
Presented by: For:

© ETSI 2021

23.11.2021

New Features and Relevant Fixes
in NGSI-LD v1.5.1

Martin Bauer, Giuseppe Tropea,
Stefan Wiedemann and Ken Zangelin

ETSI ISG CIM

© ETSI 2021 2

Overview
• New Features in NGSI-LD v1.5.1

• Multi-typing for Entities

• NGSI-LD Scope

• Storing, Managing and Serving @context

• Pagination of Temporal Attributes

• Support for Different Instances of same Entity in Batch Operations

• Some Fixes in NGSI-LD v1.5.1 and their Rationale

• NGSI-LD API Structure and Implementation Options (incl. internal temporal updates)

• Remove Option to Delete Value by Updating with null Value

• Remove Underspecified Option of Returning Static Values in Temporal API

• Clarify Semantics of Existence check in Filter Query

[CIM 009v1.5.1] https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.05.01_60/gs_CIM009v010501p.pdf

https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.05.01_60/gs_CIM009v010501p.pdf

© ETSI 2021

New Features in
NGSI-LD v1.5.1

© ETSI 2021 4

Multi-Typing for Entities (1)

• Previous versions of NGSI-LD (up to NGSI-LD v1.4.2) allowed entities to have exactly one
entity type

• With Multi-Typing, entities can have more than one entity type at the same time

Example:

• A ‘motorhome’ can be a ‘home’ and a ‘vehicle’ at the same time, i.e. such an entity could
have the following entity types:
• motorhome

• home, vehicle
• motorhome, home, vehicle

• The latter has the advantage that the entity would be found when looking for any of the entity
types

• Note: Subtyping would be another general modelling option (‘motorhome’ as a subtype of
both ‘home’ and ‘vehicle’) – however, to find such subtypes, NGSI-LD Brokers would be
required to know the type hierarchy (as specified by a data model), and the current assumption
is that NGSI-LD Brokers are agnostic to data models.

[CIM 009v1.5.1] Clauses 4.16, 4.17, 4.5.1

© ETSI 2021 5

Multi-Typing for Entities (2)

• Changes:
• Entity Type has cardinality 1..N, so, in line with JSON-LD, either a single type or a JSON array with multiple

typeswill be provided  as long as only a single type per entity is ever used, nothing changes for the user!

• Queries and Subscriptions

• Queries and subscriptions already allow providing a comma-separated list of entity types when specifying
entities of interest: type=home,vehicle, which corresponds to a disjunction (home OR vehicle)

• in addition, conjunctions of entity types are required (home AND vehicle)

• Decision 1: support disjunctions where elements can either be single entity types or
conjunctions of entity types

• Decision 2: use conjunction operator ‘;’ and disjunction operator ‘|’ as in the query language,
but for compatibility reasons, allow ‘,’ as alternative disjunction operator

• Example:type=motorhome|(home;vehicle) – alternative:
type=motorhome,(home;vehicle)

© ETSI 2021 6

Multi-Typing for Entities (3)

• So far entity type has been immutable, i.e. once the entity was created it could not
be changed (only option: first delete entity and then recreate it with new entity type).

• Decision: update and append operations can, implicitly, add new entity types, but
existing entity types are not removed

• Reason: if removing entity types was allowed this could lead to unexpected
behaviours

Options to change entity type

• Delete and re-create, as previously

• Batch upsert with “replace” option: “Indicates that all the existing Entity content
shall be replaced“

6

© ETSI 2021 7

NGSI-LD Scope (1)

• Hierarchical structures play an important role
for structuring and organizing our world, e.g.
hierarchical location structures (example on
the left) or organizational structures (e.g. of a
company)

• The special scope property allows giving an
entity a hierarchical scope, e.g. ParqueSur in
the example on the left

• In queries and subscriptions, scopes can be
used for filtering with the scopeQ parameter,
e.g. scopeQ="/Madrid/Gardens/ParqueSur",
which would only match entities that have this
particular scope.

[CIM 009v1.5.1] Clauses 4.18, 4.19, 4.5.1, 4.5.6, 5.2.4, 5.2.12, 5.2.23, 6.4.3.2, 6.8.3.2, 6.18.3.2, C.5.15, C.5.16

© ETSI 2021 8

NGSI-LD Scope (2)

• Entities can have multiple hierarchical scopes attached, e.g.
"scope":[

"/Madrid/District/Latina",

"/CompanyA/DepartmentX/UnitC"

]

• Scopes are optional and independent of the Entity ID

• Scopes can be used to scope queries and subscriptions

• The scope query language (scopeQ) allows wildcards

• ‘+’ for an arbitrary value of one hierarchy level, e.g. scopeQ="/CompanyA/+/HR", for matching the HR
groups of all departments of CompanyA

• ‘#’ matches the given scope and the whole hierarchy of scopes below, e.g. scopeQ="/Madrid/Gardens/#
matches all entities with scope /Madrid/Gardens or any of its direct or indirect sub-scopes

• ‘/#’ matches all entities that have any explicit scope attached
• The scope query language (scopeQ) has logical and and or operators, e.g.

scopeQ="/Madrid/District/Centro,/Madrid/District/Cortes" for all entities whose scope is
/Madrid/District/Centro or /Madrid/District/Cortes

• Scopes of entities can be updated

• Scopes can be registered as part of registrations

© ETSI 2021 9

Storing, Managing and Serving JSON-LD @context (1)

• Background: NGSI-LD is encoded in JSON-LD and
JSON-LD maps short names to unique URIs

• This mapping is specified in an @context.

• The @context can be embedded in the JSON document (for create and update only)

• The @context can be fetched from a URL put into an HTTP Link Header (all cases, preferred)

 User generated @context is hosted somewhere

 The Context Broker downloads it (at every API call!)

 For efficiency, Context Broker needs to cache @context

 It would be good if, additionally, the Context Broker could host @contexts on behalf of users

[CIM 009v1.5.1] Clauses 5.13, 6.29, 6.30, 4.3.5, 6.3.16

© ETSI 2021 10

Storing, Managing and Serving JSON-LD @context (2)

The new API allows:

• storing, managing and serving custom user JSON-LD @contexts

• Automatic caching of downloaded @contexts

Specifically:

• Add a user-defined @context

• List both the automatically cached and the explicitly stored @contexts

• Serve a user-defined @context / Get info about a cached @context

• Delete a cached or stored @context

• in case of cached @context, reloading a fresh copy can be forced, deleting only if successful

© ETSI 2021 11

Pagination of Temporal Attributes

Retrieval of temporal representations can become very resource consuming, thus a new
mechanism for pagination in such cases was added:

• The implementations should implement a default limit for the retrieval of temporal
representations

• In case the limit is exceeded, a "Partial Content (206)" status will be returned

• The "Content-Range" header will return information about the responded time-range
(start, end, size)

• The solution complies with the IETF RFC 7233

[CIM 009v1.5.1] Clause 6.3.10

Support for Different Instances of same Entity in Batch
Operations (1)

It is common for user applications to buffer modifications of entities and send a batch of
updates (as an array of entities) to the NGSI-LD broker every X seconds.

If one and the same entity is updated more than once in a batch, then the broker has a
slight problem. What if an attribute A of the entity Y is set to 5 in one update, and set to
11 in another?

In order to fix this problem, an NGSI-LD broker assumes the entity array of a batch
operation is ordered chronologically, with lower array index meaning prior in time.

[CIM 009v1.5.1] Clause 5.5.11

Support for Different Instances of same Entity in Batch
Operations (2)

For the “current state”, all updates are taken in order (lower array indices are treated first), to compose the

new state of the entity, working the exact same way as if the updates would have entered the broker

separately and in the order they come in the batch array.

For the Temporal Representation of the Entity, each and every update is added to the temporal database.

Unfortunately, as createdAt and modifiedAt are automatic attributes, set by the broker, all updates get the

exact same timestamps. It is highly recommended to make use of the “observedAt” sub-attribute for the

attributes, to preserve the time-instances in which the updates were made.

Batch operations deal with creation, modification, and deletion of entities, so the way the batch array is

treated depends on the operation. For all operations, it works the exact same way as if the operations

would have entered the broker separately and in the order they come in the batch array.

For example, if it’s a DELETE operation, the first instance of an entity will actually delete the entity, while the

subsequent instances will do nothing (except provoking a 207 Multi-Status response).

© ETSI 2021

Some Fixes in
NGSI-LD v1.5.1

and their
Rationale

© ETSI 2021 15

Clarification in NGSI-LD Specification:
NGSI-LD API Structure and Implementation Options (1)

• NGSI-LD API can be used in multiple architectures

• Depending on architecture, not all aspects of the
NGSI-LD API have to be implemented

• Brokers: All parts of the NGSI-LD API can be
implemented by a single Broker OR some parts of the
API can be implemented by independent components

Central

Deployment

Distributed

Deployment

Federated

Deployment

[CIM 009v1.5.1] Clauses 4.3.5, 4.3.1, 4.3.2, 4.3.3, 4.3.4

© ETSI 2021 16

NGSI-LD API Structure and Implementation Options (2)

Broker

Core API

Temporal

Component

Temporal API

Registry

Server

Registry APINGSI-LD API

Implementation

Optional

Required for
distributed/
federated
deployments

Can be independent
components

JSON-LD Context API

© ETSI 2021 17

NGSI-LD API Structure and Implementation Options (3)
API Functionality Clauses

C
o

re A
P

I

Context Information
Provision

5.6.1 Create Entity
5.6.2 Update Entity Attributes
5.6.3 Append Entity Attributes
5.6.4 Partial Attribute Update
5.6.5 Delete Entity Attribute

5.6.6 Delete Entity
5.6.7 Batch Entity Creation
5.6.8 Batch Entity Upsert
5.6.9 Batch Entity Update
5.6.10 Batch Entity Delete

Context Information
Consumption

5.7.1 Retrieve Entity
5.7.2 Query Entities
5.7.5 Retrieve Available Entity Types
5.7.6 Retrieve Details of Available Entity Types

5.7.7 Retrieve Available Entity Type Information
5.7.8 Retrieve Available Attributes)
5.7.9 Retrieve Details of Available Attributes
5.7.10 Retrieve Available Attribute Information

Context Information
Subscription

5.8.1 Create Subscription
5.8.2 Update Subscription
5.8.3 Retrieve Subscription

5.8.4 Query Subscription
5.8.5 Delete Subscription
5.8.6 Notification

Tem
p

o
ral A

P
I

Temporal
Information Provision

5.6.11 Upsert Temporal Representation
5.6.12 Add Attributes to Temporal Representation
5.6.13 Delete Attributes from Temporal
Representation

5.6.14 Partial Update Attribute instance
5.6.15 Delete Attribute Instance
5.6.16 Delete Temporal Representation

Temporal
Information
Consumption

5.7.3 Retrieve Temporal Evolution of Entity
5.7.4 Query Temporal Evolution of Entities

© ETSI 2021 18

NGSI-LD API Structure and Implementation Options (4)
API Functionality Clauses

R
egistry A

P
I

Context Source Registration 5.9.2 Register Context Source
5.9.3 Update Context Source
Registration (CSR)

5.9.4 Delete CSR

Context Source Discovery 5.7.1 Retrieve CSR 5.7.2 Query CSRs

Context Source Registration
Subscription

5.11.2 Create CSR Subscription
5.11.3 Update CSR Subscription
5.11.4 Retrieve CSR Subscription

5.11.5 Query CSR Subscription
5.11.6 Delete CSR Subscription
5.11.7 CSR Notification

JSO
N

-LD

C
o

n
text

A
P

I

Storing, managing and serving
@contexts

5.13.2 Add @context
5.13.3 List @contexts

5.13.4 Serve @context
5.13.5 Delete and Reload @context

Recommendation:
Brokers that implement an internal Temporal Component with Temporal API should consider updating the
Temporal Evolution of an Entity whenever the "current state" is modified via the Core API.

© ETSI 2021 19

Remove Option to Delete Value by Updating with null Value

• Previous versions of the API did foresee that attribute values can be deleted as part of
an update by assigning the value null.

• As it turned out, this is not compatible with the way null values are handled in JSON-
LD. If the value of an element is set to null in a JSON-LD document, it will be removed
completely in a JSON-LD expansion operation.

• Many NGSI-LD Brokers use standard JSON-LD expansion when receiving an NGSI-LD
request, i.e. all elements with null values are immediately discarded and thus they are
no longer there to trigger the deletion of the element from the internal database.

• As there is no way to properly handle this in JSON-LD, it was decided to remove this
option from NGSI-LD, i.e. attributes have to be deleted explicitly with a delete
operation.

Removed from [CIM 009v1.5.1] Clause 5.5.8, 5.2.1, 5.4, 5.5.4, 5.6.4.4, 5.8.2.4, 5.9.3.4, 5.11.3.4

© ETSI 2021 20

Remove Underspecified Option of Returning Static Values in
Temporal API

It was possible to have, in the temporal representation, attributes without a timestamp

• This was known as a "static" temporal attribute (i.e. it has not changed over time)

However the details of "static" temporal attributes were not clearly specified

• E.g. how are such attributes added?

Hence, support for "static" temporal attributes has been removed

• Only temporal attributes with timestamp are now allowed in the temporal
representation of an entity

Removed from [CIM 009v1.5.1] Clause 4.5.7, 4.5.8, 4.5.9, 5.7.3, 5.7.4

Clarify Semantics of Existence check in Filter Query

The NGSI-LD query language allows filtering entities according to the existence of
attributes. The syntax for this existence query was already allowed in previous releases
of the NGSI-LD query language, but the semantics was not defined.

For example, GET /entities?q=attrX will return only those entities that have an attribute
called attrX (after expansion, of course), regardless of the value of said attribute.

If you instead want to filter on a value of an attribute:

GET /entities?q=attrX==12

[CIM 009v1.5.1] Clause 4.9

