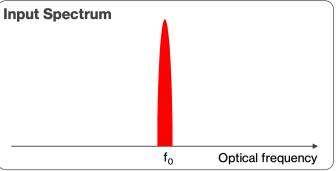
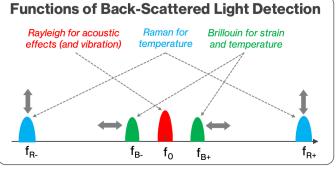

Standardization of **Distributed Fiber Optic Sensing System** for Terrestrial Optical Networks


Jun Shan Wey, TJ Xia, Glenn Wellbrock Verizon Communications

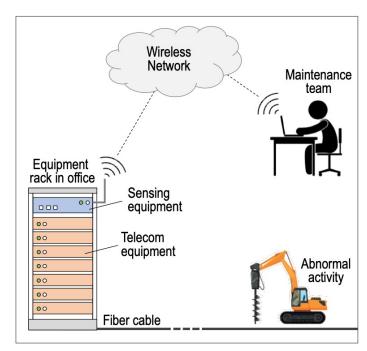


Distributed fiber optic sensing (DFOS) is a well-known technology

Type of Back- Scattering	Frequency Characteristics	Sensitive to
Rayleigh	No frequency shift	Acoustic effects (and vibration)
Brillouin	Small frequency shifts	Strain, Temperature
Raman	Large frequency shifts	Temperature

Network reliability and operational efficiency are the foundation for F5G-Advanced applications.

DFOS plays a pivotal role.


DFOS for telecom fiber network

Improve network reliability & operational efficiency

- Monitor abnormal activities to prevent damages to fiber networks
- Identify specific fiber and cable
- Map geolocations accurately along fiber cable routes

Future services

- Motor traffic monitoring
- Intrusion detection
- Smart city applications

Source: G. Wellbrock and T. J. Xia, "Distributed Fiber Sensing Applications for Optical Networks," ECOC 2022

DFOS standards are critical to driving growth, reducing cost, and enhancing sustainability within the industry ecosystem.

ITU-T SG15 initiated DFOS standardization in Dec 2023

Q6 (Transport Network)

New work item G.dfos:

Distributed fibre optic sensing system for terrestrial optical transmission system. Target to complete in 2025

Q12 (Transport Network Arch)

Identified existing
Recommendations for potential
DFOS inclusion

Q2 (Optical Access Networks)

Expanded G.sup.VHSP scope to include fiber sensing in PON

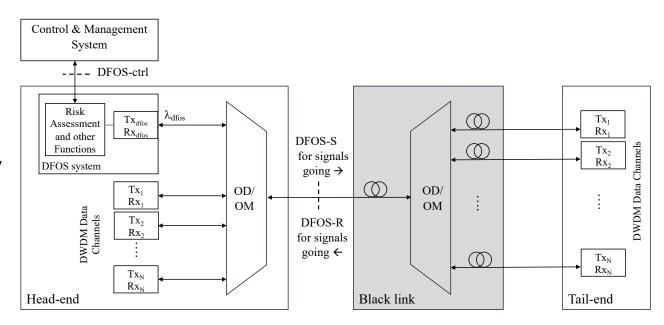
Q14 (Mgmt & Control)

Identified existing Recommendations for potential DFOS inclusion

Q8 (submarine cable system)

Agreed to add distributed fibre sensing in G.dsssc

Q5 (Fiber cables), Q7 (O&M)


Monitoring progress. No activity now.

G.dfos reference architecture

Optical parameters at DFOS reference points:

- Wavelength assignment
- Transmitter parameters
 - laser linewidth
 - wavelength accuracy
 - optical power
- Interference & crosstalk

G.dfos baseline draft

Key requirements

- > operate on both in-service fiber and dark fiber
- monitor both trunk fiber and drop fiber in PON

DFOS system should

- tilize out-of-band or in-band wavelength
- not cause interference to data traffic
- > support methodology for risk level assessment
- provide timely risk alerts to operations teams

DFOS enables telecom fiber infrastructure to become an intelligent sensing network.

verizon /