

The Standards People

New KPIs For Planning Microwave And Millimeter-wave Backhaul Networks

Presented by: Name (Company), Role

Place Date

Release 1.0 2022.02.26

© ETSI 2022

Introduction Of ISG mWT

- Rationale For New KPIs To Evaluate Wireless Backhaul Performance
 - Background And Overview
 - Ourrent Planning
 - Statistical Nature Of RAN Traffic
 - Oefinition Of BTA Backhaul Traffic Availability
- Towards a 3 Check Points Planning Method
 - IR + BTA + CIR
 - e Planning Examples
- Planning & Measuring BTA In Live Networks
- Conclusions & Future Work

Introduction Of ISG mWT

- Rationale For New KPIs To Evaluate Wireless Backhaul Performance
 - Background And Overview
 - Ourrent Planning
 - Statistical Nature Of RAN Traffic
 - Oefinition Of BTA Backhaul Traffic Availability
- Towards a 3 Check Points Planning Method
 - PIR + BTA + CIR
 - Planning Examples
- Planning & Measuring BTA In Live Networks
- Conclusions & Future Work

Organization and work

Officials - mWT			PGY
	4 person(s) found		
Name	Role	Organization	
Lombardi Renato	Chairman	Huawei Tech.(UK) Co Ltd	
Zein Nader	Vice Chairman	NEC Europe Ltd	
Zein Nader	Secretary	NEC Europe Ltd	
Mouquet Antoine	Technical Officer	ETSI	

- Very simple and lean organization without further sub-groups
- Organized by activities with formal Work Items for which Rapporteur is defined together with supporting companies (standard ETSI procedure)
- Around twenty companies with stable and active participation
 - Vendors Huawei, Nokia, Ericsson, NEC, SIAE, Ceragon,
 Operator DT, Vodafone, TIM, BT
 Antenna Huber+Suhner, Commscope, RFS (Nokia)
 Semiconductor Infineon, ST Microelectronics, IMEC, Filtronic, Maxlinear

Role of wireless backhaul in Mobile Networks

Wireless Backhaul Evolution Delivering next-generation connectivity

volving 4G and 5G networks require significant additional, ffordable backhaul spectrum.

Wireless backhaul – using new and refarmed spectrum bands – will be vital as fibre will not be available or affordable in many areas. This will only be possible with the right regulatory decisions.

WIRELESS BACKHAUL DOMINATES

Microwave and millimetre wave backhaul will continue to be used by a majority of global macro and small cell backhaul links from 2021 to 2027. Followed by fibre as the second most popular option.

Source: GSMA Spectrum for Wireless Backhaul (Feb 2021)

- Over 70% of macro sites connected with microwave and millimeter-wave backhaul, with significant regional differences
- E-Band applications growing fast at more than 50% CAGR
 - >150k links in operation
 - >25% of total MW + mmWave shipments in 2020
- Necessity of spectrum regulations and licensing at E-Band to incentivize a Fast Time To Market deployment of high throughput 5G services

More than 4 Million links in operation worldwide

© ETSI 2022

Release 1.0 2022.02.08

Wireless backhaul trends

- Long term "x-haul" capacity increase to
 - 5 Gbit/s to rural and suburban sites
 - 10 Gbit/s to suburban and urban sites
 - 25 Gbit/s for future hot spots in dense urban sites
- Star-topologies (hub and spikes)
 - shorter network (one hop from fiber PoP to the tail site)

- Shorter hops to tail site
 - 20% of the link shorter than 1km
 - 60% of the links shorter than 4km

E-Band (future W/D-Band) E-Band + MW (BCA)

- 70% of the links shorter than 7km
- Further densifications in dense urban scenarios (<300m)

Calculated in rain region P

Big opportunity for E-Band and BCA links in urban and dense urban scenarios

Economics of Backhaul are Changing Rapidly

Spectrum fees have grown into one of the major single items in an Operator's TCO

 Raw cost of spectrum per MHz is sometimes based on formulas born when 3.5 – 7 – 14 MHz were the channel sizes of choice © ETSI 2022

During the past 10 years

- MW capacity needs for Mobile
 Operators increased <u>x 15</u> for delivering
 higher peak speeds
- MW Spectrum in the 6 42 GHz is not enough for delivering expected 5G capacity; that's why offload to E-Band spectrum is taking place

GSMA launched a report to tackle the issue of backhaul spectrum crunch and costs

ISG mWT

ISG mWT 2023-24 work plan (1)

- Modernization of MW and mmWave backhaul to better fit 5G deployments
 - Introduction of new technologies
 - Innovative antennas
 - Interference mitigation and cancellation techniques
 - New way of evaluating backhaul performance, new KPIs based on:
 - Evolution of the transported services
 - From availability of backhaul capacity to actual traffic (BTA Backhaul Traffic Availability) weighing the microwave or millimeter-wave link outage with the RAN traffic cumulative distribution function
 - BTA values targeting End-to-End end user satisfaction (Backhaul + radio to UE)
 - Impact on spectrum regulations and standards, moving from individual links to "hub" systems of PtP links sharing and managing area radio resources
- Spectrum Agenda, contribute to improve spectrum regulations and licensing in order to better fit 5G requirements and technology evolution
- Go beyond 90 GHz
 - "Consolidate" W-Band and D-Band (applications, equipment standards, spectrum regulations, ...)
 - Explore applications and ensure availability of spectrum for frequencies above 175 GHz

ISG mWT 2023-24 work plan (2)

- Analysis of wireless front-haul
 - Systematic discussion in ISG mWT collecting information and different views from both operators and vendors on requirements, applications, etc.
 - Otential drive of the specifications in order to make it more "wireless transport friendly"
 - Analysis of potential impacts on E-Band and upcoming W-Band and D-Band.
- Networking and automation aspects
 - SDN related activities
 - Continue the in-progress activities
 - Automation of E2E Ethernet/IP packet switching and routing services
 - New use cases
 - MW and mmWave backhaul/x-haul support of E2E network slicing
 - Security aspects

Introduction Of ISG mWT

Rationale For New KPIs To Evaluate Wireless Backhaul Performance

- Background And Overview
- Ourrent Planning
- Statistical Nature Of RAN Traffic
- Oefinition Of BTA Backhaul Traffic Availability
- Towards a 3 Check Points Planning Method
 - PIR + BTA + CIR
 - Planning Examples
- Planning & Measuring BTA In Live Networks
- Conclusions & Future Work

Introduction Of ISG mWT

- Rationale For New KPIs To Evaluate Wireless Backhaul Performance
 - Background And Overview
 - Current Planning
 - Statistical Nature Of RAN Traffic
 - Oefinition Of BTA Backhaul Traffic Availability
- Towards a 3 Check Points Planning Method
 - PIR + BTA + CIR
 - Planning Examples
- Planning & Measuring BTA In Live Networks
- Conclusions & Future Work

Wireless Backhaul Evolution

Backhaul Capacity Demand [Mbit/s]

ETSI ISG mWT Activity On "New KPIs For Planning"

ISG mWT

Background

MW/mmWave wireless Backhaul **extra cost** due to link **over-engineering** is not affordable any more in terms of spectrum resources (license fees), size of antennas, products and energy consumption

Matter of Fact

Today link planning approach based on Committed Information Rate (CIR) and Peak Information Rate (PIR) does **not consider** that **99%** of the Backhaul traffic is **data**

Goal

Definition of **new KPIs for planning** MW/mmWave **Backhaul links**, accounting for:

- ➤ more challenging requirements coming from 5G deployment
- > new technologies aiming at more efficient interference mitigation and cancellation
- ➢ increase of use of spectrum in the mmWave range, both stand-alone and aggregated (BCA)
- ➢ different typologies and mix of services transported

Vision

Backhaul link seen as a part of the overall E2E User Experience, in terms of minimum rate availabilities and optimal response to the specific RAN traffic demand

© ETSI 2022

13

Release 1.0 2022.02.08

Work Item 28 Roadmap: **2+** years and **30+** contributions

Introduction Of ISG mWT

Rationale For New KPIs To Evaluate Wireless Backhaul Performance

- Background And Overview
- Current Planning
- Statistical Nature Of RAN Traffic
- Oefinition Of BTA Backhaul Traffic Availability
- Towards a 3 Check Points Planning Method
 - PIR + BTA + CIR
 - Planning Examples
- Planning & Measuring BTA In Live Networks
- Conclusions & Future Work

- > Minimum link capacity (CIR) to be guaranteed with a target link availability (4 to 5 nines)
- Maximum link capacity (PIR) based on RAT and to be guaranteed with a less conservative availability target (3 nines, 2 nines), with no strong rationales

- > Minimum link capacity (CIR) to be guaranteed with a target link availability (4 to 5 nines)
- Maximum link capacity (PIR) based on RAT and to be guaranteed with a less conservative availability target (3 nines, 2 nines), with no strong rationales

Traffic demand is a continuous set of values with certain occurrence probabilities, and this is **not** currently **taken into account**

© ETSI 2022

18

Release 1.0 2022.02.08

ISG mWT

Why requiring 99.9% availability for a peak rate that is demanded by the RAN with a small probability?

ARE WE OVER-ENGINEERING THE LINK? ... or equivalently... IS TCO TOO EXPENSIVE?

New KPIs for Backhaul Planning tailored to the expected traffic statistics of the links are needed !

ETS

Introduction Of ISG mWT

Rationale For New KPIs To Evaluate Wireless Backhaul Performance

- Background And Overview
- Current Planning
- Statistical Nature Of RAN Traffic
- Oefinition Of BTA Backhaul Traffic Availability
- Towards a 3 Check Points Planning Method
 - PIR + BTA + CIR
 - Planning Examples
- Planning & Measuring BTA In Live Networks
- Conclusions & Future Work

1st Actor: RAN Traffic

> RAN traffic is a statistical random variable determined by:

- > end users number, type, habits and behavior
- ➤ end users device performance and geo-distribution
- ➤ deployed RATs
- > RAN design in terms of coverage and interference
- ≻ etc.

RAN traffic pattern example during 10 days

RAN site daily traffic patterns for 7 days

ISG mWT

© ETSI 2022

Release 1.0 2022.02.08

1st Actor: RAN Traffic

> RAN traffic is a statistical random variable determined by:

- > end users number, type, habits and behavior
- ➤ end users device performance and geo-distribution
- ➤ deployed RATs

➤ etc.

 \succ RAN design in terms of coverage and interference

Probability density function of RAN aggregated traffic

RURAL URBAN URBAN (year 1) (year 2) by: Traffic [bit/s]

The only PDF (or CDF) curve is sufficient to provide the overall description of the RAN traffic that shall be delivered by the backhaul link

© ETSI 2022

2nd Actor: Backhaul Capacity

The Backhaul capacity provided by a link using ACM is a statistical random variable

Putting BH Capacity And RAN Traffic Together

Putting BH Capacity And RAN Traffic Together

Introduction Of ISG mWT

Rationale For New KPIs To Evaluate Wireless Backhaul Performance

- Background And Overview
- Ourrent Planning
- Statistical Nature Of RAN Traffic
- Definition Of BTA Backhaul Traffic Availability
- Towards a 3 Check Points Planning Method
 - PIR + BTA + CIR
 - Planning Examples
- Planning & Measuring BTA In Live Networks
- Conclusions & Future Work

When does the Backhaul fail in delivering the entire amount of RAN traffic demand?

If c_3 is in outage **AND** RAN traffic is in region A

0.1% **X** 10%

© ETSI 2022

Release 1.0 2022.02.08

Release 1.0 2022.02.08

BTA represents

the probability that the **Backhaul link** is capable to **deliver 100%** of the aggregated **RAN** traffic, therefore with **no impacts** on **End User Experience**

and, consequently

the probability that the **Backhaul link** does **not congest** the aggregated RAN traffic

Backhaul Traffic Availability (BTA) = 1 – 0.049 % = 99.951 %

BTA Mathematical Formulation

$$BTA = 1 - P(T_{RAN} > c_N) - \alpha_{out}(c_N)P(c_{N-1} < T_{RAN} \le c_N) +$$

$$- \alpha_{out}(c_{N-1})P(c_{N-2} < T_{RAN} \le c_{N-1}) +$$

$$- \alpha_{out}(c_{N-2})P(c_{N-3} < T_{RAN} \le c_{N-2}) - \dots$$

$$- \alpha_{out}(c_1) P(T_{RAN} \le c_1)$$

$$\alpha_{out}(c_n) = \text{outage of Backhaul capacity } c_n$$

(from ITU-R P.530)

36

Release 1.0 2022.02.08
Planning of Backhaul links with BTA metric should be based on specific assumptions on the traffic statistics of the hops (that depend on site configurations, traffic load, expected capacity growth, etc.). Probability density function of RAN aggregated traffic

E-band @ 2 km

E-band 500 MHz Dual Pol, 60 cm antennas (42 mm/h)

762	1526	2289	3053	3817	4580	5344	6108	6872
Mbit/s	Mbit/s	Mbit/s	Mbit/s	Mbit/s	Mbit/s	Mbit/s	Mbit/s	Mbit/s
99,998	99,996	99,994	99,993	99,991	99,986	99,980	99,975	99,957
%	%	%	%	%	%	%	%	%

Probability density function of RAN aggregated traffic

Cumulative distribution function of RAN aggregated traffic

E-band @ 2 km

E-band 500 MHz Dual Pol, 60 cm antennas (42 mm/h)

762	1526	2289	3053	3817	4580	5344	6108	6872
Mbit/s	Mbit/s	Mbit/s	Mbit/s	Mbit/s	Mbit/s	Mbit/s	Mbit/s	Mbit/s
99,998	99,996	99,994	99,993	99,991	99,986	99,980	99,975	99,957
%	%	%	%	%	%	%	%	%

Probability density function of RAN aggregated traffic

Cumulative distribution function of RAN aggregated traffic

E-band @ 4 km

E-band 500 MHz Dual Pol, 60 cm antennas (42 mm/h)

762	1526	2289	3053	3817	4580	5344	6108	6872
Mbit/s	Mbit/s	Mbit/s	Mbit/s	Mbit/s	Mbit/s	Mbit/s	Mbit/s	Mbit/s
99,989	99,980	99,971	99,966	99,956	99,936	99,903	99,876	99,769
%	%	%	%	%	%	%	%	%

E-band @ 2 km

E-band 500 MHz Dual Pol, 60 cm antennas (42 mm/h)								
6872 Mbit/	6108 Mbit/s	5344 Mbit/s	4580 Mbit/s	3817 Mbit/s	3053 Mbit/s	2289 Mbit/s	1526 Mbit/s	762 Mbit/s
99,95	99,975 %	99,980 %	99,986 %	99,991 %	99,993 %	99,994 %	99,996 %	99,998

Probability density function of RAN aggregated traffic

Cumulative distribution function of RAN aggregated traffic

- BTA degradation versus the extension of the link length does not scale linearly with PIR availability degradation, but follows more the degradation of the link capacities between CIR and PIR, according to the specific RAN traffic distribution
- This fact, in conjunction with End User Experience simulations results (presented in the following), clearly shows that MW/mmWave Backhaul maximum link distances can be stretched much more than current best practices adopted by MNOs (e.g., 2km for a stand alone E-Band, 7km for BCA link with E-Band)
- It is possible to increase the use of spectrum in the mmWave range (both stand-alone and BCA) with all related TCO advantages (lower spectrum cost and less MW/mmWave radios to be deployed) and by avoiding low-bands spectrum congestion risks

Content

Introduction Of ISG mWT

- Rationale For New KPIs To Evaluate Wireless Backhaul Performance
 - Background And Overview
 - Ourrent Planning
 - Statistical Nature Of RAN Traffic
 - Oefinition Of BTA Backhaul Traffic Availability

Towards a 3 Check Points Planning Method

- IR + BTA + CIR
- e Planning Examples
- Planning & Measuring BTA In Live Networks
- Conclusions & Future Work

Current 2 Check Points Planning

Current 2 Check Points Planning

PIR is often calculated with **closed-form formulas** depending on the specific **RATs** employed

Limits:

- PIR might be never impacting RAN traffic (e.g., if PIR is calculated as the sum of peaks of all RAT layers)
- No clear relationship between actual End User Experience and PIR target requirements

Current 2 Check Points Planning

44

CIR is even more **disconnected** from data traffic delivery and user experience

- from 2G to 3G era CIR was associated to minimum link capacity to be delivered with voice services availability
- with 4G and beyond CIR started to follow the evolution of PIR, maintaining very high target availability (4 to 5 nines) and becoming the most stringent link design criteria in most cases

Current 2 Check Points Planning

Proposed 3 Check Points Planning

Content

Introduction Of ISG mWT

- Rationale For New KPIs To Evaluate Wireless Backhaul Performance
 - Background And Overview
 - Ourrent Planning
 - Statistical Nature Of RAN Traffic
 - Oefinition Of BTA Backhaul Traffic Availability

Towards a 3 Check Points Planning Method

- Planning Examples
- Planning & Measuring BTA In Live Networks
- Conclusions & Future Work

PIR = Max + Allowance

Analysis performed on unloaded 20MHz LTE

2600 site with device limited to 100Mbps

40

Max from 15 min measures

Content

Introduction Of ISG mWT

- Rationale For New KPIs To Evaluate Wireless Backhaul Performance
 - Background And Overview
 - Ourrent Planning
 - Statistical Nature Of RAN Traffic
 - Oefinition Of BTA Backhaul Traffic Availability

Towards a 3 Check Points Planning Method

- IR + BTA + CIR
- Planning Examples
- Planning & Measuring BTA In Live Networks
- Conclusions & Future Work

Target BTA

MNOs can define **minimum BTA targets** by **allocating** a certain congestion probability (from overall network E2E congestion probability) to MW/mmWave Backhaul links

Target BTA

MNOs can define **minimum BTA targets** by **allocating** a certain congestion probability (from overall network E2E congestion probability) to MW/mmWave Backhaul links

51

Release 1.0 2022.02.08

1st Simulation Campaign

250 MHz E-band Backhaul Link

One 5G RAN site

3GPP-based Virtual Reality, Cloud Gaming & FTP traffic models

E-band Backhaul link

Single Polarization, 250 MHz $C_{BH} \in [189, 379, 569, 759, 949, 1139, 1329, 1519, 1708, 1803]$ Mbit/s *Virtually* infinite buffer lengths

5G New Radio Cellular Network (3.5 GHz)

Bandwidth = 100 MHz Total number of cells = 1 Total number of sectors = 3 DL/UL ratio = 4:1 3GPP TR 38.901 channel model

© ETSI 2022

Release 1.0 2022.02.08

Advantages

> The proposed approach is able to capture congestion phenomena occurring over both RAN and Backhaul

Assumptions

> No traffic congestion management mechanisms / queue admission control policies (provided by

higher level protocols) are implemented here (conservative choice)

Scenar	io 1	IRCE: Huaw	vei			ETSI	\bigcirc
		← leng pack	Inter-arrival timegth>ket n	packet <i>n+1</i>		▶ time	
	Packet Generation Rate	Average Data Rate (R)	Packets Length	Packets Inter-arrival Time	REQUIREM HAPPY Packet	ENTS FOR USER Packet	Source
	(F)				Delay Budget	Success Rate	
100 % UEs	s run Virtua	al Reality	Mbit	S	[ms]	[%]	
100 % VR (DL)	60	30	Truncated Gaussian random variable (with mean R/F Mbit)	1/F + Truncated Gaussian random variable (with mean 0 ms)	10	99	3GPP TR 38.838 V17.0.0

A BTA requirement of <u>~ 99.9%</u> may at least <u>DOUBLE</u> the achievable distance (with respect to current criteria) in many <u>E-band / BCA</u> scenarios, with a <u>negligible impact</u> on the Avg % Of <u>Happy Users</u>

A BTA requirement of ~ 99.9% may at least DOUBLE the achievable distance (with respect to current criteria) in many E-band / BCA scenarios, with a negligible impact on the Avg % Of Happy Users

SOURCE: Huawei

Packet A Generation D		Average Data Rate	Packets Length	Packets Inter-arrival Time	REQUIREM HAPPY	ENTS FOR USER	Source	
		Rate (F)	(R)			Packet Delay Budget	Packet Success Rate	
		[Hz]	[Mbit/s]	Mbit	S	[ms]	[%]	
67 %	VR (DL)	60	30	Truncated Gaussian random variable (with mean R/F Mbit)	1/F + Truncated Gaussian random variable (with mean 0 ms)	5, 10, 20, 30	95, 99, 99.5, 99.9, 99.95	3GPP TR 38.838 V17.0.0
33 %	FTP (DL)	-	-	4	Exponentially distributed random variable (mean = 5 s)	600	100	3GPP TR 36.814 V9.2.0

60

Scenario 2

Release 1.0 2022.02.08

(a) Average % Of Happy Users

SOURCE: Huawei

Backhaul link length = 0 km, BTA = 99.997 % (*)

Packet Delay Budget

		5 ms	10 ms	20 ms	30 ms
פרת	95 %	13,097 %	44,082 %	56,826 %	63,103 %
2	99 %	3,007 %	32,497 %	51,591 %	58,910 %
er succe	99.5 %	1,549 %	28,755 %	49,668 %	56,694 %
	99.9 %	0,238 %	15,457 %	43,788 %	53,072 %
ב עמ	99.95 %	0,033 %	11,751 %	41,679 %	51,193 %

(*) BTA @ 0 km is determined by the probability that RAN traffic > BH PIR

(a) Average % Of Happy Users

SOURCE: Huawei

Backhaul link length = 0 km, BTA = 99.997 % (*)

		5 ms	10 ms	20 ms	30 ms
Sate	95 %	13,097 %	44,082 %	56,826 %	63,103 %
SS R	99 %	3,007 %	32,497 %	51,591 %	58,910 %
ket Succe	99.5 %	1,549 %	28,755 %	49,668 %	56,694 %
	99.9 %	0,238 %	15,457 %	43,788 %	53,072 %
Pack	99.95 %	0,033 %	11,751 %	41,679 %	51,193 %

Packet Delay Budget

(b) Drop in Average % Of Happy Users with respect to (a) in percentage points

Backhaul link length = 2.9 km, BTA = 99.983 %

tra	ditional plannir	ng	Packet De		
		5 ms	10 ms	20 ms	30 ms
ate	95 %	0,003	0,008	0,010	0,011
ss Ra	99 %	0,001	0,006	0,009	0,010
ncce	99.5 %	0,000	0,006	0,008	0,009
iet Si	99.9 %	0,000	0,004	0,007	0,009
Pack	99.95 %	0,000	0,003	0,008	0,008

(c) Drop in Average % Of Happy Users with respect to (a) in percentage points

Backhaul link length = 7.5 km, BTA = 99.9 %

			Packet Delay Budget						
		5 ms	10 ms	20 ms	30 ms				
ket Success Rate	95 %	0,026	0,055	0,069	0,078				
	99 %	0,006	0,039	0,061	0,072				
	99.5 %	0,003	0,044	0,058	0,059				
	99.9 %	0,001	0,030	0,042	0,061				
Pach	99.95 %	0,000	0,027	0,056	0,057				

- > 60 mm/h rain rate, 3.5 peak-to-median ratio
- > Max number of users = **90** (peak traffic = **2** Gbit/s)
- Drop in Average % of Happy Users is < 0.01</p> percentage points from **0 km to 2.9 km**, and **<** 0.07 percentage points from 2.9 km to 7.5 km

(*) BTA @ 0 km is determined by the probability that RAN traffic > BH PIR

(a) Average % Of Happy Users

SOURCE: Huawei

Backhaul link length = 0 km, BTA = 99.997 % (*)

			, 0						
		5 ms	10 ms	20 ms	30 ms				
ket Success Rate	95 %	13,097 %	44,082 %	56,826 %	63,103 %				
	99 %	3,007 %	32,497 %	51,591 %	58,910 %				
	99.5 %	1,549 %	28,755 %	49,668 %	56,694 %				
	99.9 %	0,238 %	15,457 %	43,788 %	53,072 %				
Pack	99.95 %	0,033 %	11,751 %	41,679 %	51,193 %				

Packet Delay Budget

(b) Drop in Average % Of Happy Users with respect to (a) in percentage points

Backhaul link length = 2.9 km, BTA = 99.983 %

tra	ditional plannir	g	Packet De		
		5 ms	10 ms	20 ms	30 ms
ate	95 %	0,003	0,008	0,010	0,011
ess Ra	99 %	0,001	0,006	0,009	0,010
tet Succes	99.5 %	0,000	0,006	0,008	0,009
	99.9 %	0,000	0,004	0,007	0,009
Pack	99.95 %	0,000	0,003	0,008	0,008

(c) Drop in Average % Of Happy Users with respect to (a) in percentage points

Backhaul link length = 7.5 km, BTA = 99.9 %

		Packet Delay Budget						
		5 ms	10 ms	20 ms	30 ms			
Packet Success Rate	95 %	0,026	0,055	0,069	0,078			
	99 %	0,006	0,039	0,061	0,072			
	99.5 %	0,003	0,044	0,058	0,059			
	99.9 %	0,001	0,030	0,042	0,061			
	99.95 %	0,000	0,027	0,056	0,057			

- > 60 mm/h rain rate, 3.5 peak-to-median ratio
- Max number of users = 90 (peak traffic = 2 Gbit/s)
- Drop in Average % of Happy Users is < 0.01
 percentage points from 0 km to 2.9 km, and <
 0.07 percentage points from 2.9 km to 7.5 km

(*) BTA @ 0 km is determined by the probability that RAN traffic > BH PIR

2nd Simulation Campaign

BCA Backhaul Link (E-band + 18 GHz)

Three 5G RAN sites

Realistic HD video and web browsing models

Backhaul (35 mm/h rain rate)

E-band (750 MHz, ACM) + 18 GHz (56 MHz, ACM) 6.92 km, peak rate = 3.58 Gbit/s

QoE measurement criteria Web browsing: download time for a 2MB file Video on-demand: DL streaming of HD video 4.5 DL video rate DL video delay 3.5 QoE ∈ [1,5] $f(\cdot)$ QoE value UL control rate 2.5 Buffering Audio quality 1.5 ø 0.5 1.5 2.5 3 3.5

QoE ∈ [1,5] measured according to ITU-T P.1203

QoE & **User Happiness**

SOURCE: Ericsson

<u>Backhaul</u> (35 mm/h rain rate)

Availability vs Backhaul Traffic Availability

E-band (750 MHz ACM) \pm 18 GHz (56 MHz ACM)

SOURCE: Ericsson

Backhaul (35 mm/h rain rate)

E-band (750 MHz ACM) \pm 18 CHz (56 MHz ACM)

BTA can be as low as 99.75%, and still the Video users and Web browsing users will have nearideal QoE

Content

Introduction Of ISG mWT

- Rationale For New KPIs To Evaluate Wireless Backhaul Performance
 - Background And Overview
 - Ourrent Planning
 - Statistical Nature Of RAN Traffic
 - Oefinition Of BTA Backhaul Traffic Availability

Towards a 3 Check Points Planning Method

- PIR + BTA + CIR
- e Planning Examples
- Planning & Measuring BTA In Live Networks
- Conclusions & Future Work

A New CIR Definition

ISG mWT

@ 99.99X%

CIR should **not** be simply estimated as a **percentage of PIR**

- baseline values landing in the range 1-2 % of PIR in case of PIR = 3 Gbit/s for 4G/5G backhaul
- extra traffic for GBR and ultra-Reliable services has no dependency on PIR

RAN survivability (Mbps) Top priority services (Mbps) PIR (Gbps) C-Plane S-Plane M-Plane Voice GBR uR (SLA) CIR (Mbps) 4G site 0,5 2,5 1 3 15 0 0 21,5
PIR (Gbps) C-Plane S-Plane M-Plane Voice GBR uR (SLA) CIR (Mbps) 4G site 0,5 2,5 1 3 15 0 0 21,5
4G site 0,5 2,5 1 3 15 0 0 21,5
5G site 2,5 12,5 1 3 15 31,5 + MNO specific
4G + 5G site 3 15 1 6 15 MNO specific 37 + MNO specific

Upper bound									
		RAN survivability (Mbps)		Top priority services (Mbps)					
		PIR (Gbps)	C-Plane	S-Plane	M-Plane	Voice	GBR	uR (SLA)	CIR (Mbps)
	4G site	0,5	2,5	1	5	30	0	0	38,5
	5G site	2,5	12,5	1	5	30		aacific	48,5 + MNO specific
	4G + 5G site	3	15	1	10	30		Jecinic	56 + MNO specific

Release 1.0 2022.02.08

Content

Introduction Of ISG mWT

- Rationale For New KPIs To Evaluate Wireless Backhaul Performance
 - Background And Overview
 - Ourrent Planning
 - Statistical Nature Of RAN Traffic
 - Oefinition Of BTA Backhaul Traffic Availability
- Towards a 3 Check Points Planning Method
 - PIR + BTA + CIR
 - Planning Examples
- Planning & Measuring BTA In Live Networks
- Conclusions & Future Work

current planning

PIR @ ≥ 99.9% CIR ~ 10% PIR @ ≥ 99.995%

(42 mm/h) 5 km									
	Capacity (Mbit/s)	Availability (%)							
	78	100,000%							
	89	100,000%							
	225	100,000%							
	340	99,999% CI	R ≈ 9.4% PIR						
	490	99,995%							
	725	99,988%	-						
	1311	99,977%							
	2864	99,958%							
	3676	99,951%							
_	4417	99,937% PI	K						
	5193	99,907%							

BTA = 99.970%

(with RAN peak-to-median \neq 3)

high traffic load condition

Release 1.0 2022.02.08

	current p PIR @ ≥ 99.9% CIR ~ 10% PIR	lanning , @ ≥ 99.995%	B C	ew planr TA ≥ 99.9% IR ~ 1.5% PIR (ning – 1 @ ≥ 99.995%	
(42 mn	n/h) 5 k i	m	x1.7	8,8	3 km	
	Capacity (Mbit/s)	Availability (%)		Capacity (Mbit/s)	Availability (%)	
	78	100,000%		78	99,999%]
	89	100,000%		89	^{99,9} CIR ≈ 1	5% PIR
	225	100,000%		225	99,997%	
	340	99,999% CI	R ≈ 9.4% PIR	340	99,992%	
	490	99,995%		490	99,967%	
	725	99,988%		1311	99,924%	
	1311	99,977%		2088	99,909%	
	2864	99,958%		2864	99,860%	
	3676	99,951%		3676	99,835%	
	4417	99,937% PI	R	4417	99,783% PI	K
	5193	99,907%		5193	99,657%	
	BTA =	99.970%		BTA =	99.9%	

ISG mWT

(with RAN peak-to-median (3)

(with RAN peak-to-median 🗧 3

C PI CI	urrent p R @ ≥ 99.9% R ~ 10% PIR	anning ‰ @ ≥ 99.995%	n BT CI	ew planr Ā ≥ 99.9% R ~ 1.5% PIR	ning – 1 @ ≥ 99.995%		new pla BTA ≥ 99.8 CIR ~ 1.5%	anning – 2 8% PIR @ ≥ 99.995%	6
(42 mm/	/h) 5 k	m	x1.76	8,8	8 km	X (fr	2.4 om 5 km)	12,1 km	
	Capacity (Mbit/s)	Availability (%)		Capacity (Mbit/s)	Availability (%)		Capacity (Mbit/s)	Availability (%)	
	78	100,000%		78	99,999%]	78	99,998%	
	89	100,000%		89	^{99,9} CIR ≈ 1	5% PIR	89	^{99,9} CIR ≈ 1	5% PIR
	225	100,000%		225	99,99776		225	99,991/0	<i>37</i> 0 mix
_	340	99,999% CH	R ≈ 9.4% PIR	340	99,992%		340	99,981%	
	490	99,995%		490	99,967%		448	99,953%	
	725	99,988%	-	1311	99,924%		1265	99,853%	
	1311	99,977%		2088	99,909%		2088	99,789%	
	2864	99,958%		2864	99,860%		2864	99,719%	
	3676	99,951%		3676	99,835%		3676	99,664%	
	4417	99,937% PI		4417	99,783% PI	K	4417	99,541%	IK
	5193	99,907%		5193	99,657%		5193	99,203%	
C	BTA = (with RAN pea	99.970% ak-to-median = 3)		BTA = (with RAN pea	= 99.9% ak-to-median (3)		BTA = (with RAN pe	= 99.801% eak-to-median (3)	i mWT

C PI C	a urrent p R @ ≥ 99.9% IR ~ 10% PIR	anning % @ ≥ 99.995%	BT CI	ew planı A ≥ 99.9% R ~ 1.5% PIR	ning – 1 @ ≥ 99.995%		new BTA ≥ S CIR ~ 1	plan 99.8% 1.5% PIR	ning – 2 @ ≥ 99.9959	6
(42 mm,	/h) 5 k	m	x1.76	8,8	8 km) (fr	2.4 rom 5 km)	12,	,1 km	
	Capacity (Mbit/s)	Availability (%)		Capacity (Mbit/s)	Availability (%)		Capa (Mbi	icity it/s)	vailability (%)	
	78	100,000%		78	99,999%		78	3	99,998%	
	89	100,000%		89	^{99,5} CIR ≈ 1	5% PIR	89	Ð	^{99,9} CIR ≈ 1	5% PIR
	225	100,000%		225	99,99770	<i>57</i> 01 IIX	22	5	99,991%	<i>37</i> 0 T IIX
	340	99,999% CH	? ≈ 9.4% PIR	340	99,992%		34	0	99,981%	
	490	99,995%		490	99,967%		44	8		
	725	99,988%		1311	99,924%		126	55 6.5% I	PIR (e.g., with	SLA
	1311	99,977%		2088	99,909%		208	₃₈ traffic) is still delive	red
	2864	99,958%		2864	99,860%		286	54 with h	iigh availabilit	y (<u>only</u>
	3676	99,951%		3676	99,835%	5	367	7€ <u>100 m</u>	inutes of outa	<u>age in</u>
	4417	99,937% PIF		4417	99,783%		44:	¹⁷ <u>a year</u>	<u>_</u>)	
	5193	99,907%		5193	99,657%		519	93	33,203%	
G	BTA = (with RAN pea	99.970% ak-to-median 3)		BTA = (with RAN pea	= 99.9% ak-to-median (3)		B (with RA	TA = 99 N peak-t	0.801% co-median (3)	imWT

Planning Example 2 – E band (1 GHz, Single Pol)

ISG mWT

Release 1.0 2022.02.08

(with RAN peak-to-median ≥ 3)

© ET

(with RAN peak-to-median ≥ 3)

Content

Introduction Of ISG mWT

- Rationale For New KPIs To Evaluate Wireless Backhaul Performance
 - Background And Overview
 - Ourrent Planning
 - Statistical Nature Of RAN Traffic
 - Oefinition Of BTA Backhaul Traffic Availability
- Towards a 3 Check Points Planning Method
 - PIR + BTA + CIR
 - Planning Examples

Planning & Measuring BTA In Live Networks

Conclusions & Future Work

RAN traffic PDF curves represent the amount of traffic to be delivered to make all End Users happy

MNO-defined model (from measures)

e.g., addressing different RAT layers and spectra within RAN site, number of RAN sites backhauled, rural and urban scenarios, etc.

Parametric model

Beta distribution with certain parameters (a,b) and maximum value estimated as "busy hour RAN site capacity" (e.g. using NGMN formulae)

$$p(x) = \frac{x^{a-1}(1-x)^{b-1}}{B(a,b)}$$

Uniform Distribution (unrealistic)

flat PDF with maximum value estimated with RATdependent formulas (e.g. using NGMN guidelines)

Calculated max traffic (from formulae)

Traffic [bit/s]

Network Planning

No changes on propagation-related **fading prediction models** (ITU-R P.530)

Planning tools will additionally evaluate **BTA** based on:

> a vector of BH capacity and availability pairs accounting for the ITU-R P.530 fading prediction models

> a **RAN traffic PDF** (based on measurements or parametric models)

$$F_{x}(a,b) = \int_{0}^{x} \left(\frac{t}{t_{max}}\right)^{a,1} \left(1 - \left(\frac{t}{t_{max}}\right)^{b,1} dt \right) \int_{0}^{1} \left(\frac{t}{t_{max}}\right)^{a,1} \left(1 - \left(\frac{t}{t_{max}}\right)^{b,1} dt\right)$$

RAN traffic CDF

x3 traffic growth

04 05 06 07 08 09

t [Mbit/s]

2000

6000

7000

ISG mWT

Set the overall MW Backhaul congestion probability target **MW**_{cong} Single link to fiber POP Hub & Spoke on fiber POP Fiber POP $(1 - BTA)_{1}$ $(1 - BTA)_{N}$ $(1 - BTA)_{N}$ $(1 - BTA)_1$ **Fiber POP** $(1 - BTA)_1 = \mathbf{MW}_{cong}$ $(1 - BTA)_1 = \cdots = (1 - BTA)_N = \mathbf{MW}_{cong}$ **Daisy chain to fiber POP** For example: $(1 - BTA)_1$ radio link $(1 - BTA)_2$ $(1 - BTA)_1 = \frac{1}{3} MW_{cong}$ Fiber POP $(1 - BTA)_2 = \frac{2}{3} MW_{cong}$ $(1 - BTA)_1 + (1 - BTA)_2 < MW_{cong}$ **ISG mWT** © ETSI 2022 Release 1.0 2022.02.08

ETS

BTA Planning In Multi-hop Topologies

Measuring BTA In Live Networks

(1-BTA) can be estimated with currently available PM counters (with 5-15 minutes granularity) for assessing the adequacy status of the Backhaul radio link in operations

If (C_{BH} – C_{AVG})/C_{BH} < threshold (%) => Traffic congestion => (1-BTA) incremented by 15 minutes

Different PM time granularities (15min, 5min, etc.) lead to different thresholds (20%, 10%, 5%, etc.), that need to be tested and defined through network measurement campaigns

83

Release 1.0 2022.02.08

BTA To Monitor New Technologies Operation

Efficient power consumption is a new MW/mmWave technology that intentionally <u>reduces the maximum</u> <u>available link capacity for several hours a day</u> in order to optimize energy efficiency

% amount of traffic versus peak & number of activated carriers (exemplary long-haul link with a total of 4 carriers)

- BTA can be used to assess residual risk to create RAN traffic congestions during "predicted low traffic periods", therefore allowing the MNO to set proper rules for defining low traffic periods, considering prediction algorithms accuracy
- BTA can be used both in the planning phase and during network operation

Content

Introduction Of ISG mWT

- Rationale For New KPIs To Evaluate Wireless Backhaul Performance
 - Background And Overview
 - Ourrent Planning
 - Statistical Nature Of RAN Traffic
 - Oefinition Of BTA Backhaul Traffic Availability
- Towards a 3 Check Points Planning Method
 - PIR + BTA + CIR
 - Planning Examples
- Planning & Measuring BTA In Live Networks

Conclusions & Future Work

Conclusions

- Introduction of New KPIs for the evaluation of performance and availability of wireless Backhaul to avoid overengineering of the hops, or equivalently, to extend hop lengths especially for E-Band and Band Aggregation
- Make wireless Backhaul as part of the overall E2E network moving from availability of a Backhaul capacity to the availability of traffic according to the RAN requirements
 - Why requiring 99.9% availability for a peak rate that is demanded by the RAN with a small probability?
 - Weigh Backhaul outage probabilities with the probability distribution function of the RAN traffic => definition of
 BTA Backhaul Traffic Availability
 - Oefine targets for BTA on the basis of E2E QoE of the RAN Users simulations outcomes demonstrate that BTA target can be pushed up to 99.7% 99.9% with negligible impact on End User Quality of Experience with respect to the ideal Backhaul scenario for any mix of services analyzed
 - **Definition of CIR** based on RAN sites survivability and very high value traffic
- Towards a new planning method based on 3 Check Points (CIR for very high priority traffic, PIR with 5-10 dB fade margin, BTA @ 99.7% 99.9%)

© ETSI 2022

Future Work

- Promotion of the novel vision and paradigm with other Standardization Bodies and Local National Administrations
- Identification of further technical contributions from ETSI ISG mWT Members to improve the "New KPIs" ecosystem and to ease its adoption in next generation planning tool releases, with emphasis on the definition of application-specific traffic distribution benchmarks
- Promotion of pilot projects and experiments focused both on corroborating the value of the novel planning approach and on assessing its impacts on real network scenarios
- Investigation of the "New KPIs" paradigm in more complex wireless Backhaul network scenarios

