F5G Proof-of-Concept Demonstrations for Industrial Applications

Behnam Shariati, Johannes Fischer, Ronald Freund

Fraunhofer Heinrich Hertz Institute (HHI), Berlin, Germany

 $10^{0} - 10^{2} - 10^{4}$ Tbps

H.264 - H.265 - H.266

3G – 4G – 5G – 6G

- Research: Photonic Networks / Systems / Components, Wireless and Video Coding
- Every second bit on the Internet touches Photonic or Video Technology invented or made by Fraunhofer HHI

F5G OpenLab

Enable Twin Transition through Ubiquitous Fiber Connectivity.

Vision

- Contribute to a green and sustainable ICT industry by promoting Fiber to Everything
- Accelerate digital transformation by highly reliable and trustworthy autonomous networking

Mission

- Provide an ecosystem for validating networking solutions for twin transition
- Offer a vendor agnostic facility to verticals for evaluating their use cases
- Empower the development of fiberbased solutions

F5G Advanced Evolution, Key drivers and Enablers

Drivers

💹 Fraunhofer

PON technological Characteristics

GPON	XG-PON	XGS-PON	50G PON
Gigabit PON	10G asymmetrical PON	10G symmetrical PON	50G symmetrical PON
2.5 Gb/s 1,25 Gb/s	10 Gb/s 2.5 Gb/s	10 Gb/s 2.5 or 10 Gb/s	50 Gb/s 12.5/25/50 Gb/s
Upstream: 1,25 Gb/s	Upstream: 2.5 Gb/s	Upstream: 2.5 or 10 Gb/s	Upstream : 12.5, 25 or 50 Gb/S
Downstream: 2.5 Gb/s	Downstream: 10 Gb/s	Downstream: 10 Gb/s	Downstream: 50 Gb/s
Enabler of Gigabit broadband	Asymmetrical bitrates. Co-exists with GPON. Same λ as XGS-PON	Dual rates: symmetrical or asymmetrical. Co-exists with GPON,	Dual rates: symmetrical or asymmetrical. Co-exists with GPON, XGS-PON
Deployments: Most widely deployed PON worldwide since 2007	Deployments ; worldwide, main China, Japan, US, South Korea	Deployments: Worldwide. Main PON flavor today.	In trials and pilot stage. Deployments expected to start after 2023

Source: ETSI F5G White Paper, "All-optical network facilitates the Carbon Shift", Nov. 2023

F5G OpenLab: Environment for a Green and Digital Transition

- Access to infrastructure in relevant environments (industry, medical ...)
- Collaboration with complementing stakeholders
- Participation in proof-of-concepts and collaboration on standards

Services:

- Carbon footprint and lifecycle analysis for different verticals
- FTTx network planning
- Trainings and consultancies

Enable twin transition – green and digital, through ubiquitous fiber connectivity.

© Fraunhofer HHI | March 2024 | 8

F5G OpenLab (f5g-openlab.org)

Infrastructure at Fraunhofer HHI / IPK

INDUSTRIAL TEST FIELD / SHOP FLOOR

FRAUNHOFER EDGE CLOUD

LiFi-enhanced Industrial Networks

- LiFi infrastructure in industrial production environment
 - Higher area capacity
 - Robust against EMI
 - Allows for secured communication positioning and navigation
- Remote control via PON

ETSI ISG F5G Proof-of-Concepts

Edge/Cloud-based Control of Automated Guided Vehicles

- AGVs perform transportation of goods to and between robotic production cells.
- AGVs and robotic cells provide individual sets of micros services, which are hosted on an edge cloud.
- The navigation of the AGVs is performed on the edge cloud by a guidance control system.
- The **end-to-end roundtrip latency** between $AGV \rightarrow edge data centre \rightarrow AGV$ needs to be less than **30 ms** including processing.
- The max data rate from the shop floor to the cloud was around 80 Mb/s, the max data rate from the cloud to the shop floor was around 30 Mb/s.

🗾 Fraunhofer

F5G OpenLab: Network Architecture

Cloud-based Control of AGVs and Robots: Process flow

AGV Moving on the Shop Floor

Load Object into the CNC Machine

Load Object into the Shelf

 Monitoring of traffic, energy consumption, latency in real-time for optimizations

Trajectory Planning of the Robot on the Digital Twin

Route Planning of the AGV Using Lidar Data

ETSI ISG F5G Proof-of-Concept Cloud-based Vision Inspection

ETSI ISG F5G PoC

INDUSTRIAL TEST FIELD

Factory Scenario

- Large manufacturing sites
- Requirement for >1000 fixed access points
- Min. 1GE per access point

Objective: Modeling the carbon footprint of different system versions

ronald.freund@hhi.fraunhofer.de

Industrial Fixed Network Architecture

What is the power consumption improvement potential?

Assumptions

- 1 GE per access point
- Analysis based on typical power consumption values provided by vendor data sheets
- Operational technology (OT) can be considered

Summary

- Manufacturing industry is in the process of green and digital transformation
- Virtualized control functions running in edge cloud environments allow for highly flexible and efficient operation of production sites
- F5G provides networks solutions for industrial scenarios with reduced power consumption on a edge-cloud-based fiber infrastructure
- F5G OpenLab @ Fraunhofer HHI offers
 - Access to proof-of-concepts in relevant environments for different verticals (industry, medical, ...)
 - Support of standardisation
 - Services to partners and customers

Become a Member of the F5G OpenLab

Access to large scale and forward-looking infrastructure Impact and contribute to F5G standards and specifications

√ =
v=_
∨={ √}

Collaboration with complementing stakeholders

o de c

Learning and understanding the evolution of networks

Identify novel business models and revenue streams

F5G OpenLab Office Einsteinufer 37, 10587 Berlin +49 (0)30 31002 - 414 contact@F5G-OpenLab.org

JOIN

© F5G OpenLab | October 2023

Fraunhofer Institute for Telecommunications, Heinrich Hertz Institute, HHI

WE PUT SCIENCE INTO ACTION.

Contact:

Prof. Dr. Ronald Freund, MBA ronald.freund@hhi.fraunhofer.de +49 (0)30 31002 - 652 / +49 173 5847479

Einsteinufer 37 10587 Berlin

www.hhi.fraunhofer.de/pn

