Real-Time Demo of Fiber-to-the-Room for >1Gb/s Home Networking

<u>Fabienne Saliou,</u> Gael Simon, Philippe Chanclou, Stéphane Le Huérou

ECOC 2022 workshop « F5G and Evolution towards F6G » 18th of Septembre 2022

Fibre to Everywhere for an unlimited future

Allow evolution of technology and services with F5G

Fiber to Everywhere to make fixed access future proof

- > Extending to more end-user : Home, Room, Business, Mobile, Device, Machine, etc.
- **>** Reducing everywhere the fibre-to-end user distance: $Km \rightarrow 100m \rightarrow 10m \rightarrow 1m$
- > Number of connections expanding: X3 (Room), X10 (Desk), X30 (Machine), X100 (Smart city)

Re-using PON in Home networks

FTTH with GPON or XGS-PON

FTTR Gateway : OLT functions included in the residential gateway

PON fibre plant : FTTR fibre + passive optical Splitter (1:4 stages, x4 max)

FTTR ONUs : Wi-Fi extenders with the benefits of a fibre backhaul

Introducing Fibre in Smart Home Networks

FTTR can build on and enhance existing multi-Wi-Fi access point solutions

User experience are strongly linked to Home LAN performances (Wi-Fi, other...) A cost effective, Home network infrastructure associating optical fiber and radio for a wireless end connectivity to the very high bit rate services everywhere in the home Offer in-home network speed guarantees >Gbit/s Permitting higher throughput in the future (>100 Gbps)

Serve as a reliable basis for new connected home services Enhanced high-quality in-home connectivity experience for reliable connectivity in Homes

Home Wi-Fi motion detection for home security and assisted living for the elderly

Bundle installation with FTTH : connecting end-user devices to the Wi-Fi network by the FTTH operational technicians

Remote operation and maintenance from CO up to each access points (>60% users calls for complaints comes from Home Networks issues)

FTTR evaluation : jitter measurements

5

Measurement performed with commercial PON and FTTR systems with 1 ONU connected on each PON (DT=1, T-Cont type 1, 50 Mbit/s throughput , <50m reach)

FTTR evaluation : latency measurements

Measurement performed with commercial PON and FTTR systems with 1 ONU connected on each PON (DT=1, T-Cont type 1, 50Mbit/s througput, <50m reach)

Latency depends on number of user connected for Wi-Fi 6 : 10 to 50ms For Wi-Fi7 : <20ms

FTTR evaluation : throughput, latency and jitter measurments

Throughput of commercial PONs and FTTR systems

FTTH network Home network Optical Line **Commercial GPON system** residential gateway home network end-devices Termination (OLT) (aka CPE, home gateway, Box,...) infrastructure splitter repeaters/extenders _ 0 0 》 (규)) splitter ____ ==000 splitter ----Passive Optical Network repeaters/extenders (PON) ((• .)) repeaters/extenders Maximum physical layer data rate 1 Tb/s 100 Gb/s With GPON : 10 Gb/s Line rate 2,5Gbit/s - Throughput 1Gbit/s max Line rate 2,5Gbit/s - Throughput 1Gbit/s max G-PON 1 Gb/s 100 Mb/s 802.119 WiFi4 10 Mb/s Line rate 1,25Gbit/s - Throughput 1Gbit/s max Line rate 1,25Gbit/s – Throughput 1Gbit/s max 1 Mb/s 7 100 kb/s

1995 2000 2005 2010 2015 2020 2025 2030 year

FTTR market : for homes and small entreprises

FTTR solutions available with GPON, XGS-PON and PtP access networks

FTTR is also a solution for small entreprises

16 FTTR ONUs max / FTTR gateway

ITU-T recently published technical paper on "Use cases and requirements of fibre-to-the-room

>400k FTTR already deployed in China

40% of the 460 millions houses with FTTR in 2025

Small entreprises (Hotel, restaurants, shared housing ...)

Conclusions

PON is the ideal companion of WiFi with an "ideal" in-house backhaul performance for jitter and latency.

Valorise and manage Wi-fi connectivity as the Home Operator

Thank you ! Merci

FTTH and WiFi companion technologies for throughput

Latency is not a driver for FTTRoom.

Source Cisco:

Without fiber, Latency PON D/S 40µs & U/S <1ms (n x125µs)

* OFDMA, preamble punctunring features

** Multi-Link Operation (MLO)

FTTH and WiFi companion technologies for troughput

The main developments of WiFi

	WiFi 6 /6E	WiFi 7
Frequency	2.4 , 5 , 6 GHz	2.4 , 5 , 6 GHz
Maximum bandwidth	160 MHz	320 MHz
Best modulation	QAM 1024	QAM 4096
MIMO	8	16

WiFi 7 is 20% more data rate close to the access point

Managing Services up to all rooms from OLTs at Central Offices

With FTTR :

More demarcations points in Homes at the hand of operators for remote troubleshooting, fixing and optimization of home networks

Management by the operators or/and by the users :

inherent to PON management layer or simplified (proprietary cloud management)

Building and in-home optical cabling

Apparent installation on the wall

Refusal from some customers because of aesthetic reasons

- → New solution for a more aesthetic cabling
- 900µm cable connectorized at both sides
- Optical outlet with a wiring system to manage the overlength of cable
- Accessories to ensure a minimum bending radius in the corners and accessories to pass through the walls

Standardisation in ITU-T Q18/SG15 for « In-premises Networking »

Fiber for smart Cities & Factories: Passive Optical LAN (POL)

Deeper fiber to connect everything: Fiber inside the building with POL

2018, major Decision Orange France: all new large tertiary buildings will have a POL infrastructure

Other Orange affiliates are also on the way to deploy POL...

FTTR

Cascading PONs

Designed for <16 terminations : Homes or FTTE

Limited to « gateway like » management

or

GPON or XGS-PON + GPON in home

Real Backhaul up to POL OLT + PON

Designed for 100s of terminations : FTTO, campus, Buildings

Service management by the on-site OLT

Protection type B possible

XGS-PON POL available :

8Gbit/s Ethernet to the desk

FTTR or WiFi?

WiFi version	WiFi standards	Release time	Maximum rate	Operating frequency band
WiFi 6	IEEE 802.11ax	2019	11Gbps	2.4GHz or 5GHz
WiFi 5	IEEE 802.11ac	2014	1Gbps	5GHz
WiFi 4	IEEE 802.11n	2009	600Mbps	2.4GhHz or 5GHz
WiFi 3	IEEE 802.11g	2003	54Mbps	2.4GHz
WiFi 2	IEEE 802.11b	1999	11Mbps	2.4GHz
WiFi 1	IEEE 802.11a	1999	54Mbps	5GHz
WiFi 0	IEEE 802.11	1997	2Mbps	2.4GHz

•For proper coverage, you may need Wi-Fi boosters

A general rule of thumb in home networking says that Wi-Fi routers operating on the 2.4 GHz band reach up to 46 m indoors and 92 m outdoors. Older 802.11a routers that ran on 5 GHz bands reached approximately one-third of these distances

A general rule is that if you double the distance between the router and client (or device), throughput decreases by one-third of its original strength. Objects, such as metal or water, will also act as a signal block

FTTR or WiFi?

WiFi version	WiFi standards	Release time	Maximum rate	Operating frequency band
WiFi 6	IEEE 802.11ax	2019	11Gbps	2.4GHz or 5GHz
WiFi 5	IEEE 802.11ac	2014	1Gbps	5GHz
WiFi 4	IEEE 802.11n	2009	600Mbps	2.4GhHz or 5GHz
WiFi 3	IEEE 802.11g	2003	54Mbps	2.4GHz
WiFi 2	IEEE 802.11b	1999	11Mbps	2.4GHz
WiFi 1	IEEE 802.11a	1999	54Mbps	5GHz
WiFi 0	IEEE 802.11	1997	2Mbps	2.4GHz

Wireless connections are less secure
For proper coverage, you may need Wi-Fi boosters
Interference from other Wi-Fi connections or devices

10 Things That Block and Interfere With Wi-Fi Signals

A general rule of thumb in home networking says that Wi-Fi routers operating on the 2.4 GHz band reach up to 150 feet (46 m) indoors and 300 feet (92 m) outdoors. Older 802.11a routers that ran on 5 GHz bands reached approximately one-third of these distances

A general rule is that if you double the distance between the router and client (or device), throughput decreases by one-third of its original strength. Objects, such as metal or water, will also act as a signal block

FTTR or Ethernet Cable

	UTP Categories - Copper Cable					
	UTP Category	Data Rate	Max. Length	Cable Type	Application	
	CAT1	Up to 1Mbps	-	Twisted Pair	Old Telephone Cable	
	CAT2	Up to 4Mbps	-	Twisted Pair	Token Ring Networks	
	CAT3	Up to 10Mbps	100m	Twisted Pair	Token Rink & 10BASE-T Ethernet	
	CAT4	Up to 16Mbps	100m	Twisted Pair	Token Ring Networks	
	CAT5	Up to 100Mbps	100m	Twisted Pair	Ethernet, FastEthernet, Token Ring	
Homes	CAT5e Up to 1 Gbps	100m Twisted Pair Ethernet, Fa		Ethernet, FastEthernet, Gigabit Ethernet		
	CAT6	Up to 10Gbps	100m	Twisted Pair	GigabitEthernet, 10G Ethernet (55 meters)	
	CAT6a	Up to 10Gbps	100m	Twisted Pair	GigabitEthernet, 10G Ethernet (55 meters)	
	CAT7	Up to 10Gbps	100m	Twisted Pair	GigabitEthernet, 10G Ethernet (100 meters)	

Take an example of FTTH in China, the optical Fibre is only to information box, access broadband is around 200M for 70% cases. However, the actual downloading average broadband is around 41Mbps (2020 Report of Broadband Development Alliance)

In

Merci

Home network management become a necessity

Home Network Management

JAWFI

Home Local Area Networks (HAN)

Home LAN requirements:

- Keep the throughput promise of FTTH everywhere at home
- High world wide connectivity (many network access points)
- Intra house connectivity (e.g. Network Attached Storage (NAS))
- Low latency (gaming, ...)
- Low cost
- Easy configuration (from both end user and service provider)

PON (Passive Optical Networks) ?

- low cost (mass market)
- mass connectivity (64 terminations)
- PON operating as an "in-house backbone" completed with Wi-Fi

Home Local Area Network (HAN): House, apartment, ...

Management of POL and HAN: PON virtualization

An OLT made of a regular switch and a « smart » SFP+:

- Get rid of traditionnal dedicated hardware (line cards, chassis)
- Modularization of the infrastructure, scalability
 - e.g. one SFP+ for Home LAN, several for POL
- Remote configuration
 - OLT interfaces management is performed in a virtualization environment
 - new protocol known as "ONU Management and Control Interface (OMCI) over Ethernet"

Huawei FTTR Products

Main ONT

OptiXstar HG8141XR

GPON Uplink Fiber downlink 4 GE ports Wi-Fi 6 2+2, 160MHz

TR5 2021Q4

Edge ONT

OptiXstar K662d

Fiber Uplink 2 GE ports Wi-Fi 6 2+2, 160MHz

TR5 2021Q4

Passive splitter

1:5 asymmetric: 1 cascading port + 4 branch ports

Up to 4-level cascading

ATB

Supports storage of 4 m patch cords (Φ 2 mm).

XC adapters No need for splicing.

Transparent Fiber

Invisible in open wire scenario Low bending radius Support hot melt glue

Value Proposition of ISG F5G and its Approach to Standards

Deep Dive of FTTRoom of ISG F5G

- Fiber on premises: future proof for bandwidth upgrade and lifetime (30years+)
- Bring Gbit/s to end-system with last few meters wireless
- Cascaded XG(S)-PONs (may upgrade with higher speed PON)
 - Shorter loop length (up to 1km) and less splitting ratio
 - Different cost structure (e.g. consumer)

- ONT: merged with WiFi for unified user experience and device compatibility
 - Lower wireless launch power, less interference, lower power
- Advanced feature:
 - Coordinative multi-AP with optimized experience through fibre (C-RAN like Wifi)
 - CPN Slicing

Background—Bottlenecks in Giga Home Broadband

Take an example of FTTH in China, the optical Fibre is only to information box, access broadband is around 200M for 70% cases. However, the actual downloading average broadband is around 41Mbps (2020 Report of Broadband Development Alliance)

Wi-Fi Mesh and FTTR Comparison

Wi-Fi Mesh

FTTR

Wi-Fi Cascading Loss

50% slower after each cascading

Wi-Fi Attenuation Loss

80% slower cross floor 60% slower cross concrete wall

>1 Gigabit to every room Seamless <100ms roaming

Standards progress and challenges for fibre cabling in-premises

• ITU-T Q18 / SG15

FTTR (G.fin) series: Fibre based in-premises networking

Work item	Question	Subject/title	Timing	Study group	Study period
G.fin-DLL	Q18/15	High speed fibre-based in-premises transceivers - data link layer	2022-09	SG15	2017-2020
G.fin-NM	Q18/15	High speed fibre-based in-premises transceivers – network management	2022-09	SG15	2017-2020
G.fin-PHY	Q18/15	High speed fibre-based in-premises transceivers – physical layer	2022-09	SG15	2017-2020
G.fin-SA	Q18/15	High speed fibre-based in-premises transceivers - system architecture	2022-09	SG15	2017-2020

• CCSA TC6 WG2

Different cases of in-house wiring

No recommendation and specification exists for in-house wiring, it is quite difficult to deploy fiber without breaking current infrastructure.

Fiber deployment in home and business building is major challenge

Devices and tools for Fiber to The Room deployment

Devices and tools for Fiber to The Room deployment are different from outdoor deployments.

FTTR or Ethernet Cable

UTP Categories - Copper Cable					
UTP Category	Data Rate	Max. Length	Cable Type	Application	
CAT1	Up to 1Mbps	-	Twisted Pair	Old Telephone Cable	
CAT2	Up to 4Mbps	-	Twisted Pair	Token Ring Networks	
CAT3	Up to 10Mbps	100m	Twisted Pair	Token Rink & 10BASE-T Ethernet	
CAT4	Up to 16Mbps	100m	Twisted Pair	Token Ring Networks	
CAT5	Up to 100Mbps	100m	Twisted Pair	Ethernet, FastEthernet, Token Ring	
CAT5e	Up to 1 Gbps	100m	Twisted Pair	Ethernet, FastEthernet, Gigabit Ethernet	
CAT6	Up to 10Gbps	100m	Twisted Pair	GigabitEthernet, 10G Ethernet (55 meters)	
CAT6a	Up to 10Gbps	100m	Twisted Pair	GigabitEthernet, 10G Ethernet (55 meters)	
CAT7	Up to 10Gbps	100m	Twisted Pair	GigabitEthernet, 10G Ethernet (100 meters)	

