

ECOC 2022 Workshop "F5G and Evolution towards F6G"

# Update on the Innovative Optical and Wireless Network (IOWN) Initiative For Fixed Networks

September 18, 2022

Junichi Kani

NTT Access Network Service Systems Laboratories, NTT Corporation

### Outline



### • IOWN and IOWN Global Forum (IGF)

- Organization
- Overall Architecture
- Open All Photonic Network (APN)
  - Open APN Architecture and Building Blocks
  - Deployment image
  - Relationship with Reconfigurable Add/Drop Multiplexer (ROADM) and Open ROADM MSA
  - Optical interfaces
  - Technical Issues under study
- Summary

### IOWN and IGF



- IOWN (Innovative Optical and Wireless Network) is a concept of a new communication platform to realize a smarter world where data, activities and people in different industries will be brought together at around 2030.
- IGF was founded in 2019 to propel technologies to realize it.



IOWN Global Forum (IGF) Higher transmission Lower end-to-end capacity by latency by 125x 200x 🕐 NTT SONY 31 Organizations (Chunghwa Telecom, Orange, Rakuten Mobile, SK Telecom, Ciena, Cisco, Dell Technologies, Ericsson, Fujitsu, Microsoft,

### https://iowngf.org/

#### Academic and Research Members 10 Organizations

#### https://www.ntt.co.jp/news2020/2004/200416a.html

### **Organization structure and use-case studies**

### **IGF** organization structure

- Working Groups
  - Use Case Working Group
  - Technology Working Group
  - Liaison Working Group

#### Committees

- Technology Steering Committee
- Vision Steering Committee
- Marketing Steering Committee

Al-Integrated Communication (AIC) Use Cases

Entertainment, Remote Operation, Navigation, Human Augmentation

### Cyber-Physical Systems (CPS) Use Cases

Area, Mobility, Industry, Network Infrastructure, Health Care, Smart Grid, Society Management



https://iowngf.org/use-cases/

### **IOWN overall architecture**

- IOWN Global Forum published "System and Technology Outlook Report" in March 2021, in which the overall architecture comprises **Data-Centric Infrastructure (DCI)** and **Open All-Photonic Network (APN)**.
- Open APN is expected to provide end-to-end optical connections through dynamic control.



https://iowngf.org/wp-content/uploads/formidable/21/IOWN-GF-RD-System\_and\_Technology\_Outlook\_1.0.pdf

### **Current state**

Phase-1

Architecture-APN, DCT, IDH, FS, IMN, RIM

**Direction and Plan Definitions** 

Vision-2030
Use Cases-AIC, CPS



• In January 2022, IGF released a six reference document "starter pack" for creating an intelligent, energy-efficient all-photonics data and communications architecture, and moved to Phase 2.

#### 6 document "starter pack" released

- 1. Open All-Photonic Network (APN) Functional Architecture
- 2. Data-Centric Infrastructure (DCI) Functional Architecture
- 3. Data Hub Functional Architecture
- 4. Fiber Sensing for Open APN
- 5. Technical Outlook for Mobile Networks Using IOWN Technology
- 6. Reference Implementation Model (RIM) for the Area Management Security Use Case



6

## **Open APN High-level Reference Architecture**

 Open APN comprises Open APN Transceivers (APN-T), Open APN Gateways (APN-G), and Open APN Interchanges (APN-I).



\*1: Ugt can be a multiple wavelength interface.

### **Deployment image**

- NTT 🕐
- Electrical processing functions (e.g. packet switching, electrical multiplexing) are not necessarily eliminated, but placed in DCI instead of being uniformly placed between segments, and are accessed only when needed.
- While this is similar to providing optical bypasses in each router/switch in terms of providing optical paths across segments, the electrical processing functions can be more converged with computing resources by putting them in DCI.



## **Extending ROADM technologies**

- NTT 🕐
- Reconfigurable Optical Add/Drop Multiplexer (ROADM) technologies can be considered as the base of APN; Wavelength Cross-Connect (WXC), Add/Drop, and Transceiver (TRx) will be evolved to APN-I, APN-G, and APN-T, respectively.
- IGF has identified that the following extensions are needed for ROADM to realize end-to-end optical connections, and has started the discussion with Open ROADM MSA.
  - 1. Provision of control and management channels for TRx
  - 2. Provision of turn-back connections between TRxs under the same Add/Drop
  - 3. Support of typical access loss (e.g. 15 to 30 dB) and its variation



## **Optical interfaces**

- Optical interfaces for the Open APN are defined as the combination of the optical signal specification and the wavelength tunnel specification.
- The optical signal specification must cover the following four options at least.
  - 1. W 100-200G 31.6 Gbaud of Open ROADM MSA Optical Specification Version 5.0
  - 2. W 200-400G 63.1 Gbaud of Open ROADM MSA Optical Specification Version 5.0
  - 3. NRZ 10G (N, W) of ITU-T G.698.2
  - 4. NRZ 2.5G (N, W) of ITU-T G.698.2



### Summary



- IOWN overall architecture comprises Data-Centric Infrastructure (DCI) and Open All-Photonic Network (Open APN).
  - Electrical processing functions (e.g. packet switching, electrical multiplexing) are not necessarily eliminated, but placed in DCI instead of being uniformly placed between segments, and are accessed only when needed.
- Initial Open APN will be realized based on ROADM technologies with some extensions to allow the placement of Transceivers at user premises.
- IGF's studies have entered Phase 2.
  - It includes technical specification works and considerations to conduct PoC.