Architecture for the Internet of Things:
Focus on API
Inge GRØNBÆK ª
ª Telenor R&I
Abstract. The architecture includes a secure API, a backbone and separate device networks with standard interface to the backbone. The API decouples innovation of services and service logic from protocols and network elements. It also enables service portability between systems, i.e. a service may be allocated to end-systems or servers, with possible relocation and replication throughout its lifecycle. Machine-to-machine services for Connected Objects (CO) could benefit the society in many areas, including environmental, health care, trade, transportation, alarms and surveillance. However, such development depends on the availability of global interoperability and powerful communications features. There are urgent actions to be taken to pave the way for this development to take place. The pivotal point is service ubiquity which depends on interoperability not only for a standard QoS controlled IP bearer, but also for cross domain security, mobility, multicast, location, routing and management, including fair compensation for utility provisioning. The proposed architecture with its API not only includes these critical elements but also caters for multi-homing, mobile networks with dynamic membership and third party persistent storage based on indirection. The API supports end-to-end service control and offers capability features as a vehicle for service development and ubiquitous deployment. The architecture is more generic than traditional hierarchical sensor and actuator networks as it supports grids and autonomous neural type of networks.
Architecture, API, M2M, Connected Objects.

Introduction

This document describes the core of a service oriented architecture offering generic functionality for Connected Objects (CO). The architecture supports network and/or end system based services and service features. The architecture is more generic than traditional hierarchical sensor and actuator networks, as it supports grids and autonomous neural types of networks.

The functionality offered to objects via an API is either peer-to-peer (P2P) or enabled by a minor set of new generic functional entities. These include a gateway and an anchor point entity class. The gateway can be instantiated for interconnect of a rich variety of COs, including layer two proprietary COs. It can also be designed to support interoperability for native General Packet Radio Service (GPRS) devices on GPRS networks. The anchor point entity handles global mobility management and mobile M:N multicast. Additionally, these new entities support presence and location based services. Locations of COs can be identified, and the set of COs at a specified location may be found. Privacy is also handled by the same entities.

The architecture is functionally layered, with protocols and components identified for each layer of the well known OSI stack. Diverse protocol stacks are supported by relating the stack profile and the CO identity. Deployed Internet protocols and protocols under development by the Internet Engineering Taskforce (IETF) are adopted.

The two critical elements for the support of ubiquitous services are interoperability for services and bearers. Bearer interoperability requires both interoperability for the IP bearer (user plane) and for the bearer control (control plane).

The background for the strong interoperability demand is described by Metcalfe's Law, stating that the usefulness of a network increases by the square of the number of nodes (users or devices) connected to the network. Furthermore, Reed’s law states that the utility of large networks, particularly social networks, can scale exponentially with the size of the network. Formation of such groups is gradually happening, e.g. the social utility Facebook which connects people with friends and others who work, study and live around them. These strong positive network externalities, where the benefits are an increasing function of the number of other users, represent a huge commercial potential which may be severely reduced by the lack of interconnect [1] and missing ubiquity in service support and provisioning.

The major area in demand for harmonization belongs to what is here termed the Internet layer (Figure 1). The Internet layer is the IP network layer, extended to include the inter-domain functionality required for end-to-end maintenance of QoS, Security, Mobility, Location, Multicast, Name resolution, Routing, Authentication Authorisation and Accounting (AAA), and Management. This functionality is required to interoperate across interconnected domains, i.e. administrative and technology domains, for the Internet of Things to support ubiquitous multifunctional services. In order for higher layer functionality and applications to get access to this functionality, there is a need for Application Programming Interfaces (API) at selected layers of the protocol stack (e.g. as depicted for the application and the Internet layer of Figure 1).

[image: image1.emf]

Standard

Internet

layer

Multicast / Broadcast

Mobility, location

QoS control of IP bearer

Identification and security

Name resolution

Routing

AAA and Management

IP

”Freedom”

”Freedom”

Application layer

API:

Figure 1. Internet layer with API

The rest of the paper focuses on the API part of the architecture starting with identification (chapter 1). Layering with functional aggregation, and primitive (method) design principles are described in chapter 2. Chapter 3 describes example API service elements. Network elements and functional components required for support of the API are briefly described in chapter 4.

1. Object identification
Applications benefit from objects being identifiable and/or locatable through different mechanisms. The most important ones are:

· By identifiers

· By the location (e.g. geographical confinement)

· By an objects profile or element(s) thereof, e.g. in combination with location.

The major challenge is to define and standardise a globally unique namespace supporting ubiquitous services. A solution is proposed by [2] and [3], introducing a new flat namespace based on public and private key pairs. This namespace is called the Host Identity namespace. It fills the gap between the IP and DNS namespaces. The Host Identity namespace consists of Host Identifiers (HIs), the public key of an asymmetric key-pair. Each host will have at least one Host Identity. Each Host Identity uniquely identifies a single host.

For efficiency purposes a Host Identity Tag (HIT) is defined as a 128-bit representation of a Host Identity. It is created by taking a cryptographic hash over the corresponding Host Identifier. A HIT presents the identity in a consistent format to a protocol, independent of the cryptographic algorithms used.

2. API Services and layering

The API describes capabilities and services between objects. Capabilities and services may freely be allocated to end systems (COs) or to servers. This enables functional allocations at the discretion of the developer. The same API may be used for network centric services and for P2P services. This enables services and service components to move, i.e. the architecture is agnostic to functional allocation and location.

Generic service elements may serve as building blocks for the full class of event oriented (i.e. data centric) and streaming oriented CO services.

The actual CO protocol (e.g. monitoring or remote control) is carried as payload by the user plane service elements of the API. These protocols may be proprietary, related to actual sensors or controllers, or adhere to standards. The architecture allows multiple application specific protocols to coexist, and it allows new applications and protocols to be defined without changing the basic API or its primitives (i.e. methods).

The service logically provided between COs, via the service API (Figure 2), shall be flexible in also offering subsets of the functionality. The idea, in particular applicable to device networks, is for the implementation to apply the simplest and most efficient protocol stack meeting the service requirements, with no or minimum processing and transmission overhead. It shall further be possible to increase the level of functionality by adding or including functional (sub) layers as required. Figure 2 shows aggregation of functionality from the set of service layers and protocol entities in the protocol stack. Any of the layers shown may be functionally transparent, depending on the protocol stack profile in use. Flexibility is enabled by resolution of the CO characteristics from the CO identifier.

The aggregated IP bearer service is logically provided at the top of the enhanced Network layer (i.e. to the Transport layer as shown in Figure 2). However, in an operational configuration, any of the layers may apply no protocol for communication with its protocol peer(s), i.e. the layer is empty except possibly from a inter layer service mapping (Figure 4).

A standardised API and protocols at the Internet layer (Figure 2) is key for support of inter operator ubiquitous services.

2.1. Service aggregation
The functionality of the API service offered to COs is aggregated from the services offered by the sub-layers shown in Figure 2. The description adheres to the well known ISO OSI model, and the approach relies on the same principles as the Platform-Based Design Methodology explained in [4]. The aggregated API functionality represents the Platform Design-Space Export.

The aggregated network service, i.e. the Aggregated IP bearer at Layer 3+, enhances the basic IP bearer service, which may be limited to offering a best effort service (IPv4 or IPv6).

[image: image2.emf]

Applications

--------------------- Aggregated API

Application components

--------------------- Layer 6 (API)

Presentation

--------------------- Layer 5 (API)

Session

--------------------- Layer 4 (API)

Transport

--------------------- Layer 3+ (API) -----------------------

Aggregated IP bearer

Multicast / Broadcast

Mobility

QoS control of IP bearer +

Identification, security

and AAA

--------------------- Layer 3 (IP sockets)

Basic IP bearer

 (Name resolution

Routing and

Management)

= Standard

Internet layer

Higher layers

(principally

relayed

transparently

via Backbone)

Figure 2. API and service aggregation

The layers above the Layer 3+ are the Transport, Session, Presentation and the applications. The service primitives offered by these layers are termed higher layer service primitives.

2.2. Service primitive design principle

According to the [5] principle, all basic service primitives shall offer a container for carrying data of a separately defined type. This creates an environment where clients and servers (i.e. objects) that encode their information the same way work together (i.e. share a common data definition). The uniform API interface can evolve over time. That is why it is built from three different parts, serving different and independent purposes:

· Identifiers (e.g. HITs),

· Methods (i.e. service primitives),

· (Document/data) types.

Each part is designed to change independently of the other parts. For example, new methods do not require the addition of new (data) types, and new (data) types do not require the addition of new methods. In object-oriented terms there is a single base class that defines the methods, but most methods have an “insert data here” slot. The information you want to transfer is added to this slot, along with the name of its (data) type. This avoids multiplying the number of standard methods by the number of (data) types.

3. Example service primitives

The following service elements are defined as part of the API, but not presented here: A more complete overview of API services is given in [6] together with a description of how the IMS/Parlay-X service can be offered as a part of the API.
3.1. Micro-payment management
Settlement and compensation is allocated to the Management domain, as the functionality may be applicable to all layers of the protocol stack.

Fair and flexible compensation schemes between cooperating and competing parties are required to correlate resource consumption and cost, in order to avoid anomalous resource consumption and blocking of incentives for investing in infrastructure.

The proposed functionality is based on micro-payments as defined in [7] and is based on hash-chain trees.

The following service primitive initiates the acquirement of Length number of tokens (returned in Tokens), each valued Value and honoured by Vendor (e.g. via a macro transaction):

· Buy-Tokens (Broker-ID, Length, Value, Vendor-ID, P0)

The Commit-Token is used to initiate payment, and it allows the Vendor to verify the validity of the tokens via the Broker:

· Commit-Token (Vendor-ID, Broker-ID, Length, Value, P0)

Explicit micro-payment is made by invoking the primitive:

· Submit-Tokens (Vendor-ID, Length, Tokens)

Length number of tokens is transferred to the Vendor.

The Submit-Tokens functionality may be integrated in other primitives, e.g. in the Data transmission primitives.

The Vendor applies the following primitive for redeeming the tokens (e.g. macro-payment):
· Redeem-Token (Broker-ID, Tokens)

3.2. Application component sub-layer
The application component sub-layer functionality may be offered as either complete services or as additional building blocks for in-house or third party services. The following represent example services.
3.2.1. Storage and retrieval

An object may not only be a node in the Internet of things. It may also be a data object e.g. stored in a node (i.e. in an end-system or in a network element). By assigning a Host Identity Tag (HIT) to a data object, it may be stored and retrieved in a location independent manner by applying indirection. The name resolution from the HIT to address is carried out by Resolve method:

· Resolve (HIT, Address)

In case of indirection, the HIT of an object will first resolve to the HIT of the caring (HIT) database server. The resolver recognises that this is not an address, so it repeatedly resolves all HITs until an address is finally encountered.

This functionality is similar to applying Distributed Hash Tables (DHTs) for data management, except for giving the network full control of the allocation and location of database resources. Data may be replicated by applying the same resolution mechanisms as for multi-homing, i.e. the HIT would resolve to multiple addresses. This mechanism can support data resilience as well as load distribution for multiple retrievals.

The following primitives are used to store, retrieve and delete data-objects:

· Store-Object (OID, Data-Object, Scheme, Result)

Scheme indicates time to live, need for replication and any access restrictions and key(s)

The Result parameter returns the status of the operation.

· Retrieve-Object (OID, Data-Object, Scheme, Result)

· Delete-Object (OID, Scheme, Result)

In the Retrieve and Delete primitives the Scheme parameter mainly conveys the required access rights for the operations.
3.2.2. Event reporting

The following primitive is used for event subscription at the event server (Registrar-CO-ID), for events at the Target-CO-ID (both could be the same CO):

· Event-Subscription-Send (Registrar-CO-ID, Target-CO-ID, Parameters)

An event subscription shall be confirmed by an event notification from the Registrar. The event notification indicates an event at the Target-CO-ID, or a subscription for events.

· Event-Notification-Send (Subscriber-CO-ID, Target-CO-ID, Parameters)

The Event-Report primitive is used for carrying reports from a CO (e.g. a simple censor) to the recipient (e.g. the Registrar event server).

· Event-Report-Send (Registrar-CO-ID, Parameters)

The Parameters may specify a distinct value or a set of values (e.g. representing upper and lower limits).

3.2.3. CO presence

The following primitive is used for dynamic CO presence registration:

· Register-Send (Registrar-CO-ID, Parameters)

A registration shall be confirmed by an event notification to the registering party, and to all parties having subscribed on this registration event.
3.3. Presentation service

This layer defines the vocabulary for (control of) CO service applications; i.e. the data structures and commands required for COs to interoperate, e.g. for an advanced control and surveillance application.

The actual monitoring or control protocol may be proprietary, related to actual sensors or controllers, or standards may be applied. The identification or standardization of such protocols is for further study, but architecturally the vocabulary of such protocols is allocated to the Presentation layer.
3.4. Session service

In this context a session shall be understood to represent the state of active communication between connected objects; i.e. it is not required to be established by e.g. the Session Initiation Protocol (SIP). A session may thus even be represented by a link layer association.

3.5. Transport service

The abstract service for explicit transport protocol selection is composed of the following primitive:

· Transport-Selection (Destination-CO-ID, Protocol).

The initial protocol offerings will be UDP, TCP, MQTT(s) or NIL.

Primitives from subordinate layers will be applied, e.g. for sending and receiving data.

3.6. Network service at the Internet layer
The Internet layer in Figure 2 is the IP network layer, extended to include the inter-domain functionality required for end-to-end maintenance of QoS control, Security, Mobility, Location, Multicast, Name resolution, Routing and Management. This functionality is required to be maintained across interconnected domains of the Internet of Things, to support ubiquitous multifunctional services. This functionality is therefore critical for end-to-end service provisioning, since network elements in interconnected domains need to contribute to the functionality on a hop-by-hop basis.

The network service aggregates the functionality from each of its subordinate layers into the service provided to the transport, or directly to COs.
3.6.1. Data transmission

The following primitives are defined for sending and receiving unsecured and secured data:

· Send-ID (CO-ID, Data)
% sends to the identified CO (CO-ID)

· Receive-ID (CO-ID, Data)

· Send-SA (SA, Data)

% sends to the specified Security Association (SA)

· Receive-SA (SA, Data)

A combined mechanism for sending data and paying for its transfer is defined as follows:

· Send-ID-Token (CO-ID, Data, Length, Token)

· Send-SA-Token (SA, Data, Length, Token)

The Length parameter specifies the token rate to be submitted.

Tokens are acquired and redeemed by the primitives for Settlement and compensation defined previously.

3.6.2. Multicast

The service for managing multicast for COs is composed of the following primitives:

· MC-Group-Open (Group-ID, Profile)

Profile specifies the characteristics, e.g. security level.

· MC-Group-Close (Group-ID)

The basic Send and Receive primitives are used to send and receive secured or unsecured data.

The joining and leaving of a multicast group is achieved by the following primitives:

· MC-Group-Join (Group-ID)

· MC-Group-Leave (Group-ID)

3.6.3. Mobility

The API for specifying mobility management to be applied for a CO is composed of the following primitives:

· MM-Register (CO-ID)

· MM-End (CO-ID)

3.6.4. QoS control

The API for specifying a default QoS to be applied is composed of the following primitives:

· QoS-Set-Default (Profile)

· QoS-Set-Default-Confirm (Profile, AoC)

Advice of Charge (AoC), as returned from the network, provides the information required for estimation of the charging rate.

The API for explicit QoS control is composed of the following primitives:

· QoS-Set-Path (Destination-CO-ID, Profile)

· QoS-Set-Path-Confirm (Destination-CO-ID, Profile, AoC)

3.6.5. ID and Security

The API for security association creation is composed of the following set of control primitives:

· SA-Create (CO-ID, Profile, SA)

The Profile shall indicate both the security requirement and the involved algorithms.

3.6.6. Location & status

The service for network assisted reporting of status and location of user terminals includes the following set of control primitives:

· Location-Request (CO-ID-Set, Scheme)
% The CO-ID-Set identifies one or more COs

· Location-Response (CO-ID-Set, Scheme, Status, Coordinates)

The Scheme defines the desired coordinate system. Status indicates the validity of the returned coordinates.

The following primitives are used to request the network to identify object(s) known to be at a specific location:

· ID-Location-Request (Scheme, Coordinates)

· ID-Location-Response (Scheme, Coordinates, Status, CO-ID-Set)

The CO-ID-Set identifies zero or more COs.

Reporting of end-system supplied location and status is done by applying the following primitives (e.g. to Geographic Information Systems (GIS) central information portal):

· CPE-Location-Report (CO-ID, Scheme, Status, Coordinates)

· CPE-Location-Report-Indication (GIS-ID, Scheme, Status, Coordinates)

3.6.7. Basic IP bearer

The network service of the basic IP bearer is simply composed of the following primitives for sending and receiving data:

· Send-IP (To-IP-address, Data)

· Receive-IP (From-IP-address, Data)

This equates to the IP sockets interface.

4. The topology and network elements
The Internet of Things comprises two logically distinct, but closely coupled, network domains (Figure 3), i.e. the backbone and the device network domains. Both domains may be serving COs directly.
The backbone network offers ubiquitous interconnect for services at the Internet layer (Figure 2), while connected objects interconnect at the Application layer, i.e. the higher layer protocols are transparent to the Internet layer.

Device networks connecting clusters of objects must be flexible in technology and topology. A limited set of interfaces need to be standardised for interconnect with and via the backbone network (Figure 3). Device networks and their devices are expected to develop continuously for a longer period, and their technology basis is an important topic for continued research. There is a need to integrate simple low-end devices, e.g. with limitations in functionality and power supply. Such elements are interfaced through a flexible gateway architecture proposed in [8]. The backbone architecture must include a limited set of interfaces for device network access and interconnect.

[image: image3.emf]

HIT

RadioGW

HIT

GW

DNS

Bootstrap

GPRS

IMS

Parlay-X

Logging,

Rating,

Billing

GPRS

HIT

GW

RVS

RH

ONS

”Connected Objects”

Device network

Device network

Backbone

IP network,

e.g. Internet

”Connected Objects”

Hosting

”Connected Objects”

Figure 3. Components and their relation
The naming reflects the use of the HIP protocol for e.g. obtaining name/address separation, security and mobility for objects.

All interconnect with non backbone compliant architectures is carried out at the rim of the backbone, and this effectively eliminates the need for the N square interconnect arrangements and gateways for N different technologies (e.g. service specific networks). The common backbone architecture will also reduce the number of different and variant network elements. A detailed description of the topology and network elements required to support the functionality of the API can be found in [8].

4.1. Gateways
The Host Identity Tag (HIT) gateway (Figure 4) is based on the Host Identity Protocol [2] and allows global addressing of COs while maintaining the use of IPv4 addresses. This is achieved by allocating a single public IP-address to a potentially large group of COs under control of a single HIT gateway. This is the address of the HIT gateway. This is similar to a care of address in mobile IPv4. The gateway applies the HIT for addressing and/or identifying the actual CO. The HIT gateway also supports localized mobility management, as the IP-address of a CO would only change when the CO moves outside the control of its current gateway. The HIT gateway shall keep track of the location of all COs under its control. Each gateway shall be allocated a coverage area, allowing identification of objects within that area. The same HIT gateway may serve more areas in parallel in order to increase the granularity of CO identification.

Each gateway shall furthermore keep track of all its physical gateway neighbours, to allow extended area search for COs. The HIT gateway may be multi-homed, e.g. via interfaces applying different network technologies.

[image: image4.emf]

IPv4

HIP with security,

mobility and multicast

TCP UDP

HTTP

Web services

(XML, WSDL, UDDI)

E.g. ETHERNET

CO application

Device side

Mapping

Backbone side

(part) application

CO presentation

Transparent?

Transparent?

Transparent?

Transparent?

E.g. MAC

Fig. 4 HIT gateway architecture
The communication scheme on the device network side of the gateway can be based on local light weight protocols, e.g. at the link layer. The layers denoted “Transparent?” may or may not be instantiated at the device side of the gateway.

4.2. Servers (RVS, RH, ONS)
The basic functionality of the Rendezvous Server (RVS) is to offer mobility anchoring, i.e. maintenance of the HIT to address bindings [2]. It may also be engaged in traffic forwarding in cases where privacy is required. Event reporting shall also be handled by the RVS serving the target CO, i.e. the CO at which events are monitored for reporting. This implies that the registrar and notification functionality shall be implemented at the RVS as well.

The Resolution Handler (RH) is an RVS extension offering generic name resolution [3] from a flat namespace (e.g. HIT to address resolution). Retrieval of CO characteristics is part of the functionality, e.g. identification of protocol stack and other capabilities.
The Object Naming Service (ONS) is part of the EPC Global Network [9]. The ONS may be integrated with the RVS entity, or can be implemented as a self-contained entity. The ONS offers name resolution for Electronic Product Codes (EPC):

· EPC -> EPC-IS (i.e. the URL of the interface to the owner of the EPC manager code).
5. Conclusion and recommendations

The architecture urgently needs standardisation to take place in order to create a global (i.e. cross operator and service provider) market for end-to-end CO services. Since the architecture with the API shields applications from the underlying technology, it reduces efforts involved in service development, and at the same time allows services and technology platforms to evolve independently. Adoption of the architecture will allow the effect of economic network externalities to increase the total value of the market by supporting ubiquitous services on an end-to-end basis. This will provide efficiency in scale and scope in service infrastructures, service production and service development.

The NGN and IMS initially only support the class of session oriented applications for use by COs. It is therefore important to implement the non session (data) related part with interconnect to GPRS based networks. The architecture allows ubiquitous services also via GPRS/UMTS, and for native GPRS devices.

The architecture may serve as a vehicle for migration to the true all-IP Internet of Things. However, this presupposes avoiding the mistakes made by ISPs for the Internet [1], i.e. by not cooperating and coordinating between operators in order to allow service and transport level interoperability at the Internet layer. This is required for service ubiquity, in order to enlarge the total global market, thereby benefiting the whole ICT industry.

The Internet of Things may evolve through a holistic approach to integration of COs, stimulating fair competition, economic growth and innovation. The value of the IoT market will grow due to new service offerings related to COs, but even more by the increase in value caused by positive network externalities resulting from general Internet service ubiquity.

Acknowledgement

The author is grateful for enlightening discussions, comments and contributions from Jan Audestad, Terje Jensen, and Anne-Grethe Kåråsen, all with Telenor.
References

[1]
P. Faratin, D. Clark, P. Gilmore, S. Bauer, A. Berger and W. Lehr, Complexity of Internet Interconnections: Technology, Incentives and Implications for Policy, 2007.

[2]
Host Identity Protocol (HIP) Architecture, IETF RFC 4423, May 2006.

[3]
T. Koponen, et al., A Data-Oriented (and Beyond) Network Architecture, SIGCOMM’07, August 27–31, 2007, Kyoto, Japan.
[4]
Alberto L. Sangiovanni-Vincentelli. Quo Vadis SLD: Reasoning about Trends and Challenges of System-Level Design. Proceedings of the IEEE, 95(3):467-506, March 2007.

[5]
http://rest.blueoxen.net/cgi-bin/wiki.pl?RestInPlainEnglish.
[6]
Inge Grønbæk, et al., Abstract Service API for Connected Objects, Telenor R&I Research Report 18/2007, June 2007.
[7]
Hitesh Tewari, Donal O’Mahony, Real-Time Payments for Mobile IP, IEEE communications-magazine, february2003, pp 126-136.
[8]
Inge Grønbæk, Sune Jakobsson, High level architecture for support of CO services, Telenor R&I Research Report 37/2007, November 2007.
[9]
Electronic Product Code, http://www.epcglobalinc.org/standards/architecture/architecture_1_2-framework-20070910.pdf.

7
12

_1269075734.doc

[image: image1]

Logging, �Rating, �Billing

IMS

Parlay-X

”Connected Objects”

”Connected Objects”

Device network

Backbone�IP network,�e.g. Internet

GPRS

”Connected Objects”

Hosting

HIT

RadioGW

Bootstrap

DNS

GPRS

HIT

GW

RVS�RH�ONS

HIT GW

Device network

_1269084947.doc

[image: image1]

API:

Application layer

”Freedom”

”Freedom”

IP

Multicast / Broadcast

Mobility, location

QoS control of IP bearer

Identification and security

Name resolution�Routing�AAA and Management

Standard Internet layer

_1268717256.doc

Applications

--------------------- Aggregated API

Application components

--------------------- Layer 6 (API)

Presentation

--------------------- Layer 5 (API)

Session

--------------------- Layer 4 (API)

Transport

--------------------- Layer 3+ (API) -----------------------

Aggregated IP bearer

Multicast / Broadcast

Mobility

QoS control of IP bearer	 +

Identification, security �and AAA

--------------------- Layer 3 (IP sockets)

Basic IP bearer

Higher layers �(principally relayed�transparently �via Backbone)

 (Name resolution�Routing and Management)

= Standard Internet layer

_1268797498.doc

Backbone side

Mapping

Device side

CO application

E.g. ETHERNET

Web services �(XML, WSDL, UDDI)

HTTP

UDP

TCP

HIP with security, mobility and multicast

IPv4

(part) application

CO presentation

Transparent?

Transparent?

Transparent?

Transparent?

E.g. MAC

