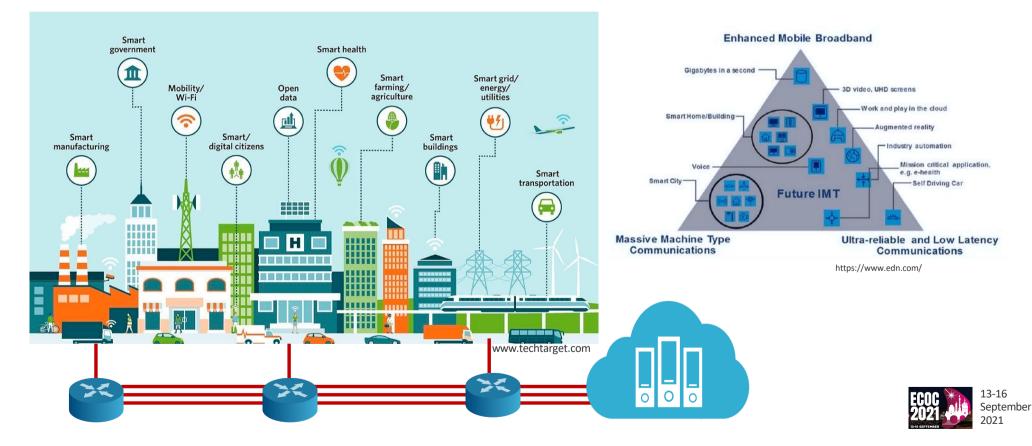
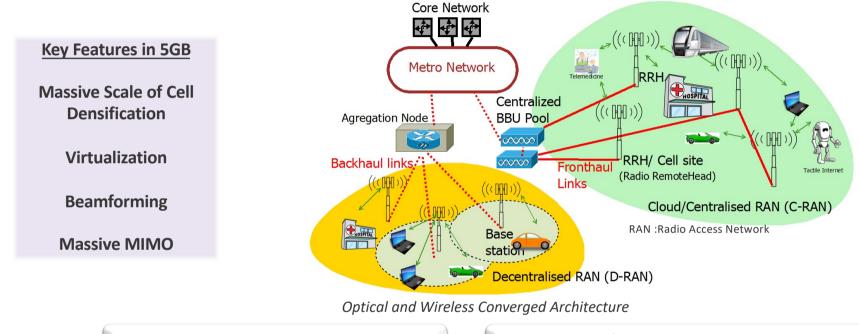
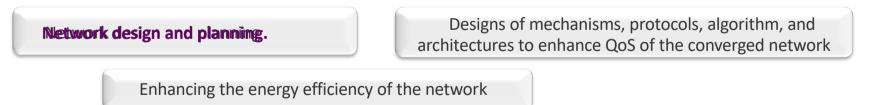
Optical Network Design and Planning towards F5G


Dr Chathu Ranaweera, Deakin University, Prof Christina Lim, Elaine Wong and Thas Nirmalathas, The University of Melbourne


Wireless Evolution


5G: 10-100X data rate improvement, 1000X bandwidth per unit area, 100% coverage and 1 ms latency

6G: support applications such as high-fidelity mobile hologram, truly immersive XR and many more.....

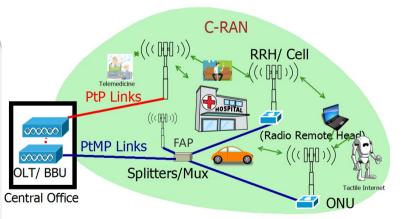
Why the convergence is important?

End to End Access Network Planning

EGOC 2021 13-16 September 2021

Optimisation Framework

A generalized framework that can be used

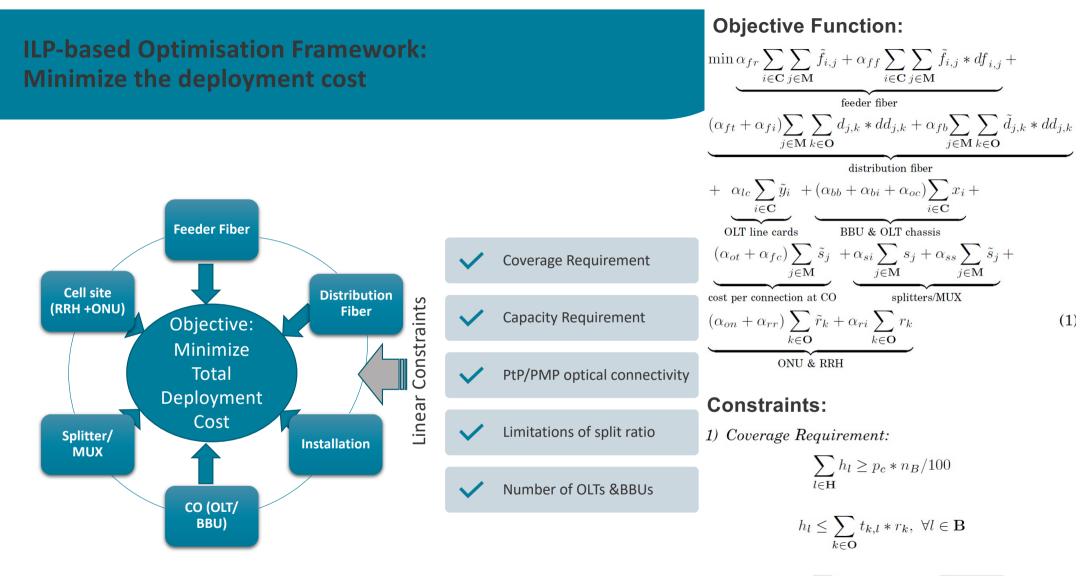

- to jointly plan 5G and its optical transport networks
- in a cost-optimal way (for all functional split options)
- meeting various network requirements such as coverage &capacity
- when we have limited existing fibre network

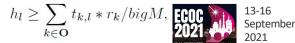
Integer Variables

What we want find: Optimal locations for

- Cells(RRH)/ONU,
- Splitters/MUXs,
- BBU placements

Optimal fiber routes to deploy the transport network leveraging the resources associated with existing optical access network




Linear Constraints

Requirements:

- Coverage Requirement
- Limitations of split ratio,
- PtP/PtMP optical connectivity,
- Capacity requirement,
- Number of OLTs &BBUs.

Optimization Framework : ILP-based

Objective Function:

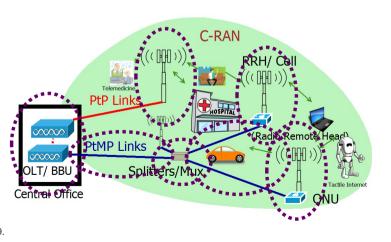
Constraints:

1) Coverage Requirement:

 $\sum_{l\in \mathbf{H}} h_l \geq p_c * n_B / 100$

 $h_l \le \sum_{k \in \mathbf{O}} t_{k,l} * r_k, \ \forall l \in \mathbf{B}$

$$h_l \ge \sum_{k \in \mathbf{O}} t_{k,l} * r_k / bigM, \ \forall l \in \mathbf{B}$$

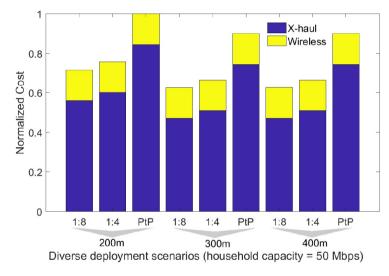

2) Capacity Requirement:

$$\tilde{r}_k * c_r \ge c_h * \sum_{l \in \mathbf{B}} z_{k,l}, \ \forall k \in \mathbf{O}$$

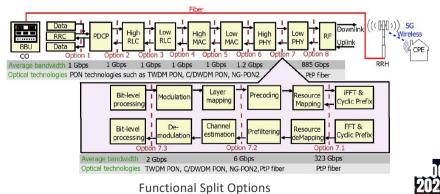
$$\sum_{k \in \mathbf{O}} z_{k,l} \ge h_l, \ \forall l \in \mathbf{B}$$

$$z_{k,l} \leq t_{k,l}, \ \forall k \in \mathbf{O}, \forall l \in \mathbf{B}$$

3) Point to Multipoint Deployment:


Optical Transport Network Design for 5G Fixed Wireless Access", in IEEE/OSA Journal of LightwaveTechnology, 2019.

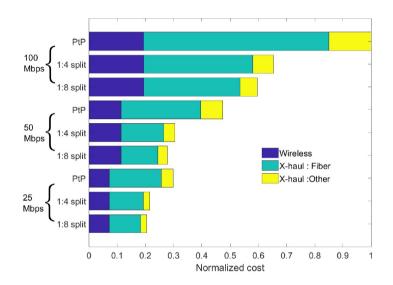
Data Set and Optimal Solution


Some More Results

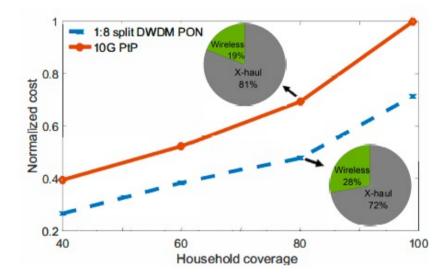
Optimal cost when 10G WDM PON and PtP used as a transport network with coverage 99%

Example: Cost Components used For 10G WDM-PON

Cost component	Notation	Normalized Cost
Existing fiber /km	α_{ff}	41.6
Distribution fiber/ km	α_{fd}	10.4
Fiber trenching/ km	α_{ft}	93.7
Testing per fiber	α_{fr}	1
OLT chassis (16 slots)	aoc	118.75
OLT line card (16X10G)	α_{lc}	13.3
Optical transceiver	α_{ot}	3.6
CO connection	α_{fc}	3.1
MUX/DMUX (1:8)	α_{si}	3.3
ONU	α_{on}	4.7
RRH	α_{rr}	20.8
BBU	α_{bb}	729.1


13-16

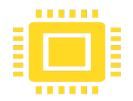
2021


September

Optical transport = X-haul

Some More Results

Optimal Cost : 10G WDM PON and PtP with 200m cells


Optimal Cost Vs. Coverage requirement

Functional Split Options from 1-6 can save 30-40% of deployment cost compared to Option 7.2.

Summary

We have looked at:

How we can bring the benefits of both optical and wireless access technologies together to enable a cost-effective deployment of gigabit wireless access.

How we can optimally plan the both optical and wireless networks to satisfy diverse network requirements whilst minimizing the deployment cost.

Insight:

Provide insight into the network design strategies that can be used in planning and dimensioning of future optical- wireless networks.

Big Thank Goes to...

- Deakin University, Australia.
- University of Melbourne, Australia
- Chalmers University of Technology, Sweden
- Ericsson Research, Sweden
- Technical University of Munich, Germany

https://headspring.com/

