ETSI GR NFV-EVE 022 V0.0.3 (2021-12)
8
Release #
[bookmark: doctype][bookmark: pages12][bookmark: docnumber][bookmark: docversion][bookmark: docdate]ETSI GR NFV-EVE 022 V0.0.3 (2021-12)

GROUP REPORT
[bookmark: doctitle]Network Functions Virtualisation (NFV) Release 5;
Architectural Framework;
Report on VNF configuration
<

[image: ETSI_BG_final_new]
This DRAFT is a working document of ETSI. It is provided for information only and is for future development work within ETSI. DRAFTS may be updated, deleted, replaced, or obsoleted by other documents at any time.
ETSI and/or its Members have no liability for any current or further use/implementation of the present DRAFT.
Do not use as reference material.
Do not cite this document other than as "work in progress."
Any draft approved and PUBLISHED shall be obtained exclusively as a deliverables via the ETSI Standards search page at:
http://www.etsi.org/standards-search

[bookmark: page2]Reference
DGR/NFV-EVE022
Keywords
Configuration, NFV

[bookmark: ETSIinfo]ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
[bookmark: mailto]If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI yyyy.
[bookmark: tbcopyright]All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPPTM and LTETM are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Contents
Intellectual Property Rights	5
Foreword	5
Modal verbs terminology	5
Executive summary	5
Introduction	5
1	Scope	6
2	References	6
2.1	Normative references	6
2.2	Informative references	6
3	Definition of terms, symbols and abbreviations	6
3.1	Terms	6
3.2	Symbols	7
3.3	Abbreviations	7
4	VNF configuration	7
4.1	General	7
4.2	VNF configuration items	7
4.3	VNF configuration methods	8
4.3.1	Overview	8
4.3.2	Method #A	8
4.3.2.1	General description	8
4.3.2.2	Detailed description	9
4.3.3	Method #B	9
4.3.3.1	General description	9
4.3.3.2	Detailed description	10
4.3.4	Method #C	10
4.3.4.1	General description	10
4.3.4.2	Detailed description	11
5	VNF configuration use cases	11
6	Analysis and Key Issues	11
6.1	General	12
6.2	Use Case #1	12
6.2.1	Implementation options	12
6.2.2	Key Issues	12
6.3	Use Case #2	12
6.4	Use Case #N	12
7.	Potential Solutions	12
8.	Recommendations for future work	12
8.1	General recommendations	12
8.2 	Recommendations on functional behaviour	12
8.3 	Recommendations on descriptors	12
8.4 	Recommendations on interfaces	12
8.5	Security related recommendations	12
8.6	Recommendations related to cross-organizations collaboration	12
Annex A: Title of annex	13
Annex B: Title of annex	14
B.1	First clause of the annex	14
B.1.1	First subdivided clause of the annex	14
Annex: Bibliography	15
Annex : Change History	16
History	17

[bookmark: _Toc455504134][bookmark: _Toc481503672][bookmark: _Toc527985136][bookmark: _Toc19024829][bookmark: _Toc84926028]Intellectual Property Rights
Essential patents
IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
[bookmark: _Toc455504135][bookmark: _Toc481503673][bookmark: _Toc527985137][bookmark: _Toc19024830][bookmark: _Toc84926029]Foreword
[bookmark: For_tbname][bookmark: For_shortname]This Group Report (GR) has been produced by ETSI Industry Specification Group Network Functions Virtualisation (NFV).
[bookmark: _Toc455504136][bookmark: _Toc481503674][bookmark: _Toc527985138][bookmark: _Toc19024831][bookmark: _Toc84926030]Modal verbs terminology
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
[bookmark: _Toc455504137][bookmark: _Toc481503675][bookmark: _Toc527985139][bookmark: _Toc19024832][bookmark: _Toc84926031]Executive summary

[bookmark: _Toc455504138][bookmark: _Toc481503676][bookmark: _Toc527985140][bookmark: _Toc19024833][bookmark: _Toc84926032]Introduction

[bookmark: _Toc455504139][bookmark: _Toc481503677][bookmark: _Toc527985141][bookmark: _Toc19024834][bookmark: _Toc84926033]1	Scope
The present document provides guidelines on the use of the VNF configuration options enabled by the NFV architectural framework. It identifies gaps in NFV specifications preventing interoperability between VNFs and independently-developed VNF configuration management functions, and/or preventing easy integration of VNF configuration management in VNF lifecycle management processes. The present document provides recommendations on normative work to be carried out to fill these gaps.
[bookmark: _Toc455504140][bookmark: _Toc481503678][bookmark: _Toc527985142][bookmark: _Toc19024835][bookmark: _Toc84926034]2	References
[bookmark: _Toc455504141][bookmark: _Toc481503679][bookmark: _Toc527985143][bookmark: _Toc19024836][bookmark: _Toc84926035]2.1	Normative references
Normative references are not applicable in the present document.
[bookmark: _Toc455504142][bookmark: _Toc481503680][bookmark: _Toc527985144][bookmark: _Toc19024837][bookmark: _Toc84926036]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.nfv003] 	ETSI GR NFV 003: "Network Functions Virtualisation (NFV); Terminology for main concepts in NFV"
[i.m3400]	ITU-T Recommendation M.3400, 02/2000: " Telecommunications management network : TMN management functions".
[i.rfc6241]	IETF RFC 6241, June 2011: “Network Configuration Protocol (NETCONF)”
[i.gNMI]	gNMI - gRPC Network Management Interface
NOTE:	Available at: https://github.com/openconfig/gnmi
[i.sol001]	ETSI GS NFV-SOL 001: "Network Functions Virtualisation (NFV) Release 3; Protocols and Data Models; NFV descriptors based on TOSCA specification".
[i.sol002]	ETSI GS NFV-SOL 002: "Network Functions Virtualisation (NFV) Release 3; Protocols and Data Models; RESTful protocols specification for the Ve-Vnfm Reference Point".
[i.sol003]	ETSI GS NFV-SOL 003: "Network Functions Virtualisation (NFV) Release 3; Protocols and Data Models; RESTful protocols specification for the Or-Vnfm Reference Point".
[i.sol005]	ETSI GS NFV-SOL 005: "Network Functions Virtualisation (NFV) Release 3; Protocols and Data Models; RESTful protocols specification for the Os-Ma-nfvo Reference Point".
[i.ifa006]	ETSI GS NFV-IFA 006: "Network Functions Virtualisation (NFV) Release 3; Management and Orchestration; Vi-Vnfm reference point - Interface and Information Model Specification".
[i.ifa007]	ETSI GS NFV-IFA 007: "Network Functions Virtualisation (NFV) Release 3; Management and Orchestration; Or-Vnfm reference point - Interface and Information Model Specification".
[i.ifa008]	ETSI GS NFV-IFA 008: "Network Functions Virtualisation (NFV) Release 3; Management and Orchestration; Ve-Vnfm reference point - Interface and Information Model Specification".

[i.ifa011]	ETSI GS NFV-IFA 011: "Network Functions Virtualisation (NFV) Release 3; Management and Orchestration; VNF Descriptor and Packaging Specification".
[i.ifa013]	ETSI GS NFV-IFA 013 : "Network Functions Virtualisation (NFV) Release 3; Management and Orchestration; Os-Ma-nfvo reference point - Interface and Information Model Specification".
[i.nfvregistry]	ETSI Registry for non-MANO artifact sets.
NOTE : 	Available at https://nfvwiki.etsi.org/index.php?title=Non_MANO_artifact_sets
[i.rfc7386]	IETF RFC 7396: JSON Merge Patch, October 2014.

[bookmark: _Toc451532925][bookmark: _Toc527985145][bookmark: _Toc19024838][bookmark: _Toc84926037]3	Definition of terms, symbols and abbreviations
[bookmark: _Toc451532926][bookmark: _Toc527985146][bookmark: _Toc19024839][bookmark: _Toc84926038]3.1	Terms
For the purposes of the present document, the [following] terms [given in ... and the following] apply:

[bookmark: _Toc455504145][bookmark: _Toc481503683][bookmark: _Toc527985147][bookmark: _Toc19024840][bookmark: _Toc84926039]3.2	Symbols
For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

[bookmark: _Toc455504146][bookmark: _Toc481503684][bookmark: _Toc527985148][bookmark: _Toc19024841][bookmark: _Toc84926040]3.3	Abbreviations
For the purposes of the present document, the abbrevations given in ETSI GR NFV 003 [i.nfv003] and the following apply:
DHCP	Dynamic Host Configuration Protocol
NETCONF	Network Configuration
gNMI	gRPC Network Management Interface
TMN	Telecommunications Management Network
OSI	Open Systems Interconnection

[bookmark: _Toc84926041][bookmark: _Toc455504147][bookmark: _Toc481503685][bookmark: _Toc527985149][bookmark: _Toc19024842]4	VNF configuration
[bookmark: _Toc455504148][bookmark: _Toc481503686][bookmark: _Toc527985150][bookmark: _Toc19024843][bookmark: _Toc84926042]4.1	General
Configuration management is one of the five functional areas of the Telecommunications Management Network (TMN) model. ITU-T Recommendation M.3400 [i.m3400] defines configuration management as a management functional area that provides functions to exercise control over, identify, collect data from and provide data to network elements. The present document focuses on configuration management for providing configuration data to VNFs and collecting such data from these VNFs.
[bookmark: _Toc84926043]4.2	VNF configuration items
A VNF instance is a set of software instances and virtualised resources needed for these software instances to execute. The scope of VNF configuration includes the configuration of both the software and the resources. Resource configuration is part of the VNF lifecycle management and relies on configuration data available in VNF descriptors and configuration data generated at runtime. The present document focuses on the configuration of the VNF software, also known as VNF application configuration.
NOTE: 	In the context of the present document the term “application configuration” should be understood in a wider sense than the configuration of the application layer of the OSI model. For example, the configuration of forwarding rules in a VNF that provides the functionality of a firewall falls in the “application configuration” category.
The data items configured as part of the VNF software configuration process can be classified in two broad categories, as illustrated in figure 1: virtualisation-dependent items and virtualisation-independent items:
Virtualisation-dependent items are those items whose value is dependent on decisions made by the NFV infrastructure and/or the NFV management and orchestration functions. An example of such items is the VNF’s VNFM IP address. Another example is the IP address assigned to a connection point of a VNFC instance to be configured on another VNFC of the same VNF that needs to communicate with the former (e.g. a load balancer VNFC).
Virtualisation-independent items are all other items. Their values are typically determined in the OSS/BSS, as for a PNF. An example of such items is a forwarding rule for a VNF that provides that functionality of a firewall.
[image:]
Figure 4.2-1: Overview of VNF configuration data
The data items configured as part of the VNF software configuration process can be further classified according to when to configure them. Some items are intended to be configured during the instantiation process, typically when the VNF instance cannot be fully up and running without the corresponding values being configured. Others can be configured at any time once the VNF instance is created and operational. The configuration of the first category of items is often known as “Day-0” configuration, while the configuration of items in the second category is often designated as “Day-1” (configured right after instantiation) or “Day-2” configuration (any time after “Day-1” configuration).
NOTE: 	This classification has to be understood from a VNFC instance viewpoint, e.g. scaling-out a VNF instance can require Day-0 configuration of the new VNFC instances.
[bookmark: _Toc84926044]4.3	VNF configuration methods
Editor’s note: this clause will provide a summary of the three available VNF configuration methods, including guidance on when to use each of these methods.
Editor’s note: it is FFS whether configuration methods based on Ansible or similar frameworks will be described as a 4th method or described as part of the 3 other methods.
[bookmark: _Toc84926045]4.3.1	Overview
Clause 4.3 of the present document provides a description of the configuration methods supported by the NFV architectural framework at the time of publication. These methods are not mutually exclusive.
Editor's Note: we need to add some content or a NOTE to describe what is the baseline documentation that is used for the documentation of the methods.
[bookmark: _Toc84926046]4.3.2	Method #A
4.3.2.1	General description
With this configuration method, the VNF receives configuration data directly from the OSS/BSS or from its EM. In the latter case the data can be originated in the EM or received by the EM from the OSS/BSS.
This method is only applicable to Day-1 and Day-2 configuration as it assumes that the VNF instance can communicate with the OSS/BSS or an EM. At least one VNFC instance is expected to act a configuration management agent in the VNF.
The configuration procedure can follow a push (configuration data pushed to the VNF by the OSS/BSS or EM) or pull model (configuration data retrieved by the VNF instance from the OSS/BSS or EM).
The specification of the interfaces between the VNF and its EM, as well as the specification of the interfaces between the OSS/BSS and EMs are outside the scope of NFV standardization.
NOTE:	NETFCONF [i.netconf], gNMI [i.gNMI] are examples of protocol solutions used in the industry on these interfaces.
VNF-specific data models for configuration (e.g. YANG data models) can be provided as non-MANO artefacts in the VNF package for use by the OSS and/or EM.
NOTE: 	onap_yang_modules [i.nfvregistry] is an example of a registered non-MANO-artefacts set for that purpose.
When used for configuring virtualisation-independent data, this method is like conventional methods applicable to a PNF as there is no involvement of NFV-MANO.
Use of this method for configuring virtualisation-dependent configuration data assumes that the OSS and/or EM retrieves the virtualisation-dependent values from the NFVO or the VNFM, prior to configuring the VNF.
[bookmark: _Hlk83722954]Figure 4.3.2.1-1 illustrates this configuration method.
[image:]
Figure 4.3.2.1-1: VNF configuration method #A

[bookmark: _Toc84926048]4.3.2.2	Detailed description
4.3.2.2.1	Push mode
4.3.2.2.1.1	OSS-initiated
In this mode the OSS can push configuration data to a VNF instance in direct mode or indirect mode. In direct mode the OSS connects to the VNF instance to push the configuration data. In indirect mode the OSS connects to the EM which in turn can push the configuration data to the VNF instance (see clause 4.3.2.2.1.2) or can wait for the VNF instance to pull these data from the EM.
The OSS can decide to push configuration data at any time once the VNF instance has been created or when specific lifecycle management events occur. To determine when to push configuration data, the OSS subscribes to receive notifications from the NFVO about the creation or modification of a VNF instance. ETSI GS NFV-IFA 013 [i.ifa013] specifies the operations of the NS lifecycle management (LCM) interface for subscribing to notifications and for sending notifications.
If the configuration data to be pushed to the VNF instance includes virtualisation-dependent configuration items, or if a direct mode is used, a preamble procedure is used to retrieve VNF instance information from the NFVO, using the QueryNs operation of the NS LCM interface defined in ETSI GS NFV-IFA 013 [i.ifa013]. If the configuration data to be pushed to the VNF instance includes virtualisation-dependent configuration items, the retrieved VNF instance information is used to obtain the values assigned to these items. If the direct mode is used, the retrieved VNF instance information is used to obtain the address(es) assigned to the VNF external connection point(s) where to push the configuration data.
Editor’s note: How does the OSS identify which type of connection points to use for pushing configuration data in direct mode and in the non-direct mode what is the EM address where to push configuration data will be discussed in clause 6 (analysis and key issues)
Figure 4.3.2.2.1.1-1 provides an overview of the OSS-initiated push mode procedure in indirect mode with a preamble to retrieve VNF instance information from the NFVO. The following steps are identified:
The OSS sends a QueryNs request to the NFVO, as defined in clause 7.3.6 of ETSI GS NFV-IFA 013 [i.ifa013], with a filter set on the VNF instance identifier and an attribute selector set to VnfInfo.
The NFVO provides the contents of the VnfInfo information element for the VNF instance, as specified in clause 8.3.3 of ETSI GS NFV-IFA 013 [i.ifa013], in a QueryNs response.
The OSS pushes the VNF configuration data to the EM.
The EM forwards the received information to the VNF.
[image:]
Figure 4.3.2.2.1.1-1: OSS-initiated push mode procedure
ETSI GS NFV-SOL 005 [i.sol005] specifies the Restful API for implementing the NS LCM interface including the QueryNs operation used in the preamble and the operations for managing notifications. The protocol used by the OSS for communicating with the VNF/EM is outside the scope of any of the NFV specifications referenced in clause 2 of the present document.
Editor’s note: How does the OSS determines the protocol and data model to use for communicating with the VNF/EM will be discussed in clause 6 (analysis and key issues)
4.3.2.2.1.2	EM-initiated
This mode can be used as part of the OSS-initiated procedure in push mode or independently (e.g. to push EM-generated configuration data or when the OSS is not responsible for VNF configuration management).
In the second case, the EM can push configuration data at any time once the VNF instance has been created or when specific lifecycle management events occur. To determine when to push configuration data, the EM subscribes to receive notifications from the VNFM about the creation or modification of a VNF instance. ETSI GS NFV-IFA 008 [i.ifa008] specifies the operations of the VNF lifecycle management (LCM) interface for subscribing to notifications and for sending notifications.
If the configuration data to be pushed to the VNF instance includes virtualisation-dependent configuration items, a preamble procedure is used to retrieve VNF instance information from the VNFM, using the QueryVnf operation of the VNF LCM interface defined in ETSI GS NFV-IFA 008 [i.ifa008], to obtain the values assigned to these items.
Editor’s note: How does the EM identify which type of connection points to use to push configuration data will be discussed in clause 6 (analysis and key issues)
Editor’s note: How does the EM learns the VNFM address will be discussed in clause 6 (analysis and key issues)
Figure 4.3.2.2.1.2-1 provides an overview of the EM-initiated push mode procedure with a preamble. The following steps are identified:
1. The EM sends a QueryVnf request to the VNFM, as defined in clause 7.2.9 of ETSI GS NFV-IFA 008 [i.ifa008], with a filter set on the VNF instance identifier.
The VNFM provides the contents of the VnfInfo information element, as specified in clause 9.4.2 of ETSI GS NFV-IFA 008 [i.ifa008], in a QueryVnf response.
The EM pushes the VNF configuration data to the VNF.
[image:]
Figure 4.3.2.2.1.2-1: EM-initiated push mode procedure
ETSI GS NFV-SOL 002 [i.sol002] specifies the Restful API for implementing the VNF LCM interface including the QueryVnf operation used in the preamble and the operations for managing notifications. The protocol used by the EM for communicating with the VNF is outside the scope of any of the NFV specifications referenced in clause 2 of the present document.
Editor’s note: How does the EM determines the protocol and data model to use for communicating with the VNF will be discussed in clause 6 (analysis and key issues)
4.3.2.2.2	Pull mode
In this mode the VNF pulls configuration data from the OSS or from the EM. The address where to send a pull request is either preconfigured in the VNF software (e.g. pre-agreed FQDN communicated at design time) or can provided to the VNF instance as a VNF configurable property set by the OSS or the EM, using configuration method #B or #C described in clauses 4.3.3 and 4.3.4.
4.3.2.2.3	Hybrid modes
The push and pull modes can be combined as follows:
The EM can pull configuration data from the OSS upon receipt of a notification from the VNFM about the creation or modification of a VNF instance and push these configuration data to the VNF.
The OSS can push configuration data from the EM and the EM can wait for the VNF instance to pull these data.
[bookmark: _Toc84926049]4.3.3	Method #B
[bookmark: _Toc84926050]4.3.3.1	General description
With this configuration method, a VNF instance receives configuration data from the VNFM in charge of managing its lifecycle.
This method is only applicable to Day-1 and Day-2 configuration as it assumes that the VNF instance can communicate with the VNFM. At least one VNFC instance is expected to act a configuration management agent in the VNF.
The configuration data values can be originated from the VNFM or received by the VNFM from the VIM, the EM or the NFVO. In the latter case they can be determined by the NFVO or received from the OSS/BSS.
The configuration procedure can follow a push (configuration data pushed to the VNF by the VNFM) or pull model (configuration data retrieved by the VNF instance from the VNFM).
The specifications of the interfaces between the VNF and the VNFM are contained in ETSI GS NFV-IFA 008 [i.ifa008] (functional requirements) and ETSI GS NFV-SOL 002 [i.sol02] (API specification).
The items that can be configured using this method are either configurable properties declared in the VNFD or connection point configuration data.
NOTE: 	VNF configurable properties shall not be confused with modifiable attributes (extensions and metadata).
Figure 4.3.3.1-1 illustrates this configuration method.
[image:]
Figure 4.3.3.1-1: VNF configuration method #B

[bookmark: _Toc84926051]4.3.3.2	Detailed description
4.3.3.2.1	General
The type of data items that can be configured using this method is limited to configurable properties declared in the VNFD and additional virtualisation-related parameters available in the VNFM.
Within the VNFD, configurable properties can be declared at the VNF level (VnfConfigurableProperties) and/or at the VDU level (VnfcConfigurableProperties), as specified in clause 7.1.12 and 7.1.6.7 of ETSI GS NFV-IFA 011 [i.ifa011], respectively.
VNF-level configuration properties include
Standard properties to enable/disable auto scaling and auto healing for a VNF instance, to configure OAuth server identities and information to access the APIs produced by the VNFM.
Additional VNF-specific configuration properties defined by VNF providers.
All VNFC-level configuration properties are VNF-specific defined by VNF providers.
While all configurable properties are declared in the VNFD, their values can be
Set in the VNFD (default values)
Computed by a lifecycle management (LCM) script executed by the VNFM
Received by the VNFM from the NFVO or the EM using the following operations of the VNF lifecycle management interface defined in ETSI GS NFV-IFA 007 [i.ifa007] and ETSI GS NFV-IFA 008 [i.ifa008], respectively:
Instantiate VNF
Change VNF Flavour
Modify VNF Information
Change current VNF Package
ETSI GS NFV-SOL 003 [i.sol003] and ETSI GS NFV-SOL 002 [i.sol002] specifies the Restful API implementing the VNF LCM interface.
The NFVO or the EM can either compute the values for the configurable properties or receive them from the OSS. The OSS can set configurable property values in the NFVO using the Instantiate NS or Update NS operations of the NS LCM interface specified in clause 7.3 of ETSI GS NFV-IFA 013 [i.ifa013]. ETSI GS NFV-SOL 005 [i.sol005] specifies the Restful API for implementing this interface.
The TOSCA and YANG representations of configurable properties in a VNFD are specified in ETSI GS NFV-SOL 001 [i.sol001] and ETSI GS NFV-SOL 006 [i.sol006] respectively.
4.3.3.2.2	Push mode
In this mode, the VNFM sends a SetConfiguration operation of the VNF configuration interface defined in ETSI GS NFV-IFA 008 [i.ifa008] to the VNF instance as soon as it is created or when a modification occurs. The connection point where to push the configuration data is identified based on the contents of the VNFD. The VNFD for a VNF that supports the VNF configuration interface is expected to contain a VnfInterfaceDetails information element that associates this interface to a VNF external connection point descriptor and additional interface details, as specified in clause 7.1.8.16 of ETSI GS NFV-IFA 011 [i.ifa011].
In addition to configurable properties, the SetConfiguration operation enables the VNFM to configure additional virtualisation-related parameters: the address of the DHCP server that the VNF can use to configure the addresses of its connection points or the addresses and ports that have been assigned to its connection points.
Figure 4.3.3.2.2-1 illustrates the push mode procedure when configurable property values are provided by the OSS and the EM. The following steps are identified:
1. The configurable property values are sent by the OSS (1a) in an InstantiateNs or an UpdateNs with the update type parameter set to ModifyVnfInformation/InstantiateVnf/ChangeVnfDf/ChangeVnfPkg as specified in ETSI GS NFV-IFA 013 [i.ifa013], or by the EM (1b) in an InstantiateVnf, ModifyVnfInformation, ChangeVnfFlavour or ChangeCurrentVnfPackage request as specified in ETSI GS NFV-IFA 008 [i.ifa008].
The NFVO forwards the configurable properties to the VNFM (2a) in an InstantiateVnf, ModifyVnfInformation, ChangeVnfFlavour or ChangeCurrentVnfPackage request as specified in ETSI GS NFV-IFA 007 [i.ifa007], depending on the operation received from the OSS.
The VNFM pushes the configurable properties to the VNF using the SetConfiguration operation of the VNF configuration interface defined in ETSI GS NFV-IFA 008 [i.ifa008].

[image:]
Figure 4.3.3.2.2-1: OSS- and EM-initiated push mode procedure
Clause 9 of ETSI GS NFV-SOL 002 [i.sol002] defines the Restful API implementing the VNF configuration interface.
The SetConfiguration is implemented using an HTTP PATCH method. Modifications are specified according to the rules of JSON Merge Patch (see IETF RFC 7396 [i.rfc7396]). Figure 4.3.3.2.2-2 illustrates the message flows for configuring a VNF instance using the VNF configuration API.
NOTE: 	As specified in ETSI GS NFV-SOL 002 [i.sol002], the support of the VNF configuration API is optional for a VNF.
[image:]
Figure 4.3.3.2.2-2: Restful implementation of the SetConfiguration operation
4.3.3.2.3	Pull mode
In this mode, the VNF instance retrieves configuration data from the VNFM, using the QueryVnf operation of the VNF LCM interface defined in ETSI GS NFV-IFA 008 [i.ifa008]. This procedure can be triggered upon instantiation as soon as external connectivity is available to the VNF or upon receipt of a notification that some information has changed, which assumes that the VNF subscribes to receive these notifications.
In response to a QueryVnf request, depending on the attribute selectors set on the request, the VNF receives all or part of the attributes contained in the VnfInfo information element defined in clause 9.4.2 of ETSI GS NFV-IFA 008 [i.ifa008], including, if requested, the VNF configurable properties.
Clause 5 of ETSI GS NFV-SOL 002 [i.sol002] defines the Restful API implementing the VNF LCM interface.
[bookmark: _Toc84926052]4.3.4	Method #C
[bookmark: _Toc84926053]4.3.4.1	General description
With this configuration method, a VNF instance receives configuration data via the NFV infrastructure. This configuration method is intended to enable Day-0 configuration. The actual procedure depends on the selected VIM or CISM solution. For example, one solution is for the VIM to write configuration data to a special configuration drive that attaches to a VM instance when it boots.
The configuration data to be pushed to the VNF are determined by the VNFM, based on information available in the VNFD and/or in configuration files included in MCIOPs (containerized VNFs). These configuration data can differ from one VNFC to another as the configuration method applies on a per VNFC et per instance basis. The actual configuration data values can be hardcoded in the VNFD or in the configuration files included in MCIOPs, or they can be computed by the VNFM or received from the NFVO or the EM. In the later case, such values can be locally determined by the NFVO or EM, or they can be received from the OSS/BSS.
Figure 4.3.4.1-1 illustrates this configuration method.
[image:]
Figure 4.3.4.1-1: VNF configuration method #C
[bookmark: _Toc84926054]4.3.4.2	Detailed description
4.3.4.2.1	VM-based VNFs
With this method, the configuration data are specified in the boot data attribute of the VNFD, as specified in clause 7.1.6.2.2 of ETSI GS NFV-IFA 011 [i.ifa011]. Boot data is an attribute of a VDU representing initialization data to be pushed to VNFC instances, via the VIM.
The contents of this attribute can be a list of key-value pairs, a string or a URL pointing to an initialization file contained in the VNF package. This attribute can include volatile and/or persistent variable parts: declared in other information elements of the VNFD, that the VNFM fills with runtime information before pushing the attribute value to the VIM:
VnfLcmOperationsConfiguration information element (see clause 7.1.5.2 of ETSI GS NFV-IFA 011 [i.ifa011]) for volatile data only available during the lifetime of a VNF lifecycle management operation, and/or
Extension attribute of the VnfInfoModifiableAttribute information element (see clause 7.1.14 of ETSI GS NFV-IFA 011 [i.ifa011] or in the VnfConfigurableProperties information element (see clause 7.1.12) for persistent data available during the lifetime of a VNF instance (i.e. set in VnfInfo).

The VNFM receives these inputs from the NFVO or the EM using the operations of the VNF lifecycle management interface defined in ETSI GS NFV-IFA 007 [i.ifa007] and ETSI GS NFV-IFA 008 [i.ifa008], respectively.
The NFVO or the EM can either generate these values or receive them from the OSS. The OSS can provide these values to the NFVO using the Instantiate NS or Update NS operations of the NS LCM interface specified in clause 7.3 of ETSI GS NFV-IFA 013 [i.ifa013].
For each VNFC instance created from a VDU for which a boot data attribute exists, the VNFM pushes to the VIM the contents of the boot data attribute each time a new compute resource is created at VNF instantiation time or a later stage (e.g. VNF scaling out). The contents of the boot data attribute is conveyed in the UserData attribute of the AllocateVirtualisedComputeResouce operation specified in ETSI GS NFV-IFA 006 [i.ifa006], in case of VNF-related resource management in direct mode.
Figure 4.3.4.2.1-1 provides an overview of the configuration procedure when variable parts in the boot data attribute are filled with inputs from the OSS or the EM provided at NS instantiation time. The following steps are identified:
1. The OSS sends an InstantiateNs request with VNF extensions and/or VNF configurable properties, and/or VNF LCM operation configuration parameters as specified in ETSI GS NFV-IFA 013 [i.ifa013].
The NFVO sends an InstantiateVnf request to the VNFM with the parameters received from the NFVO
The VNFM customizes the contents of the boot data attribute with the values received from the NFVO and pushes this information to the VIM using the UserData attribute of the AllocateVirtualisedComputeResouce operation specified in ETSI GS NFV-IFA 006 [i.ifa006].
The VIM pushes the VNF configuration data to the corresponding virtualised compute resources in the NFVI.

[image:]
Figure 4.3.4.2.1-1: boot data transfer procedure at NS instantiation time
ETSI GS NFV-SOL 005 [i.sol005] specifies the Restful API for implementing the NS LCM interface. ETSI GS NFV-SOL 003 [i.sol003] specifies the Restful API for implementing the VNF LCM interface exposed by the VNFM to the NFVO. ETSI GS NFV-SOL 002 [i.sol002] specifies the Restful API for implementing the VNF LCM interface exposed by the VNFM to the EM. Protocol solutions for the VNFM-VIM reference point as well as the mechanism to transfer the information to the NFVI and the virtual machines (VM) are not specified by any of the NFV specifications referenced in clause 2 of the present document and are dependent on the cloud management solution implementing the VIM functionality. For OpenStack the configuration information is provided by the VNFM in the “user data” parameter of the VM (server) creation request and relies upon the cloud-init mechanism. The VNFC instance running in the VM can access this data through the metadata service or config drive. Typically assumes that the cloud_drive package is installed within the VM (as part of the Linux distribution).
Figure 4.3.4.2.1-2 illustrates the three options for specifying the contents of a boot data attribute in a TOSCA-based VNFD, as specified in ETSI GS NFV-SOL 001 [i.sol001]
[image:]
Figure 4.3.4.2.1-2: Examples of boot_data properties in a TOSCA-based VNFD
4.3.4.2.2	Containerized VNFs
Editor’s note: to be provided once the handling of parameter mappings is clarified.
[bookmark: _Toc84926055]5	VNF configuration use cases
Editor’s note: this clause will provide a set of VNF configuration use cases (Day-0 vs Day-1 Day2 cofniguration, application vs virtualisation-related data configuration, interaction of NFV-MANO with other frameworks to handle configuration management, etc.)
5.1	General
5.1.1	Introduction
This clause provides a set of VNF configuration use cases to help identify potential gaps in the specifications referenced in clause 2 of the present document.
5.1.2	Actors
Table 5.1.2-1 describes the actors involved in the use cases.
Table 5.1.2-1: use case actors and roles
	#
	Actor
	Description

	[bookmark: _Hlk86845454]1
	Service Provider
	The Service Provider responsible for the VNF instance to be configured.

	2
	NFV system
	The NFV system managing and hosting the VNF instance to be configured. The term NFV system encompasses NFV-MANO functional blocks, the OSS, the EM and the NFVI.

	3
	VNF
	The VNF instance to be configured.

5.2	Day-0 configuration use cases
5.2.1	UC#1: Configuration of a VNF-specific parameter
5.2.1.1		Description
This use case aims at configuring a VNF-specific parameter with a value that the VNF instance needs to obtain before completing the instantiation process. The value is provided by the service provider. The VNF instance needs to obtain the value of a VNF-specific configuration parameter before completing the instantiation process. The VNF-specific parameter can be for example the URL of an HTTP proxy to be used by the VNF instance for communicating with any other entity.

[bookmark: _Toc39653904][bookmark: _Toc39655196][bookmark: _Toc41547207][bookmark: _Toc41547333]5.2.1.2		Trigger
Table 5.2.1.2-1 describes the use case trigger.
Table 5.2.1.2-1: Day-0 configuration trigger
	Trigger
	Comment

	The Service Provider wishes to instantiate a VNF.
	

[bookmark: _Toc35862803][bookmark: _Toc35862899][bookmark: _Toc39653905][bookmark: _Toc39655197][bookmark: _Toc41547208][bookmark: _Toc41547334]5.2.1.3	Pre-conditions
None
[bookmark: _Toc35862804][bookmark: _Toc35862900][bookmark: _Toc39653906][bookmark: _Toc39655198][bookmark: _Toc41547209][bookmark: _Toc41547335]5.2.1.4	Post-conditions
Table 5.2.1.4-1 describes the post-conditions of this use case.
Table 5.2.1.4-1: Day-0 configuration post-conditions
	#
	Post-condition
	Comment

	1
	The VNF is instantiated and has received sufficient configuration information to complete the instantiation process.
	For example, if needed, the VNF is ready to request Day-1 or Day-2 configuration information via the HTTP proxy.

[bookmark: _Toc35862805][bookmark: _Toc35862901][bookmark: _Toc39653907][bookmark: _Toc39655199][bookmark: _Toc41547210][bookmark: _Toc41547336]5.2.1.5	Operational Flows
Table 5.2.1.5-1 describes the base flow of this use case.
Table 5.2.1.5-1: Day-0 configuration, base flow
	#
	Actor/Role
	Description

	Begins When
	Service Provider
-> NFV system

	The Service Provider requests the NFV system to instantiate the VNF and provides the value to be configured on the VNF instance.

	1
	NFV system
-> VNF
	The NFV system proceeds to the instantiation of the VNF and propagates to the VNF instance the value to be configured.

	Ends When
	VNF
	The VNF instance has received and processed the VNF-specific parameter value.

5.2.2	UC#2: Configuration of the VNFM address
5.2.2.1		Description
This use case aims at configuring the VNF with information enabling access to the NFV-MANO interfaces produced by the VNFM.
5.2.2.2		Trigger
Table 5.2.2.2-1 describes the use case trigger.
Table 5.2.2.2-1: Day-O configuration trigger
	Trigger
	Comment

	The Service Provider wishes to instantiate a VNF.
	

5.2.2.3	Pre-conditions
Table 5.2.2.3-1 describes the pre-conditions of this use case.
Table 5.2.2.3-1: Day-0 configuration pre-conditions
	#
	Pre-condition
	Comment

	1
	The VNFD contains the vnfmInterfaceInfo configurable property.
	

5.2.2.4	Post-conditions
Table 5.2.2.4-1 describes the post-conditions of this use case.
Table 5.2.2.4-1: Day-0 configuration post-conditions
	#
	Post-condition
	Comment

	1
	The VNF is instantiated and has received sufficient configuration information to complete the instantiation process.
	

5.2.1.5	Operational Flows
Table 5.2.1.5-1 describes the base flow of this use case.
Table 5.2.1.5-1: Day-0 configuration, base flow
	#
	Actor/Role
	Description

	[bookmark: _Hlk88052419]Begins When
	Service Provider
-> NFV system
	The Service Provider requests the NFV system to instantiate the VNF and provides the value to be configured on the VNF instance.

	
	NFV system
-> VNF
	The NFV system proceeds to the instantiation of the VNF and propagates to the VNF instance the value to be configured.

	Ends When
	VNF
	The VNF instance has received and processed the VNFM details.

5.3	Day-1 configuration use cases
5.3.1	UC#3: Modification of a VNF-specific configuration value
5.3.1.1		Description
This use case aims at modifying VNF-specific parameter on an instantiated VNF with a value provided by the Service Provider.
5.3.1.2		Trigger
Table 5.3.1.2-1 describes the use case trigger.
Table 5.3.1.2-1: Day-1 configuration trigger
	Trigger
	Comment

	The Service Provider wishes to modify a VNF-specific parameter value
	For example, the Service Provider identifies the need to change the HTTP proxy initially configured on the VNF instance for communicating with other entities.

5.3.1.3	Pre-conditions
Table 5.3.1.3-1 describes the pre-conditions of this use case.
Table 5.3.1.3-1: Day-1 configuration pre-conditions
	#
	Pre-condition
	Comment

	1
	The VNF instance exists.
	

5.3.1.4	Post-conditions
Table 5.3.1.4-1 describes the post-conditions of this use case.
Table 5.3.1.4-1: Day-1 configuration post-conditions
	#
	Post-condition
	Comment

	1
	The VNF has received and processed the new value.
	For example, if needed, the VNF is ready to request Day-1 or Day-2 configuration information via the new HTTP proxy.

5.3.1.5	Operational Flows
Table 5.3.1.5-1 describes the base flow of this use case.
Table 5.3.1.5-1: Day-1 configuration, base flow
	#
	Actor/Role
	Description

	Begins When
	Service Provider
-> NFV system
	The Service Provider requests the modification of a VNF-specific parameter on a VNF instance and provides the new value to be configured

	
	NFV system
-> VNF
	The NFV system propagates to the VNF instance the new value.

	Ends When
	VNF
	The VNF instance has received and processed the new value.

5.3.2 	UC#4: Configuration of an internal load balancer
5.3.2.1		Description
This use case aims at configuring an internal load balancer VNFC with the IP addresses of the connection points of other VNFC instances within the VNF instance. For the purpose of this use case it is assumed that the VNF is composed of two types of VNFCs: VNFC-A and VNFC-B. VNFC-A is a load balancer. The role of an instance of VNFC-A in the VNF is to receive a portion of the incoming traffic and distribute it across multiple instances of VNFC-B.
5.3.2.2		Trigger
Table 5.3.2.2-1 describes the use case trigger.
Table 5.3.2.2-1: Day-1 configuration trigger
	Trigger
	Description

	A decision to scale-out a VNFC within the VNF is made.
	The decision can be made by the OSS, the NFVO or the VNFM.

5.3.2.3	Pre-conditions
Table 5.3.2.3-1 describes the pre-conditions of this use case.
Table 5.3.2.3-1: Day-1 configuration pre-conditions
	#
	Pre-condition
	Comment

	1
	The VNF instance exists.
	

5.3.2.4	Post-conditions
Table 5.3.2.4-1 describes the post-conditions of this use case.
Table 5.3.2.4-1: Day-1 configuration post-conditions
	#
	Post-condition
	Comment

	1
	The VNFC-A instance has received the IP address of the connection point of the new VNFC-B instance.
	VNFC-A can add the new VNFC-B instances to the list of VNFC-B instances across which incoming traffic can be distributed.

5.3.2.5	Operational Flows
Table 5.3.2.5-1 describes the base flow of this use case.
Table 5.3.2.5-1: Day-1 configuration, base flow
	#
	Actor/Role
	Description

	Begins When
	Service Provider
or NFV system
	A decision to scale-out a VNF instance is taken. The Service Provider requests the NFV system to scale out the VNF instance or the NFV system decided to scale-out the VNF instance.

	1
	NFV system -> VNF

	The NFV system scales-out the VNF instance and provides to the VNFC-A of the VNF instance the IP address(es) of the connection point(s) of the new VNFC-B instance(s)

	Ends When
	VNF
	The VNFC-A instance has received the IP addresses and acknowledged the configuration update.

5.3.3	UC#5: Configuration of proxy/firewall VNF
5.3.3.1		Description
This use case aims at configuring forwarding rules in a VNF implementing the function of an application layer proxy/firewall (e.g. an http proxy with filtering capabilities).
5.3.3.2		Trigger
Table 5.3.3.2-1 describes the use case trigger.
Table 5.3.3.2-1: Day-1 configuration trigger
	Trigger
	Comment

	Forwarding rules need to be configured on the proxy/firewall VNF.
	

5.3.3.3	Pre-conditions
Table 5.3.3.3-1 describes the pre-conditions of this use case.
Table 5.3.3.3-1: Day-1 configuration pre-conditions
	#
	Pre-condition
	Comment

	1
	The proxy/firewall VNF has been instantiated.
	

5.3.3.4	Post-conditions
Table 5.3.3.4-1 describes the post-conditions of this use case.
Table 5.3.3.4-1: Day-1 configuration post-conditions
	#
	Post-condition
	Comment

	1
	The proxy/firewall VNF has received the forwarding rules to enforce and is ready to process traffic.
	

5.3.3.5	Operational Flows
Table 5.3.3.5-1 describes the base flow of this use case.
Table 5.3.3.5-1: Day-1 configuration, base flow
	#
	Actor/Role
	Description

	Begins When
	Service Provider
-> NFV system
	The Service Provider provides to the NFV system the set of forwarding rules to be configured on the proxy/firewall VNF instance.

	1
	NFV system
-> VNF
	The NFV systems provides the set of forwarding rules to the proxy/firewall VNF instance.

	Ends When
	VNF
	The proxy/firewall VNF instance has received and acknowledged the forwarding rules.

[bookmark: _Toc84926056]6	Analysis and Key Issues
Editor’s note: this clause will describe how to implement the use cases described in clause 5 using one or more of the configuration options described in clause 4. This clause will also identify key issues preventing preventing interoperability between VNFs and independently-developed VNF configuration management functions, and/or preventing easy integration of VNF configuration management in VNF lifecycle management processes.
[bookmark: _Toc84926057]6.1	General
Clause 6.2 identifies key issues to be addressed when using the configuration methods described in clause 4 of the present document, regardless of the actual use case.
Clause 6.3 provides an analysis of the use cases described in clause 5 the present document with regards to the applicability of the configuration options described in clause 4 of the present document and identify associated key issues that are specific to the use case considered.
[bookmark: _Toc84926058]6.2	Common key issues
Table 6.2-1 describes the key issues to be addressed when using the configuration method #A.
Table 6.2-1: General key issues for configuration method #A
	Issue #
	Issue description

	GKI-A-1
	If the configuration procedure is driven by the OSS, the specifications referenced in clause 2 of the present document do not describe how the OSS identify which type of connection points to use for pushing configuration data in direct mode to the VNF instance and in the non-direct mode what is the EM address where to push configuration data.

	GKI-A-2
	If the configuration procedure is driven by the OSS, the specifications referenced in clause 2 of the present document do not describe how does the OSS determine the protocol and data model to use for communicating with the VNF/EM.

	GKI-A-3
	If the configuration procedure is driven by the EM, the specifications referenced in clause 2 of the present document do not describe how does the EM identify which type of connection points to use to push configuration data.

	GKI-A-4
	If the configuration procedure is driven by the EM, the specifications referenced in clause 2 of the present document do not describe how does the EM learn the VNFM address where to send subscription requests.

	GKI-A-5
	If the configuration procedure is driven by the EM, the specifications referenced in clause 2 of the present document do not describe how does the EM determine the protocol and data model to use for communicating with the VNF.

Table 6.2-2 describes the key issues to be addressed when using the configuration method #B.

Table 6.2-2: General key issues for configuration method #B
	Issue #
	Issue description

	GKI-B-1
	How to use this configuration method if the VNF configuration API specified in ETSI GS NFV-SOL 002 [i.sol002] is not supported.

	
	

Table 6.2-3 describes the key issues to be addressed when using the configuration method #C.
Table 6.2-1: General key issues for configuration method #C
	Issue #
	Issue description

	GKI-C-1
	How to use this configuration method if the VIM is not based on OpenStack?

	
	

[bookmark: _Toc84926061]6.3	Use case analysis
6.3.1	UC#1: Configuration of a VNF-specific parameter
6.3.1.1	Implementation options
All variants of configuration method #A and method B, as well as configuration method C can be used under certain conditions.
Configuration method #A can be used if the configuration of the VNF-specific parameter is not a pre-requisite for enabling communication between the VNF instance and the EM or the OSS. For example, if the VNF-specific parameter is an HTTP proxy, the communication between the VNF instance and the EM or the OSS is not mediated by this proxy.
Configuration method #B can be used if
the configuration of the VNF-specific parameter is not a pre-requisite for enabling communication between the VNF instance and the VNFM. For example, if the VNF-specific parameter is an HTTP proxy, the communication between the VNF instance and the VNFM is not mediated by this proxy, and
a configuration property corresponding to the VNF-specific parameter is declared in the VNFD
Configuration method #C can be used if
1. a configuration property or modifiable attribute (extension) corresponding to the VNF-specific parameter is declared in the VNFD, and
in case of a VM-based VNF this configurable property or modifiable attribute is referenced as a variable part of a boot data attribute associated to a VDU.
6.3.1.2	Key Issues
There are no use case specific key issues in addition to those identified in clause 6.1.
6.3.2	UC#2: Configuration of the VNFM address
6.3.2.1	Implementation options
All variants of configuration method #A and configuration method C can be used under certain conditions.

Configuration method #A if the VNF instance can communicate with the OSS or the EM and the OSS knows the VNFM address or can retrieve it from the NFVO, or the EM knows the VNFM address or can retrieve it from the OSS.
Configuration method #C can be used if
1. the vnfmInterfaceInfo configuration property is declared in the VNFD, and
in case of a VM-based VNF this configurable property is referenced as a variable part of a boot data attribute associated to a VDU.
6.3.2.2	Key Issues
TBD
6.3.3	UC#3: Modification of a VNF-specific configuration value
6.3.3.1	Implementation options
All variants of configuration methods #A and #B can be used.
Configuration method #B can only be used if the VNF-specific configuration parameter are modelled as a configurable property declared in the VNFD and the OSS provides the configurable property value to the NFVO in an NS instantiate or NS update operation.
6.3.3.2	Key Issues
There are no use case specific key issues in addition to those identified in clause 6.1.
6.3.4	UC#4: Configuration of an internal load balancer
6.3.4.1	Implementation options
All variants of configuration method #A and method B can be used.
Use of method #A assumes that prior to pushing configuration data to the VNF instance:
1. the OSS has subscribed to receive a notification from the NFVO when a VNF instance is scaled out and queries the NFVO to retrieve the description of the new connection points (i.e. in the NsInfo.VnfInfo data structure of the QueryNs response as defined in ETSI GS NFV-IFA 013 [i.ifa013], or
the EM has subscribed to receive a notification from the VNFM when a VNF instance is scaled out and queries the VNFM to retrieve the description of the new connection points (i.e. in the VnfInfo data structure of the QueryVnf response as defined in ETSI GS NFV-IFA 008 [i.ifa008].
6.3.4.2	Key Issues
Table 6.3.4.2-1 describes key issues to be addressed when using method #A, in addition to those identified in clause 6.1 of the present document.
Table 6.3.4.2-1: Specific key issues for configuration method #A
	Issue #
	Issue description

	SKI-A-1
	If the configuration procedure is driven by the OSS, the presence of connection point information in VnfInfo is not mandatory for internal connection points unless they are re-exposed as external connection points

	SKI-A-2
	If the configuration procedure is driven by the OSS, scaling procedures resulting from an auto-scale decision in the VNFM do not lead the NFVO to send a notification to the OSS.

6.3.5	UC#5: Configuration of proxy/firewall VNF
6.3.5.1	Implementation options
All variants of configuration methods #A and #B can used.
However, use of configuration method #B implies that the set of firewall rules is modelled as a configurable property declared in the VNFD and the OSS provides the configurable property value to the NFVO in an NS instantiate or NS update operation.
6.3.5.2	Key Issues
Table 6.3.5.2-2 described key issues to be addressed when using method #B, in addition to those identified in clause 6.1 of the present document.
Table 6.3.5.2-1: Specific key issues for configuration method #B
	Issue #
	Issue description

	SKI-B-1
	This method implies to convey a large amount of data via NFV-MANO without any added value. This might create unnecessary overload NFV-MANO interfaces.

	SKI-B-2
	There is no simple way to modify a single forwarding rule without having to re-send the entire set of rules, unless every forwarding rule is modelled as an individual configurable property does not sound realistic.
See note.

	NOTE: 	Solutions enabling sending changes to a document rather than the whole document exist (e.g. JSON Merge Patch (RFC 7396) [i.rfc7396]) but their use would place a constraint on the format of the information to be configured.

[bookmark: _Toc84926063]7.	Potential Solutions
Editor’s note: This clause will identify solutions to address the key issues identified in clause 6

[bookmark: _Toc84926064]8.	Recommendations for future work

[bookmark: _Toc84926065]8.1	General recommendations
[bookmark: _Toc80869150][bookmark: _Toc84926066]8.2 	Recommendations on functional behaviour
[bookmark: _Toc80869151][bookmark: _Toc84926067]8.3 	Recommendations on descriptors
[bookmark: _Toc80869152][bookmark: _Toc84926068]8.4 	Recommendations on interfaces
[bookmark: _Toc80869153][bookmark: _Toc84926069]8.5	Security related recommendations
[bookmark: _Toc84926070]8.6	Recommendations related to cross-organizations collaboration

[bookmark: _Toc455504149][bookmark: _Toc481503687][bookmark: _Toc527985151][bookmark: _Toc19024844][bookmark: _Toc84926071]Annex A:
Title of annex

[bookmark: _Toc455504150][bookmark: _Toc481503688][bookmark: _Toc527985152][bookmark: _Toc19024845][bookmark: _Toc84926072]Annex B:
Title of annex
[bookmark: _Toc481503689][bookmark: _Toc527985153][bookmark: _Toc19024846][bookmark: _Toc84926073][bookmark: _Toc455504151]B.1	First clause of the annex
[bookmark: _Toc455504152][bookmark: _Toc481503690][bookmark: _Toc527985154][bookmark: _Toc19024847][bookmark: _Toc84926074]B.1.1	First subdivided clause of the annex

[bookmark: _Toc455504154][bookmark: _Toc481503692][bookmark: _Toc527985156][bookmark: _Toc19024848][bookmark: _Toc84926075]Annex:
Bibliography

[bookmark: _Toc455504155][bookmark: _Toc481503693][bookmark: _Toc527985157][bookmark: _Toc19024849][bookmark: _Toc84926076]Annex :
Change History
	Date
	Version
	Information about changes

	14-10-2021
	0.0.1
	Adds
Table of contents and scope – NFVEVE(21)000082
General descriptions of the 3 options in clause 4 - NFVEVE(21)000098r2

	03-11-2021
	0.0.2
	Detailed descriptions of the 3 options in clause 4 - NFVEVE(21)000104r1
+ fix references to SOL002 and IFA008.

	08-12-2021
	0.0.3
	Basic use cases and initial analysis – NFVEVE(21)000124r1

	
	
	

[bookmark: _Toc455504156][bookmark: _Toc481503694][bookmark: _Toc527985158][bookmark: _Toc19024850][bookmark: _Toc84926077]History
	Document history

	<Version>
	<Date>
	<Milestone>

	[bookmark: H_Pub]
	
	

	[bookmark: H_MAP]
	
	

	[bookmark: H_UAP]
	
	

	[bookmark: H_PE]
	
	

Latest changes made on 2019-09-10
ETSI
image2.png
Scope of the present document

VNF software
configuration data

Virtualisation-
related

Non-Virtualisation-
related

¢ VNF virtual resources
i configuration data

Virtualisation Layer

NFVI

Outside the scope of the present document

image3.png
«-—-- NFVO

1
1
[- VNFM
VNF
NFVI VIM

Optional Interactions

image4.png
NFVI

ViM

image5.png
NFVI

ViM

image6.png
0SS =r---+ NFVO

EM T

NFVI VIM

Optional Interactions

image7.png
VIM

image8.png
H

VNFM

Precondition: VNF instance and VNFC instances exist '

1. PATCH .../configuration (VnfConfigModifications)

Set the configuration
2. of the VNF instance
d/or its VNFC instances

S,

A

< 3. 200 OK (VnfConfigModifications)
1

Postcondition: Configuration has been set .

VNFM

image9.png
0SS =r---+ NFVO

Optional Interactions

image10.png
(O

EM

image11.jpeg
dbBackend:
type: tosca.nodes.nfv.Vdu.Compute

properties:
boot_dat:
kvp_dat:
data: dns_server: { get_property: [vnf, modifiable_attributes, extensions, dns_server] }

dbBackend:
type: tosca.nodes.nfv.Vdu.Compute
properties:
boot_data:
content_or_file_data
contents: { concat: ["#1/bin/bash\n", "echo setting DNS sever to: ",
{ get_property: [vnf, modifiable_attributes, extensions, dns_server] }, "\n", "..."] }
dbBackend:
type: tosca.nodes.nfv.Vdu.Compute
properties:
boot_data:
content_or_file_data
data: dns_server : { get_property: [vnf, modifiable attributes, extensions, dns_server] }
source_path: { get_artifact : [SELF, boot_data] }
artifacts:
boot_data:

type: tosca.artifacts.example
file: implementation/templates/boot_data.file

image1.jpeg

