711, AMR-NB (or plain AMR), G.729(A), EVRC/EVRC-B (3GPP2 alternative).

Wideband speech (7 kHz bandwidth):

G.722, AMR-WB/G.722.2, G.729.1, EVRC-WB.

G.729.1 is scalable, and in its base mode it is G.729 (Narrowband) compatible. The above speech codecs give reduced quality for general audio (e.g. music).

Streaming audio alternatives:

AMR-WB and MPEG-4 AAC.

There is no known audio codec specification from ETSI/TISPAN (as of yet).

For video the following codecs shall be applied (Select one?):

H.263 profile 0, H.264 baseline profile.

The video codecs are ETSI recommendations for NGN, and not requirements.

6 Session layer
In this context a session shall be taken to represent the state of active commu​nication between connected objects. That is, it is not required to be established by e.g. the Session Initiation Protocol (SIP).

The session layer API service primitives may be mapped on the following proto​cols:

· XML (Parlay-X style)

· Session Initiating Protocol (SIP)
· Transmission Control Protocol (TCP)

· A link layer protocol (e.g. HDLC)

Required authentication and security shall be carried out by applying lower layer mechanisms (e.g. via a HIP based security association).
6.1 Initial implementation

The initial implementation shall be based on XML.
6.1.1 Session control primitive message mapping
The WSDL specification [OSA] Part 2 “Third Party Call” shall be applied with the following [API] mapping:
	Primitive
	Parlay X message mapping

	Invite-Send (Destination-CO-ID, QoS-Profile)
	ThirdPartyCall_makeCallSessionRequest

	Invite-Response-Receive (Destination-CO-ID, QoS-Profile)
	ThirdPartyCall_makeCallSessionResponse

	Invite-Commit-Send (Destination-CO-ID, QoS-Profile)
	Not used by Parlay X

	Invite-Receive (Destination-CO-ID, QoS-Profile)
	ThirdPartyCall_makeCallSessionRequest

	Invite-Response-Send (Destination-CO-ID, QoS-Profile)
	ThirdPartyCall_makeCallSessionResponse

	Invite-Commit-Receive (Destination-CO-ID, QoS-Profile)
	Not used by Parlay X

	EndCallSession-Send
	ThirdPartyCall_endCallSessionRequest

	EndCallSession-Receive
	ThirdPartyCall_endCallSessionRequest

	EndCallSession-Response-Send
	ThirdPartyCall_endCallSessionResponse

	EndCallSession-Response-Receive
	ThirdPartyCall_endCallSessionResponse

6.1.2 Registration

The Application component sub-layer functionality, as described in a previous chapter, shall be applied for registration and notifications (e.g. for presence).
7 Transport layer
Primitives from subordinate layers will be applied, e.g. for sending and receiv​ing the actual transport layer Protocol Data Units (PDUs). The dynamic transport protocol selection is carried out by the following primitive:

· Transport-Selection (Destination-CO-ID, Protocol, SA).

The SA is used to identify the transport session and the applied protocols. Send-SA (SA, Data) is used to send to the specified SA. (The transmission may or may not be security protected.) This description has added the SA parameter as an implementation oriented measure refining the definition given in [API]. Any local confirmation on the selection is to be defined as a part of the detailed specification.
7.1 Connectionless data

UDP shall be applied.
7.2 Connection based real-time data

TCP shall be applied. (SCTP may be considered for future applications.)
7.3 Connection based delay-tolerant data

MQ Telemetry Transport (MQTT) shall be applied.

A new telemetry protocol: MQTTs – MQTT for Sensors – is recently published by IBM. MQTTs is aimed at embedded devices on non-TCP/IP networks, such as Zigbee. MQTTs is a publish / subscribe messaging protocol for wireless sensor networks (WSN), with the aim of extending the MQTT protocol beyond the reach of TCP/IP infrastructure for Sensor and Actuator solutions.
7.4 Streaming and video

RTP/RTCP shall be applied for sending and controlling the data streams. It is for further study to define a mechanism for efficient management of streaming without involving low level data primitives for sending and receiving PDUs.
8 Network layer
The network layer aggregates the functionality from each of its sub-layers into the enhanced IP bearer offered to the network service users (e.g. to the trans​port layer or directly to Connected Objects).

Identifiers and addresses shall play different roles. An identifier shall uniquely identify a Connected Object or one of its interfaces, while an address shall uniquely identify the topological endpoint in the network where a Connected Object may be attached (i.e. point of attachment), which may vary dynamically for some classes of objects (e.g. for mobiles).

The higher layer protocol exchange (i.e. from transport and up) is running between the endpoints defined by the Connected Object identifiers. Transport-layer associations (e.g., TCP connections and UDP associations) will not be bound to IP addresses but to Host Identities. This implies that COs can freely change their point of attachment without breaking e.g. ongoing transport and sessions. This is a basic feature supporting mobility and flexibility in addressing.

The network entity shall be able to function as an IPv4 and IPv6 dual-stack device with required IPv4/v6 translation capabilities (NAT-PT and ALG) for both control plane and user plane.

8.1 Namespace and IPv4 address depletion

Even when every CO is allocated a unique HI they cannot be expected to be allocated a public IP-address since this would very soon drain the IPv4 address space. Applying IPv6 is obviously an alternative, but there is not likely to be established a ubiquitous IPv6 connectivity in time to support the expected need for interconnecting and addressing a large number of COs.
A known solution to meet this challenge is to apply distributed hash tables (DHTs) for routing at a layer above the basic IP-layer. The basic DHT tech​nology suits the class of non real-time limited data-volume CO applications. However, the simple low cost CO end-systems (e.g. sensors) may not serve as overlay nodes in a DHT overlay network. Such nodes will need to be accessed via a DHT gateway representing a set of leaf connected objects (e.g. the COs located within a single housing). However, since such gateways will be needed anyhow, it is a more efficient and simpler solution to introduce HIT gateways for taking care of both the limited IPv4 address space and the limitations in capacity of leaf COs. This may be done in practice by allocating a single public IP-address to a potentially large group of COs. This address is assigned to the HIT gateway, which applies the HIT for addressing and/or identifying the actual CO. The communication scheme applied inside the gateway could be based on light weight protocols, e.g. Ethernet at the link layer. The architecture for such a gateway is depicted in Figure 12. (The HIT gateway may also support localized mobility management since the IP-address of a CO only will change when the CO moves outside the control of its current gateway.)
8.2 Mobility

The Host Identity Protocol architecture [HIPA] introduces a rendezvous mechanism to help a HIP node to contact frequently moving HIP nodes (i.e. to initiate mobility management). The rendezvous mechanism [HIP-RVS] involves a HIP rendezvous server (RVS), which serves as an initial contact point (“rendez​vous point”) for its clients. In case of requested location/address anonymity the data traffic may also have to be permanently relayed through the RVS. The RVS may at the same time support mobile multicast as described below. This also requires RVS traffic relaying.
The basic clients of an RVS are (mobile) COs that use the HIP Registration Protocol to register their HIT to IP address (Locator) mappings with the RVS. After this registration, other HIP nodes can initiate a HIP base exchange towards the RVS instead of to the node they attempt to contact. Essentially, the clients of an RVS become reachable at the RVS. Peers can initiate a HIP base exchange with the IP address of the RVS, which will relay this initial communi​cation such to the destination CO. To be generally available a HIP node registered with an RVS, record the IP address of the RVS in its DNS record, using the HIPRVS DNS record type. Alternatively the registration may be done at the RH, which may be collocated with the RVS.
The mobility management for CO shall apply the mechanisms specified in [HIP-RVS] for mobility management, with the exception that the RVS shall relay all mobile multicast traffic and traffic demanding (location) privacy.

Localized mobility management (i.e., mobility management techniques that do not involve directly signalling the correspondent node) is supported by the introduction of the HIT gateways described later in this document.

8.3 Multicast

The Rendezvous Server (RVS) needed for mobility management shall also be used for anchoring multicast groups. This will allow mobile multicast receivers and sources. The initial implementation shall offer mobile M:N (many-to-many) mobile multicast according to the combination of [HIP-SMC] and the mobility management described above for CO. More efficient mechanisms for specific applications may be introduced at a later stage, and based on demand.
[HIP-SMC] supports secure multicast with full identification of sources and recipients.
8.4 Location & status

Parlay-X supports location and status, so the mapping of primitives to Parlay-X should be carried out as part of detailed specification.
8.4.1 Location of COs

The Abstract service for network assisted reporting of status and location of identified user terminals (COs) shall be implemented by the Rendezvous server (RVS), which is used to keep track of e.g. mobile COs. The response to the following primitive is given by the RVS receiving the request:

· Location-Request (RVS-CO-ID, CO-ID-Set, Scheme)

The RVS-CO-ID is not required as an explicit parameter of the primitive since it may be deduced from the CO-ID-Set. The RVS receiving this request forks the request to each of the RVSs involved with the COs in the CO-ID-Set. This RVS assembles the following response based on the replies received from all the contacted RVSs:

· Location-Response (RVS-CO-ID, CO-ID-Set, Scheme, Status, Coordinate-Set)

The Scheme defines the desired coordinate system. Status indicates the CO’s status and the validity of the returned coordinates.

An RVS may further contact HIT gateways for more accurate detailed inform​ation for COs under gateway control.

8.4.2 Find COs at a location

The following primitives are used by the CO with identity CO-ID to request the network (i.e. the HIT gateway) to identify object(s) at a specific location:

· ID-Location-Request (HIT-Gateway, Scheme, Coordinate-set)

· ID-Location-Response (HIT-Gateway, Scheme, Coordinates-set, Status, CO-ID-Set)

The CO-ID-Set identifies zero or more COs positioned at the location.

8.4.3 End-system request for CO location

Readout of end-system supplied location and status is achieved by the following primitives:

· CPE-Location-Request (CO-ID-Responder, Scheme)

· CPE-Location-Request-Indication (CO-ID-Requestor, Scheme)

· CPE-Location-Response (CO-ID-Requestor, Scheme, Status, Coordinates)

· CPE-Location-Response-Indication (CO-ID-Responder, Scheme, Status, Coordinates)

8.4.4 Autonomous reporting of CO location

Autonomous reporting of end-system supplied location and status is carried out by the following primitives (e.g. to Geographic Information Systems (GIS) central information portal collocated with the RVS):

· CPE-Location-Report (RVS-ID, Scheme, Status, Coordinates)

· CPE-Location-Report-Indication (CO-ID, Scheme, Status, Coordinates)

8.5 QoS control

Differentiated services code-points shall be supported on an end-to-end basis. Definition of the QoS mapping from the CO API requirements to Differentiated services Code-points is for further study.
In certain network environments it will not be possible to guarantee a certain level of QoS, however, the actual service level may be monitored e.g. at the transport level by applying protocols like RTP.
8.6 Accounting and logging

Accounting and logging servers are required as part of the architecture. This will be the topic for a separate description.
8.7 Security

Security at the network layer shall be maintained by the Host Identity Protocol (HIP) [HIPA] in companion with IPsec. Appendix A gives an overview of the architecture.
Higher level security shall be maintained by the application (e.g. specific non repudiation control).
8.8 Efficient streaming and video

The communication primitives described for the CO services are logically sufficient for streaming applications. However, there may be a need for more efficient implementations. This is for future consideration.
9 Basic IP bearer

A de-facto standard sockets interface shall be applied for IP-access. Either IPv4 or IPv6 may be used.
10 Reference points and interfaces
Figure 9 identifies the CO reference points. In the following interfaces and protocols are defined for selected reference points.

[image: image9.emf]

CO - core GPRS

IP transit , e.g. Internet

CO - leaf

CO - core

CO - leaf

D

C

G

F

A

A

E

”Sensors”

CO - leaf (e.g. CO)

B

H

Figure 9 CO reference points

In the figure the IP network is drawn as a separate network to allow identi​fication of all potential reference points. However, any of the CO networks or parts thereof may be overlaid the IP network. It is important to understand that more or no interface may be defined for each reference point. In the following there is currently no interface definition for reference point E, but as standards emerge (ref. the Telemetric Protocols discussed under the Abstract Presentation layer chapter) they should be reflected as interfaces at this reference point.
10.1 Interface at reference point A
The initial interface and protocol stack at reference point A is based on the IP protocol as shown in Figure 10. The choice of lower layer (i.e. sub IP) protocol is not restricted at the interface.

[image: image10.emf]

IPv4 (with Diffserv.)

Sub IP protocol layers

Figure 10 Protocol stack at the CO-core to IP network NNI

10.2 Interface at reference point B
This interface defines the preferred interface for CO access to the network architecture. The functionality level of the interface is high. The assumption is that the extra cost introduced for relative simple devices will be more than outweighed by the savings due to high volume chip production.
Figure 11 depicts the protocol stack at the CO-core to CO-core NNI. This interface is considered the best choice to meet the generic CO requirements in the short timeframe.

[image: image11.emf]

IPv4

HIP with security, mobility and multicast

TCP UDP

HTTP

Web services (XML, WSDL, UDDI)

Figure 11 Protocol stack at the CO-core to CO-core NNI

It should be emphasised that the number of diverse protocols at reference point B should be minimised to avoid unnecessary complexity, protocol conversion or incompatibility.
10.3 Interface at reference point C
The interface at reference point C is identical to the interface at reference point B.
10.4 Interface at reference point D
The interface at reference point D is identical to the interface at reference point A.
10.5 Interface at reference point E
The interface at reference point E is currently proprietary, but the HIT gateway architecture defined in this document to be applied for mapping between the interface at reference point E and the interface at reference point B (=C).
10.6 Interface at reference point F
The interface at reference point F is identical to the interface at reference point B.
10.7 Interface at reference point G
The interface at reference point G is identical to the interface at reference point B. HIT based nodes communicate transparently (e.g. via or helped by the RVS).
The GPRS HIT gateway, defined in Appendix C, provides interconnect of the GPRS and CO architectures allowing native non HIT GPRS nodes to communi​cate with HIT COs.

10.8 Interface at reference point H
The interface at reference point H is identical to the interface at reference point B/C except for the radio access. At the control plane the protocol stacks of GSM/EDGE/UTRAN are applied (Figure 13). The user plane protocol stack is shown in Figure 11, not showing the sub IP protocols for the radio interface. Appendix B describes the complete GPRS protocol stacks.
11 Common functions and servers

This chapter defines the cross layer functions and features, and proposes function allocation to (new) network elements (or COs). Figure 3 shows an overview of the CO architectural components.
The number of diverse protocols (e.g. voice and video codecs) at the core of the CO network should be kept at a minimum. (The HIT gateways are candi​dates for carrying out any required transcoding.)

11.1 HIT gateway

The HIT gateway allows global addressing of COs while maintaining the use of IPv4 addresses. This is achieved by allocating a single public IP-address to a potentially large group of COs under control of a single HIT gateway. This address is addressing the HIT gateway in a similar way as the care-of address in mobile IP. The gateway applies the HIT for addressing and/or identifying the actual CO within its control.

The communication scheme applied inside the gateway could in consequence be based on local light weight protocols, e.g. at the link layer. The HIT gateway also supports localized mobility management as the IP-address of a CO would only change when the CO moves outside the control of its current gateway. The architecture for the gateway is depicted in Figure 12.

[image: image12.emf]

IPv4

HIP with security, mobility and multicast

TCP UDP

HTTP

Web services (XML, WSDL, UDDI)

E.g. ETHERNET

Transparent?

 Transparent ?

Transparent?

CO presentation

E.g. MAC

CO (part) application CO application

Network side Mapp ing S ensor side

Figure 12 HIT gateway architecture

The layers denoted “Transparent?” may or may not be present at the leaf (inner) side of the gateway.
The HIT gateway shall additionally keep track of the location of all COs under its control. Each gateway shall be allocated a coverage area allowing identification of objects within that area. Each gateway shall furthermore keep track of all its physical gateway neighbours to allow extended area search for COs. The same HIT gateway may serve more areas in parallel to allow accurate identification of COs within a specific area.

The HIT gateway may be combined with the RVS, described below, e.g. for COs having their home domain within the control of the HIT gateway.
11.2 HIT Radio gateway

The HIT Radio gateway allows (clusters of) non GPRS COs to be interconnected via GPRS. The gateway is functionally equivalent to the HIT gateway except for applying a radio interface (e.g. GSM, EDGE, UTRAN) for access to the core CO network via GPRS Figure 13.

[image: image13.emf]

S ensor side Mapping GPRS Network side

SNDCP

LLC

RLC MAC

GSM RF

Transparent?

Transparent?

Transparent ? Transparent ?

Transparent?

CO presentation

E.g. Zigbee

CO (part) application

IPv4

HIP with security, mobility and multicast

TCP UDP

HTTP

Web services (XML, WSDL, UDDI)

CO application

Figure 13 CO radio access with gateway template
The control plane is described in Appendix B. The radio side protocol stack is identical for a single cellular CO.

11.3 Rendezvous server (RVS)
The basic functionality of the rendezvous server (RVS) is to offer mobility anchor​ing [HIP-RVS], i.e. Maintenance of the HIT to address bindings for the COs.
The following additional functionality shall be provided by the RVS as extensions defined by the CO architecture:

1. Collection of end-system (CO) supplied geographical location and status in cases where COs are not under control of a gateway, i.e. the RVS is taking over this HIT gateway functionality. In case the CO is behind a HIT gateway only the end-system HIT to HIT gateway address binding is stored by the RVS.
2. Relaying of traffic requiring privacy (i.e. in terms of location and identity). Identity privacy can alternatively be achieved by an anonymous HI. However, this may not be allowed due to required security treatment (for example legal intercept).
3. Anchoring of (mobile) M:N multicast traffic.

In certain configurations increased efficiency may be achieved by integrating the RVS and HIT gateway.
To avoid traffic tromboning for a CO located far from its RVS it will be possible to reallocate the CO to RVS address binding (e.g. by dynamically updating the DNS/RH). Alternatively a CO may be allocated multiple RVSs.

11.4 Name resolution

11.4.1 DONA resolution handlers (RH)

The Resolution Handler (RH) is functionally an RVS extension offering generic name resolution. The RH may therefore be integrated with the RVS entity. Retrieval of CO characteristics is part of the resolution (e.g. the protocol stack(s) supported by a CO).

Additionally RHs can be used to enable IP to use path labels rather than globally routable addresses. The full functionality of the RH is defined in [DONA], Appendix D gives an overview and the following provides a short summary.

DONA uses the route-by-name paradigm for name resolution. Rather than use DNS servers. Name resolution is accomplished through the use of two basic primitives: FIND(P:L) and REGISTER(P:L). In this context P:L is equivalent to HIT:L where L is a multifunctional label and HIT is the public key (P).

A client issues a FIND(P:L) packet to locate the object named P:L, and RHs route this request towards a nearby copy, i.e. applying any-cast functionality. REGISTER messages set up the state necessary for the RHs to route FINDs effectively.

Each domain or administrative entity, e.g. Autonomous System (AS), will have one logical RH (but perhaps many physical instances). The RH associated with an administrative entity X is denoted RHx. RHx is the provider/customer/peer (or, alternatively, parent/child/peer) of RHy if X is the provider/customer/peer of Y in terms of AS-level relationships. RHs use local policy (consistent with their domain’s peering agreements) when processing REGISTERs and FINDs. Each client knows the location of its local RH through some local configuration (much like they know about their local DNS server).

Any CO authorized to serve a datum or service with name P:L sends a REGISTER(P:L) command to its local RH. Each RH maintains a registration table that maps a name to both a next-hop RH and the distance to the copy (in terms of the number of RH hops, or some other metric).

When a FIND(P:L) arrives, the forwarding rule is straightforward: if there is an entry in the registration table, the FIND is sent to the next-hop RH (and if there is more than one, the choice is based on the local policy and which entry is closest); otherwise, the RH forwards the FIND towards its parent (i.e., its provider) using its local policy to choose among them if the RH is multi-homed. Thus, registration table misses are forwarded up the hierarchy in the hope of finding an entry.

If RHx receives a REGISTER from a child (i.e., customer), it does not forward it onward unless no such record exists or the new REGISTER comes from a copy closer than the previous copy. If so, RHx forwards the REGISTER to its parents and peers (after updating its registration table). The forwarding of a REGISTER can be terminated at any point if dictated by some administrative policy (such as a corporate firewall). REGISTER commands must be authenticated. The RHs accumulate the distances; they append their distance/cost to the previous-hop RH before sending the REGISTER to next RH.

REGISTER commands have a Time-To-Live (TTL) and must be refreshed period​ically. DONA also provides an UNREGISTER command so that clients can indicate that they are no longer serving some datum.

The FIND packet does not just resolve the name, it also initiates the transport exchange. The name-based routing provided by DONA ensures that the packet reaches an appropriate destination. If the FIND request reaches a Tier-1 AS (i.e. top level) and doesn’t find a record associated with that principal, then the Tier-1 RH returns an error message to the source of the FIND. If the FIND does locate a record, the responding server CO returns a standard (e.g. TCP or UDP) transport-level response (the same as if the transport header had been received on a normal data packet, not on a FIND packet).

To make this work, transport protocols should bind to names, not addresses, but otherwise do not need to change. Similarly, application protocols need only be modified to use names, not addresses, when calling transport. In fact, many applications could be simplified when implemented on top of DONA. The packet exchanges that occur after a FIND has been received are not handled by RHs (except when they serve as caches or other middle-boxes), but instead are routed to the appropriate destination using standard IP routing and forwarding. To this extent, DONA does not require modifications of the basic IP infra​structure.

The Register and Deregister primitives defined in the “Presence and registration” paragraph are covering the functionality of the same DONA primitives.

The functionality of the DONA FIND primitive is covered by the INVITE primitive described in the “Session control primitive message mapping” paragraph.

[DONA] is a simple “route-by-name” method which is expected to scale with the growth of CO applications. [DONA] may be applied as an overlay/addition to the DNS functionality. [DONA] furthermore increases the routing capability of the CO network beyond what is supported by the current DNS functionality.

11.4.2 Object Naming Service (ONS)

The Object Naming Service (ONS) is part of the EPC Global Network [EPCGLOB]. The ONS may be integrated with the RVS entity or can be implemented as a self-contained entity. The ONS offers name resolution for Electronic Product Codes (EPC):

EPC -> EPC-IS (i.e. the URL of the interface to the owner of the EPC manager code).

There are defined two levels of ONS service. The Root ONS service finds the local ONS server corresponding to the manager code for any given EPC. It is the local ONS server, then, that returns the actual URL for the EPC-IS. This is a distributed and scalable approach, since the Root ONS only needs to keep track of the mapping of manager codes to local ONS servers.

The EPC Global Network architecture comprising the ONS, EPC-IS, and EPC-DS can be viewed as composed of three levels:

· The Root ONS is used to find the owner of the Manager Code for the object (usually the manufacturer).
· The Local ONS is used to find the local information under control of that manufacturer. These include the EPC-IS interfaces for Core Product information and Manufacturing Time information (batch number, etc.) and the EPC-DS.
· The EPC-DS is used to find all the lifecycle events for the object, which have been recorded throughout the supply chain, including events generated and stored by the manufacturer (e.g. product shipped, product returned, etc.).
This is further elaborated in Appendix F.

11.4.3 Domain Name Server (DNS)

DNS is generally required for ubiquitous CO services. DNS may be amended to manage names in the Host Identity namespace [HITA]. Alternatively, the [DONA] architecture may be used for this purpose. A Host Identifier (HI) represents a statistically globally unique name for naming any system with an IP stack. A system can have multiple identities, some “well known”, some unpublished or “anonymous”. A CO may self-assert its own identity, or may use a third-party authenticator, e.g. DNS Security (DNSSEC), to “notarize” the identity assertion. It is expected that the Host Identifiers handled by DNS will initially be authenticated with DNSSEC.

The unpublished Host Identifiers (when allowed) should not be stored anywhere (besides in the communicating hosts). The (public) HI shall be stored in a new Resource Record (RR) type, to be defined [HITA]. This RR type is likely to be quite similar to the IPSECKEY RR. A CO node records its IP address in its DNS record, using the HIPRVS DNS record type.

Alternatively, or in addition to storing Host Identifiers in the DNS, they may be stored in various kinds of Public Key Infrastructure (PKI) or resolution handlers. Such a practice may allow them to be used for purposes other than pure host (CO) identification.

11.4.4 Initial name resolution implementation

Host identities shall be available as part of the initial implementation. However, since the full PKI or DNS security infrastructure is not yet in place, a local host identity (i.e. name) server shall be applied as a registry and for certificate issuance and verification. (The Telenor Mobile PKI is so far not a generic service. This is because MSISDN is used for identification, and signatures can only be given on preconfigured SMS messages.) Public keys stored in SIM-cards shall be considered used for [GPRS] local COs.
The following namespaces shall be supported:

· URIs (by applying DNS).

· HI/HIT (based on [DONA] resolution handlers).

· IP-addresses (based on native IP routing).
MSISDNs shall also be considered for local use and for convenient interconnect with native GPRS devices.

In order to ensure both a future proof and flexible solution (i.e. overcoming the inherited weaknesses of the DNS based resolution additionally covering the range from small local CO applications to systems with large quantities of globally interconnected and collaborating COs), it is proposed to adopt the [DONA] name resolution architecture as reviewed in Appendix D.

The mechanisms for initial namespace management are therefore to use a distributed name server architecture based on [DONA] additional to the existing DNS.
11.5 GPRS HIT gateway

The GPRS HIT gateway, as defined in Appendix C, offers interconnect of HIT based COs, on e.g. the Internet, and UMTS/GPRS native (non HIT) devices.

11.6 Hosting

Hosting of functionality, e.g. for third parties, shall be based on evolving technologies for virtualization [XEN]. The service areas to be covered include:
· Persistent storage and backup.
· Web and telecom services.

· Accounting and billing.

An in-depth treatment of a hosting architecture has to be carried out separately.

11.7 Application Layer Gateway (ALG)
The architectural framework (template) for ALGs is inherent in the HIT gateway architecture as shown in Figure 12.

11.8 Topology/Complexity hiding

It shall be possible to hide (e.g. encrypt or delete) irrelevant information when domain boarders (administrative or technological) are crossed.

Topology hiding is not considered a requirement as long as the CO infra​struc​ture is overlaid the Internet, and security is offered by the CO protocol stack.

11.9 Legal intercept

The required functionality for legislated intercept and traffic control may be allocated to the HIT gateway.

12 Management

Management is treated as belonging to a distinct functional entity. However, the management functionality may utilize the basic functionality as identified for the CO abstract service.
The definition of further management requirements, functionality and archi​tecture for the CO BSS and OSS will be treated separately.
Management, e.g. of Customer Premises Equipment (CPE) may turn out to be the key to potential service offerings and involved operational expense. The OMA specifications for device management shall be taken as the baseline for CPE management.
The following capabilities shall be supported from the network side (i.e. manage​ability will depend on the end-system).
12.1 Orchestration

The main purpose of the orchestration functionality is to select the specific functionality required from each functional layer of the protocol stack. In the initial versions of the implementation this will involve manual configuration, but future versions may introduce automation based on end-to-end negotiation.

12.2 Software upgrades

Installation of software upgrades is managed by the following primitives, which are building on the secure data primitives:

SW-Upgrade-Send (SA, Upgrade)
% sends upgrade on the specified Security Association (SA)

SW-Upgrade-Confirmation-Receive (SA, Result)

SW-Upgrade-Receive (SA, Upgrade)

SW-Upgrade-Confirmation-Send (SA, Result)

12.3 Functional configuration

The following primitives shall be used for reading and installing system and service parameters:

Parameter-Send (SA, Parameter, Value) % SA identifies the Security Association

Parameter-Confirmation-Receive (SA, Parameter, Value, Result)

Parameter-Receive (SA, Parameter, Value)

Parameter-Confirmation-Send (SA, Parameter, Value, Result)

12.4 Error reporting

The following primitives shall be used for sending and receiving error reports:

Report-Send (CO-ID, Parameter, Value)

Report-Receive (CO-ID, Parameter, Value)

12.5 CRM channels, Provisioning/fulfilment

It shall be possible to subscribe, de-subscribe and configure services via web services and a web based GUI. Error reporting shall be offered as part of this web service.

The data model for service management shall be according to the ITU-T Recommendation M.1402 [ITU].

12.6 Assurance/fault handling

Network related functionality and managed CPE shall be monitored proactively in order to prevent and correct errors before SLA are violated.

13 Home networks and CPE

The detailed coverage of these topics is outside the scope of this presentation and urgently requires separate treatment.
13.1 Residential network interfaces

The basic interface for the residential network shall be Ethernet, but WiFi shall also be supported in premises distribution. Moreover, the architecture shall support interfacing of low power home networks for short range wireless communications.

Complementary technologies are outside the scope of this presentation, but the capability of interfacing of the following alternatives represents an important architectural requirement:

· Wireless TV

· PLC (Power Line Communications)

· Blue Tooth

· Infrared

· Fire-wire

· Ultra Wide Band (UWB) based

· Zigbee

· Etc…

Interfacing to the following legacy technologies is also in demand:

· LonTalk (and its major competitors: BACnet, Modbus?)

· X.10

The interfacing of diverse proprietary technologies requires gateway func​tionality that may be provided by network operators. High level gateway architecture for this purpose is described in Figure 12.

13.2 Residential Gateway (RG)

The RG shall be as generic and transparent to services as possible. The architectural model defined for the HIT gateway (Figure 12) shall be applied also for the RG.
13.3 Plug and play CPE

All CPE shall as far as possible be plug-and-play. This applies in particular to equipment for customer self service installation.

(Note: A candidate sensor standard is an IEEE P1451. The architecture of an IEEE P1451.4 plug-and-play sensor consists of a TEDS (transducer electronic datasheet) and the analogue sensor itself. The TEDS provides the configuration, scaling, and calibration information necessary to make a measurement through a mixed mode interface. This TEDS data is processed by the measurement hardware device driver and is used by the application development environment to reduce the programming burden and set-up time for any measurement system.)

14 Significance for industry
Machine to machine communication (M2M) or Connected Objects (CO) represents an enormous growth potential for service providers and network carriers. It has been predicted that as early as by 2011 CO operator revenue shares may reach 30%.

The generic functionality supported by the architecture and offered to COs via an API may be utilized both in the carrier service segment and in the applica​tion service segment. Additionally, there are two main scenarios for offering the service, each with different commercial impacts. The first scenario is applying the architecture with the service API only for development of operator internal CO services, for offerings to the external market. The second scenario involves offering the service components also for service development and deployment by third parties, e.g. by also offering hosting. A third scenario, closely related to the second scenario, is the peer-to-peer scenario where end users apply the API for services running transparently over the network. The architecture is agnos​tic to these scenarios, and application servers may be allocated within or out​side the network. Since the architecture supports network centric and peer-to-peer (P2P) services, it enables services and service components to be moved between the user and network domains; e.g. a popular P2P service may be made network centric to serve a wider audience as part of commercialization or for increase of production efficiency.

The architecture urgently needs standardisation to take place to create a global (i.e. cross operator and service provider) market for end to end CO services. Since the architecture with the API shields applications from the underlying technology it reduces efforts involved in service development, and at the same time allows services and technology platforms to evolve independently. Adop​tion of the architecture will allow the effect of economic network externalities to increase the total value of the market which now may offer ubiquitous services on an end to end basis. This will foster competition and efficiency of scale in service infrastructures, service production and service development.
The NGN and IMS do initially only support the class of session oriented data applications for use by Connected Objects. It is therefore an important business opportunity to implement the non session (data) related part with interconnect to GPRS based networks. The architecture allows ubiquitous services also via GPRS/UMTS, and also for native GPRS devices.
Adding the session oriented streaming class of service at a later stage may facilitate migration to a harmonised and cost efficient network infrastructure, where legacy networks gradually may be phased out. The architecture may thus serve as a vehicle for migration to the true all-IP network.
References
[API]
Inge Grønbæk, et al., Abstract Service API for Connected Objects, R&I Report R 18/2007, 2007.06.30.

[AXIS2]
http://ws.apache.org/axis2/.

[CBE]
IBM et al. http://www.eclipse.org/tptp/platform/documents/resources/cbe101spec/CommonBaseEvent_SituationData_V1.0.1.pdf

[DONA]
T. Koponen, et al., A Data-Oriented (and Beyond) Network Architecture, http://www.sigcomm.org/ccr/drupal/files/fp177-koponen1.pdf, Sigcomm’07, Kyoto 2007.

[EPC]
Electronic Product Code, http://www.epcglobalinc.org/standards/architecture/architecture_1_2-framework-20070910.pdf.

[EPCDEMY]
Bill McBeath, Demystifying the EPC Global Network, An explanation of ONS, EPC-IS, and EPC-DS, Jun 16, 2005, http://www.chainlinkresearch.com/research/detail.cfm?guid=870D70E1-9E25-3141-B17E-E5DFE6AE2BAC.

[EPCGLOB]
http://www.epcglobalna.org/
[GPRS]
3GPP TS 23.060 V5.13.0 (2006-12), Technical Specification, 3rd Generation Partnership Project; Technical Specification Group Services and System Aspects; General Packet Radio Service (GPRS); Service description; Stage 2, (Release 5).

[GTP]
3GPP TS 29.060, 3rd Generation Partnership Project; Technical Specification Group Core Network and Terminals; General Packet Radio Service (GPRS); GPRS Tunnelling Protocol (GTP) across the Gn and Gp interface.

[HIPA]
R. Moskowitz, P. Nikander, IETF Request for Comments: 4423, Host Identity Protocol (HIP) Architecture, May 2006.

[HIP-RVS]
J. Laganier L. Eggert, Internet-Draft, Identity Protocol (HIP) Rendezvous Extension, June 7, 2006.

[HIP-SMC]
Xueyong Zhu and J. William Atwood, A Secure Multicast Model for Peer-to-Peer and Access Networks using the Host Identity Protocol, Proceedings of the IEEE Workshop on Peer-to-Peer Multicasting (P2PM 2007), Las Vegas, NV, 2007 January 11, pp. 1098-1102.

[ITU]
ITU-T Recommendation M.1402, Formalization of data for service management http://www.itu.int/ITU-T/aap/AAPRecDetails.aspx?AAPSeqNo=1367, work in progress.

[M2MXML]
The M2MXML telemetric protocol is being developed in the open-source community and is hosted at http://www.m2mxml.org.

[OSA]
Open Service Access (OSA), Parlay X 3 Web Services, Parlay X 3.0 set of specifications:
Part 1:
“Common”;
Part 2:
“Third Party Call”;
Part 3:
“Call Notification”;
Part 4:
“Short Messaging”;
Part 5:
“Multimedia Messaging”;
Part 6:
“Payment”;
Part 7:
“Account Management”;
Part 8:
“Terminal Status”;
Part 9:
“Terminal Location”;
Part 10:
“Call Handling”;
Part 11:
“Audio Call”;
Part 12:
“Multimedia Conference”;
Part 13:
“Address List Management”;
Part 14:
“Presence”;
Part 15:
“Message Broadcast”;
Part 16:
“Geocoding”;
Part 17:
“Application-driven Quality of Service (QoS)”;
Part 18:
“Device Management”reserved;
Part 19:
“Multimedia Streaming Control”;
Part 20:
“Multimedia Multicast Session ManagementControl”.
The present specifications have been defined jointly between ETSI, The Parlay Group (http://www.parlay.org) and the 3GPP.

[RUNES]
IST-004536-RUNES, Reconfigurable Ubiquitous Networked Embedded Systems, RUNES/D1.6/PU/v1.0, 09/07/2007.

[SYNAPSE]
http://ws.apache.org/synapse/.

[XEN]
http://www.xensource.com.

Appendix A – Namespaces and HIP architecture

Overview

The RFC 4423 [HIPA] describes the reasoning behind a proposed new name​space, the Host Identity namespace, and a new protocol layer, the Host Identity Protocol (HIP), between the internetworking and transport layers. [HIPA] presents the basics of the current namespaces, their strengths and weak​nesses, and how a new namespace will add completeness to them. The roles of this new namespace in the protocols are defined.

The Internet has two important global namespaces: Internet Protocol (IP) addresses and Domain Name Service (DNS) names. These two namespaces have a set of features and abstractions that have powered the Internet to what it is today. They also have a number of weaknesses. Basically, since they are all we have, we try to do too much with them. Semantic overloading and func​tionality extensions have greatly complicated these namespaces.

The proposed Host Identity namespace fills an important gap between the IP and DNS namespaces. The Host Identity namespace consists of Host Identifiers (HIs). A Host Identifier is cryptographic in its nature; it is the public key of an asymmetric key-pair. Each host will have at least one Host Identity, but it will typically have more than one. Each Host Identity uniquely identifies a single host; i.e., no two hosts have the same Host Identity. The Host Identity, and the corresponding Host Identifier, can be either public (e.g., published in the DNS) or unpublished. Client systems will tend to have both public and unpublished Identities.

There is a subtle but important difference between Host Identities and Host Identifiers. An Identity refers to the abstract entity that is identified. An Identifier, on the other hand, refers to the concrete bit pattern that is used in the identification process.

Although the Host Identifiers could be used in many authentication systems, such as the Internet Key Exchange (IKEv2) Protocol, the presented architecture introduces a new protocol, called the Host Identity Protocol (HIP), and a crypto​graphic exchange, called the HIP base-exchange. The HIP protocols provide for limited forms of trust between systems, enhance mobility, multi-homing, and dynamic IP renumbering; aid in protocol translation/transition; and reduce certain types of denial-of-service (DoS) attacks.

When HIP is used, the actual payload traffic between two HIP hosts is typically, but not necessarily, protected with IPsec. The Host Identities are used to create the needed IPsec Security Associations (SAs) and to authenticate the hosts. When IPsec is used, the actual payload IP packets do not differ in any way from standard IPsec-protected IP packets.

Background

The Internet is built from three principal components: computing platforms (end-points), packet transport (i.e., internetworking) infrastructure, and services (applications). The Internet exists to service two principal components: people and robotic services (silicon-based people). All these components need to be named in order to interact in a scalable manner. Here we concentrate on naming computing platforms (e.g. Connected Objects) and packet transport elements.

There are two principal namespaces in use in the Internet for these compo​nents: IP numbers and Domain Names. Domain Names provide hierarchically assigned names for some computing platforms and some services. Each hierarchy is delegated from the level above; there is no anonymity in Domain Names. Email, HTTP, and SIP addresses all reference Domain Names. IP numbers are a confounding of two namespaces, the names of a host's networking interfaces and the names of the locations

There are three critical deficiencies with the current namespaces. First, dynamic readdressing cannot be directly managed. Second, anonymity is not provided in a consistent, trustable manner. Finally, authentication for systems and data​grams is not provided. All of these deficiencies arise because computing platforms are not well named with the current namespaces. An independent namespace for computing platforms could be used in end-to-end operations independent of the evolution of the internetworking layer and across the many internetworking layers. This could support rapid readdressing of the internet​working layer because of mobility, re-homing, or renumbering.

If the namespace for computing platforms is based on public key cryptography, it can also provide authentication services. If this namespace is locally created without requiring registration, it can provide anonymity.

A name in the Host Identity namespace, a Host Identifier (HI), represents a statistically globally unique name for naming any system with an IP stack. This identity is normally associated with, but not limited to, an IP stack. A system can have multiple identities, some “well known”, some unpublished or “anonymous”. A system may self-assert its own identity, or may use a third-party authenticator like DNS Security (DNSSEC), Pretty Good Privacy (PGP), or X.509 to “notarize” the identity assertion. It is expected that the Host Identi​fiers will initially be authenticated with DNSSEC and that all implementations will support DNSSEC as a minimal baseline.

The public Host Identifiers should be stored in DNS. The unpublished Host Identifiers should not be stored anywhere (besides in the communicating hosts). The (public) HI is stored in a new Resource Record (RR) type, to be defined. This RR type is likely to be quite similar to the IPSECKEY RR. Alterna​tively, or in addition to storing Host Identifiers in the DNS, they may be stored in various kinds of Public Key Infrastructure (PKI). Such a practice may allow them to be used for purposes other than pure host identification.

A Host Identity Tag (HIT) is a 128-bit representation for a Host Identity. It is created by taking a cryptographic hash over the corresponding Host Identifier. There are two advantages of using a hash over using the Host Identifier in protocols. First, its fixed length makes for easier protocol coding and also better manages the packet size cost of this technology. Second, it presents the identity in a consistent format to the protocol independent of the cryptographic algorithms used.

In the HIP packets, the HITs identify the sender and recipient of a packet. Consequently, a HIT should be unique in the whole IP universe as long as it is being used. In the extremely rare case of a single HIT mapping to more than one Host Identity, the Host Identifiers (public keys) will make the final difference. If there is more than one public key for a given node, the HIT acts as a hint for the correct public key to use.

Local Scope Identifier (LSI) A Local Scope Identifier (LSI) is a 32-bit localized representation for a Host Identity. The purpose of an LSI is to facilitate using Host Identities in existing protocols and APIs. LSI’s advantage over HIT is its size, its disadvantage is its local scope.

Examples of how LSIs can be used include: as the address in an FTP command and as the address in a socket call. Thus, LSIs act as a bridge for Host Identi​ties into IPv4-based protocols and APIs.

In the HIP architecture, the end-point names and locators are separated from each other. IP addresses continue to act as locators. The Host Identifiers take the role of end-point identifiers. It is important to understand that the end-point names based on Host Identities are slightly different from interface names; a Host Identity can be simultaneously reachable through several interfaces.

Transport Associations and End-points

Architecturally, HIP provides for a different binding of transport-layer protocols. That is, the transport-layer associations, i.e., TCP connections and UDP associations, are no longer bound to IP addresses but to Host Identities. It is possible that a single physical computer hosts several logical end-points. With HIP, each of these end-points would have a distinct Host Identity. Furthermore, since the transport associations are bound to Host Identities, HIP provides for process migration and clustered servers. That is, if a Host Identity is moved from one physical computer to another, it is also possible to simultaneously move all the transport associations without breaking them. Similarly, if it is possible to distribute the processing of a single Host Identity over several physical computers, HIP provides for cluster-based services without any changes at the client end-point.

End-host Mobility and Multi-homing

HIP decouples the transport from the internetworking layer, and binds the transport associations to the Host Identities (through actually either the HIT or LSI). Consequently, HIP can provide for a degree of internetworking mobility and multi-homing at a low infrastructure cost. HIP mobility includes IP address changes (via any method) to either party. Thus, a system is considered mobile if its IP address can change dynamically for any reason like PPP, Dynamic Host Configuration Protocol (DHCP), IPv6 prefix reassignments, or a Network Address Translation (NAT) device remapping its translation. Likewise, a system is considered multi-homed if it has more than one globally routable IP address at the same time. HIP links IP addresses together, when multiple IP addresses correspond to the same Host Identity, and if one address becomes unusable, or a more preferred address becomes available, existing transport associations can easily be moved to another address.

When a node moves while communication is already ongoing, address changes are rather straightforward. The peer of the mobile node can just accept a HIP or an integrity protected IPsec packet from any address and ignore the source address. However, a mobile node must send a HIP readdress packet to inform the peer of the new address(es), and the peer must verify that the mobile node is reachable through these addresses.
Rendezvous Mechanism

Making a contact to a mobile node is slightly more involved. In order to start the HIP exchange, the initiator node has to know how to reach the mobile node. Although infrequently moving HIP nodes could use Dynamic DNS to update their reachability information in the DNS, an alternative to using DNS in this fashion is to use a piece of new static infrastructure to facilitate rendezvous between HIP nodes.

The mobile node keeps the rendezvous infrastructure continuously updated with its current IP address(es). The mobile nodes must trust the rendezvous mecha​nism to properly maintain their HIT and IP address mappings.

IPsec

The IPsec Security Parameter Index (SPI) in ESP provides a simple compression of the HITs. This does require per-HIT-pair SAs (and SPIs), and a decrease of policy granularity over other Key Management Protocols, such as IKE and IKEv2. In particular, the current thinking is limited to a situation where, con​ceptually, there is only one pair of SAs between any given pair of HITs. In other words, from an architectural point of view, HIP only supports host-to-host (or endpoint-to-endpoint) Security Associations. If two hosts need more pairs of parallel SAs, they should use separate HITs for that. However, future HIP extensions may provide for more granularity and creation of several ESP SAs between a pair of HITs.

Only ESP transport mode is supported. An ESP SA pair is indexed by the SPIs and the two HITs (both HITs since a system can have more than one HIT). The SAs need not be bound to IP addresses; all internal control of the SA is by the HITs. Thus, a host can easily change its address using Mobile IP, DHCP, PPP, or IPv6 readdressing and still maintain the SAs.

Administrative infrastructure needed
In some environments, it is possible to use HIP opportunistically, without any infrastructure. However, to gain full benefit from HIP, the HIs must be stored in the DNS or a PKI, and a new rendezvous mechanism is needed. Such a new rendezvous mechanism may need new infrastructure to be deployed.

In practice, HIP provides security for end-host mobility and multi-homing. Furthermore, since HIP Host Identifiers are public keys, standard public key certificate infrastructures can be applied on the top of HIP

For most purposes, an approach where DNS names are resolved simultaneously to HIs and IP addresses is sufficient. However, if it becomes necessary to resolve HIs into IP addresses or back to DNS names, a flat resolution infra​structure is needed. Such an infrastructure could be based on the ideas of Distributed Hash Tables, but would require significant new development and deployment.

A host can keep track of all of its partners that might use its HIT in an Access Control List (ACL) by logging all remote HITs. It should only be necessary to log responder hosts. With this information, the host can notify the various hosts about the change to the HIT. There has been no attempt to develop a secure method to issue the HIT revocation notice.

HIP-aware NATs, however, are transparent to the HIP-aware systems by design. Thus, the host may find it difficult to notify any NAT that is using a HIT in an ACL. Since most systems will know of the NATs for their network, there should be a process by which they can notify these NATs of the change of the HIT. This is mandatory for systems that function as responders behind a NAT. In a similar vein, if a host is notified of a change in a HIT of an initiator, it should notify its NAT of the change. In this manner, NATs will get updated with the HIT change.

The definition of the Host Identifier states that the HI need not be a public key. It implies that the HI could be any value; for example, an FQDN. This document does not describe how to support such a non-cryptographic HI. A non-crypto​graphic HI would still offer the services of the HIT or LSI for NAT traversal. It would be possible to carry HITs in HIP packets that had neither privacy nor authentication. Since such a mode would offer so little additional functionality for so much addition to the IP kernel, it has not been defined. Given how little public key cryptography HIP requires, HIP should only be implemented using public key Host Identities. This may not apply to closed local environments.
If it is desirable to use HIP in a low-security situation where public key compu​tations are considered expensive, HIP can be used with very short Diffie-Hellman and Host Identity keys. Such use makes the participating hosts vulnerable to MitM and connection hijacking attacks. However, it does not cause flooding dangers, since the address check mechanism relies on the routing system and not on cryptographic strength.
Appendix B – Interconnect with GPRS
GPRS and GTP
All GPRS [GPRS] roaming traffic is carried by the (GTP) defined in [GTP]. This protocol tunnels user data and signaling between GPRS Support Nodes in the GPRS backbone network.

The GPRS Tunnelling Protocol (GTP) is the protocol between GPRS Support Nodes (GSNs) in the UMTS/GPRS backbone network. It includes both a GTP control plane (GTP-C) and data transfer (GTP-U) procedures. GTP also supports the GTP based charging protocol. The interfaces relevant to GTP are between the yellow boxes shown in Figure B1. GTP (GTP-C and GTP-U) is defined for the Gn interface, i.e. the interface between GSNs within a PLMN, and for the Gp interface between GSNs in different PLMNs. Only GTP-U (Figure B2) is defined for the Iu interface between Serving GPRS Support Node (SGSN) and the UMTS Terrestrial Radio Access Network (UTRAN).

On the Iu interface, the Radio Access Network Application Part (RANAP) protocol and signaling part of GTP-U are performing the control function for user plane (GTP-U).

[image: image14.wmf]

Gi

Gn

Gc

Gp

Signalling and Data Transfer

Interface

Signalling Interface

TE

PDN

Iu

UTRAN

TE

MT

Gr or Gc

HLR

Other PLMN

SGSN

GGSN

GGSN

GTP

-

MAP

protocol

converting

GSN

Gn

Iu

TE

MT

UTRAN

SGSN

Gn

 BSS

Gb

TE

MT

Gn

Figure B1 GPRS Logical Architecture with interfaces

Note: PDN represents a Packet Data Network, e.g. Internet, or a core CO network.
GTP allows multi-protocol packets to be tunnelled through the UMTS/GPRS Backbone between GSNs and between SGSN and UTRAN.

In the control plane, GTP specifies a tunnel control and management protocol (GTP-C) which allows the SGSN to provide packet data network access for an MN. Control Plane signaling is used to create, modify and delete tunnels. GTP also allows creation, and deletion of a single multicast service tunnel, that can be used for delivering packets to all the users who have joined a particular multicast service.

In the user plane, GTP uses a tunnelling mechanism (GTP-U) to provide a service for carrying user data packets.

The GTP-U protocol is implemented by SGSNs and GGSNs in the UMTS/GPRS Backbone and by Radio Network Controllers (RNCs) in the UTRAN. SGSNs and GGSNs in the UMTS/GPRS Backbone implement the GTP-C protocol. No other systems in the basic GPRS architecture need to be aware of GTP. UMTS/GPRS MNs are not GTP aware.

It is assumed a many-to-many relationship between SGSNs and GGSNs. A SGSN may provide service to many GGSNs. A single GGSN may associate with many SGSNs to deliver traffic to a large number of geographically diverse mobile stations.

[image: image15.wmf]

L1

RLC

PDCP

MAC

E.g.

,

 IP

,

PPP

Application

L1

RLC

PDCP

MAC

L1

UDP/IP

GTP

-

U

L2

Relay

L1

UDP/IP

L2

GTP

-

U

E

.g.

,

 IP

,

PPP

3G

-

SGSN

UTRAN

MS

Iu

-

PS

Uu

Gn

Gi

3G

-

GGSN

L1

UDP/IP

GTP

-

U

L2

L1

UDP/IP

GTP

-

U

L2

Relay

Figure B2 GTP User Plane with UTRAN

TCP carries GTP PDUs for protocols that need a reliable data link, and UDP carries GTP PDUs for protocols that do not need a reliable data link (e.g. IP).

Connections from PLMN to other IP based networks

The 3GPP Gi/Mb IP based interface is defined for transport connections to other non 3GPP IP networks (e.g. the Internet).
The Mw interface is defined for application level SIP based signalling towards these networks.

The 3GPP or ETSI TISPAN has not defined a global mobility management protocol for this internetworking. The next paragraph shows how the GTP/MAP supported mobility management may be interfaced with the HIP rendezvous server to create a global HIP based mobility management (MM) potentially spanning the IP networks (e.g. CO core network and the Internet) and the traditional UMTS/GPRS cellular networks.

HIP based global mobility management

HIP [HIPA] may be used for interconnecting new and existing access technol​ogies including GPRS, UTRAN and WLANs. Figure B3 shows how the HIP rendez​vous server interconnects the mobility management (MM) of the CO core network or the Internet and the UMTS/GPRS, thereby offering global multi​media mobility. It should also be noted that mobility management interconnect is more spectrum efficient than running MM above the native (Layer 2) mobility management of the access network (i.e. MAP). Figure B3 shows the protocol stack for GPRS as an access network to the global HIP based CO infrastructure. The proposed interconnect scheme avoids duplication of mobility management at the air interface. Furthermore, the access to the GPRS network becomes symmetric (i.e. sessions may be initiated from both inside and outside GPRS) by implementing GGSN initiated registration at the HIP rendezvous server (RVS) when a CO establishes a context with its GGSN. Figure B3 shows how the RVS and the GPRS external CO is interconnected via simple extensions to the protocol stacks of the Gateway GPRS Supporting Node (GGSN).

[image: image16.wmf]

Relay

Relay

Network

Service

GTP

-

C

HIP

IP

SNDCP

LLC

RLC

MAC

GSM RF

SNDCP

LLC

BSSGP

L1bis

RLC

MAC

GSM RF

BSSGP

L1bis

Relay

L2

L1

IP

L2

L1

IP

MN

BSS

SGSN

GGSN/HIP MM

Network

Service

UDP

UDP

L2

L1

“Appl.”

HIP MM

GTP

-

C

L2

L1

HIP MM

HIP RVS

IP

UDP

IP

UDP

Figure B3 GPRS and HIP MM interconnect protocol stack (control plane)
For communication with the RVS HIP MM is mapped to GTP/MAP in the combined Gateway GGSN/HIP MM gateway. (The rest of GPRS protocol stack remains unchanged.)

[image: image17.wmf]

Relay

Relay

Network

Service

GTP

-

U

HIP

IP

SNDCP

LLC

RLC

MAC

GSM RF

SNDCP

LLC

BSSGP

L1bis

RLC

MAC

GSM RF

BSSGP

L1bis

Relay

L2

L1

IP

L2

L1

IP

MN

BSS

SGSN

GGSN/HIP MM

Network

Service

UDP

UDP

L2

L1

“Appl.”

GTP

-

U

L2

L1

HIP

IP

CO

“Appl.”

HIP

IP

HIP

IP

Figure B4 GPRS and HIP user plane interconnect
The introduction of a limited number of GGSN/HIP gateways opens for a smooth migration from the limited capability GPRS to a high capacity real-time HIP based CO core network providing global multimedia mobility for COs accessed via a variety of new and existing access technologies.

An optimisation is the localized mobility management which is not involving HIP mobility as long as the CO stays within the GPRS network. Such hierarchical mobility management shields the local movement of the CN from the HIP rendezvous server which only receives location updates (handovers) when the CO moves outside the GPRS area.

Only GTP-U (Figure B2) is defined for the Iu interface between Serving GPRS Support Node (SGSN) and the UMTS Terrestrial Radio Access Network (UTRAN).

On the Iu interface, the Radio Access Network Application Part (RANAP) proto​col and signalling part of GTP-U are performing the control function for the user plane (GTP-U).

Appendix C – Interconnect of native GPRS objects
GPRS HIT gateway

The GPRS HIT gateway offers interconnect of HIT based COs, on e.g. the Internet, and UMTS/GPRS native (non HIT) devices.
Control plane mapping (mobility management)
The local mobility within the GPRS network is transparent to the HIT based mobility management. A special requirement is that a CO attached to GPRS needs its local IP address to be registered at the gateway and at the HIT mobility anchor point RVS (i.e. the Rendezvous server), see Figure C1.

[image: image18.emf]

Relay

L2

L1

IP

GGSN/HIP

UDP

L2

L1

HIP MM

GTP - C

L2

L1

HIP MM

RVS

IP IP

Figure C1 GPRS to RVS mobility management mapping

This registration must be carried out when the GPRS Attach/PDP context creation takes place. This is assumed to represent a minor GPRS extension.
The complete protocol stack for the GPRS user and control planes including the protocol mapping is shown in Appendix B.
User plane mapping
The protocol stack for interconnect of the GPRS and CO user planes is shown in Figure C2.

[image: image19.emf]

Relay

L2

L1

IP

GGSN/HIP

UDP

L2

L1

GTP - U

L2

L1

HIP IP

CO

Higher layers

HIP IP

Figure C2 Mapping of GGSN user-plane to CO

In the figure the Relay represents unpacking of the IP user-plane from the GTP-U.
Appendix D – Alternative to DNS

Data-Oriented Network Architecture [DONA]
The DNS name resolution system is a fundamental part of today’s Internet, underlying almost all Internet usage. However, the DNS was developed rather late in the Internet’s evolution, after many basic pieces of the architecture were in place. For instance, TCP sessions were already bound to IP addresses and the Berkeley Socket API referred to addresses, not names; frozen design decisions, such as these, limited the extent to which DNS names (or any other naming system) could permeate the architecture. As a result, the current role of naming in the architecture is more an accident of history than the result of principled architectural design. [DONA] takes a “clean-slate” look at naming and name resolution and proposes a new architecture briefly described in the following.

Please refer to [DONA] for a more in depth rationale for adopting the archi​tecture and for information on potential extensions, feasibility study and prototype implementation.
Naming

DONA names are organized around principals. Each principal is associated with a public-private key pair, and each datum or service or any other named entity (host, domain, etc.) is associated with a principal. Names are of the form P:L where P is the cryptographic hash of the principal’s public key and L is a label chosen by the principal, who ensures that these names are unique. The granularity of naming is left up to principals; a principal might choose to just name her web site, or name her web site and each page within it, or name at a finer granularity (such as naming each individual photo or publication).

Principals are considered to own their data, in the sense that only hosts authorized by the principal P can offer to serve (i.e., provide access to) entities with names of the form P:L.

Each datum comes with metadata including the principal’s public key and the principal’s signature of the data; thus, when we speak of a client retrieving data we mean it has received the triplet <data, public key, signature> (along with perhaps other metadata). In such a scheme, requesting clients rely on the principal’s signature to ensure the data’s integrity. These names are applica​tion-independent and globally unique (and can refer to anything, not just data or services). They are also self-certifying in the following sense: When a client asks for a piece of data with name P:L and receives the triplet <data, public key, signature>, it can immediately verify that the data did indeed come from the principal by checking that the public key hashes to P, and that the private key associated with P also generated the signature. This satisfies the need for authentication; persistence follows from the fact that the names don’t refer to location, and thus the data can be hosted anywhere.

With a slight alteration, these basic ideas can be naturally applied to immutable data: here, the label L is the cryptographic hash of the contents of the data and the principal P is the purveyor of the data, not the owner; for instance, the purveyor could be the hosting Content Delivery Network (CDN). Since the client need not rely on a principal to ensure the integrity of the data (the hash over the contents ensures this).
Resolution handlers (RHs)

DONA uses the route-by-name paradigm for name resolution. Rather than use DNS servers, DONA will rely on a new class of network entities called resolution handlers (RHs). Name resolution is accomplished through the use of two basic primitives: FIND(P:L) and REGISTER(P:L). A client issues a FIND(P:L) packet to locate the object named P:L, and RHs route this request towards a nearby copy. REGISTER messages set up the state necessary for the RHs to route FINDs effectively. Each domain or administrative entity, e.g. Autonomous System (AS), will have one logical RH (but perhaps many physical incarnations). The RH associated with an administrative entity X is denoted RHx. RHx is the provider/customer/peer (or, alternatively, parent/child/peer) of RHy if X is the provider/customer/peer of Y in terms of AS-level relationships (see Figure D1). This RH structure can extend to finer granularity than ASes to reflect other organizational and social structures; for instance, there could be departmental RHs at universities and firms and, going even further, users could have their own local RHs which peer with those of their neighbours and friends. RHs use local policy (consistent with their domain’s peering agreements) when pro​cessing REGISTERs and FINDs. Each client knows the location of its local RH through some local configuration (much like they know about their local DNS server).
Any machine authorized to serve a datum or service with name P:L sends a REGISTER(P:L) command to its local RH. Registrations can also take the form REGISTER(P:*) if the host is serving all data associated with the principal (or will forward incoming FIND packets to a local copy).
Each RH maintains a registration table that maps a name to both a next-hop RH and the distance to the copy (in terms of the number of RH hops, or some other metric). There is a separate entry for P:*, in addition to individual entries for the various P:L.
RHs use longest-prefix matching; if a FIND for P:L arrives and there is an entry for P:* but not P:L, the RH uses the entry for P:*; when entries for both P:* and P:L exist, the RH uses the one for P:L. Only when the RH has neither P:* or P:L entries do we say that P:L does not have an entry in the registration table.
When a FIND(P:L) arrives, the forwarding rule is straightforward: if there is an entry in the registration table, the FIND is sent to the next-hop RH (and if there is more than one, the choice is based on the local policy and which entry is closest); otherwise, the RH forwards the FIND towards its parent (i.e., its provider) using its local policy to choose among them if the RH is multi-homed. Thus, registration table misses are forwarded up the AS hierarchy in the hope of finding an entry (see Figure D1).
[image: image20.emf]
Figure D1 Registration state (solid arrows) in RHs after copies have registered themselves. RHs route client-issued FIND (dashed arrow) to a nearby copy
In the case of immutable data, a FIND command can take the normal form FIND(P:L), or the special form FIND(*:L) which indicates that the client is willing to receive the (self-certified) data from any purveyor. If RHx receives a REGISTER from a child (i.e., customer), it does not forward it onward unless no such record exists or the new REGISTER comes from a copy closer than the previous copy. If so, RHx forwards the REGISTER to its parents and peers (after updating its registration table). If the REGISTER comes from a peer, the entry can be forwarded or not based on local policy (depending, for example, on whether the AS is willing to serve as a transit AS for content). By letting the forwarding of FINDs and REGISTERs be driven by the local policies, DONA can faithfully respect the basic inter-domain policies as reflected in the Border Gateway Protocol (BGP). In addition, the forwarding of a REGISTER can be terminated at any point if dictated by some administrative policy (such as a corporate firewall). REGISTER commands must be authenticated. The local RH issues a challenge with a nonce, which the client must sign with P’s private key, or sign with some other key and provide a certificate from P empowering this other key to register this piece of data. When forwarding REGISTERs, the RH signs it so that the receiving RHs know that the data came from a trusted RH. These signatures are hop-by-hop and accumulated in a REGISTER along the path. In a similar manner, the RHs accumulate the distances; they append their distance/cost to the previous-hop RH before sending the REGISTER to next RH.
REGISTER commands have a TTL and must be refreshed periodically. DONA also provides an UNREGISTER command so that clients can indicate that they are no longer serving some datum.
The FIND packet does not just resolve the name; it also initiates the transport exchange. The name-based routing provided by DONA ensures that the packet reaches an appropriate destination. If the FIND request reaches a Tier-1 AS and doesn’t find a record associated with that principal, then the Tier-1 RH returns an error message to the source of the FIND. If the FIND does locate a record, the responding server returns a standard (e.g. TCP or UDP) transport-level response (the same as if the transport header had been received on a normal data packet, not on a FIND packet). To make this work, transport protocols should bind to names, not addresses, but otherwise do not need to change. Similarly, application protocols need only be modified to use names, not addresses, when calling transport. In fact, many applications could be simplified when implemented on top of DONA. Using HTTP as an example, we note that the only essential information in an HTTP initiation is the URL and header information (such as language, etc.); the URL is not needed, since the data is already named in a lower layer, and if each variation of the data (such as language) is given a separate name then the header information is also superfluous.
The packet exchanges that occur after a FIND has been received are not handled by RHs (except when they serve as caches or other middle-boxes), but instead are routed to the appropriate destination using standard IP routing and forwarding. To this extent, DONA does not require modifications of the IP infrastructure.
Key uniqueness test

To test that a key is not already in use may be done by doing a FIND(P:*) on a freshly generated key P (using DONA’s name resolution).

Paths crossing multiple addressing domains

DONA’s name-based anycast primitive (i.e. FIND) can remove much of the pressure on the lower-level addressing structure by providing a separate mecha​nism for path discovery. In particular, DONA could enable IP to use path-labels rather than globally routable addresses. In the following a client is the source of the FIND and the server is the node that responds to the FIND (presumably a node that generated the REGISTER, or a caching RH). Moreover, each host has a domain-specific address; that is, for each domain within which it is homed, that domain associates an address to that host, and that address has no meaning outside of that domain. In this approach, when a client sends a FIND, its source address is originally just its domain-specific address. As the FIND is forwarded from client to server, next-hop domain path instructions are appended to this source address. Each such instruction has purely local mean​ing; for instance, as the FIND passes from domain A to domain B, an annota​tion is added to the path instruction that tells A that the next-hop domain is B and, vice-versa, tells B that, in the reverse direction, the next hop is A. This instruction need only be understood by the two connected domains A and B. When the FIND arrives at the server, the server appends its domain-specific address to the path description. It can then reverse these path instructions and use them for its response to the client (since reversing the order just gives the path in the opposite direction). Similarly, when the server’s packets arrive at the client, the client can reverse the path in order to send packets to the server. Because these per-hop path instructions only need to distinguish between the various next-hop domains, they can be quite short (say, on the order of a few bytes), so the total path instruction would be quite short. More importantly, the interdomain routing tables would be extremely small (and quite static); merely enough to translate these per-hop instructions into a next-hop AS. These path-instructions would not have global meaning, since if a source in a different domain used this path, the domain-specific next-hop instructions would not necessarily lead to the desired destination. Thus, in this design, there would be no globally meaningful addresses and the DONA FIND/REGISTER primitives would be required to establish end-to-end con​nectivity. This approach would require the endpoints to detect AS-level path failures and to resend a FIND in that case. This is a substantial extra burden on connections, but it is the tradeoff for doing path-discovery above the IP layer. Also, while this design might superficially resemble other connection-oriented designs, with the FIND playing the role of a connection-establishment, an important distinction is that in DONA there is no per-flow state in the network. This approach would produce symmetric AS-level paths, because the path of the FINDs lay down path instructions which guide the reverse path.
There are other possibilities for how policy routing could be handled in this case, ranging from allowing asymmetric routes but requiring a FIND sent in the opposite direction, or giving policy control going from the client to the core (and from the core to the client) to the providers near the client, and giving policy control going from the core to the server (and from the server to the core) to the providers near the server; this would preserve AS-level path symmetry but distribute the control differently among the ASes.

Session Initiation

Rendezvous mechanisms are the core of application- layer session initiation and presence protocols. Consider, for instance, the Session Initiation Protocol (SIP). A SIP user agent begins by sending a SIP INVITE message. The SIP proxy infrastructure then routes the INVITE message to the current location of the remote agent, which responds to begin the session negotiation. To keep their location up-to-date in the proxy infrastructure, SIP user agents register their current location with registrars (often co-located with SIP proxies). This process maps directly onto DONA’s basic primitives. SIP INVITE messages translate to FINDs and the SIP and DONA REGISTER messages play the same role. Thus, SIP’s rendezvous functionality can be provided by DONA and SIP’s negotiation functionality could be implemented directly on top of DONA’s REGISTER and FIND. [DONA] show how the architecture enables the network to impose middleboxes; networks could impose (stateful and stateless) SIP proxies to enrich SIP services, control service access, and to protect themselves and their customers just as they do today (e.g., SIP providers often deploy session border control boxes to rewrite SIP messages to hide their internal network topologies). Of course, after DONA enables the discovery, the data transfer between the two endpoints occurs over IP.

Multicast State Establishment

It has been a long struggle to define a simple and scalable interdomain multi​cast protocol. DONA could be used to establish this interdomain multicast state in a straightforward manner. DONA’s anycast primitive (i.e. FIND) provides the tree discovery function, allowing a domain’s border router that has local members in a multicast group G to discover and establish connectivity with other domains that have members in the group. We assume that each domain runs some intradomain multicast protocol. Each multicast group has a name of the form P:G, where the principal is the originator of the group. Such a struc​ture makes it easy to keep group names unique. When a new node in a parti​cular domain joins P:G, the domain’s border router Rnew issues a FIND(P:G) packet which DONA routes to the nearest router R that also has local members in P:G, if one exists. Upon receiving the FIND(P:G) packet, R attaches Rnew to the overlay topology for P:G as its neighbour and the two routers add appropriate entries to their neighbour tables for P:G. To complete the join operation, Rnew sends a REGISTER(P:G) command, announcing its member​ship and willingness to serve as an attachment point for other incoming group members. This construction ensures that the resulting overlay topology remains acyclic at all times, thereby simplifying packet forwarding. To transmit a multicast packet destined for a particular group P:G, the sender’s border router R similarly issues a FIND packet to locate a nearby domain that belongs to the group and forwards the packet to that domain’s border router, which in turn initiates the packet’s dissemination. Note that if the sender’s domain has one or more members in P:G then R is itself a member of the overlay topology for P:G and has the forwarding state necessary to initiate the dissemination.
Appendix E – Catalysts for architectural realization

Partner candidates
Ericsson Research Nomadic Lab, Finland, P. Nikander (HIP), pekka.nikander@nomadiclab.com.
International Computer Science Institute (ICSI), Scott Shenker, shenker@icsi.berkeley.edu.
Helsinki Institute for Information Technology (HIIT), Teemu Koponen, tkoponen@iki.fi.
UC Berkeley, Computer Science Division, Ion Stoica, istoica@cs.berkeley.edu.
Sources of software

HIP (FreeBSD source code from Ericsson): http://hip4inter.net/, http://hip4inter.net/download/acceptlicense.php.
Boeing HIP server: http://hipserver.mct.phantomworks.org/about.html.
The OpenHIP project is developing free, open source software implementing the experimental Host Identity Protocol (HIP), http://www.openhip.org/.
Test-beds

PlanetLab:
http://www.planet-lab.org/.
PlanetLab is a global research network that supports the development of new network services. Since the beginning of 2003, more than 1,000 researchers at top academic institutions and industrial research labs have used PlanetLab to develop new technologies for distributed storage, network mapping, peer-to-peer systems, distributed hash tables, and query processing. The [DONA] prototype runs on PlanetLab.

PlanetLab currently consists of 808 nodes at 401 sites.

Standards bodies and interests groups
IETF:
http://ietf.org/.
HIP:
http://www.ietf.org/html.charters/hip-charter.html.

IRTF: http://www.irtf.org/charter?gtype=rg&group=hiprg.
ETSI:
http://www.etsi.org/WebSite/homepage.aspx.
M2MXML:
http://www.m2mxml.org.
Standardisation of protocols for control and monitoring is evolving e.g. in the open source [M2MXML], where the goal is to allow a Telemetry Service Provider (TSP) to offer, for a monthly fee, all of the interfaces to carriers, data storage, web interfaces, and other back-end functions. [M2MXML] is being developed as an open standard to be this protocol. The standard, along with supporting code libraries is being developed in the open-source community.

EPC (Electronic Product Code):
www.epcglobalinc.org,

EPCglobal [EPC] Electronic Product Code is committed to the creation and use of end user driven, royalty-free, global standards. This approach ensures that the EPCglobal Architecture Framework will work anywhere in the world and provides incentives for Solution Providers to support the framework. EPCglobal standards are developed for global use. EPCglobal is committed to making use of existing global standards when appropriate, and EPCglobal works with recognized global standards organizations to ratify standards created within EPCglobal.

Appendix F – EPC Global Network

The EPCglobal Network standards [EPCGLOB] (ONS, EPC-IS, EPC-DS) for sharing product movement data across multiple trading partners is currently in its initial deployment in the US. The EPC global Network is comprised of five fundamental elements explained in an easy to grasp overview in [EPCDEMY].The architecture comprising the ONS, EPC-IS, and EPC-DS can be viewed as a three level architecture:

· The Root ONS is used to find the owner of the Manager Code for the object (usually the manufacturer).
· The Local ONS is used to find the local information under control of that manufacturer. These include the EPC-IS interfaces for Core Product information and Manufacturing Time information (batch number, etc.) and the EPC-DS.
· The EPC-DS is used to find all the lifecycle events for the object, which have been recorded throughout the supply chain, including events generated and stored by the manufacturer (e.g. product shipped, product returned, etc.). This component is still being defined, and may end up different from the above description.
The following gives some more detailed information of the architectural components:

1. EPC
The Electronic Product Code (EPC) is an identification scheme for universally identifying physical objects via Radio Frequency Identification (RFID) tags and other means. The standardized EPC data consists of an EPC (or EPC Identifier) that uniquely identifies an individual object, as well as an optional Filter Value when judged to be necessary to enable effective and efficient reading of the EPC tags.

An EPC consists of four components as described in Figure EPC1.

[image: image21.emf]
1. Header: identifies the length, type, structure, version, and generation of the EPC

2. EPC Manager Number: entity responsible for maintaining the subsequent partitions

3. Object Class: identifies a class of objects

4. Serial Number: identifies the instance

Figure EPC1 EPC structure

Tags of various lengths (64 and 96 bits) may be used; however the 96 bit version is adopted by e.g. the US DoD.

2. ID System (RFID Tags and Readers)
The ID System consists of EPC tags and EPC readers. EPC tags are RFID devices that consist of a microchip and an antenna attached to a substrate. The EPC is stored on this tag, which is applied to cases, pallets and/or items. EPC tags communicate their EPCs to EPC readers using Radio Frequency Identi​fication. EPC readers communicate with EPC tags via radio waves and deliver information to local business information systems using EPC middleware.
3. Object Naming Service (ONS)

The Object Naming Service (ONS) is the first component of Discovery Services, which provides a pointer to the EPC-IS of the owner of the EPC manager code.
4. EPC Information Services (EPC IS)
The EPC-IS enables users to exchange EPC-related data with trading partners through the EPCglobal Network. EPC-IS is a standard interface for obtaining this additional information about an object if you know its EPC. Given the EPC from the tag, the EPC-IS returns information about that object. In actuality, there may be business logic and multiple databases behind the EPC-IS. However, the Querying Application does not see nor care where the EPC-IS gets the data.

5. Discovery Services (EPC-DS)

The second component is the EPC Discovery Services (EPC-DS) allows tracking of events throughout the lifecycle of an object.
_1253512906.doc

IP transit,�e.g. Internet

CO-core

GPRS

CO-leaf

CO-core

CO-leaf

D

C

G

F

A

A

B

E

”Sensors”

CO-leaf�(e.g. CO)

H

_1257592723.doc

IPv4 (with Diffserv.)

Sub IP protocol layers

_1257593553.doc

IPv4

HIP with security, mobility and multicast

TCP

UDP

HTTP

Web services (XML, WSDL, UDDI)

E.g. ETHERNET

E.g. MAC

CO presentation

Transparent?

Transparent?

Transparent?

Transparent?

Transparent?

Network side 		 Mapping		Sensor side

CO (part) application

CO application

_1257593691.doc

Sensor side		 Mapping	 GPRS Network side

GSM RF

RLC�MAC

LLC

SNDCP

CO (part) application

E.g. Zigbee

CO presentation

Transparent?

Transparent?

Transparent?

Transparent?

Transparent?

CO application

Web services (XML, WSDL, UDDI)

HTTP

UDP

TCP

HIP with security, mobility and multicast

IPv4

_1257592779.doc

IPv4

HIP with security, mobility and multicast

TCP

UDP

HTTP

Web services (XML, WSDL, UDDI)

_1255322273.doc

[image: image1]

CRM

Logging, Rating, Billing

IMS

Parlay-X

Applications & Hosting

”Sensors”

CO-leaf

IP network,�e.g. Internet

GPRS

CO

CO

CO

CO

HIT

Radio

GW

Bootstrap

DNS

GPRS

HIT

GW

RVS�RH�ONS

HIT GW

”Sensors”

CO-leaf

_1246087762.doc

PN

Local cluster

GW node

Local device

Local node

Local node

0..*

0..*

0..*

1..*

1

1

1

1

1

1

_1246690153.doc

Gn

MT

TE

Gb

 BSS

Gn

SGSN

UTRAN

MT

TE

Iu

Gn

GSN

converting

protocol

GTP-MAP

GGSN

GGSN

SGSN

Other PLMN

HLR

Gr or Gc

MT

TE

UTRAN

Iu

PDN

TE

Signalling Interface

Signalling and Data Transfer Interface

Gp

Gc

Gn

Gi

_1253512508.doc

[image: image1]

AS3

AS2

”Sensors”

CO-leaf B

Core network

CO

CO

CO

AS1

HIT GW

RH

HIT GW

”Sensors”

CO-leaf A

_1246681616.doc

HIP

IP

Higher layers

CO

HIP

IP

L1

L2

GTP-U

L1

L2

UDP

GGSN/HIP MM

IP

L1

L2

Relay

_1245747277.doc

�RLC��MAC

�BSSGP

�BSSGP

�RLC��MAC

LLC

LLC

Relay

HIP

IP

�SNDCP

�SNDCP

�GTP-C

GTP-C

Relay

BSS

MN

L2

IP

L1bis

L1

L2

UDP

L1

SGSN

GGSN/HIP MM

Network Service

IP

UDP

GSM RF

L1bis

Network Service

Relay

GSM RF

L1

L2

UDP

“Appl.”

IP

IP

UDP

HIP RVS

HIP MM

L1

L2

HIP MM

_1245824701.doc

 SHAPE * MERGEFORMAT
[image: image1]

API

API

co

co

co

co

co

Mobile

or

Fixed

Telco

hub

Device Network

Service provider A

Telco / Newco position

co

Business

logic

co

Data

Repos.

Service

Platform

Public Network

Service provider B

Business

logic

Service A

Service B

Service C

[image: image2.bmp]
_1245747861.doc

IP

IP

RVS

HIP MM

L1

L2

GTP-C

HIP MM

L1

L2

UDP

GGSN/HIP MM

IP

L1

L2

Relay

_1245746105.doc

CO application components

Presentation

Session

Transport

IP bearer

Multicast / Broadcast

Mobility

QoS control of IP bearer

Identification / authentication, accounting and security (AAA)

Basic IP bearer

Link

Physical

CO application components

Presentation

Session

Transport

IP bearer

Multicast / Broadcast

Mobility

QoS control of IP bearer

Identification / authentication, accounting and security (AAA)

Basic IP bearer

Link

Physical

CO applications

CO applications

M2M (CO)�comunicating protocol entities

M2M (CO)�comunicating protocol entities

Physical PDU exchange

Logical PDU exchange

Aggregated API functionality

Logical PDU exchange

_1245152339.doc

�RLC��MAC

�BSSGP

�BSSGP

�RLC��MAC

LLC

LLC

Relay

“Appl.”

HIP

IP

�SNDCP

�SNDCP

�GTP-U

GTP-U

Relay

BSS

MN

L2

IP

L1bis

L1

L2

UDP

L1

SGSN

GGSN/HIP MM

Network Service

IP

UDP

GSM RF

L1bis

Network Service

Relay

GSM RF

L1

L2

L2

“Appl.”

CO

HIP

IP

L1

HIP

IP

HIP

IP

