
Presented by: For:

© ETSI 2020

14.07.2020

New Features and Changes
in NGSI-LD v1.3.1

Martin Bauer ETSI-ISG CIM

© ETSI 2020 2

Overview

Incompatible Changes compared to NGSI-LD API v1.2.1

• Important: Changes to Core @context / Migration options

• Multi-Attribute Support

• Query Language Syntax Changes to Attribute Path

• Batch Operation Error Codes

New Features in NGSI-LD API v1.3.1

• Query for available Entity Types and Attributes

• Full GeoJSON documents as query responses and notifications

• MQTT Notification Binding

• COUNT header option

• Multi-Tenant Support

• POST Queries

• Specification of additional headers for notifications

• Support for queries where attribute is implicitly specified in query filter or geoquery

• Support for international characters in URIs/IRIs and terms

© ETSI 2020

Important:
Change: Core
@context /
Migration
options

© ETSI 2020 4

Incompatible Changes to NGSI-LD Core Context

• Due to the support of retrieving results as GeoJSON / GeoJSON-LD documents (see slides 31-36), the
NGSI-LD core context had to be changed in an incompatible way as the GeoJSON terms have to
correspond to the GeoJSON-LD terms, which was not previously the case

• In addition we did some additional minor changes to the core context (see following slides)

• Alignment of temporal terms

• Avoiding clashes with commonly used terms /reuse of widely used terms

• To avoid issues for existing v1.2.1 applications and Brokers, the core context URL changes from

• https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld (v1.2.1) to

• https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld (from v1.3.1)

• The different migration options are discussed on slide 8
This change affects existing NGSI-LD data. In particular, the value of GeoProperties stored in a Broker
uses a different URI, so when using the new @context there is a mismatch. This needs to be explicitly
addressed.

Core @context: in particular CIM009v1.3.1 Annex B

https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context.jsonld
https://uri.etsi.org/ngsi-ld/v1/ngsi-ld-core-context-v1.3.jsonld

© ETSI 2020 5

Core @context incompatibilities (1)

v1.2.1 v1.3.3 Impacted Datatypes (and Operations) Comment

"coordinates": "ngsi-ld:coordinates" "coordinates": {
"@container": "@list",
"@id": "geojson:coordinates"

}

All using GeoProperties! (e.g.
Create, Update, Append,
Retrieve, Query, Notify)
GeoQuery(Subscription)

Uses GeoJSON namespace
Uses JSON-LD 1.1 feature
("@container": "@list“), which
preserves nested JSON arrays in
JSON-LD, was a problem in JSON-
LD 1.0)

"description": "ngsi-ld:description" "description":
"http://purl.org/dc/terms/description"

CSourceRegistration (optional),
Subscription (optional)

Use term from Dublin Core as
term is widely used

"end": {
"@id": "ngsi-ld:end",
"@type": "DateTime"

}

"endAt ": {
"@id": "ngsi-ld:endAt",
"@type": "DateTime"

}

TimeInterval
(CSourceRegistration, temporal
case)

Temporal, add “At” for consistency

"endTime": {
"@id": "ngsi-ld:endTime",
"@type": "DateTime"

}

"endTimeAt ": {
"@id": "ngsi-ld:endTimeAt",
"@type": "DateTime"

}

TemporalQuery (also query
parameter!)

Temporal, add “At” for consistency

"expires": {
"@id": "ngsi-ld:expires",
"@type": "DateTime"

}

"expiresAt ": {
"@id": "ngsi-ld:expiresAt",
"@type": "DateTime"

}

CSourceRegistration, Subscription Temporal, add “At” for consistency

"geometry": “ngsi-ld:geometry" "geometry": "geojson:geometry" GeoQuery(Subscription) Uses GeoJSON namespace

© ETSI 2020 6

Core @context incompatibilities (2)

v1.2.1 v1.3.3 Impacted Datatypes & Operations Comment

"name": "ngsi-ld:name" CSourceRegistration, Subscription Replaced by “subscriptionName”
and “registrationName”
respectively

"properties": "geojson:properties" New: GeoJSON Representation New as needed for GeoJSON – old
ngsi-ld:properties has become
ngsi-ld:propertyNames

"properties": {
"@id": "ngsi-ld:properties",
"@type": "@vocab"

}

"propertyNames ": {

"@id": "ngsi-ld:propertyNames",
"@type": "@vocab"

}

RegistrationInfo
(CSourceRegistration)

Replacing “properties” as term is
defined in GeoJSON

"registrationName": "ngsi-
ld:registrationName"

CSourceRegistration Replaces “name” in registrations

"relationships": {
"@id": "ngsi-ld:relationships",
"@type": "@vocab"

}

"relationshipNames": {
"@id": "ngsi-ld:relationshipNames",
"@type": "@vocab"

}

RegistrationInfo
(CSourceRegistration)

Replacing “relationships” to align
with propertyNames

"start": {
"@id": "ngsi-ld:start",
"@type": "DateTime“

}

"startAt": {
"@id": "ngsi-ld:startAt",
"@type": "DateTime"

}

TimeInterval
(CSourceRegistration, temporal
case)

Temporal, add “At” for consistency

© ETSI 2020 7

Core @context incompatibilities (3)

v1.2.1 v1.3.3 Impacted Datatypes & Operations Comment

"subscriptionName": "ngsi-
ld:subscriptionName",

Subscription Replaces “name” in subscriptions

"time": {
"@id": "ngsi-ld:time",
"@type": "DateTime“

}

"timeAt": {
"@id": "ngsi-ld:timeAt",
"@type": "DateTime"

}

TemporalQuery (also query
parameter!)

Temporal, add “At” for consistency

"title": "ngsi-ld:title" "title": "http://purl.org/dc/terms/title" Error description Use term from Dublin Core as
term is widely used

© ETSI 2020 8

What are the migration options for core @context?

ETSI ISG CIM can only describe the options, ultimately it is up to the implementers

• Smooth vs. hard transition

• Effort required

• General: Providing a script for updating existing data on migration recommended …

ADD SECTION NAME

Application with old core
@context

Application with new core
@context

Old Broker
 

New Broker – hard transition 

reject


New Broker – replace with new
assumption: existing data has been

updated

() – internally using new only,

application has to
deal with new @context in reply



New Broker – core @context
aware



Support both externally, depending
on which is provided  complex



© ETSI 2020

Change:
Multi-

Attribute
Support

© ETSI 2020 10

Multi-Attributes (Multi-Properties and Multi-Relationships)

• Multi-attributes means that multiple attribute instances of the same name exist.

• Typical use case are the following:

• Properties: the same information is provided by different sources, e.g. for redundancy purposes, or there
simply exist different sources that independently provide the same information. For example, the speed of
a car may be provided by the speedometer, a GPS system or a stationary speed measurement system.
These measurements may have different qualities and it should be possible to keep them independently
as “speed” attribute instances of the same car. To differentiate the attributes from the different sources, a
datasetId is used and each source updates the instance with its datasetid.

• Relationships: Not all relationships are functional, i.e. an entity may have the same kind of relationship
with different entities, e.g. “isFriendOf”, “hasChild”, etc. These relationships may have different properties,
i.e. “isBestFriend=true”.

• Multi-attributes already existed in NGSI v1.2.1, but the representation was not
straightforward.

Multi-Attributes: in particular CIM009v1.3.1 Clauses 4.5.5 and 4.5.1

© ETSI 2020 11

Multi-Relationship Modelling

A b C

b D
≠

A b C

D

 Relationship with multi-object
(JSON representation where there
is an array of objects)

e

FD

e

FC

e

FCD

FC ≠FD

Multi-Attribute Motivation and Modelling

not supported in NGSI-LD

A has Relationships “b” with Entities C and D
and each relationship “b” has a property “e”.

© ETSI 2020 12

Multi-Property Modelling

A

≠
A




Property with multi-value
(JSON representation where value
is an array)

e

FD

e

FC

e

FCD

FC ≠FD

b

b

b

Multi-Attribute Motivation and Modelling

C

D

C

D

A has two independent Properties “b” with
values C and D respectively and each Property “b”
has a property “e”.

© ETSI 2020 13

Current Simple Relationship Representation

"friend": {
"type": "Relationship",
"object": "urn:person:Sam",
"friendInfo": {

"type": "Property",
"value": {

"nickname": "Sammy",
"age": 22,
"description": "Best-friend"

}
}

}

Example: from SeungMyeong Jeong, KETI

ADD SECTION NAME

© ETSI 2020 14

Multi-Attribute Representation in NGSI v1.2.1

{
@context: {
"friend#1": "https://example.org/myFriend",
"friend#2": "https://example.org/myFriend",

…
},
…
"friend#1": {

"type": "Relationship",
"object": "urn:person:Sam",
"datasetId": "urn:myspecialfriendid1234567",
"friendInfo": {

"type": "Property",
"value": {

"nickname": "Sammy",
"age": 22,
"description": "Best-friend"

}
}

},

"friend#2": {
"type": "Relationship",
"object": "urn:person:Victoria",
"datasetId": "urn:myspecialfriendid9876543",
"friendInfo": {

"type": "Property",
"value": {

"nickname": "Vicky",
"age": 25

}
}

}
….
}

ADD SECTION NAME

https://example.org/myFriend
https://example.org/myFriend

© ETSI 2020 15

Multi-Attribute Representation in NGSI v1.3.1

"friend": [
{

"type": "Relationship",
"object": "urn:person:Sam",
"datasetId": "urn:myspecialfriendid1234567",
"friendInfo": {

"type": "Property",
"value": {

"nickname": "Sammy",
"age": 22,
"description": "Best-friend"

}
}

},

Example: from SeungMyeong Jeong, KETI

{
"type": "Relationship",
"object": "urn:person:Victoria",
"datasetId": "urn:myspecialfriendid9876543",
"friendInfo": {

"type": "Property",
"value": {

"nickname": "Vicky",
"age": 25

}
}

}

]

ADD SECTION NAME

© ETSI 2020 16

Pros and Cons of the New Representation in v1.3.1

• Pros

• No adapted @context needed

• No hash-tagged elements

• all relationships / properties under the same key

• JSON-LD way of handling single vs. multi-value cases

 greatly simplifies processing

• Cons

• “value” of Properties and “object” of Relationships can be either Object or Array

 needs to be checked when parsing

ADD SECTION NAME

© ETSI 2020

Change: Query
Language

Syntax
Changes to

Attribute Path

© ETSI 2020 18

Attribute Path representation in Query Language

• For better readability, we changed the attribute path representation in the Query
Language.

• The attribute path is used in the query language when comparing
properties/relationships of properties/relationships and elements of values with
specific simple values, respectively.

• Thus it is necessary to distinguish whether a name refers to e.g. a property of
property or an element of a value.

• In the new version: only when first referring to an element of a value, square brackets
are used – inside the value the dot notation is used in the same way as when referring
to (e.g.) properties of properties.  see examples on next slide

Query Language: CIM009v1.3.1 Clause 4.9

© ETSI 2020 19

Attribute Path Example

{
"id": "urn:ngsi-ld:Piece:A4567",
"type": "Piece",
"component": {

"type": "Property",
"element": {

"type": "Property",
"subelement": {

"type": "Property",
"value": "subelement_value"

}
},
"value": {

"element": {
"subelement": "subelement_value"

}
}

}
}

• To compare the value of the subelement property of the element property of the component property, the
path would have to be:

component.element.subelement="subelement_value"

• To compare the subelement of element of the value of the component property, the path would have to be:

component[element.subelement]="subelement_value"

© ETSI 2020 20

Comparison of current and previous definition

New definition:
DottedPath = AttrName *(%x2E AttrName) ; AttrName *(.AttrName)

Attribute = DottedPath *1(%x5B DottedPath %x5D) ; DottedPath *1([DottedPath])

Example: property.property[value_level1.value_level2.value_level3]

Previous definition:
attrPathName = attrName *(%x2E attrName) ; attrName *(. attrName)

compoundAttrName = attrPathName *(%x5B attrName %x5D) ; . attrName *([attrName])

Example: property.property[value_level1][value_level2][value_level3]

ADD SECTION NAME

© ETSI 2020

Change: Batch
Operation
Response

Codes

© ETSI 2020 22

Batch Operation Response Codes

We adapted the Batch Operations Response Codes to better align with the non-Batch
versions and to better reflect the cases where the operation was successful only for
some of the individual requests in the batch (207).

Code Create Upsert Update Delete

201 Created If all entities have been
successfully created.

If all entities not existing prior
to request have been
successfully created and
others successfully updated.

204 No content If all entities previously
existed and are successfully
updated.

If all entities have been
successfully updated.

If all entities already existed
and have been successfully
deleted.

207 Multi Status If only some entities have
been successfully created.

If only some or none of the
entities have been
successfully created or
updated.

If only some or none of the
entities have been
successfully updated.

If some or all of the entities
have not been successfully
deleted, or did not exist.

400 Bad Request If the request or its content is
incorrect.

If the request or its content is
incorrect.

If the request or its content is
incorrect.

If the request or its content is
incorrect.

102r1 in 6.17 has not been
completely implemented

HTTP Binding of Batch Operations: CIM009v1.3.1 Clauses 6.14, 6.15, 6.16, 6.17

© ETSI 2020

Feature: Query
for available

Entity Types and
Attributes

© ETSI 2020 24

Feature “Query for Available Entity Types and Attributes”

• It is important to be able to find out what kind of information is currently available in
an NGSI-LD system

• In NGSI-LDv1.2.1 only the request for entities based on specific entities, entity types
and attributes was available in NGSI-LD

• Now there are requests to retrieve currently available Entity Types or currently
available Attributes

ADD SECTION NAME

© ETSI 2020 25

Retrieve Available Entity Types

• Resource: /ngsi-ld/v1/types

• HTTP GET

• id:
urn:ngsi-ld:EntityTypeList:<unique>

• JSON-LD object of Type
EntityTypeList

• typeList element with
Array of Entity Type Names
(value of type @vocab, to
enable expansion / compaction)

ADD SECTION NAME

{

"id": "urn:ngsi-ld:EntityTypeList:1236645",

"type": "EntityTypeList",

“typeList": [

"https://uri.etsi.org/ngsi-ld/primer/Shelf",

"https://uri.etsi.org/ngsi-ld/primer/Store"

]

}

with @context in link header:

{

"id": "urn:ngsi-ld:EntityTypeList:34534657",

"type": "EntityTypeList",

“typeList": [

“Shelf",

"Store"

]

}

Retrieve Available Entity Types: CIM009v1.3.1 Clauses 5.7.5, 5.2.24, 6.25

© ETSI 2020 26

Retrieve Details of Available Entity Types

• Resource: /ngsi-ld/v1/types?options=details

• HTTP GET

• Array of Entity Type Information

• id: URI of entity type being
described

• type: "EntityType“

• typeName: name of entity type
@vocab, to enable expansion /
compaction

• attributeNames: array of attribute
names

ADD SECTION NAME

[

{

"id": "https://uri.etsi.org/ngsi-ld/primer/Store"

"type": "EntityType",

"typeName": "Store“,

"attributeNames": [“storeName", "address", "location",

“contains"]

},

{

"id": "https://uri.etsi.org/ngsi-ld/primer/Shelf",

"type": "EntityType",

"typeName": “Shelf",

"attributeNames": [“maxCapacity", "location",

“isContainedIn"]

}

]

with @context in link header:

Retrieve Details of Available Entity Types: CIM009v1.3.1 Clauses 5.7.6, 5.2.25, 6.25

© ETSI 2020 27

Retrieve Available Entity Type Information

• Resource: /ngsi-ld/v1/types/{entity type name}

• HTTP GET
• Detailed Entity Type Information

• id: name of entity type being
described

• type: "EntityType“
• typeName: name of entity type

@vocab, to enable expansion /
compaction

• entityCount: number of entity instances
that have this type

• attributeDetails: array of attribute
details
• id: URI of attribute being described
• type: "EntityAttribute“
• attributeName: name of attribute

@vocab, to enable expansion /
compaction

• attributeTypes: array of attribute types with which attribute instances exist (often, but not always one)
ADD SECTION NAME

{

"id": "https://uri.etsi.org/ngsi-ld/primer/Store",

"type": "EntityTypeInformation",

"typeName": "Store“,

“entityCount“: 4,

"attributeDetails": [{

"id": "https://uri.etsi.org/ngsi-ld/location",

"type": "Attribute",

"attributeName": "location",

"attributeTypes": ["GeoProperty"],

},

…]

}

with @context in link header:
/ngsi-ld/v1/types/Store

Retrieve Available Entity Type Information: CIM009v1.3.1 Clauses 5.7.7, 5.2.26, 6.26

© ETSI 2020 28

Retrieve Available Attributes

• Resource: /ngsi-ld/v1/attributes

• HTTP GET

• id:
urn:ngsi-ld:AttributeList:
<random>

• JSON-LD object of Type
AttributeList

• attributeList element with
Array of Attribute Names
(value of type @vocab, to
enable expansion / compaction)

ADD SECTION NAME

{

"id": "urn:ngsi-ld:AttributeList:1236645",

"type": “AttributeList",

“attributeList": [

"https://uri.etsi.org/ngsi-ld/primer/contains",

"https://uri.etsi.org/ngsi-ld/primer/isContainedIn",

"https://uri.etsi.org/ngsi-ld/location"]

}

{

"id": "urn:ngsi-ld:AttributeList:7896645",

"type": “AttributeList",

“attributeList": [

"contains",

"isContainedIn",

"location"]

}

with @context in link header:

Retrieve Available Attributes: CIM009v1.3.1 Clauses 5.7.8, 5.2.27, 6.27

© ETSI 2020 29

Retrieve Details of Available Attributes

• Resource: /ngsi-ld/v1/attributes?options=details

• HTTP GET

• Array of Attribute Information

• id: URI of attribute being
described

• type: "Attribute"

• attributeName: name of attribute
@vocab, to enable expansion /
compaction

• typeNames: array of entity types
that have an attribute of this name,

@vocab, to enable expansion /
compaction

ADD SECTION NAME

[

{

"id": " https://uri.etsi.org/ngsi-ld/primer/contains",

"type": "Attribute",

"attributeName": "contains",

"typeNames": ["Store"]

},

{

"id": "https://uri.etsi.org/ngsi-ld/location",

"type": "Attribute",

"attributeName": "location",

"typeNames": [

"Store",

"Shelf"]

},

…

]

with @context in link header:

Retrieve Details of Available Attributes: CIM009v1.3.1 Clauses 5.7.9, 5.2.28, 6.27

© ETSI 2020 30

Retrieve Available Attribute Information

• Resource: /ngsi-ld/v1/attributes/{attribute name}

• HTTP GET

• Detailed Attribute Information

• id: URI of attribute being
described

• type: "Attribute"

• attributeName: name of attribute
@vocab, to enable expansion /
compaction

• attributeTypes: array of attribute types
with which attribute instances exist

• typeNames: array of entity types
that have an attribute of this name,

@vocab, to enable expansion /
compaction

• attributeCount: number of attribute instances
that have this name ADD SECTION NAME

{

"id": "https://uri.etsi.org/ngsi-ld/location",

"type": "Attribute",

"attributeName": "location",

"attributeTypes": ["GeoProperty"],

"typeNames": [

"Store",

"Shelf"]

"attributeCount": 5

}

with @context in link header:
/ngsi-ld/v1/attributes/location

Retrieve Available Attribute Information: CIM009v1.3.1 Clauses 5.7.10, 5.2.28, 6.28

© ETSI 2020

Feature: Full

GeoJSON

documents as

query responses

and notifications

© ETSI 2020 32

GeoJSON – Motivation

 I want to ease the path of adoption for NGSI-LD for Context Information for
developers

 As a developer, I want to display Context Information on a Map.
 Many GIS Systems already support a common standard for loading data layers
 Therefore, I want to be able to make queries to an NGSI-LD system and retrieve

responses in a GeoJSON / GeoJSON-LD friendly format.

● The GeoJSON specification is RFC 7946 -

see: https://tools.ietf.org/html/rfc7946

The GeoJSON-LD @context can be found

here: http://geojson.org/geojson-ld/

● Typically used for Geographic Information

● Each NGSI-LD entity is equivalent to a GeoJSON Feature

● GeoJSON is already used for GeoProperties within NGSI-LD

{

"type": "Feature",

"id": "f1",

"geometry": {...},

"properties": {...}

}

GeoJSON

https://tools.ietf.org/html/rfc7946
http://geojson.org/geojson-ld/

© ETSI 2020 33

Solution - Output NGSI-LD Entities as GeoJSON Features

NGSI-LD entity: GeoJSON Feature

{

"@context": "...etc",

"id": "urn:ngsi-ld:Building:store001",

"type": "Building",

"address": {

"streetAddress": "Bornholmer Straße 65",

"addressRegion": "Berlin",

"addressLocality": "Prenzlauer Berg",

"postalCode": "10439"

},

"name": "Bösebrücke Einkauf",

"category": "commercial",

"location": {

"type": "Point",

"coordinates": [

13.3986,

52.5547

]

}

}

{

"type": "Feature",

"id": "urn:ngsi-ld:Building:store001",

"geometry": {

"type": "Point", "coordinates": [13.3903, 52.5075]

},

"properties": {

"type" : "Building",

"name": "Checkpoint Markt",

"category": "commercial",

"address": {

"streetAddress": "Friedrichstraße 44",

"addressRegion": "Berlin",

"addressLocality": "Kreuzberg",

"postalCode": "10969"

}

},

“@context”: “...etc”

}

▪ Basically all we have done here is:

▪ Renamed and the expanded "location" => "geometry"

▪ Relegated the NGSI-LD Entity "type" and placed it into "properties"

GeoJSON

© ETSI 2020 34

How do GeoJSON and NGSI-LD Align?

• GeoJSON "type" is always "Feature" for a single NGSI-LD entity,
or "FeatureCollection" for arrays of NGSI-LD entities.
• GeoJSON "type" is mandated to be one of 7 basic types - NGSI-LD only needs two.

• GeoJSON "id" is the direct equivalent NGSI-LD Entity "id"
• GeoJSON "geometry" is direct equivalent of an NGSI-LD Entity’s GeoProperty, the default is

"location"
• "geometry" is never key-value pairs - always expanded including "coordinates".
• NGSI-LD GeoProperty accepts a subset of valid GeoJSON geometry types

anyway so will always be a valid "geometry".
• If an entity is requested without a "location" then passing null is valid

• GeoJSON "properties" are free-form JSON attributes
• holds the Entity type" and all the remaining NGSI properties and relationships
• The name "properties“ clashed with "properties" defined for Subscriptions (same with

Subscription "title" and "description") in NSGI-LD v1.2.1 and thus the NGSI-LD term was
renamed to "propertyNames" in NSGI-LD v1.3.1 (see slide 6).

GeoJSON

© ETSI 2020 35

Support of GeoJSON documents in NGSI-LD v1.3.1

• GeoJSON documents can only be requested, i.e. be used only for retrieval and query
responses as well as notifications resulting from subscriptions

• To retrieve a GeoJSON document, the accept header has to be set to
Accept: application/geo+json

• To get the @context as part of the body: Omit Prefer Header or set it to
"body=ld+json"

• To get the @context as a Link Header: Set Prefer Header to "body=json“.

• In HTTP GET operations set the geometryProperty to the name of the GeoProperty
to be used as GeoJSON Geometry – by default location is used. Optionally, a
datasetId can be specified as an additional parameter.

GeoJSON

GeoJSON documents: CIM009v1.3.1 especially Clauses 4.5.16, 4.5.17, 5.7.1, 5.7.2, 6.3.15

© ETSI 2020 36

Examples for Requesting GeoJSON Documents

GET /ngsi-ld/v1/entities/urn:ngsi-ld:xxx?options=keyValues

Accept: application/geo+json

36

GET /ngsi-ld/v1/entities/urn:ngsi-ld:xxx
Accept: application/geo+json

{

"type": "Feature",

"id": "urn:ngsi-ld:Building:store002",

"geometry": {

"type": "Point", "coordinates": [13.3903, 52.5075]

},

"properties": {

"type" : "Building",

"address": {

"type": "Property",

"value": {

"streetAddress": "Bornholmer Straße 65",

"addressRegion": "Berlin",

"addressLocality": "Prenzlauer Berg",

"postalCode": "10439"

},

"verified": {

"type": "Property",

"value": true

}

},

"name": {

"type": "Property",

"value": "Bösebrücke Einkauf"

},

"category": {

"type": "Property",

"value": "commercial"

},

},

“@context”: “...etc”
}

{

"type": "Feature",

"id": "urn:ngsi-ld:Building:store002",

"geometry": {

"type": "Point", "coordinates": [13.3903, 52.5075]

},

"properties": {

"type" : "Building",

"name": "Checkpoint Markt",

"category": "commercial",

"address": {

"streetAddress": "Friedrichstraße 44",

"addressRegion": "Berlin",

"addressLocality": "Kreuzberg",

"postalCode": "10969"

}

}

},

“@context”: ““...etc”
}

© ETSI 2020

Feature:

MQTT Notification

Binding

© ETSI 2020 38

Motivation for Having MQTT Notifications

• Using REST for notifications, thus

• opening a new connection to the notification receiver for each
notification

• sending all HTTP headers over and over again

• … is slow

• A permanent connection makes a huge impact on performance

• MQTT publishers and subscribers open permanent connections to an
MQTT Server/Broker

MQTT Notifications in NGSI-LD

MQTT Notification Binding: CIM009v1.3.1 Clause 7

© ETSI 2020 39

Design 1

• MQTT in NGSI-LD (upcoming v1.3.1) is only used for sending notifications, not for requesting them (i.e.
not for creating an NGSI-LD Subscription)

• Full support of MQTT in future release is planned

• NGSI-LD Subscriptions support the following MQTT URI structure, to reach back to the client

• mqtt[s]://[<username>][:<password>]@<host>[:<port>]/<topic>[/<subtopic>]

• MQTT, unlike HTTP, does not have a headers vs. body structure

• NGSI-LD Context Broker generates notifications as JSON Objects

• "metadata" is an object with {key, value} pairs, it contains the header info

• "body" contains the payload data of the notification itself

MQTT Notifications in NGSI-LD

{

"metadata":{

"<key>":"<value>",

…

},

"body":{

<body>

}

}

© ETSI 2020 40

Design 2

• The client wanting to receive Notifications, creates the corresponding Subscription in the
Context Broker, via the usual REST HTTP NGSI-LD API

• The Subscription contains the Notification parameters that Context Broker uses to deliver
matching Notifications back to the client

• The MQTT URI (mqtt or mqtts) provided in the Notification parameters is the contact point of
an MQTT Server

• Context Broker acts as publishing client of the MQTT Server

• It publishes the JSON Object to the topic extracted from the MQTT URI provided in the
Notification parameters

• Subscribers of the same topic (clients of the MQTT Server) receive the stream of
notifications, which contain payload data and headers

MQTT Notifications in NGSI-LD

© ETSI 2020 41

Architecture

MQTT Notifications in NGSI-LD

NGSI-LD Context Broker
(REST API server)
(MQTT publisher)

MQTT
Server

Context Consumer

NGSI-LD HTTP REST
client

Create NGSI-LD Subscription,
with MQTT Server's URI as

contact point to send
Notifications to

MQTT subscriber

Publish
Notifications to
TOPIC extracted

from URI

Subscribe to
TOPIC

© ETSI 2020 42

Implementation:
Endpoint Specification within Notification Parameters

• Endpoint-related parameters are required when creating NGSI-LD Subscriptions

• They define an endpoint to send back notifications to

MQTT Notifications in NGSI-LD

Parameter Data type Restrictions Cardinality Description
uri URI Dereferenceable URI 1 URI which conveys the endpoint

which will receive the notification

accept string MIME type. It shall be one
of:
"application/json"
"application/ld+json"
"application/geo+json"

0..1 Intended to convey the MIME type
of the notification payload body

(JSON or JSON-LD)

receiverInfo KeyValuePair[] 0..1 Generic {key, value} array to
convey optional information to the

receiver
notifierInfo KeyValuePair[] 0..1 Generic {key, value} array to set up

the communication channel

© ETSI 2020 43

Implementation:
MQTT Parameters go into Endpoint.notifierInfo

• MQTT supports two versions based on OASIS standards (v3.1.1 and v5.0)

• MQTT has three levels of QoS (0, 1, 2)

• Endpoint.notifierInfo, in case of MQTT binding, holds the configuration that the broker
needs to know to correctly communicate with receiver (MQTT-Version, MQTT-QoS)

• Endpoint.notifierInfo is an array of key-value pairs

• MQTT parameters are specified as keys and values in Endpoint.notifierInfo, as follows

MQTT Notifications in NGSI-LD

Key Possible Values

MQTT-Version mqtt3.1.1, mqtt5.0

MQTT-QoS 0, 1, 2

© ETSI 2020 44

Implementation:
MQTT "metadata" Object in Published Notification JSON

• NGSI-LD Context Broker includes the following additional information into the
"metadata" of the published MQTT JSON message

• MIME type

• link to the @context (if needed)

• additional user-specified information

• When REST Notifications are used instead of MQTT Notifications, this information is
provided as HTTP headers

MQTT Notifications in NGSI-LD

© ETSI 2020 45

Implementation:
MQTT "metadata" Object in Published Notification JSON

• The MIME type is specified as "Content-Type" key in the "metadata" object of the MQTT JSON message

• The MIME type associated with the notification shall be "application/json" by default

• This can be changed to application/ld+json by means of Endpoint.accept member

• If the target MIME type is "application/json" then the reference to the JSON-LD @context is provided
as "Link" key

• If the optional {key, value} pairs array Endpoint.receiverInfo is present in the notification parameters of
the original subscription, then a new entry for each additional key shall be added to the "metadata"

MQTT Notifications in NGSI-LD

Key Possible Values Default Description
Content-Type application/json, application/ld+json application/json MIME type of the notification included in the “body”

element of the MQTT message
Link Same format as specified in JSON-LD

specification, clause 6.8, for the HTTP
Link header

Contains the reference to the @context in case Content-
Type is application/json. Example:

<http://myhost.org/mycontext>;
rel="http://www.w3.org/ns/json-ld#context";

type="application/ld+json"

© ETSI 2020

Feature:
COUNT
header
option

© ETSI 2020 47

Counting query results

• Requests to the NGSI-LD API can return a large number of results

• In NGSI-LD v1.3.1 it is possible to request the overall count of results, even if paging
functionality is used and only few results are returned. By setting the paging limit to 0
only the count is returned. A limit of 0 is only allowed in combination with requesting
count.

• Query operations based on HTTP GET support the query parameter count (boolean). If
set to true, the response includes the special HTTP header (NGSILD-Results-Count)
with the count of the overall number of available results as value.

Count: CIM009v1.3.1 Clauses 4.13, 6.3.13

© ETSI 2020

Feature:
Multi-Tenant

Support

© ETSI 2020 49

Multitenancy

• In the context of NGSI-LD: Multiple tenants (e.g. users, groups of users or organizations) should be able to use the
same NGSI-LD (Broker) deployment

• Tenants need to be isolated from each other:
• Information (entities, properties, relationships)

• subscriptions

• registrations

of one tenant need to be “invisible” to other tenants

• From API perspective:
• It is required to identify tenants

• Use of tenants needs to be clear across distributed and federated deployments

Side note: Multi-tenancy is closely linked to access control, i.e. which tenant may access what information

General Definition:
The term "software multitenancy" refers to a software architecture in which a single instance of software runs on a server and
serves multiple tenants. Systems designed in such manner are often called shared (in contrast to dedicated or isolated). A tenant is
a group of users who share a common access with specific privileges to the software instance. With a multitenant architecture, a
software application is designed to provide every tenant a dedicated share of the instance - including its data, configuration, user
management, tenant individual functionality and non-functional properties. Multitenancy contrasts with multi-instance
architectures, where separate software instances operate on behalf of different tenants.
https://en.wikipedia.org/wiki/Multitenancy

https://en.wikipedia.org/wiki/Software_architecture
https://en.wikipedia.org/wiki/Instance_(computer_science)
https://en.wikipedia.org/wiki/Computer_software
https://en.wikipedia.org/wiki/Application_software
https://en.wikipedia.org/wiki/Non-functional_requirement
https://en.wikipedia.org/wiki/Multitenancy

© ETSI 2020 50

Solution Summary

• NGSI-LD implementations can optionally support multitenancy. In all requests a tenant can optionally
be specified. In the HTTP binding this is done through the HTTP header “NGSILD-Tenant”

• The support for tenants can be implicit, i.e. a tenant is created when first used in the context of a
create (entity, subscription, registration) operation. There are currently no API operations for explicitly
creating or deleting tenants.

• Principle: if no tenant is specified, there is always a “default tenant” (which does not have to be
created and does not necessarily have to have any information to provide).

• How tenants are implemented, i.e. how isolation is achieved, is up to the implementation.

• Registrations target a tenant (if not, the “default tenant” is assumed) – if the same context source /
broker is to be registered for multiple tenants, multiple registrations are needed.

• Registrations can provide tenant information. If a context source / broker is registered with certain
tenant information, this tenant information is used for forwarding the request, not the provided tenant
information in the original request (if no tenant information is provided, the “default tenant” will be
assumed), thus the registry enables mapping of tenant information.

ADD SECTION NAME

Multi-tenancy: CIM009v1.3.1 Clauses 4.14, 5.5.10, 6.3.14

© ETSI 2020 51

Tenants in Distributed/Federated Cases:
Tenant Mapping in the Registry

• As for other operations, tenant can be specified in registry operations

• Due to isolation between tenants, there are de facto separate registries per tenant
(realization is implementation-dependent)

• The available tenants in registered Context Sources or Brokers may be different from
those in the Broker to which the registry belongs mapping is required

• Thus: optional tenant information can be added to registrations (see next slide)

• Brokers then use this tenant information from the registrations when interacting
with the registered Context Sources / Brokers (not the tenant information provided
in the original request)

ADD SECTION NAME

© ETSI 2020 52

Tenant Information in CsourceRegistrations

ADD SECTION NAME

Name Data type Restriction Cardinality Description
id URI At creation time, If it is not provided, it will be

assigned during registration process and
returned to client.
It cannot be later modified in update
operations

0..1 Unique registration identifier. (JSON-LD @id).
There may be multiple registrations per
Context Source, i.e. the id is unique per
registration

type string "ContextSource
Registration"

1 JSON-LD @type
Use reserved type for identifying Context
Source Registration

name string Non-empty string 0..1 A name given to this Context Source
Registration

description string Non-empty string 0..1 A description of this Context Source
Registration

Information RegistrationInfo[] See data type definition in clause 5.2.10. Empty
array (0 length) is not allowed

1 Describes the Entities, Properties and
Relationships for which the Context Source
may be able to provide information

tenant URI 0..1 Identifies the tenant that has to be

specified in all requests to the Context

Source that are related to the

information registered in this Context

Source Registration. If not present, the

default tenant is assumed. Should only

be present in systems supporting

multi-tenancy.

[…] […] […] […] […]

Multi-tenancy: CIM009v1.3.1 Clauses 4.14, 5.5.10, 6.3.14 & 5.2.9

© ETSI 2020

Feature: POST
Queries

© ETSI 2020 54

Motivation

The reason to provide a way to query NGSI-LD entities via POST (in addition to the

proper RESTful way that uses GET), is that, using GET:

1. The client may end up assembling very long URLs, due to the URI parameters for ‘id’,

‘q’‚ type‘, ‘attrs’, etc, being included in the URL. Problems with too long URLs may

arise with some applications that cut URLs to a maximum length. (See discussion on

this in StackOverflow).

2. There is a need to URL-encode the resulting URL. By using POST, there’s no need to

url-encode

The difference lies in that instead of passing the inputs as URI parameters (as for the GET

service), for the POST Query service, the user passes all the query items in the payload

Query Entities via POST

POST Queries: CIM009v1.3.1 Clause 6.23

https://stackoverflow.com/questions/812925/what-is-the-maximum-possible-length-of-a-query-string

© ETSI 2020 55

Design

We created a novel /entityOperations/query endpoint in the API

The new POST query operation has just one single query as input

● It is not allowed to send multiple queries in a single request

● It is not to be considered a “BATCH Operation”

The problem with having multiple queries in the request payload body (as an array) is

having a different @context in each item of the array (for Content-Type:

application/ld+json)

● would greatly complicate the response

 we simply decided not to allow it

Query Entities via POST

© ETSI 2020 56

Data Type of the Request Payload Body (with references to
relevant NGSI-LD API clauses)

Name Data type Restrictions Cardinality Description

type string It shall be equal to "Query" 1 JSON-LD @type

entities EntityInfo[] See data type definition on clause 5.2.8. Empty

array (0 length) is not allowed

0..1 Entity ids, id pattern and Entity types that shall be matched by

Entities in order to be retrieved

attrs string[] Attribute Name as short-hand string.

Empty array (0 length) is not allowed

0..1 List of Attributes that shall be matched by Entities in order to be

retrieved. If not present all Attributes will be retrieved

q string A valid query string as per clause 4.9 0..1 Query that shall be matched by Entities in order to be retrieved

geoQ GeoQuery See data type definition on clause 5.2.13 0..1 Geo-Query that shall be matched by Entities in order be retrieved

csf string A valid query string as per clause 4.9 0..1 Context source filter that shall be matched by Context Source

Registrations describing Context Sources to be used for retrieving

Entities

temporalQ TemporalQuery See data type definition on clause 5.2.21 0..1 Temporal Query to be present only for “Query Temporal Evolution of

Entities” operation (clause 5.7.4)

Query Entities via POST

© ETSI 2020 57

Request URL and Example Payload Data

POST /ngsi-ld/v1/entityOperations/query

{

“type”: “Query”,

“entities”: [

{

“id”: “urn:...”,

“type”: “”,

“idPattern”: “”

},

{}, ...

],

“attrs”: [“P1”, “P2”, “R1”, “R2”],

“q”: “P1.x<12”,

“geoQ”: {

“geometry”: “Point”,

“coordinates”: [1.0, 2.0],

“georel”: “near;maxDistance==5000”,

“geoproperty”: “loc”

},

“csf”: “xxx”,

“temporalQ”: {

“timerel”: “”,

“timeAt”: “”,

“endTimeAt”: “”,

“timeProperty”: “”

}

}

Query Entities via POST

© ETSI 2020

Feature:
Specification of

additional
headers for
notifications

© ETSI 2020 59

Notification Parameters

• Additional parameters for notifications can be specified as key-value pairs in subscriptions.

• Parameters required on the receiver side are specified in receiverInfo (e.g. authentication parameters),
parameters required on the sender side in notifierInfo (e.g. protocol or quality information)

• In HTTP, receiverInfo is sent as HTTP headers, in MQTT as metadata in the body of the message.

MQTT Notifications in NGSI-LD

Parameter Data type Restrictions Cardinality Description
uri URI Dereferenceable URI 1 URI which conveys the endpoint

which will receive the notification

accept string MIME type. It shall be one
of:
"application/json"
"application/ld+json"
"application/geo+json"

0..1 Intended to convey the MIME type
of the notification payload body

(JSON or JSON-LD)

receiverInfo KeyValuePair[] 0..1 Generic {key, value} array to
convey optional information to the

receiver
notifierInfo KeyValuePair[] 0..1 Generic {key, value} array to set up

the communication channel

Notification Parameters: CIM009v1.3.1 Clauses 5.2.15, 5.2.22

© ETSI 2020

Feature: Support for

queries where

attribute is implicitly

specified in query

filter or geoquery

© ETSI 2020 61

Support for queries where attribute is implicitly specified

• In NGSI-LD v1.2.1 only queries are allowed where at least either an entity type or an
attribute is explicitly specified

• This has been extended in NGSI-LD v1.3.1 to also allow queries where only a (filter)
query or a geoquery is specified. These restrict/filter according to attributes which can
be used instead of explicitly specified attribute(s) to find relevant entities.

“It is not possible to retrieve a set of entities by only specifying desired identifiers,
without further specifying restrictions on the entities’ types or attributes, either
explicitly, via lists of Entity types or of Attribute names, or implicitly, within an NGSI-LD
query or geo-query.”

Queries: CIM009v1.3.1 Clause 5.7.2

© ETSI 2020

Feature:

Support for

international

characters in

URIs/IRIs and

terms

© ETSI 2020 63

Support for international characters in URIs/IRIs and terms

• In NGSI-LD v1.3.1 all legal IRIs are supported, in previous versions only ASCII-based URIs

• In the terms all Unicode characters of the number and letter category (plus the underscore)
are supported, in previous versions it was only ASCII letters and numbers. This allows the use
of different scripts for terms, e.g. Japanese, Korean, Chinese, Hindi, …

nameChar = unicodeNumber / unicodeLetter

nameChar =/ %x5F ; _

name = unicodeLetter *nameChar

unicodeNumber is any Unicode character that has Number as a Category [22]. With Unicode-capable regular expression (RegEx) parsers, such a

character may be matched by \p{N}.

unicodeLetter is any Unicode character that has Letter as a Category [22]. With Unicode-capable regular expression (RegEx) parsers, such a

character may be matched by \p{L}.

International Characters: CIM009v1.3.1 Clauses 4.6.2, 5.2.1 (IRIs)

