
New Features and
Relevant Fixes
in NGSI-LD v1.8.1

12/04/2024

ETSI ISG CIM

1

Martin Bauer

© ETSI 2021 2

Overview (1)
• New Features in NGSI-LD v1.8.1

• New Projection Parameters (pick, omit) – deprecation of attrs
• Linked Entity Retrieval
• datasetId parameter – enables “views” across attributes
• New Attribute Types

• 1:<n> relationships (unordered)
• List relationships, 1:<n> (ordered)
• List properties
• JSON properties

• Extended distributed queries
• Id-only (creation of id-maps)
• Loop-avoidance, using host alias (by tenant) and Via header, host alias retrievable via /info

endpoint
• Allow broader local requests

• Queries(all) - not restricted to providing entity type(s) or attribute(s)
• Subscriptions (all)
• Linked Entity Retrieval (not requiring objectType)

[CIM 009v1.8.1] https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.08.01_60/gs_CIM009v010801p.pdf

https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.08.01_60/gs_CIM009v010801p.pdf

© ETSI 2021 3

Overview (2)
• Fixes and small features in NGSI-LD v1.8.1

• format parameter, deprecating options parameter for specifying attribute
representation

• Relax restriction on forbidden characters
• Error code 504 instead of 503 for JSON-LD Context Access Points – clause 6.30.3.2
• Remove scope from attribute patch operation
• URI/terms clarification: both short-hand terms and URIs can be uses as property names

and relationship names
• URN namespace definitions: we interpret the full URN as case-insensitive, using lowercase
• GeoJSON type added as return type to Query Entities and Retrieve Entity figures
• Clarify match in distributed operations

added references to the respective clauses describing the matching to clauses 5.6.1, 5.6.2, 5.6.3, 5.6.4, 5.6.5, 5.6.6,
5.6.17, 5.6.18, 5.6.19

• Protect core context – Annex B: added line "@protected": true
As a result, terms from the core context cannot be overwritten by embedded @contexts. Such embedded
@contexts are anyway only allowed at the top-level in NGSI-LD, not nested in inner nodes.

• Fix in detailed description of hosted @contexts
[CIM 009v1.8.1] https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.08.01_60/gs_CIM009v010801p.pdf

https://www.etsi.org/deliver/etsi_gs/CIM/001_099/009/01.08.01_60/gs_CIM009v010801p.pdf

© ETSI 2021 4

New Projection Parameters (1)
• Motivation

• The attrs parameter in NGSI-LD queries / attributes in NGSI-LD subscriptions
has been used for projection, i.e. only returning the selected Attributes, but at
the same time also for selection, i.e. only Entities having at least one of these
Attributes are considered; Entities without any of these Attributes are
discarded and there is no way to get “empty” entities (without Attributes)
back.

• The q parameter can also be used for selection, i.e. the existence of an
attribute can be required, so there are practically two ways for selection

• To separate the aspects of projection and selection, two new projection
parameters are introduced that do not select at the same time: pick and omit;
q can then be used for selection

[CIM 009v1.8.1] Clauses 4.21, 5.2.14, 5.2.23, 5.7.1, 5.7.2, 5.7.3, 5.7.4, 5.8.6, 6.4.3.2, 6.5.3.1, 6.18.3.2, 6.19.3.1

© ETSI 2021 5

New Projection Parameters (2)
• pick: attribute name(s), and in addition "id", "type“ and "scope” elements to be returned in the

result can be specified

• omit: attribute name(s), and in addition "id", "type“ and "scope” elements not to be returned
in the result can be specified, i.e. all others, so this is the inverse of pick.

• [when omitting/not picking "id“ and/or "type“, the result will not contain valid NGSI-LD Entities
anymore, i.e. cannot be used as the basis for subsequent NGSI-LD operations]

• The two parameters are mutually exclusive, i.e. they cannot both be used in the same request

GET /ngsi-ld/v1/entities/?type=WeatherForecast&format=simplified&pick=id,
type,humidity
Accept: application/json
Link: <http://example.org/myContext.jsonld>;
rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

[{ "id": "urn:ngsi-ld:WeatherForecast:XXX ",
"type": “WeatherForecast",
"humidity": 98 },

{ "id": "urn:ngsi-ld:WeatherForecast:YYY",
"type": “WeatherForecast"}

]

GET /ngsi-ld/v1/entities/?type=WeatherForecast&format=simplified&pick=id,
type,humidity&q=humidity
Accept: application/json
Link: <http://example.org/myContext.jsonld>;
rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

[{ "id": "urn:ngsi-ld:WeatherForecast:XXX ",
"type": “WeatherForecast",
"humidity": 98 }

]

pick=id,type,humidity&q=humidity is equivalent to attrs=humidity

© ETSI 2021 6

Linked Entity Retrieval (1)

Since Entities are uniquely identifiable by a URI, it is
possible to traverse across the Entity graph directly
from a Linking Entity to a Linked Entity. It is therefore
sometimes convenient to be able to query or retrieve
data via a single Context Broker request and to receive
a response including both Linking Entities and
dependent Linked Entities directly.

The concept of Entity graph retrieval is a common
concept amongst graph databases and it allows for
more structured queries (see clause 4.9) and the
complete serialization of an Entity and its dependents.

[CIM 009v1.8.1] Clauses 4.5.2.2, 4.5.2.3, 4.5.3.2, 4.5.3.3, 4.5.4, 4.5.22.2, 4.5.22.3, 4.5.23, 4.9, 4.21, 5.2.6, 5.2.14.1,
5.2.23, 5.2.37, 5.7.1.3, 5.7.1.4, 5.7.1.5, 5.7.2.3, 5.7.2.4, 5.7.2.5, 6.4.3.2, 6.5.3.1, Annex B , Annex C

Linking Entity
- Property 1
- …
- Relationship 1
- Relationship 2
- …

Linked Entity 1
- Property a
- …
- Relationship b
- …

Linked Entity 2
- Property x
- …
- Relationship y
- …

© ETSI 2021 7

Linked Entity Retrieval (2) – Use Case
I hold several pieces of land type:AgriParcel
Each AgriParcel has some of its own attributes,
e.g. soilType, cropType
Each AgriParcel also has its own related
weather station (i.e. Relationship to an entity
type:WeatherObserved) displaying values
holding to current observed weather
conditions
We also require a weather forecast (i.e.
Relationship to an entity
type:WeatherForecast) which covers a wider
area encompassing multiple AgriParcels for a
predicted weather conditions.
Note: WeatherObserved and
WeatherForecast share similar attributes

prediction

observation

soilType
cropType

temperature
humidity

soilType
cropType

observation

temperature
humidity

soilType
cropType

prediction
prediction

temperature
humidity

observation

temperature
humidity

7

© ETSI 2021 8

Linked Entity Retrieval (3)

• NGSI-LD models graph of Entities
through explicit relationships (e.g.
prediction / observation)

• Up to now, retrieval can only be
done step-by-step

• From v1.8 retrieval can be done for
a whole subgraph (default:
expand one level) – objectType
required, unless local is specified
in request

temperature
humidity
windSpeed
…

prediction
observation

soilType
cropType

temperature
humidity

{
"id": "urn:ngsi-ld:AgriParcel:001",
"type": “AgriParcel",
"soilType": "Loamy",
"prediction": {

"type": “Relationship",
"object": "urn:ngsi-ld:WeatherForecast:XXX",
"objectType": “WeatherForecast"
},

“observation": {
"type": “Relationship",
"object": "urn:ngsi-ld:WeatherObserved:001",
"objectType": “WeatherObserved“
}

}
Normalized
Representation

© ETSI 2021 9

Linked Entity Retrieval (4)
• With “join=inline”, they can be

represented in a hierarchical
structure

{
"id": "urn:ngsi-ld:AgriParcel:001",
"type": “AgriParcel",
"soilType": "Loamy",
"prediction": {

"object": "urn:ngsi-ld:WeatherForecast:XXX",
"objectType": “WeatherForecast",
"entity": {

"id": "urn:ngsi-ld:WeatherForecast:XXX ",
"type": “WeatherForecast",
"humidity": {"value": 98, "unitCode: "PCT"},
"temperature": {"value": 30, "unitCode: "CEL"},
"windSpeed": {"value": 3, "unitCode: "MPH"}

}},
“observation": {

"object": "urn:ngsi-ld:WeatherObserved:001",
"objectType": “WeatherObserved",
"entity": {

"id": "urn:ngsi-ld:WeatherObserved:001",
"type": “WeatherObserved",

 …
}

• With “join=flat”, the relationships stay as
they are, but the target entities are
returned in the result lists

[{
"id": "urn:ngsi-ld:AgriParcel:001",
"type": “AgriParcel",
"soilType": "Loamy",
"prediction": {

"object": "urn:ngsi-ld:WeatherForecast:XXX",
"objectType": “WeatherForecast }

“observation": {
"object": "urn:ngsi-ld:WeatherObserved:001",
"objectType": “WeatherObserved",

},
{
"id": "urn:ngsi-ld:WeatherForecast:XXX ",
"type": “WeatherForecast",
"humidity": {"value": 98, "unitCode: "PCT"},
"temperature": {"value": 30, "unitCode: "CEL"},
"windSpeed": {"value": 3, "unitCode: "MPH"}

},
{
"id": "urn:ngsi-ld:WeatherObserved:001",
"type": “WeatherObserved“}

…
] Concise

Representation

Concise
Representation

© ETSI 2021 10

Linked Entity Retrieval (5)
• Linked Entity Retrieval applies only to

• Retrieve Entity (5.7.1, 6.5.3.1)
• Query Entities (5.7.2, 6.4.3.2 / 6.23)

• Only Relationships of Entities are being followed, not meta information like
Relationships of Properties or Relationships of Relationships.

• The following parameters are defined:

• join (“inline” or “flat”, as described on the previous slide)

• joinLevel – Depth of Linked Entity retrieval, default is 1 (only if join is present)

• containedBy - List of Entity Ids, which have previously been encountered whilst
retrieving the Entity Graph. Avoids loops. Only applicable if joinLevel is present

© ETSI 2021 11

Linked Entity Retrieval (5) – q Extension
• The filter can also apply to a Property or Relationship of an NGSI-LD Entity targeted

by a (recursively) followed Relationship
• ?type=WeatherStation&join=flat&q=sensor{humidity}==40

• As not knowing the Entity Type targeted by a Relationship could make the query
significantly more expensive, a hint for the required Entity Type (e.g. Device) can
be provided, so only such NGSI-LD Entities need to be considered.

• ?type=WeatherStation&join=flat&q=sensor{Device:humidity}==40

{
"id": "urn:ngsi-ld:WeatherStation:123",
"type": "WeatherStation",
"sensor": {
"type": "Relationship",

"objectType": "Device",
"object": "urn:ngsi-ld:Device:345"

}
}
{
"id": "urn:ngsi-ld:Device:345",
"type": "Device",
"humidity": {
"type": "Property",
"value": 40

}
}

© ETSI 2021 12

Linked Entity Retrieval (6) – projection Extension
• With pick and omit, the projection is also extended to the Linked Entities, i.e., it can

be specified, which Attributes are to be returned for the Linked Entities. This applies
recursively up to the joinLevel.

• Examples:
• ?pick=observation{temperature,humidity}

• ?pick=observation{temperature,humidity},prediction{temperature}

• ?omit=observation{device{windspeed}}

© ETSI 2021 13

datasetId parameter (1)
So far, filtering was only possible on Entities with respect to the existence of an Attribute with a
datasetId, but you could not return only the attribute instance with a certain datasetId.

• datasetId is used as a new parameter for consumption and subscription operations. It
specifies a comma-separated list of one or more datasetIds – only attribute instances that
have one of the specified datasetIds are returned.

• @none is used for specifying the default datasetId (i.e. matching default attribute instances
without a specified datasetId)

[CIM 009v1.8.1] Clauses 4.5.5, 5.2.9, 5.7.1, 5.7.2, 5.7.3, 5.7.4, 5.12, 6.4.3.2, 6.5.3.1, 6.18.3.2, 6.19.3.1

GET /ngsi-ld/v1/entities/?type=WeatherForecast&
q=temperature.datasetId="urn:ngsi-ld:WeatherForecast:datasetId:12345“

returns all Entities with a temperature Property, whose datasetId has the given value

(Entity with all its Attributes, in particular with all temperature Property instances)

© ETSI 2021 14

datasetId parameter (2) – enables “views”
across attributes
• If the same datasetId is used across multiple attributes, a view can be

implemented, e.g. using “urn:12345” and “urn:98765” for two different views.
{

"id": "urn:ngsi-ld:WeatherForecast:XXX ",
"type": “WeatherForecast",
"humidity": [{"type": "Property", "value": 98, "unitCode: "PCT“, datasetId=“urn:12345"},

{"type": "Property", "value": 98, "unitCode: "PCT“, datasetId=“urn:98765"}],
"temperature": [{"type": "Property", "value": 30, "unitCode: "CEL", datasetId=“urn:12345"},

{"type": "Property", "value": 86, "unitCode: “FAH", datasetId=“urn:98765"}],
"windSpeed": [{type": "Property", "value":5, "unitCode: “KMH“, datasetId=“urn:12345"},

{type": "Property", "value":3, "unitCode: “MPH“, datasetId=“urn:98765"}]
}

GET /ngsi-ld/v1/entities/?type=WeatherForecast&datesetId=urn:12345
Accept: application/json
Link: <http://example.org/myContext.jsonld>; rel="http://www.w3.org/ns/json-ld#context";
type="application/ld+json"

[{
"id": "urn:ngsi-ld:WeatherForecast:XXX ",
"type": “WeatherForecast",
"humidity": {"type": "Property", "value": 98, "unitCode: "PCT“, datasetId=“urn:12345"},
"temperature": {"type": "Property", "value": 30, "unitCode: "CEL", datasetId=“urn:12345"},
"windSpeed": {type": "Property", "value":5, "unitCode: “KMH“, datasetId=“urn:12345"}

}]

© ETSI 2021 15

datasetId parameter (3)
• datasetId is also a parameter in CSourceRegistrations
• Its value is a list of datasetIds that indicates for which datasetIds the registered

Context Source may have Attribute instances
• Again, this can be useful when using the datasetId for implementing views

© ETSI 2021 16

New Attribute Types - Overview

• 1:<n> relationships (unordered)
• This is really an extension of the Relationship type, allowing multiple target Entities as

an array, which is the value of the “object”. JSON-LD does not guarantee a fixed order.

• List relationships, 1:<n> (ordered)
• The ListRelationship type has an “objectList” instead of an “object”, which is always an

ordered JSON-LD list of Entity Ids that can have any number of elements (1 to <n>)

• List properties (ordered)
• The ListProperty type has a “valueList” instead of a “value”, which is always an ordered

JSON-LD list of JSON values.

• JSON properties
• The JsonProperty type has a “json” instead of a “value”, which contains json data that

is “ignored” by JSON-LD, i.e. it is not subject to JSON-LD expansion and compaction,
and thus is kept exactly “as-is”.

© ETSI 2021 17

1:<n> relationships (unordered) (1)
• Relationships (where metadata (FC) can be attached, property-graph model)

• New: 1-n Relationships - unordered (one Entity is related to a set of n
Entities, with a single meta information that can only be updated together) – object
can not only be a single URI, but a list of URIs.

[CIM 009v1.8.1] Clauses 4.5.3.2, 4,5.4

A b C

e

FC

A C
b

"victim":{
"object": “urn:sam-rachet”,
"type": "Relationship",
"observedAt": "01-01-2023"

}

high-level graph view

A b G

He

FCD

A

G
i

H

"suspects": {
"object": ["urn:miss-scarlett","urn:rev-green],
"type": "Relationship“,
"observedAt": "01-01-2023"

}
high-level graph view

© ETSI 2021 18

1:<n> relationships (unordered) (2)
Structural comparison 1:<n> relationships vs. multi-relationships

1-n Relationships - unordered (one Entity

is related to a set of n Entities, with a single meta
information, can only be updated together)

A b G

He

FCD

A

G
i

H

Multi-Relationship (one Entity has the same type of

relationship with (individual or set) of other entities. Each
such relationship has separate metadata (FC and FD) and can
be independently updated using datasetId as identifier,
except for at most one default without datasetId.)

A b C

b D

e

FD

e

FC

A

Cb

Db

"suspects": {
"object": ["urn:miss-scarlett","urn:rev-green],
"type": "Relationship“,
"observedAt": "01-01-2023"

}

"victim": [
{ "object": "urn:dr-black", "type": "Relationship",

"datasetId": "urn:wadding", "observedAt" : "01-01-2023"},
{ "object": "urn:mr-boddy", "type": "Relationship",

"datasetId": "urn:hasbro", "observedAt" : "01-01-2023"}
]

© ETSI 2021 19

List relationships, 1:<n> (ordered)
For the ordered 1:<n> relationship, a new Relationship type ListRelationship has
been introduced to use the @list definition for the JSON-LD element objectList in
the NGSI-LD core context that ensures the order.

[CIM 009v1.8.1] Clauses 4.5.4, 4.5.9, 4.5.22, 5.2.4, 5.2.5, 5.2.6, 5.2.7, 5.2.31, 5.2.32, 5.2.35, 5.2.36, 5.2.37, 5.2.38

Normalized - an ordered 1-N relationship

Concise - presence of objectList is sufficient to indicate an ordered 1-N relationship

Simplified - list of URNs is just returned as an Array

"suspects": {
"objectList": ["urn:miss-scarlett","urn:rev-green","urn:col-mustard",

"urn:prof-plum", "urn:mrs-peacock","urn:mrs-white"],
"observedAt": "01-01-2023"

}

"suspects": {
"objectList": ["urn:miss-scarlett","urn:rev-green","urn:col-mustard",

"urn:prof-plum", "urn:mrs-peacock","urn:mrs-white"],
"type": "ListRelationship“,
"observedAt": "01-01-2023"

}

"suspects": ["urn:miss-scarlett","urn:rev-green","urn:col-mustard",
"urn:prof-plum", "urn:mrs-peacock","urn:mrs-white"]

© ETSI 2021 20

List properties (ordered)

[CIM 009v1.8.1] Clauses 4.5.4, 4.5.9, 4.5.21, 5.2.4, 5.2.5, 5.2.6, 5.2.7, 5.2.31, 5.2.32, 5.2.35, 5.2.36, 5.2.37, 5.2.38,

Corresponding to the ListRelationship type, a ListProperty type has been
introduced that guarantees the order with the JSON-LD element valueList
defined as @list in the NGSI-LD core context.
Normalized - an ordered 1-N array of JSON objects or primitives

Concise - presence of valueList is sufficient to indicate an ordered 1-N array

Simplified - list of URNs is returned as an Array

"numbers": {
"valueList": [10, 12, 14, 16 18]

}

"numbers": {
"valueList": [10, 12, 14, 16 18],
"type": “ListProperty"

}

"numbers": [10, 12, 14, 16 18]

© ETSI 2021 21

JSON Property (1)
The value of a JSON Property is not expanded by the JSON-LD @context.
To enable this behaviour, the JSON-LD key has to be
defined as @json in the JSON-LD context. Thus, a
JSON Property has a “json”, instead of the
“value” of a regular Property.
Example:

"json": {

"@id": "ngsi-ld:hasJSON",

"@type": "@json"

}

"parkingTickets": {

"type": "JsonProperty",

"json": {

"id": "85a6cc52-0589-45f9",

"value": "Overstay 60

minutes"

}

}

[CIM 009v1.8.1] Clauses 3.1, 4.5.2.2, 4.5.2.3, 4.5.3.2, 4.5.3.3, 4.5.4, 4.5.9, 4.5.24, 4.9, 5.2.2, 5.2.4, 5.2.5, 5.2.6,
5.2.7, 5.2.31, 5.2.32, 5.2.35, 5.2.36, 5.2.37, 5.2.38, 5.5.7, Annex B, C.2.2

[

 {

 "https://uri.etsi.org/ngsi-ld/default-context/hasParkingTickets": [

 {

 "https://uri.etsi.org/ngsi-ld/hasJSON": [

 {

 "@type": "@json",

 "@value": {

"id": "85a6cc52-0589-45f9",

"value": "Overstay 60 minutes"

 }

 }

],

 "@type": [

 "https://uri.etsi.org/ngsi-ld/JsonProperty"

]

 }

]

 }

]

unexpanded

Expanded with suitable @context

© ETSI 2021 22

JSON Property (2)

▪ In order to filter according to JSON-Properties using the q parameter, the filtering component
needs to know, which content elements in the filter are not to be expanded. For this purpose, a
second parameter, jsonKeys, has been introduced that identifies the Attributes, whose values are
not to be expanded using the applicable @context, so that the filter can properly be applied.

▪ EXAMPLE:

?q=parkingTickets[value]==”Overstay 60 minutes”&jsonKeys=parkingTickets.
{
"id": "urn:ngsi-ld:Car:6152s",
"type": "Car",
"parkingTickets": {

"type": "JsonProperty",
"json": {

"id": "85a6cc52-0589-45f9",
"value": "Overstay 60 minutes"

}
}
}

▪ Without parkingTickets specified in jsonKeys, value in the q filter would be expanded to
https://uri.etsi.org/ngsi-ld/hasValue (based on the NGSI-LD core context) and thus would not
match the value element within the json value, which is not expanded due to the definition of json.

https://uri.etsi.org/ngsi-ld/hasValue

© ETSI 2021 23

Extended Distributed Queries (1) – Entity Maps

• To properly support queries for distributed Entities (pagination), the set of Entities
has to be frozen and the information collected. For this purpose, Entity Maps have
been introduced, so subsequent requests can use the same set of Entities.

NGSI-LD Entity Map: A mapping of NGSI-LD Entity ids to Context Source Registrations
used in maintaining atomicity of transactions performed by Distribution Brokers and
Federation Brokers
• In distributed operations, the creation of an Entity Map can be requested, whose

location is then returned
• In subsequent related requests (paging), the location of the resource holding the

Entity Map is provided, so only the entities and related registrations available at the
time of the original request are considered.

[CIM 009v1.8.1] Clauses 3.1, 4.3.6.7, 4.5.25, 5.2.39, 5.5.14, 5.7.1, 5.7.2, 5.12, 5.14, 6.2, 6.4.3.2, 6.5.3.1, 6.32

© ETSI 2021 24

Extended Distributed Queries (2) – Entity Maps

{
"id": "urn:ngsi-ld:entitymap1234",
"type": “EntityMap",
"expiresAt": "2024-03-12T12:05:02Z",
"entityMap": {

"urn:ngsi-ld:AgriParcel:001": ["@none“,
"urn:ngsi-ld:ContextSourceRegistration:csr1a3456"],

"urn:ngsi-ld:AgriParcel:002": ["@none“,
"urn:ngsi-ld:ContextSourceRegistration:csr2b8765"]

},
"linkedMaps": {

"urn:ngsi-
ld:ContextSourceRegistration:csr1a3456": "urn:ngsi-
ld:EntityMap:em1c23456",

"urn:ngsi-
ld:ContextSourceRegistration:csr2b8765": "urn:ngsi-
ld:EntityMap:em2e098763"

}
}

Example of an EntityMap

• entityMap contains a set of key-value pairs whose keys shall be strings representing Entity ids
and whose values shall be an array holding every CSourceRegistration id which is relevant to
the ongoing Context Information Consumption request.
The key "@none" shall be used to refer to an Entity that is held locally.

• linkedMaps contains a set of key-value pairs whose keys shall be strings representing
CSourceRegistration ids which are relevant to the ongoing Context Information request and
whose values shall represent the associated EntityMap id used by the ContextSource.

Interface for retrieving and managing Entity Maps

Retrieve /entityMaps/{entityMapId} GET Entity Map
Retrieval by Id

Update /entityMaps/{entityMapId} PATCH Entity Map
Update by Id *

Delete /entityMaps/{entityMapId} DELETE Entity Map
Deletion by Id

* only expiresAt can be updated

© ETSI 2021 25

Extended Distributed Queries (3) – Loop
Avoidance

Avoid Loops in Distributed Requests
• General approach: It is not known if any distributed endpoints of a registered

Context Source are in turn reliant on previously encountered context sources thus
causing an infinite loop. Therefore, when processing a distributed operation, a
specific field listing all previously encountered Context Sources shall be passed as
part of the request and this field can be used to exclude duplicated sources from
matching as context source registrations.

• In HTTP binding: use of Via header (IETF RFC 7230 [27]))
• Requires: compatible hostAlias, per Tenant, used in CSourceRegistrations
• New endpoint for retrieving hostAlias, based on tenant

• GET /ngsi-ld/v1/info/sourceIdentity, using Tenant header, if not for default tenant

[CIM 009v1.8.1] Clauses 4.3.6.4, 5.2.40, 5.12, 5.15, 6.3.18, 6.33

© ETSI 2021 26

Allow broader local requests
• Allow broader requests in the local case, e.g.

• Specifying just the Entity IDs.
• Not specifying anything, i.e. querying / subscribing to all information

• The reason that this is not generally allowed is that in distributed cases this
would always require contacting ALL Brokers and Context Sources in the
system for all information they have, which would be too expensive.

• Queries and Subscriptions
• For queries: specify local=true in the request, default is local=false (setting type

to “*” is alternatively allowed)
• For subscription: set the localOnly member in the subscription (setting type to

“*” in the EntitySelector of the Subscription is alternatively allowed)

• Linked Entity Retrieval (not requiring objectType) [see slide
“LinkedEntityRetrieval”]

[CIM 009v1.8.1] Clauses 5.2.12, 5.2.33, 5.5.13, 5.7.2, 5.7.3, 5.7.4, 6.3.18, 6.4.3.2, 6.18.3.2, 6.19.3.1

© ETSI 2021 27

format Parameter (1) – representation of Entities

The use of the options parameter for specifying attribute representation is deprecated. The goal
is to avoid that the same parameter is used for different purposes. The preferred option for
specifying the attribute representation now is the format parameter. All other uses of the
options parameter are not affected.

For operations regarding regular Entities, the following format values can be used:
• normalized: a normalized representation of Entities shall be provided as defined by clause

4.5.1, with Attributes returned in the normalized representation as defined in clauses 4.5.2.2,
4.5.3.2, 4.5.18.2 and 4.5.20.2.

• concise: a concise lossless representation of Entities shall be provided as defined by clause
4.5.1. with Attributes returned in the concise representation as defined in clauses 4.5.2.3,
4.5.3.3, 4.5.18.3 and 4.5.20.3. In this case, the Context Broker will return data in the most
concise lossless representation possible, for example removing all Attribute type members.

• simplified (or its synonym keyValues): a simplified representation of Entities shall be
provided as defined by clause 4.5.4
If the Accept Header is set to "application/geo+json“ the response will be in simplified
geoJSON format as defined by clause 4.5.17.

[CIM 009v1.8.1] Clauses 6.3.7, 6.3.12, 6.5.3.4,

© ETSI 2021 28

format Parameter (2) – representation of Temporal
Entities

Deprecating options parameter for specifying attribute representation. The goal is to avoid that
the same parameter is used for different purposes. The preferred option for specifying the
attribute representation is not the format parameter. All other uses of the options parameter
are not affected for now.
For operations regarding regular Temporal Entities, the following format values can be used:

• temporalValues: a simplified temporal representation of entities shall be provided as
defined by clause 4.5.6.

• aggregatedValues an aggregated temporal representation of entities shall be provided as
defined by clause 4.5.19.

Only one of the two keywords can be present in the values of the parameter. If both format and
options are present, the value of the format parameter shall take precedence.

[CIM 009v1.8.1] Clauses 5.2.14, 5.8.6, 6.3.7, 6.3.12, 6.5.3.4, C.5.3.2, C.5.4.2, C.5.4.3, C.5.6.2, C.5.13.2, G.3.1

© ETSI 2021 29

Relax restriction on forbidden characters

[CIM 009v1.8.1] Clause 4.6.4

In principle, context information providers can publish any kind of data serialized in
JSON and encoded in UTF-8. Nonetheless, to avoid security problems caused by script
injection attacks or other attack vectors, implementations should consider that the
incoming data from a client may contain the following characters:

%x3C; < %x3E; > %x22; " x27; ‘

%x3D; = %x3B; ; %x28; (%x29;)

When receiving entities (context information) encoded in JSON format and
containing values that include the above characters, implementations should decide
how to resolve the possible security problems that may be generated by the data. In
all cases, implementations shall preserve the representation of the content of the
values provided by the context information providers and return the original content
when replying to context consumption requests.
If implementations decide to raise an error, the error shall be BadRequestData.

© ETSI 2021 30

Remove scope from attribute patch
operation

If the target Attribute is scope, then an error of type BadRequestData shall be raised.

Reason: scope is not reified, so the content is just a String or array of Strings. This is not
a JSON-LD document, but on the other hand the content is required to be a JSON-LD
document.
Scope can still be patched with an Entity patch, which is not much more verbose.

[CIM 009v1.8.1] Clause 5.6.4

© ETSI 2021 31

GeoJSON type added as return type to Query
Entities and Retrieve Entity figures

[CIM 009v1.8.1] Clauses 6.4.3.2, 6.5.3.1, 6.23.3.1

	New Features and Relevant Fixe
	Slide 1: New Features and Relevant Fixes in NGSI-LD v1.8.1
	Slide 2: Overview (1)
	Slide 3: Overview (2)
	Slide 4: New Projection Parameters (1)
	Slide 5: New Projection Parameters (2)
	Slide 6: Linked Entity Retrieval (1)
	Slide 7: Linked Entity Retrieval (2) – Use Case
	Slide 8: Linked Entity Retrieval (3)
	Slide 9: Linked Entity Retrieval (4)
	Slide 10: Linked Entity Retrieval (5)
	Slide 11: Linked Entity Retrieval (5) – q Extension
	Slide 12: Linked Entity Retrieval (6) – projection Extension
	Slide 13: datasetId parameter (1)
	Slide 14: datasetId parameter (2) – enables “views” across attributes
	Slide 15: datasetId parameter (3)
	Slide 16: New Attribute Types - Overview
	Slide 17: 1:<n> relationships (unordered) (1)
	Slide 18: 1:<n> relationships (unordered) (2)
	Slide 19: List relationships, 1:<n> (ordered)
	Slide 20: List properties (ordered)
	Slide 21: JSON Property (1)
	Slide 22: JSON Property (2)
	Slide 23: Extended Distributed Queries (1) – Entity Maps
	Slide 24: Extended Distributed Queries (2) – Entity Maps
	Slide 25: Extended Distributed Queries (3) – Loop Avoidance
	Slide 26: Allow broader local requests
	Slide 27: format Parameter (1) – representation of Entities
	Slide 28: format Parameter (2) – representation of Temporal Entities
	Slide 29: Relax restriction on forbidden characters
	Slide 30: Remove scope from attribute patch operation
	Slide 31: GeoJSON type added as return type to Query Entities and Retrieve Entity figures

