	

[image: image8.png]

	R&I Research Report
	R 18/2007

	Title
	Abstract Service API for Connected Objects

	Author(s)
	Inge Grønbæk, Martin Nord, Sune Jakobsson

	ISBN / ISSN
	82-423-0609-5 / 1500-2616

	Security group
	OPEN

	Date
	2007.07.02

	Abstract

	Generic service elements are designed in the form of an abstract API. This API may be used as service element building blocks by Connected Objects (CO). This facilitates efficient implementation of specific applications like surveillance, control, automatic meter reading, etc. A standardised version of this API will support inter operator ubiquitous services, and will establish a global market for suppliers.

Low power small scale COs can also use the API. Efficiency is ensured by only applying a subset of service elements. Communication with such units may take place even at the sub-IP level. More advanced COs may take advantage of the full range of functionality allowing advanced services to be built with reduced development efforts.

The abstract API does not constrain the network architecture or the location of functionality, it primarily describes capabilities between entities, which may be allocated to end systems (Connected objects) or to CO servers. The actual functional allocations will be at the discretion of the implementers using the API.

The concrete API specification and its implementation should be based on the API definition given in this document combined with WSDL definitions available for Parlay-X. The implementation may start immediately, since the API is intentionally kept independent from the underlying protocol stack(s).

Basing the CO API on the Next Generation Network (NGN) and on the IP Multimedia Subsystem (IMS) is analysed. It is concluded that NGN and IMS do not support the class of non session oriented data applications needed for Connected Objects. Only high volume streaming is handled reasonably efficiently. It is therefore recommended as a first step to implementing the non session related part of the API. The session oriented streaming class of service may be added at a later stage. This may facilitate migration to a harmonised and cost efficient infrastructure, where legacy networks are gradually phased out.

	Keywords

	Connected Objects, M2M, API, Middleware, Web Services

(Telenor ASA 2007.07.02
All rights reserved. No part of this publication may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying, recording, or by any information storage and retrieval system, without permission in writing from the publisher.
Preface
This document is developed as part of the Telenor CO-project activity “Ubiquitous architecture and connectivity”. The overall goal is to define an architectural framework for connected objects that can be standardised to allow cross operator ubiquitous services. The purpose of this document is to define service requirements and abstract service primitives for a CO API, and to outline the direction of work towards design and implementation of concrete APIs. This document is specifically not intended as an introductory text to the subject, nor as a user guide for the API.
Contents
11
Introduction

32
Generic CO-service requirements

32.1
General

32.2
Data

32.2.1
Bootstrap

32.2.2
Discovery

32.3
Quality of service (QoS)

42.4
Object mobility

42.5
Required logging and history

42.6
Billing

42.7
Addressing and identifiers

42.7.1
Network addressing

52.7.2
Namespaces and identifiers

52.8
Security

52.9
Status

52.10
Location

62.11
Protocols and translation

62.12
Event reporting

62.13
Management requirements

62.14
Multimedia (combined services)

62.15
Multipoint and multicast communication

62.16
Level of communications assurance

62.17
Streaming and video network support

72.17.1
Control and transport protocol

72.18
Privacy

72.19
Compression

83
Abstract service API

83.1
Layering and protocol stack

93.2
Service primitives at each layer

103.3
Application component sub-layer

103.3.1
Generic database access

113.3.2
Event reporting

113.3.3
CO presence

113.4
Abstract Presentation service

123.5
Abstract Session service

123.6
Abstract Transport service

123.7
Abstract Network service

123.7.1
Multicast

133.7.2
Mobility

133.7.3
QoS control

133.7.4
ID and Security

143.7.5
Location & status

143.8
Basic IP bearer

143.9
Accounting and logging

143.10
Efficient streaming and video

153.11
Selection of priority service primitives

164
Architectural requirements

164.1
Topology/Complexity hiding

164.2
Home networks and CPE

164.2.1
Residential network interfaces

164.2.2
Residential Gateway (RG)

174.2.3
Plug and play CPE

174.3
Management

174.3.1
Software upgrades

174.3.2
Functional configuration

184.3.3
Error reporting

184.3.4
CRM channels, Provisioning/fulfilment

184.3.5
Assurance/fault handling

184.4
Hosting and storage

195
Concrete API

195.1
Mechanisms for flexibility and efficiency

195.2
Formal specification and implementation

206
NGN and IMS

217
Opportunity for Industry

228
Acknowledgment

239
References

25Appendix A – Example services

25Service: The electric power company

27Appendix B – RESTful approach to API

29Appendix C – Concrete API & alternatives

29Web Services

30Core specifications

30OSA Parlay

31Overview

33OSA service capability features

33Parlay-X

35Parlay/Parlay-X applicability

35CORBA

36General web services (SOAP and REST)

36J2ME

36Native API

36Conclusion on concrete API

38Appendix D – NGN and IMS for CO

1 Introduction
For a general introduction to the subject please refer to [P1600], or to a general textbook.

This document specifies the generic service elements that may be offered as building blocks for Connected Object (CO) implementation. This includes applications like surveillance, control, automatic meter reading, and other telemetric types of services. The generic service elements are specified in the form of an abstract API. However, only the prioritized service elements, as identified for high priority services, need to be part of the initial API implementation.

The capabilities of the service elements, as stated in the form of requirements, may serve as a vocabulary for defining Service Level Agreements (SLAs) between the network service provider and the Connected Object service provider.

The API does not constrain location of functionality; it primarily describes capabilities between entities, which may be allocated to end systems (Connected Objects) or to CO servers. The actual functional allocations will be at the discretion of the developer. The same API may be used for network centric services and for peer-to-peer (P2P) services. This enables services and service components to move, e.g. a popular P2P service may be made network centric to serve a wider audience as part of commercialization or for increase of production efficiency.

These generic service elements may serve as basic building blocks for the full class of event (i.e. data centric) and streaming oriented CO services. The actual CO protocol (e.g. monitoring or remote control) is carried as payload by the service elements of the API. These may be proprietary, related to actual sensors or controllers, or adhere to standards. The architecture allows multiple application protocols to coexist, and it allows new applications and protocols to be defined without changes to the API (this is based on the RESTful API approach as described in the document).

Low power small scale COs can also use the API. Efficiency is ensured by only applying a subset of service elements. Communication with such units may take place even at the sub-IP level. More advanced COs may take advantage of the full range of functionality allowing advanced services to be built with reduced development efforts.

The API urgently needs standardisation to take place in order to create a global (i.e. cross operator and service provider) market for end-to-end CO services. Since the API shields applications from the underlying technology it reduces efforts involved in service development, and at the same time allows services and technology platforms to evolve independently. The API may thus serve as an efficient vehicle for migration to the true all-IP network. This may be done in two steps. Firstly by introducing the data oriented service elements missing in existing and planned operator networks (i.e. NGN/IMS), and secondly by adding session oriented services for carrying the streaming class of services including voice.

The API may also be implemented for legacy service oriented networks. An implementation for GPRS/UMTS is recommended. To allow ubiquitous symmetric services across GPRS/UMTS, interworking functionality will be required between the IP-based CO network and the GPRS/UMTS. IMS will offer this functionality only for the session oriented class of services.

It is important to note that the ability to meet the requirements as stated in this document will depend on the underlying infrastructure. This implies that SLAs must reflect the actual capabilities of an individual service. For example, interconnect between premium and low quality services, generally renders the level of end-to-end Quality of Service at the level of the least capable segment. This implies e.g. that mobile Connected Objects may experience varying service levels depending on point of attachment.

2 Generic CO-service requirements

The capabilities of the service elements, as used to define the requirements in this chapter, shall be sufficient as a vocabulary for Service Level Agreements (SLAs) between the network service provider and the Connected Objects service provider.

The identified generic service elements may serve as basic building blocks for the full class of event and streaming oriented CO services including monitoring and remote control. The actual monitoring or control protocol, carried in the payload of data and events (i.e. by the service elements), may be proprietary, related to the functionality of actual sensors or controllers, or standards may be applied.

2.1 General

All stated requirements apply in general unless explicitly stated otherwise. This implies that requirements apply to all access types irrespective of the technology being fixed or mobile (e.g. charging for fixed and mobile services, and their combination, shall be supported).

2.2 Data

It shall be possible to exchange identifiable service data-units (e.g. events) between two identifiable and addressable endpoints on the network and their identifiable Connected Objects as long as there is connectivity between these endpoints. The term connectivity should be interpreted in a wide sense, and includes connectivity that are either circuit switched or packet switched. However, this functionality is best served on a connectionless basis, i.e. by IP.

2.2.1 Bootstrap

A new device shall be able to discover networks, and use bootstrap information from a bootstrap server.

2.2.2 Discovery

A fully configured device shall be able to broadcast its existence or register on a preconfigured network.

2.3 Quality of service (QoS)

QoS shall be controllable via the API, both on an individual basis and as a default setting.

The end-to-end Quality of Service shall be measured and specified in terms of average and maximum throughput, maximum data-unit delay, maximum inter data-unit delay variation, and permissible (data-unit) loss-rate.

2.4 Object mobility

Seamless handover (i.e. terminal type handover) shall be offered according to the agreed SLA. It shall be possible to move a Connected Object from one point of attachment to the next, maintaining the network service according to the capabilities provided at and via the new point of attachment.

2.5 Required logging and history

All, or a subset of the following statistics shall be supported on a (user, service) pair basis:

· Number of messages conveyed in each direction
· Volume of data transferred in each direction
· Average and maximum throughput
· Maximum data-unit delay
· Maximum inter data-unit delay variation
· Data-unit loss-rate
· Assurance level breaches.

Logging and history information shall be sufficient as the basis for rating and billing.

2.6 Billing

The network service shall be able to support (i.e. store and present) service related charging data.

The network service shall be able to correlate the charging information generated at diverse functional layers, and by various entities.

Rating and billing shall be based on subscription or profile, and shall also be offered for third party services.

This requirement represents a split of functionality between the network elements and the application as interacting with the billing via the API.

2.7 Addressing and identifiers

Identifiers and addresses shall have separate functionality. An identifier shall uniquely identify a Connected Object, while an address shall uniquely identify the topological network endpoint where a Connected Object is currently attached (i.e. point of attachment).

2.7.1 Network addressing

An address shall uniquely identify the topological endpoint in the network where a Connected Object is attached.

The network service shall be able to relay traffic between Connected Objects using different, and possibly overlapping addressing schemes (such as between private and public addresses). This will require dynamic port and address translation.

2.7.2 Namespaces and identifiers

An identifier shall uniquely identify a Connected Object. The CO identifiers shall potentially be members of large namespaces, allowing e.g. every refrigerator and light bulb in the world to be identified. There may be more namespaces defined, e.g. for certain classes of applications. Namespaces could be local, overlapping, or globally unique. These namespaces must cover IP addresses (v4/v6), URIs, Host Identity Tags (HITs), and more.

The transport and session related traffic between Connected Objects is between the endpoints identified by the Connected Object identifiers. This implies that COs can freely change their point of attachment without breaking e.g. the ongoing transport and sessions.

2.8 Security

The following mechanisms shall (where appropriate) be offered on a CO-to-network basis:

· Mutual authentication and authorisation between CO and network.

This functionality is offered as part of the abstract service.

The following mechanisms shall (where appropriate) be offered on an end-to-end basis between Connected Objects:

· Authentication

· Integrity of service data-units
· Confidentiality

· Non-repudiation (initially only secure audit type)

· Spoofing protection for communication path

· Replay protection

· Denial of service resilience (initially by traffic logging).
These mechanisms shall be offered between Connected Objects (including servers) applying the security service.

2.9 Status

The operational status of an object shall be made available on request.

2.10 Location

The services shall enable an application to:

· Request the location of an identified object
· Request the location of a group of identified of objects
· Request the identification of object(s) known to be at the specific location.

The capability to supply location information and its accuracy will depend on the infrastructure at or in the area of the CO point of attachment.
2.11 Protocols and translation

The network service shall be able to function as an IPv4 and IPv6 dual-stack device with required IPv4/v6 translation capabilities (NAT-PT and ALG) for both control plane and user plane.

The network service shall be capable of performing secure NAT traversal as well as firewall traversal.
2.12 Event reporting

A service for subscription to notification of incurred events (e.g. an alarm) shall be offered. In this context a measured value outside its reference values is considered an event.
2.13 Management requirements

The API shall support the management requirements as defined for the network architecture. These requirements are collected in the Architectural requirements chapter.

2.14 Multimedia (combined services)

The following capabilities shall be supported:

· Data carried over parallel bearers to increase resilience, QoS and/or throughput.

· Change of bearer characteristics based on some detected event. This may imply e.g. transition from a low capacity telemetric channel to a video channel.

· Combination of bearers to form a single (multi media) service, e.g. different bearers for data and video.

2.15 Multipoint and multicast communication

The network service shall (where appropriate) support multicast from and/or to both mobile and stationary Connected Objects.

The following multipoint modes shall be supported:

· Point to multipoint (e.g. Multicast)

· Multipoint to multipoint
2.16 Level of communications assurance

The level of assurance required is specified by the probability of meeting the (QoS) requirements. Requirements shall be part of the SLA.
2.17 Streaming and video network support

It shall be possible to stream unidirectionally or bidirectionally between two identifiable and addressable endpoints on the network and their identifiable Connected Objects, as long as there is sufficient bandwidth and QoS on a bearer channel between these endpoints.

Note:
A stream is typically a video, audio or multimedia stream. A stream may also be created by sending discrete media, e.g. text, pictures and multimedia content (e.g. MMS) at suitable intervals.

2.17.1 Control and transport protocol

Main streaming solutions often combine control and transport protocols to provide a good match between the application requirements, the networks and the devices’ sending and receiving capability (play-out buffer, connectivity options). The following protocols shall be supported:

· HTTP/RTP (HTTP control)

· RTSP/RTP

2.18 Privacy
Introduction of location and identity privacy will potentially require all COs to be treated as mobile objects. This has no direct architectural consequence, but may influence efficiency (i.e. traffic must be relayed through a gateway).
2.19 Compression

Compression of text based protocols (e.g. based on results from HTTPNG or on VTD-XML) may be added at a later stage with no anticipated architectural consequence.

3 Abstract service API

This chapter is called “Abstract service API” since it leaves out details related to e.g. parameters of functional primitives and details related to implementation. The abstract service API is intended to be taken together with the functional requirements, stated in this document, as a basis for defining a concrete API specification. The chapter “Concrete API” is written to give guidance for this specification work in defining the preferred approach.

3.1 Layering and protocol stack

The service logically provided between Connected Objects via the abstract service API (Figure 1) shall be flexible in also offering subsets of the functionality. The idea is for the implementation to apply the simplest and most efficient protocol stack meeting the service requirements, and with no or minimum processing and transmission overhead. It shall further be possible to increase the level of functionality by adding or including functional (sub) layers as required, but not dynamically for this initial design. Figure 1 shows the aggregated functionality offered to CO applications from the set of service layers and protocol entities making up the stack. (Any of the protocol entities shown may be non-existing depending on the protocol stack profile. Only two communicating end-systems are shown, i.e. no intermediaries or support servers (e.g. DNS).)
The abstract aggregated bearer service is logically provided at the top of the Network layer (i.e. to the Transport layer). However, in an operational configuration any of the layers above the basic network service may not apply any protocol for communication with its protocol peer(s) (i.e. the layer is empty except possibly from a inter layer (i.e. inter protocol) service mapping).

In local implementations it shall be possible to support the abstract network service API without including the basic IP bearer (e.g. providing the service directly above the link layer). Such a sub IP approach will however require interworking arrangement to allow communication services to extend the local area, beyond the reach of the applied link layer protocol.

[image: image1.emf]

CO application components

Presentation

Session

Transport

IP bearer

Multicast / Broadcast

Mobility

QoS control of IP bearer

Identification / authentication,

accounting and security (AAA)

Basic IP bearer

Link

Physical

CO application components

Presentation

Session

Transport

IP bearer

Multicast / Broadcast

Mobility

QoS control of IP bearer

Identification / authentication,

accounting and security (AAA)

Basic IP bearer

Link

Physical

CO applications

M2M (CO)

comunicating protocol entities

Physical PDU exchange

CO applications

Logical PDU exchange

Aggregated API functionality

M2M (CO)

comunicating protocol entities

Logical PDU exchange

Figure 1 Stack of logical protocol entities

3.2 Service primitives at each layer

The functionality of the abstract service API offered to Connected Objects is aggregated from the services offered by the sub-layers shown in Figure 1, and Figure 2. The description adheres to the well known ISO model ([WSPS] describes web services according to the same model). The resulting network service (the IP bearer at Layer 3+) is an enhancement of the basic IP bearer service that may offer a best effort service (IPv4 or IPv6). The layers shown in Figure 2 above the Layer 3+ are the Transport, Session, Presentation and the applications carried out by the Connected Objects.

[image: image2]
Figure 2 Service aggregation from sub-layers

Management functions are in general applicable to all layers and across the layers. Management of Customer Premises Equipment (CPE) may turn out to be the key to potential service offerings and operational expenses. Management is therefore treated as a separate functional entity, not shown in the figure.
3.3 Application component sub-layer

The functionality of the application component sub-layer may be offered as either complete services or as additional building blocks for in-house or for third party services. This functionality may be allocated to servers run by the service provider offering hosting of functionality and applications like:

· Databases for permanent storage
· Application logic
· Accounting
· Billing
· Customer Relation Management (CRM).

This functionality and its physical allocation will be further elaborated in the high level definition of architecture for support of service API [ARCH].

3.3.1 Generic database access

A service for XML database access shall be supported. This shall allow data to be imported, accessed and exported in the XML format. The choice of API to select is for further study (i.e. there are many alternatives available).

3.3.2 Event reporting

The following primitives are used for event subscription at the event server (Registrar-CO-ID) for events at the Target-CO-ID (both could be the same CO):

· Event-Subscription-Send (Registrar-CO-ID, Target-CO-ID, Parameters)

· Event-Subscription-Receive (Subscriber-CO-ID, Target-CO-ID, Parameters)

An event subscription shall be confirmed by an event notification from the Registrar. The event notification indicates an event at the Target-CO-ID, or a subscription for events.

· Event-Notification-Send (Subscriber-CO-ID, Target-CO-ID, Parameters)

· Event-Notification-Receive (Registrar-CO-ID, Target-CO-ID, Parameters)

The Event-Report primitives are used for carrying reports from a CO (e.g. a simple censor) to the recipient (e.g. the registrar event server).

· Event-Report-Send (Registrar-CO-ID, Parameters)

· Event-Report-Receive (CO-ID, Parameters)

The Parameters may specify a distinct value or a set of values (e.g. representing upper and lower limits).
3.3.3 CO presence

The following primitives are used for dynamic CO presence registration:

· Register-Send (Registrar-CO-ID, Parameters)

· Register-Receive (CO-ID, Parameters)

A registration shall be conformed by an event notification to the registering party, and to all parties having subscribed on this registration event. Deregistration is managed by the following primitives:

· Deregister-Send (Registrar-CO-ID, Parameters)

· Deregister-Receive (CO-ID, Parameters)

The Parameters represents the set of registration parameters, i.e. the profile.

3.4 Abstract Presentation service

This layer defines the vocabulary for (control of) CO service applications; i.e. the data structures and commands required for Connected Objects to interoperate, e.g. for an advanced control and surveillance application.

The actual monitoring or control protocol may be proprietary, related to actual sensors or controllers, or standards may be applied. The identification or standardization of such protocols is for further study, but architecturally the vocabulary of such protocols is allocated to the Presentation layer.

Protocols identified:

· HTTP, RTP, RTCP, RTSP.

The presentation layer further supports the set of allowed codecs.

3.5 Abstract Session service
In this context a session shall be understood to represent the state of active communication between connected objects; i.e. it is not required to be established by e.g. the Session Initiation Protocol (SIP) [SIP1]. The Abstract service for explicit session control is composed of the following primitives:

· Invite-Send (Destination-CO-ID, QoS-Profile)

· Invite-Response-Receive (Destination-CO-ID, QoS-Profile)

· Invite-Commit-Send (Destination-CO-ID, QoS-Profile)

· Invite-Receive (Destination-CO-ID, QoS-Profile)

· Invite-Response-Send (Destination-CO-ID, QoS-Profile)

· Invite-Commit-Receive (Destination-CO-ID, QoS-Profile)

The above primitives will be applied to control session initiation and accept of incoming session respectively. Registration (i.e. to explicitly establish CO presence) applies the application component sub-layer presence primitives.

3.6 Abstract Transport service

The abstract service for explicit transport protocol selection is composed of the following primitive(s):

· Transport-Selection (Destination-CO-ID, Protocol).

The initial protocol offerings will be UDP, TCP or nil.

Primitives from subordinate layers will be applied, e.g. for sending and receiving data.

3.7 Abstract Network service
The abstract network service aggregates the functionality from each of its subordinate layers into the service provided to the transport or Connected Objects.

The following primitives for sending and receiving unsecured and secured data:

· Send-ID (CO-ID, Data)
% sends to the identified Connected Object (CO-ID)

· Receive-ID (CO-ID, Data)

· Send-SA (SA, Data)
% sends to the specified Security Association (SA)

· Receive-SA (SA, Data)

3.7.1 Multicast

The Abstract service for managing multicast for Connected Objects is composed of the following primitives:

· MC-Group-Open (Group-ID, Profile)

Profile specifies the characteristics, e.g. security level.

· MC-Group-Close (Group-ID)

The basic Send and Receive primitives are used to send and receive secured or unsecured data.

The joining and leaving of a multicast group is achieved by the following primitives:

· MC-Group-Join (Group-ID)

· MC-Group-Leave (Group-ID)

3.7.2 Mobility

The Abstract API for specifying mobility management to be applied for a CO is composed of the following primitives:

· MM-Register (CO-ID)

· MM-End (CO-ID)

3.7.3 QoS control

The Abstract API for specifying a default QoS to be applied is composed of the following primitives:

· QoS-Set-Default (Profile)

· QoS-Set-Default-Confirm (Profile, AoC)

· QoS-End-Default (Profile)

· QoS-End-Default-Confirm (Profile)

AoC as returned from the network provides the information required for estimation of the charging rate.

The Abstract API for explicit QoS control is composed of the following primitives:

· QoS-Set-Path (Destination-CO-ID, Profile)

· QoS-Set-Path-Confirm (Destination-CO-ID, Profile, AoC)

· QoS-End-Path (Destination-CO-ID, Profile)

· QoS-End-Path-Confirm (Destination-CO-ID, Profile)

3.7.4 ID and Security

The Abstract API for security is composed of the following set of control primitives:

· SA-Create (CO-ID, Profile, SA)

The Profile shall indicate both the security requirement and the involved algorithms.

· SA-End (SA)

Identities are acquired and revoked dynamically by the following primitives (FFS):

· ID-Acquire (Issuing-Server-ID, Root-certificate, ?)

3.7.5 Location & status

The Abstract service for network assisted reporting of status and location of user terminals include the following set of control primitives:

· Location-Request (CO-ID-Set, Scheme)
% The CO-ID-Set identifies one or more COs

· Location-Response (CO-ID-Set, Scheme, Status, Coordinates)

The Scheme defines the desired coordinate system. Status indicates the validity of the returned coordinates.

The following primitives are used to request the network to identify object(s) known to be at a specific location:

· ID-Location-Request (Scheme, Coordinates)

· ID-Location-Response (Scheme, Coordinates, Status, CO-ID-Set)

The CO-ID-Set identifies zero or more COs.

Readout of end-system supplied location and status is achieved by the following primitives:

· CPE-Location-Request (CO-ID, Scheme)

· CPE-Location-Request-Indication (CO-ID, Scheme)

· CPE-Location-Response (CO-ID, Scheme, Status, Coordinates)

· CPE-Location-Response-Indication (CO-ID, Scheme, Status, Coordinates)

Reporting of end-system supplied location and status is achieved by the following primitives (e.g. to Geographic Information Systems (GIS) central information portal):

· CPE-Location-Report (CO-ID, Scheme, Status, Coordinates)

· CPE-Location-Report-Indication (GIS-ID, Scheme, Status, Coordinates)

3.8 Basic IP bearer

The Abstract network service of the basic IP bearer is simply composed of the following primitives for sending and receiving data:

•
Send-IP (To-IP-address, Data)

•
Receive-IP (From-IP-address, Data)

3.9 Accounting and logging

The Abstract service for accounting and logging is composed of the following primitives:

· Logging-Start (Profile)

%Profile specifies the logging profile.

· Logging-Stop (Profile)

3.10 Efficient streaming and video

The communication primitives described above are logically sufficient for streaming applications. However, there may be a need for more efficient implementations. This will be considered as part of high level definition of architecture for support of service API [ARCH].

3.11 Selection of priority service primitives

The set of first priority primitives may be derived from the requirements set by an initial trial implementation. Extensions should be made according to evolving service requirements. However, since the effort involved in deriving a complete formal specification is limited, it is recommended to specify the complete set of service elements in order to ensure a holistic view in order to minimize future changes due to inconsistencies.

4 Architectural requirements

This chapter describes architectural requirements and primitives, i.e. not directly related to service components.

4.1 Topology/Complexity hiding

It shall be possible to hide (e.g. encrypt or delete) irrelevant information when domain borders (administrative or technological) are crossed.

4.2 Home networks and CPE

4.2.1 Residential network interfaces

The basic interface for the residential network shall be Ethernet, but WiFi shall also be supported in premises distribution. Moreover, the architecture shall support interfacing of low power home networks for short range wireless communications.

Complementary technologies are outside the scope of this architecture, but the capability of interfacing of these alternatives represents an important architectural requirement:

· Wireless TV

· PLC (Power Line Communications)

· Blue Tooth

· Infrared

· Fire-wire

· Ultra Wide Band (UWB) based

· Zigbee

· Etc…

Interfacing to the following legacy technologies is also in demand:

· LonTalk (and its major competitors: BACnet, Modbus?)

· X.10

The interfacing of diverse proprietary technologies will require gateway functionality that may be provided by network operators. A high level gateway architecture is described in [ARCH].

4.2.2 Residential Gateway (RG)

RG should be as generic and transparent to services as possible, i.e.:

· BB-NT (Optical Network Termination, DSL-modem), may be part of or outside RG.
· Application Service Gateway (ASG) is not part of RG.

4.2.3 Plug and play CPE

All Customer Premises Equipment (CPE) shall as far as possible be plug-and-play. This applies in particular to equipment for customer self service installation.

(Note: A candidate sensor standard is an IEEE P1451. The architecture of an IEEE P1451.4 plug-and-play sensor consists of a TEDS (transducer electronic datasheet) and the analogue sensor itself. The TEDS provides the configuration, scaling, and calibration information necessary to make a measurement through a mixed mode interface. This TEDS data is processed by the measurement hardware device driver and is used by the application development environment to reduce the programming burden and set-up time for any measurement system.)

4.3 Management

Management is treated as belonging to a separate functional entity. However, the management functionality may utilize the basic functionality as identified for the CO abstract service. The definition of further management requirements and functionality for the physical CO infrastructure will be part of [ARCH].

Management, e.g. of Customer Premises Equipment (CPE) may turn out to be the key to potential service offerings and involved operational expense. The following capabilities shall be supported from the network side (i.e. manageability will depend on the end-system).

4.3.1 Software upgrades

Installation of software upgrades is managed by the following primitives, which are building on the secure data primitives:

· SW-Upgrade-Send (SA, Upgrade)
Sends upgrade on the specified Security Association (SA).
· SW-Upgrade –Confirmation-Receive (SA, Result)

· SW-Upgrade-Receive (SA, Upgrade)

· SW-Upgrade-Confirmation-Send (SA, Result)

4.3.2 Functional configuration

The following primitives shall be used for reading and installing system and service parameters:

· Parameter-Send (SA, Parameter, Value)
SA identifies the Security Association.
· Parameter-Confirmation-Receive (SA, Parameter, Value, Result)

· Parameter-Receive (SA, Parameter, Value)

· Parameter-Confirmation-Send (SA, Parameter, Value, Result)

4.3.3 Error reporting

The following primitives shall be used for sending and receiving error reports:

· Report-Send (CO-ID, Parameter, Value)

· Report-Receive (CO-ID, Parameter, Value)

4.3.4 CRM channels, Provisioning/fulfilment

It shall be possible to subscribe, de-subscribe and configure services via web services and a web based GUI.

Error reporting shall be offered via web services and a web based GUI.

The data model shall be according to the ITU-T Recommendation M.1402 [ITU].

4.3.5 Assurance/fault handling

Network related functionality and managed CPE shall be monitored proactively in order to prevent and correct errors before SLA are violated.

4.4 Hosting and storage

The network shall be capable of hosting (third party) applications and services. This will be further defined in [ARCH].

The network shall have the capability of offering service component and building blocks (for third party) service development.

The network shall offer storage capacity (to third parties).

The network shall manage CO identities, and provide routing mechanisms (to third parties).

5 Concrete API

The next steps in the definition of the CO concrete API are formal specification and implementation. This chapter sets the direction for this work based on reviews of alternative approaches.

5.1 Mechanisms for flexibility and efficiency

The instantiation of only the minimum functionality required will allow very simple and optimised implementations for e.g. small, cheap, power constrained censors. However, a standard solution shipped in large quantities may allow inclusion of functionality for all layers on a single silicon chip. Only the functionality required would actually be used, according to a defined profile. Such profiles must be identifiable from the CO identity. The identifier of a CO (i.e. the CO-ID) must therefore give a reference to the protocol profiles to be used for dialogue.

5.2 Formal specification and implementation

Based on the comparison given in Appendix C, it is recommended to base the first concrete API implementation on the REST principles, excluding the SOAP protocol.

The specification should support tool based implementation. Based on the priorities set for the API, focusing on the use of web services, it is believed that the best choice is to apply Web Services Description Language (WSDL) [WSDL]. WSDL supports protocol binding both to SOAP and HTTP as required for Parlay-X and REST respectively. The additional and significant benefit is that the existing Parlay-X WSDL descriptions can be adopted only with minor changes, e.g. with HTTP protocol bindings for REST applications. This represents a significant benefit as it additionally ensures access to Parlay-X services by only changing the protocol binding. The Parlay-X WSDL descriptions can be downloaded from [PARL].

The API implementation work may start even before the complete architecture is defined. This is because the API intentionally is kept independent from lower layers and protocol stacks.
6 NGN and IMS

NGN/IMS may be used to implement the functionality of the CO service-primitives. NGN/IMS supports high volume streaming well. The major challenge is to handle small amounts of real-time data efficiently within the session oriented framework of IMS. The use of the SIP MESSAGE method for such data exchange is a possible solution. However, the solution would require mechanisms like QoS diversification, charging, multicast, flow- and congestion-control to be implemented for the purpose, and at the IMS signalling plane.

A better solution would be to offer a general QoS controlled connectionless service at the network layer, i.e. the “Abstract network service API”. This could be done within the framework of NGN by adding a new connectionless subsystem within the IMS. This is perceived equivalent to basing the Connected Object service on a general QoS controlled IP network, except for the integration of OSS and BSS.

Current deployments of IMS systems are still based on IPv4, and requiring unique addressing to CO would easily exhaust the available address space. If large numbers of COs are to be connected through an IMS system, IPv6 addressing will most likely be required.

The analysis of NGN and IMS functionality can be found in Appendix D.

7 Opportunity for Industry

Machine to machine communication (M2M) or Connected Objects (CO) represents an enormous growth potential for service providers and network carriers. It has been predicted that as soon as by 2011 CO operator revenue shares may reach 30%.

The generic functionality offered by the API may be applied both in the carrier service segment and in the application service segment. Additionally, there are two main scenarios for offering the service, each with different commercial impacts. The first scenario is applying the service and API only for development of operator internal CO services, for offerings to the external market. The second scenario involves offering the service components also for service development and deployment by third parties, e.g. by also offering hosting. A third scenario, closely related to the second scenario, is the peer-to-peer scenario where end users apply the API for services running transparently over the network. The architecture is agnostic to these scenarios, and application servers may be allocated within or outside the network. Since the API supports network centric and peer-to-peer (P2P) services, it enables services and service components to be moved between the user and network domains; e.g. a popular P2P service may be made network centric to serve a wider audience as part of commercialization or for increase of production efficiency.

The API urgently needs standardisation to take place to create a global (i.e. cross operator and service provider) market for end to end CO services. Since the API shields applications from the underlying technology it reduces efforts involved in service development, and at the same time allows services and technology platforms to evolve independently. Services developed based on the API will also experience a large global market for service developers. This together with the rich functionality offered via the API will reduce the price for service development. Additionally the effect of economic network externalities will increase the total value of the market which now may offer ubiquitous services on an end to end basis.

The NGN and IMS do not support the class of non session oriented data applications needed for Connected Objects. Only high volume streaming is handled reasonably efficiently. It is therefore an important business opportunity to implement the non session (data) related part of the API. Adding the session oriented streaming class of service at a later stage may facilitate migration to a harmonised and cost efficient network infrastructure, where legacy networks gradually may be phased out. The API may thus serve as a vehicle for migration to the true all-IP network.

The API implementation work may start even before a complete architecture is defined. An implementation also for GPRS/UMTS is highly recommended to allow ubiquitous symmetric services also via GPRS/UMTS. This will require interworking facilities between the IP-based CO network and the GPRS/UMTS. IMS will offer this functionality only for the session oriented class of services.

8 Acknowledgment

The authors are grateful for all helpful comments and for all enlightening discussions with very competent friends and colleagues. Without this help the work would not have progressed as rapidly, and its direction could possibly have been detoured. Special thanks are given to the members of the internal review group who agonized me for several hours.
9 References

[ARCH]
Inge Grønbæk, High level architecture for support of CO services, R&I Research Report R xx/2007. (Work in progress)

[IMS1]
3GPP TS 23.228 V7.7.0 (2007-03), 3rd Generation Partnership Project, Technical Specification Group Services and System Aspects, IP Multimedia Subsystem (IMS), Stage 2, (Release 7).

[ITU]

ITU-T Recommendation M.1402, Formalization of data for service management http://www.itu.int/ITU-T/aap/AAPRecDetails.aspx?AAPSeqNo=1367, work in progress.

[NGN0]
Draft ETSI WI 00005 V<0.4.0> (2007-01), Telecommunications and Internet Converged Services and Protocols for Advanced Networking (TISPAN), Release 2 Definition.

[NGN1]
ETSI RES 282 001 V0.0.9 (2007-03), Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN), NGN Functional Architecture, Release 2.

[OSA1]
3GPP TS 22.127 V7.1.0 (2006-03), 3rd Generation Partnership Project, Technical Specification Group Services and System Aspects, Service Requirement for the Open Services Access (OSA), Stage 1, (Release 7)

[OSA2]
3GPP TS 23.198 V7.2.0 (2007-03), 3rd Generation Partnership Project, Technical Specification Group Core Network and Terminals, Open Service Access (OSA), Stage 2, (Release 7).

[OSA3]
3GPP TS 29.198-1 V7.0.0 (2007-03), 3rd Generation Partnership Project, Technical Specification Group Core Network, Open Service Access (OSA), Application Programming Interface (API), (Release 7).

[P1600]
Eurescom, Project P1600, http://www.eurescom.de/public/projects/P1600-series/p1653/, 2006 (access restricted to member organisations).

[PARL]
http://parlay.org

[REST]
http://rest.blueoxen.net/cgi-bin/wiki.pl?RestInPlainEnglish.

[SIP1]
J. Rosenberg, et al., SIP: Session Initiation Protocol, RFC 3261 June 2002, http://www.ietf.org/rfc/rfc3261.txt?number=3261.

[SVC1]
ETSI TS 181 005 V1.1.1 (2006-03), Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN), Services and Capabilities Requirements.

[SVC2]
ETSI TR 181 003 V1.1.1 (2006-05), Telecommunications and Internet Converged Services and Protocols for Advanced Networks (TISPAN), Services Capabilities, Requirements and strategic direction for NGN services.

[SVC3]
ETSI TR 181 004 V1.1.1 (2006-03), Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN), NGN Generic capabilities and their use to develop services.

[W3C]
http://www.w3.org/

[WS]

http://en.wikipedia.org/wiki/Web_service.

[WSDL]
W3C, “Web Services Description Language (WSDL)”1.1, W3C Note 15 March 2001, http://www.w3.org/TR/wsdl

[WSPS]
Mario Jeckle, Erik Wilde, Identical Principles, Higher Layers: Modelling Web Services as Protocol Stack, http://dret.net/netdret/docs/wilde-xmleurope2004.html.

Appendix A – Example services
Service: The electric power company

An outage occurs in a small section of a subdivision of the electric power grid. Even before residents begin calling in to notify the utility company about the problem, a sensor on one of the transformers registers that a system failure has occurred. That information is relayed via telemetry to the utility company’s central information M2M portal. Based on a set of parameters entered into the portal, it accesses the GIS information on its fleet of repair crews. The M2M portal system locates the nearest available repair crew vehicle with the necessary tools and equipment to address the outage in the subdivision. The system then automatically files a trouble ticket and sends a pre-programmed text message via mobile phone to the crew in that vehicle. The crew receives the message, which offers details on the location of the outage and which component of which transformer has failed. This information will save the crew time in trying to identify the location or cause of the problem. The crew then heads over to start making repairs.

The entire above scenario is registered and managed automatically with an M2M system. The system could additionally automatically order reserve replacement parts for those that had failed. Those parts can be on their way to the restocking warehouse before the repair truck even reaches the outage location. The M2M system interaction is described in Figure A1 in terms of communication between the following system components:

· Central information M2M portal

· Vehicle control

· Geographic information systems (GIS) central information/mapping portal

Mobility management is not shown explicitly. (Mobility management could implicitly update the GIS central.)

It is assumed continuous mobile network operation throughout the repair period. This is conditional to ample battery backup for involved base stations and transmission systems.

[image: image3.emf]

Order confirmation

Fault-Report sent to

closest free vehicle

Conveyed in

Send-ID()

Fault-Report from

transformer

Conveyed in

Receive-ID()

CPE-Location-Report

GIS central

ID-Location-Request (Scheme, Coordinates)

ID-Location-Response (Scheme, Coordinates, Status, CO -ID-Set)

Order completed

CPE-Location-Report

CPE-Location-Report

M2M portal Vehicle control

Figure A1 System interaction

The CPE-Location-Report is sent periodically from the vehicles (e.g. based on travelled distance since previous report).
Appendix B – RESTful approach to API

Representational state transfer [REST] is more an old philosophy than a new technology. Whereas SOAP looks to jump-start the next phase of Internet development with a host of new specifications, the REST philosophy espouses that the existing principles and protocols of the Web are enough to create robust Web services. This means that developers who understand HTTP and XML can start building Web services right away, without needing any toolkits beyond what they normally use for Internet application development. The “Uniform Interface” is REST's core philosophical tenet made up from several constraints. It is central to solving the interoperability problems of an unconstrained architecture, which allows function calls, method invocations, remote procedure calls, and other messages that are only understood by a specific server or by a small subset of components in the architecture. REST eliminates ad hoc messages and radically shifts the focus of API development towards defining pieces of information that can be retrieved and manipulated. Instead of adding special function calls or interfaces to the architecture, new services add new pieces of information to be manipulated using standard requests. All requests and responses are understood by every component of the architecture and most carry copies of their information as part of the function call. An example:

Instead of a “turnOnTheLightbulb” request to a server object, we have a PUT “true” to the http://example.com/lightbulb/lit object supplied by the server. The http://example.com/lightbulb/lit object also responds to a GET request that returns true or false.

In this example everything is standard. A plain XML data type will be interpreted by the server. Objects are identified using a standard URL. The only thing special about the request is the actual selection of which object to send the request to.

This will allow linking the client who sends these requests or the server that handles the request to other components of the architecture. For example, this client can easily be linked to other services. It could schedule start and stop times for light bulbs, or control Uninterruptible Power Supply switch status to power down server room equipment at night. The server could be controlled by a scheduling client, or a manual switch controlled directly by a user.

REST creates an environment where clients and servers that encode their information the same way work together (i.e. share a common data definition).

The uniform interface can evolve over time. That is why it is built from three different parts that serve different purposes:

· Identifiers,

· Methods,

· (Document) types.

Each part is designed to change independently of the other parts. For example, new methods do not require the addition of new (document) types, and new (document) types do not require the addition of new methods. In object-oriented terms there is a single base class that defines the methods, but most methods have an “insert data here” slot. The information you want to transfer is added to this slot, along with the name of its (document) type. This avoids multiplying the number of standard methods, in our interface class, by the number of (document) types. The methods return an error when the particular (document) format they are given is not understood.

Statelessness as a part of Rest is the idea that any server should be able to handle any request from a client. It doesn't have to be the same server as the one who earlier requests went to. In REST authentication information is provided with each request rather than expecting the server to already know who the requestor is. Statelessness further means that one server can be replaced with another if it fails or needs to be upgraded. It also means that load balancing can be performed between servers. (Both of these are possible even without statelessness, but are more costly and difficult.)

Appendix C – Concrete API & alternatives

The benefit of implementing the abstract API is twofold. Firstly the components for building CO services are made available to customer premises equipment and to servers. Secondly the API shields the applications from the underlying technology thereby providing application portability.

The CO will need to interact with a middleware that can provide discovery and communication means for the object to interact with each other. They can make use of a client/server paradigm, or they can cooperate over some form of object broker. Traditional interaction includes Remote Procedure Calls (RPC), Message Oriented Middleware (MOM), database store procedure, and peer-to-peer communication. Today the Web Service (WS) approach is preferred, since they typically operate over HTTP using port 80, but this can be viewed as an evolution of RPC, into CORBA, and then into WS. However if there are some limitations to the CO capabilities, e.g. in terms of connectivity and data capacity, other technologies might have better performance and scalability.

We here describe the most promising technologies that are used in the telecommunication domain.

Web Services

As defined by The World Wide Web Consortium (W3C) [W3C], Web Services [WS] provide a standard means of interoperating between different software applications, running on a variety of platforms and/or frameworks. Web services are characterized by their great interoperability and extensibility, as well as their machine process-able descriptions thanks to the use of XML. They can be combined in a loosely coupled way in order to achieve complex operations. Programs providing simple services can interact with each other in order to deliver sophisticated added-value services. The W3C defines a Web Service as a software system designed to support interoperable Machine-to-Machine interaction over a network. Web services are frequently just Web APIs that can be accessed over a network, such as the Internet, and executed on a remote system hosting the requested services.

The W3C Web service definition encompasses many different systems, but in common usage the term refers to clients and servers that communicate XML messages that follow the SOAP-standard. Common in both the field and the terminology is the assumption that there is also a machine readable description of the operations supported by the server, a description in the WSDL. The latter is not a requirement for the SOAP endpoint, but it is a prerequisite for automated client-side code generation in the mainstream Java and .NET SOAP frameworks. Some industry organizations, such as the WS-I, mandate both SOAP and WSDL in their definition of a Web service (Figure C1).

[image: image4.png]
Figure C1 Web Services

Terms used in the figure are described below.
Core specifications

The specifications that define Web services [W3C] are intentionally modular, and as a result there is no one document that contains them all. There is also no single, stable set of specifications. There are a few “core” specifications (Figure C1) that are supplemented by others as the circumstances and choice of technology dictate, including:

· SOAP: (Simple Object Access Protocol) an XML-based, extensible message envelope format, with “bindings” to underlying protocols. The primary protocols are HTTP and HTTPS, although bindings for others, including SMTP and XMPP, have been written.

· WSDL: (Web Services Description Language) an XML format that allows service interfaces to be described, along with the details of their bindings to specific protocols. Typically used to generate server and client code, and for configuration.

· UDDI: (Universal Description, Discovery, and Integration) a protocol for publishing and discovering metadata about Web services, to enable applications to find Web services, either at design time or runtime.

The relations between these specifications are depicted in Figure C1.

OSA Parlay
The Open Service Access (OSA) defines an architecture that enables service application developers to make use of network functionality, e.g. offered by the IMS/NGN, through open standardized interface, i.e. the OSA APIs and Parlay-X Web Services. Figure C2 describes the abstraction levels of Parlay and Parlay-X and their potential architectural interrelation. However a Parlay-X API may be present on top of a network element independently of a Parlay Gateway.

[image: image5.wmf]Parlay Gateway

Parlay X Web Services

Parlay X APIs

Parlay APIs

Parlay X

Applications

Parlay

Applications

Network Protocols

(e.g. SIP, INAP etc)

Network Elements

Increasing

abstraction

Figure C2 OSA Parlay architecture

The OSA requirements are contained in 3GPP TS 22.127 [OSA1]. The concepts and the functional architecture for OSA are defined in [OSA2], and [OSA3].

OSA Parlay is based on Service Capabilities offered via the standard OSA API as Service Capability Features (SCFs). These SCFs correspond to the primitives defined for the abstract CO API in this document. It is therefore recommended to use the OSA APIs (Parlay and/or Parlay-X) as a baseline whenever they meet CO requirements. This will be the case for access to most of the network oriented information required by CO (Table C1). The set of required primitives not available as OSA features should be implemented applying the mechanisms already chosen for OSA. (The detailed feature design is outside the scope of this document.)

The following gives a short overview of OSA (Parlay and Parlay-X) in the context of CO.
Overview

OSA enables applications to make use of network functionality through an open standardised interface (the OSA API [OSA3]). OSA provides the glue between applications and network functionality. In this way applications implementing the services become independent of the underlying network technology. The underlying technology used is based on CORBA.

In order to be able to implement future applications/ end user services not known today, a highly flexible framework for services is required. OSA (Figure C3) enables applications implementing the services to make use of network functionality. Network functionality offered to applications is defined in terms of a set of Service Capability Features (SCFs). These SCFs provide functionality of network capabilities which is accessible to applications through the standardised OSA interface upon which service developers can rely when designing new services (or enhancements/variants of already existing ones).

SCFs are built from Service Capabilities (SCs), which are bearers defined by parameters, and/or mechanisms needed to realise services. SCs are within networks and under network control.

The architectural support of the OSA application programming interface shall permit applications access to the OSA API independent of where the applications are physically executing. (This should imply that the application also may execute in the end-system.)

[image: image6.wmf]

Network

GSM/GPRS/UMTS protocols, CAP/MAP

(*)

SC 2

SC 3

SC n

Applications supporting services

Service

capabilities

SC 1

service

capability

features

Standardised

 OSA

Application Interface

SC 4

Figure C3 Applications access Service Capability Features via the OSA Application Interface

Figure C4 shows OSA access to IMS service capabilities as one of the possible technologies that could support (parts) of OSA API functionality.

[image: image7.emf]

Framework

User

Location

Call control

HSS

CSE

S-CSCF

Servers

E.g. Location server

Billing server

Service Capability Servers

i

i

n

n

t

t

e

e

r

r

f

f

a

a

c

c

e

e

c

c

l

l

a

a

s

s

s

s

O

O

S

S

A

A

A

A

P

P

I

I

A

A

p

p

p

p

l

l

i

i

c

c

a

a

t

t

i

i

o

o

n

n

A

A

p

p

p

p

l

l

i

i

c

c

a

a

t

t

i

i

o

o

n

n

s

s

e

e

r

r

v

v

e

e

r

r

N

N

o

o

t

t

s

s

t

t

a

a

n

n

d

d

a

a

r

r

d

d

i

i

z

z

e

e

d

d

O

O

S

S

A

A

I

I

n

n

t

t

e

e

r

r

n

n

a

a

l

l

A

A

P

P

I

I

D

D

i

i

s

s

c

c

o

o

v

v

e

e

r

r

y

y

Figure C4 OSA applied for IMS

OSA service capability features
The high level extract of current OSA Parlay service capability features [OSA2] is shown in Table C1.

Table C1 Current Parlay/OSA SCFs
	Session Control
	The session control family, with capabilities ranging from setting up basic sessions to manipulating multimedia conference sessions and broadcasting

	User location / Mobility / User status
	Obtain location and status information

	Terminal capabilities
	Obtain the capabilities of an end-user terminal

	User Interaction
	Obtain information from the end-user, play announcements, send short text messages, etc

	Content based Charging
	Charge end-users for use of applications / data

	Account Management
	Access end-user accounts (history, balance, notifications)

	Presence
	OSA allows an application access to presence capabilities within the network. Presence related information may be requested or supplied as notifications.

	Multi Media Messaging
	Access to mailboxes for e.g. send, receive and store.

	Connectivity (policy) Management
	Control of provisioned QoS

Parlay-X

The Parlay-X features [OSA2] are increasing their popularity relative to the basic Parlay feature set. Parlay-X is based on the Web Service paradigm, and is easily deployed on any HTTP capable network. Parlay-X may be further combined with traditional web-services to create a suite of services and capabilities showing growing commercial potential and interest. The Parlay-X and traditional service creation environments are complementary.

The characteristics of the Parlay-X Web Services are as follows:

· The capabilities offered by a Parlay-X Web Service may be either homogeneous (e.g. call control only) or heterogeneous (e.g. terminal location and user status).

· The interaction between an application incorporating a Parlay-X Web Service and the server implementing the Parlay-X Web Service will be done with an XML-based message exchange. The message exchange should follow the synchronous request/response model and be initiated by the application; the “response” from the Parlay-X Web Service is optional. However, asynchronous messages from the Parlay-X Web Service implementation (on a Parlay-X Gateway) to the application may be defined where there are compelling reasons; e.g. to implement a notification type web service. In the latter case, the message exchange would invoke an application web service using a similar, synchronous request/response model.

· Parlay-X Web Service invocations should not be correlated and the Web Service itself should be stateless from the perspective of the application, unless there are compelling reasons. In particular, in the case of asynchronous notifications from a Parlay-X Web Service implementation (on a Parlay-X Gateway) to an application, no application-initiated invocations to provision (or de-provision) notification-related criteria in the Parlay-X Web Service should be implemented (i.e. stateless operation is recommended).

· Parlay-X Web Services follow simple application semantics, allowing the developer to focus on access to the telecom capability using common Web Services programming techniques.

· Parlay-X Web Services are not network equipment specific, and not network specific where a capability is relevant to more than one type of network.

· Parlay-X Web Services should be based on the reference Web Service technology, as it is defined in the IT world and according to the Parlay Web Services recommendations; more specifically, at the moment, WSDL is the chosen standard to invoke and describe Parlay-X Web Services.

· The Parlay-X APIs should be extendible; integration of third party provided interfaces must be supported using proven, reliable, and standard Web Service technology.

· Parlay-X Web Services are application interfaces and do not provide an implementation of AAA (Authorization, Authentication, and Accounting), service level agreements or other environment-specific capabilities. Rather, they shall rely on proven and reliable solutions provided by the Web Services infrastructure.

Currently the Parlay-X specifications contain the following API’s defined in Stage 3 Technical Specifications (TSs) [OSA2]:

29.199-01:
“OSA; Parlay X web services; Part 1: Common”
29.199-02:
“OSA; Parlay X web services; Part 2: Third party call”
29.199-03:
“OSA; Parlay X web services; Part 3: Call notification”
29.199-04:
“OSA; Parlay X web services; Part 4: Short messaging”
29.199-05:
“OSA; Parlay X web services; Part 5: Multimedia messaging”
29.199-06:
“OSA; Parlay X web services; Part 6: Payment”
29.199-07:
“OSA; Parlay X web services; Part 7: Account management”
29.199-08:
“OSA; Parlay X web services; Part 8: Terminal status”
29.199-09:
“OSA; Parlay X web services; Part 9: Terminal location”
29.199-10:
“OSA; Parlay X web services; Part 10: Call handling”
29.199-11:
“OSA; Parlay X web services; Part 11: Audio call”
29.199-12:
“OSA; Parlay X web services; Part 12: Multimedia conference”
29.199-13:
“OSA; Parlay X web services; Part 13: Address list management”
29.199-14:
“OSA; Parlay X web services; Part 14: Presence”
29.199-15:
“OSA; Parlay X web services; Part 15: Message Broadcast”
29.199-16:
“OSA; Parlay X web services; Part 16: Geocoding”
29.199-17:
“OSA; Parlay X web services; Part 17: Application driven Quality of Service (QoS)”
29.199-18:
“OSA; Parlay X web services; Part 18: Device management”
29.199-19:
“OSA; Parlay X web services; Part 19: Multimedia streaming control”
29.199-20:
“OSA; Parlay X web services; Part 20: Multimedia multicast session management”
These specifications can be downloaded e.g. from the Parlay web pages at [PARL].

Parlay/Parlay-X applicability

The main characteristics and application areas of OSA Parlay are:

· Provides rich function in an asynchronous programming model.

· Implementations are based on CORBA.

· Primarily used for Service Provider hosted applications.

The use of CORBA (see separate paragraph) is considered to make the OSA Parlay approach a less attractive alternative for the CO API implementation.

Parlay-X Web Services:

· Provides high level function in a largely synchronous programming model

· Web Services based implementations (i.e. SOAP)

· Easy access for third parties over Internet

Parlay-X is considered a requirement for allowing access to NGN/IMS network centric service capability features.

OSA Parlay and Parlay-X Web Services may be used together in deployments.

CORBA
Common Object Request Broker Architecture (CORBA) takes a much more monolithic approach than Web Services [WSPS]. The only truly open interfaces in CORBA are the interface to the application itself, and the wire format. The wire format depends on the transport protocol, for the most popular IIOP transport the wire format is the Common Data Representation (CDR). Apart from the CDR data being exchanged, CORBA implementations are pretty much black boxes for the application programmer, making it virtually impossible to assemble a CORBA platform from various components in a modular way.

However, since this black box approach of CORBA was identified as a problem in some cases, CORBA introduced the concept of Interceptors, which are isolated interfaces within the black box which may be used to access a CORBA implementation at a very limited number of places. The Interceptors do not introduce any concept of structuring or layering in CORBA, they are simply a retrofitted way to loosen up the black box approach. Generally speaking, it would probably be impossible to re-model CORBA using a structured modelling approach, but the Interceptors are evidence that the black box approach may not be the best way to go for a component as big as CORBA. These matters are considered to make this alternative less attractive for the CO API implementation.

General web services (SOAP and REST)

General web services may be implemented applying two different schemes. There is an ongoing debate weighing services based on representational state transfer [REST] against those based on RPC-style Simple Object Access Protocol (SOAP). However, according to [WSPS] the approaches are neither mutually exclusive, nor conflicting. Both protocols can be made interoperable by the use of bridges or gateways arbitrating between the two parties.

For CO use the major difference between the schemes is that REST is a simpler and more compact notation than SOAP. However, since SOAP is also widely used (e.g. by Parlay-X) both schemes should tentatively be supported within the CO architecture.

The approach to facilitate this will be further studied as part of the architectural part of the project. However, the “RESTful” approach, as described in [REST] and summarized in Appendix B, should be the baseline for the design.

J2ME

Java 2 Micro Edition (J2ME) is not considered mature for supporting the API implementation until year 2010 (source Telenor R&I). However, terminals or objects with support for J2ME often have operating system support for underlying network protocols like RPC, HTTP, or even SIP, so that native applications can be built for these devices.

Native API

A simple Sockets API (e.g. IP, UDP, TCP, HTTP) may be required for low cost, low power applications. Even direct access to layer 2 (e.g. Ethernet) may be required for this purpose. (WAP is a candidate data compression scheme for data constrained applications.)
Conclusion on concrete API

From the above discussion it is concluded that the following API support is required:

· Web Service support like Parlay-X and other HTTP based RPCs

· REST based web services

· Native Sockets

Based on the comparison given in Table C2 it is recommended to base the first concrete API implementation on the [REST] principles.

Table C2 Concrete API comparison
	Criteria
	Parlay-X & SOAP
	REST
	Native Sockets

	Interface Flexibility and ease of use
	Requires specific knowledge of an additional XML specification, and most developers will need a toolkit to form requests and parse the results.
	Interface is already well known and widely used.
	All interface primitives need to be defined. However, the REST philosophy may be applied for the design.

	Bandwidth and efficiency
	Requires an XML wrapper around every request and response. (Could require more than 10 times as many bytes as would REST.)
	Could reduce the message volume to less than one tenth relative to SOAP.
	Provides the maximum opportunity for compact and efficient design, but at the additional cost of primitive design.

	Security Safeguards
	A typical SOAP request will use POST to communicate with a given service. Security can only be obtained by looking into the SOAP envelope.

Places the burden of authentication and authorization on the application developer.
	The administrator (or firewall) can discern the intent of each message by analyzing the HTTP command used in the request.

Reuses existing web based mechanisms for authentication and authorization.
	Network layer security mechanisms may be applied (e.g. IPsec).

Appendix D – NGN and IMS for CO
The intention of the review of the IMS capabilities for CO services support is to serve as a background for choosing which services and architectural components to specify in detail.

The review is based on the ETSI/TISPAN Release 2 definition due to be completed by 2007. The expected vendor implementation of Release 2 is by 2009. The umbrella Release 2 document is [NGN0].

The [IMS1] defines the services and system aspects of the IP Multimedia Subsystem (IMS), (3GPP Release 7, to be endorsed by TISPAN), while [NGN1] defines the TISPAN NGN Functional Architecture for Release 2.

The generic NGN service capabilities and requirements are described in [SVC1], [SVC2], and [SVC3].

Each of the identified service primitives are analysed in Table D1.

Table D1 IMS CO-related capabilities
	General
	The TISPAN IMS is designed to supply access agnostic services. However, there are currently some limitations related to the fixed part of the TISPAN architecture e.g. not supporting seamless handover between fixed and mobile accesses.

	Application component sub-layer
	Charging and accounting is supported by the IMS.

The following limitations are discovered:

· Databases for permanent storage are outside the scope of IMS.

· Application logic is limited to network oriented service control (i.e. the functionality is confined to SIP [SIP1] related session control, but in theory SIP could be extended to convey other types of information.)

· Billing is outside the scope of IMS.

· Customer Relation Management (CRM) is outside the scope of IMS, although, some data structures are defined, but not in line with [ITU].

All missing functionality may be added or built on top of IMS.

	Event handling
	The SIP SUBSCRIBE, NOTIFY methods do not support specific CO functionality e.g. for handling of alarms.

All missing functionality may be added or built on top of IMS.

	CO presence
	Functionality is supported by IMS.

	Abstract Presentation service API
	This layer defines the vocabulary for (control of) CO service applications.

The functionality is outside the scope of basic IMS, but may be added in the form of separate functionality or as part of a new NGN subsystem.

	Abstract Session service API
	The functionality is supported by SIP in IMS.

	Abstract Transport service API
	SIP/SDP may support the function in IMS.

	Abstract network service API
	The primitives for sending and receiving data may be implemented to utilize an IMS/SIP session as bearer. This represents extreme overhead in cases session establishment has to be carried out for simple event reporting. Use of the SIP MESSAGE method (i.e. conveying data with no session establishment) is the preferred alternative for handling short messages and events. The limitations of this approach are discussed below.

	Multicast
	The IMS extension for IPTV (i.e. the Broadcast Serving Function) can be used for streaming broadcast. There is no mechanism for efficient broadcast of non session related data (e.g. events).

	Mobility
	Mobility management with soft handover is initially confined to the cellular infrastructure.

	QoS control
	QoS control is initially related to sessions, where SIP/SDP is used for control. It is stated in the IMS RACS specification that QoS control shall be offered also directly by the IMS network layer. However, there is so far no API defined for the purpose.

	Security
	End-to-end encryption must be handled by the end-system, as for a native implementation of the CO-service.

	Location & status
	The network assisted functionality is supported by IMS.

	Basic IP bearer
	The basic IP bearer is currently only supported for sessions.

	Accounting and logging
	IMS supports charging and accounting, but provides no generic mechanism for management of history or statistics information. This functionality has to be defined in a separate functional entity, as for a native implementation.

	Efficient streaming and video
	IMS supports session oriented (video) broadcast based on the IPTV architecture.

IMS may be used to implement the functionality of the CO service-primitives. The major challenge is to handle small amounts of real-time data efficient within the session oriented framework of IMS. The Use of the SIP MESSAGE method for such data exchange is a possible solution. However, the solution would require mechanisms like QoS diversification, charging, multicast, flow- and congestion-control to be implemented for the purpose, and at the IMS signalling plane. A better solution would be to offer a general QoS controlled connectionless service at the network layer, i.e. the “Abstract network service API”. This could be done within the framework of NGN by adding a new connectionless subsystem that could utilize existing IMS functionality, but without the need for explicit session establishment.

Current deployment of IMS systems is still based on IPv4, and requiring unique addressing to CO would easily exhaust the available address space. If large numbers of CO are to be connected through an IMS system it will most likely require IPv6 addressing.

The bottom line is that IMS supports high volume streaming very well, but IMS needs to be upgraded to effectively support the class of non session oriented applications.
CO applications

--------------------------	Aggregated API functionality (Layer 6+ basic applications)

CO application components

--------------------------	Layer 6 (Accessed via abstract Presentation API)

Presentation

--------------------------	Layer 5 (Accessed via abstract Session API)

Session

--------------------------	Layer 4 (Accessed via abstract Transport API)

Transport

--------------------------	Layer 3+ (Accessed via abstract Network API)

IP bearer

Multicast / Broadcast

Mobility

QoS control of IP bearer

Identification / authentication, accounting and security (AAA)

--------------------------	Layer 3 (Basic network service)

Basic IP bearer

_1244874027.doc

CO application components

Presentation

Session

Transport

IP bearer

Multicast / Broadcast

Mobility

QoS control of IP bearer

Identification / authentication, accounting and security (AAA)

Basic IP bearer

Link

Physical

CO application components

Presentation

Session

Transport

IP bearer

Multicast / Broadcast

Mobility

QoS control of IP bearer

Identification / authentication, accounting and security (AAA)

Basic IP bearer

Link

Physical

CO applications

CO applications

M2M (CO)�comunicating protocol entities

M2M (CO)�comunicating protocol entities

Physical PDU exchange

Logical PDU exchange

Aggregated API functionality

Logical PDU exchange

_1245225086.doc

[image: image1]

M2M portal

Vehicle control

GIS central

CPE-Location-Report

Fault-Report from transformer

Conveyed in�Receive-ID()

ID-Location-Request (Scheme, Coordinates)

ID-Location-Response (Scheme, Coordinates, Status, CO-ID-Set)

Fault-Report sent to closest free vehicle

Conveyed in�Send-ID()

Order confirmation

Order completed

CPE-Location-Report

CPE-Location-Report

_1213681878.doc

SC 4

Network

GSM/GPRS/UMTS protocols, CAP/MAP

(*)

Service

capabilities

Applications supporting services

Standardised OSA�Application Interface

service capability features

SC 3

SC 2

SC n

SC 1

_1214200588.doc

[image: image1]

OSA Internal API

Not standardized

server

Application

Application

OSA API

class

interface

Service Capability Servers

Billing server

E.g. Location server

Servers

S-CSCF

CSE

HSS

Call control

Location

User

Framework

Discovery

