ETSI GR NFV-REL 014 V0.0.43 (20232-0107)
11
Release 5
[bookmark: doctype][bookmark: pages12][bookmark: docnumber][bookmark: docversion][bookmark: docdate]ETSI GR NFV-REL 014 V0.0.43 (20232-0107)

GROUP REPORT
[bookmark: doctitle]Network Functions Virtualisation (NFV) Release 5;
Reliability;
Report on evaluating reliability for cloud-native VNFs

<
This DRAFT is a working document of ETSI. It is provided for information only and is for future development work within ETSI. DRAFTS may be updated, deleted, replaced, or obsoleted by other documents at any time.
ETSI and/or its Members have no liability for any current or further use/implementation of the present DRAFT.
Do not use as reference material.
Do not cite this document other than as "work in progress."
Any draft approved and PUBLISHED shall be obtained exclusively as a deliverables via the ETSI Standards search page at:
http://www.etsi.org/standards-search

	
[image: ETSI_BG_final_new]
	

[bookmark: page2]Reference
DGR/NFV-REL014
Keywords
Reliability, cloud-native
[bookmark: _Hlk98957749]
[bookmark: ETSIinfo][bookmark: _Hlk98957808]ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

[bookmark: _Hlk67652697]Siret N° 348 623 562 00017 - APE 7112B
Association à but non lucratif enregistrée à la
[bookmark: _Hlk67652713]Sous-préfecture de Grasse (06) N° w061004871

[bookmark: doccopyright]Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
[bookmark: mailto]If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:
https://www.etsi.org/standards/coordinated-vulnerability-disclosure
Notice of disclaimer & limitation of liability
The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of experience to understand and interpret its content in accordance with generally accepted engineering or
other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.
[bookmark: EN_Delete_Disclaimer]No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use of or inability to use the software.
Copyright Notification
[bookmark: CleanupToDelete]No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightaddon]© ETSI 2022.
[bookmark: tbcopyright]All rights reserved.

[bookmark: _Toc451525645]
Contents
Intellectual Property Rights	5
Foreword	5
Modal verbs terminology	5
Executive summary	5
Introduction	5
1	Scope	6
2	References	6
2.1	Normative references	6
2.2	Informative references	6
3	Definition of terms, symbols and abbreviations	7
3.1	Terms	7
3.2	Symbols	7
3.3	Abbreviations	7
4	Overview and background	7
4.1	General	7
4.2	Micro-service	8
4.3	Containerized VNFs	8
5	Cloud-native configuration capabilities and metrics related to reliability	9
5.1	Kubernetes objects	9
5.2	Management of clusters	9
5.2.1	Introduction	9
5.2.2	Relevant configuration capabilities	10
5.2.3	Relevant metrics	10
5.3	Management of pods	10
5.3.1	Overview	10
5.3.2	Configuration capabilities	11
5.3.3	Existing metrics	12
6	Use cases	14
6.1	Introduction	14
6.2	Cloud-native VNF software modification	14
6.2.1	Introduction	14
6.2.2	Containerized VNF software modification	14
6.2.2.1	VNF availability evaluation for containerized VNF software modification	14
6.2.2.2	Container infrastructure related metrics for MCIO availability evaluation	14
6.2.2.3	Model and calculation methods for containerized VNF availability	15
6.2.2.4	Impact of the evaluation output on containerized VNF software modification	16
6.2.2.5	Actors and roles	16
6.2.2.6	Pre-conditions	16
6.2.2.7	Post-conditions	17
6.2.2.8	Flow description of resiliency assurance for containerized VNF software modification	17
6.2.3	Microservice-based VNF software modification	18
6.3	VNF scaling	18
6.3.y	<Title of VNF scaling use case y>	18
6.3.y.1	Introduction and goal	18
6.3.y.2	Actors and roles	18
6.3.y.3	Pre-conditions	18
6.3.y.4	Post-conditions	18
6.3.y.5	Flow description #1	18
6.3.y.6	Flow description #2	18
7	Criteria and metrics of reliability evaluation for cloud-native VNFs	19
8	Recommendations	19
9	Conclusion	19
Annex A: Existing Pod Metrics and Configurable Attributes in Kubernetes	20
Annex B: Title of annex	21
B.1	First clause of the annex	21
B.1.1	First subdivided clause of the annex	21
Annex: Bibliography	22
Annex: Change History	23
History	24

[bookmark: _Toc455504134][bookmark: _Toc481503672][bookmark: _Toc527985136][bookmark: _Toc19024829][bookmark: _Toc19025502][bookmark: _Toc67663824][bookmark: _Toc126159275]Intellectual Property Rights
Essential patents
[bookmark: _Hlk67652472][bookmark: _Hlk67652820]IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org).
[bookmark: _Hlk67652492][bookmark: _Hlk67652856]Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
[bookmark: _Hlk67652507]DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.
[bookmark: _Toc455504135][bookmark: _Toc481503673][bookmark: _Toc527985137][bookmark: _Toc19024830][bookmark: _Toc19025503][bookmark: _Toc67663825][bookmark: _Toc126159276]Foreword
[bookmark: For_tbname]This Group Report (GR) has been produced by ETSI Industry Specification Group Network Functions Virtualisation (NFV).
[bookmark: _Toc455504136][bookmark: _Toc481503674][bookmark: _Toc527985138][bookmark: _Toc19024831][bookmark: _Toc19025504][bookmark: _Toc67663826][bookmark: _Toc126159277]Modal verbs terminology
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
[bookmark: _Toc455504137][bookmark: _Toc481503675][bookmark: _Toc527985139][bookmark: _Toc19024832][bookmark: _Toc19025505][bookmark: _Toc67663827][bookmark: _Toc126159278]Executive summary

[bookmark: _Toc455504138][bookmark: _Toc481503676][bookmark: _Toc527985140][bookmark: _Toc19024833][bookmark: _Toc19025506][bookmark: _Toc67663828][bookmark: _Toc126159279]Introduction

[bookmark: _Toc455504139][bookmark: _Toc481503677][bookmark: _Toc527985141][bookmark: _Toc19024834][bookmark: _Toc19025507][bookmark: _Toc67663829][bookmark: _Toc126159280]1	Scope
The present document studies criteria for evaluating the reliability for cloud-native (as defined in ETSI GS NFV-EVE011 [i.2]) VNFs. Starting from use case investigation of some management processes (e.g., upgrade), it identifies the metrics associated with the reliability criteria for VNFs and analyses their support by NFV-MANO for the evaluation of VNFs reliability. It includes recommendations on requirements for such criteria and their associated metrics to be supported by NFV-MANO for cloud-native VNFs and proposals for the following normative work.
[bookmark: _Toc455504140][bookmark: _Toc481503678][bookmark: _Toc527985142][bookmark: _Toc19024835][bookmark: _Toc19025508][bookmark: _Toc67663830][bookmark: _Toc126159281]2	References
[bookmark: _Toc455504141][bookmark: _Toc481503679][bookmark: _Toc527985143][bookmark: _Toc19024836][bookmark: _Toc19025509][bookmark: _Toc67663831][bookmark: _Toc126159282]2.1	Normative references
Normative references are not applicable in the present document.
[bookmark: _Toc455504142][bookmark: _Toc481503680][bookmark: _Toc527985144][bookmark: _Toc19024837][bookmark: _Toc19025510][bookmark: _Toc67663832][bookmark: _Toc126159283]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or nonspecific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]	ETSI GR NFV 003: "Network Functions Virtualisation (NFV); Terminology for Main Concepts in NFV".
[i.2]	ETSI GS NFV-EVE 011 "Network Functions Virtualisation (NFV) Release 3; Virtualised Network Function; Specification of the Classification of Cloud Native VNF implementations".
[i.3]	ETSI GS NFV-SEC 023: "Network Functions Virtualisation (NFV); Security; Container Security Specification Release 4".
[i.4]	ETSI GR NFV-IFA 029: "Network Functions Virtualisation (NFV) Release 3; Architecture; Report on the Enhancements of the NFV architecture towards "Cloud-native" and "PaaS"".
[i.5]	ETSI GS NFV-IFA 010: "Network Functions Virtualisation (NFV) Release 4; Management and Orchestration; Functional requirements specification"
[i.6]	ETSI GS NFV-IFA 040: "Network Functions Virtualisation (NFV) Release 4; Management and Orchestration; Requirements for service interfaces and object model for OS container management and orchestration specification"
[i.7]	ETSI GS NFV-IFA 036: "Network Functions Virtualisation (NFV) Release 4; Management and Orchestration; Specification of requirements for the management and orchestration of container cluster nodes"Editor’s note: need to ensure that the ETSI GS NFV-IFA 036 has been published before present document.
[i.8]	Kubernetes® document, online
https://kubernetes.io/docs/home/
[i.9]	Kubernetes® API conventions document, online
https://github.com/kubernetes/community/blob/master/contributors/devel/sig-architecture/api-conventions.md#api-conventions
[i.10]	ETSI GS NFV 006: "Network Functions Virtualisation (NFV) Release 4; Management and Orchestration; Architectural Framework Specification"
[i.11]	ETSI GS NFV-REL 003: " Network Functions Virtualisation (NFV); Reliability; Report on Models and Features for End-to-End Reliability"

[bookmark: _Toc451532925][bookmark: _Toc527985145][bookmark: _Toc19024838][bookmark: _Toc19025511][bookmark: _Toc67663833][bookmark: _Toc126159284]3	Definition of terms, symbols and abbreviations
[bookmark: _Toc451532926][bookmark: _Toc527985146][bookmark: _Toc19024839][bookmark: _Toc19025512][bookmark: _Toc67663834][bookmark: _Toc126159285]3.1	Terms
For the purposes of the present document, the terms given in ETSI GR NFV 003 [i.1] and the following apply:
NOTE:	A term defined in the present document takes precedence over the definition of the same term, if any, in ETSI GR NFV 003 [i.1].
cloud-native VNF: A VNF designed to be deployed and managed in a cloud computing environment for efficient operation.
NOTE: The present document assumes that cloud-native VNFs have (but are not limited to) the following characteristics:
dynamic (e.g., with frequent changes)
scalable
fine-granular (e.g., composed of microservices, containerized)
[bookmark: _Toc455504145][bookmark: _Toc481503683][bookmark: _Toc527985147][bookmark: _Toc19024840][bookmark: _Toc19025513][bookmark: _Toc67663835][bookmark: _Toc126159286]3.2	Symbols
For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

[bookmark: _Toc455504146][bookmark: _Toc481503684][bookmark: _Toc527985148][bookmark: _Toc19024841][bookmark: _Toc19025514][bookmark: _Toc67663836][bookmark: _Toc126159287]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in ETSI GR NFV 003 [i.1] and the following apply:

[bookmark: _Toc455504147][bookmark: _Toc481503685][bookmark: _Toc527985149][bookmark: _Toc19024842][bookmark: _Toc19025515][bookmark: _Toc67663837][bookmark: _Toc126159288]4	Overview and background
[bookmark: _Toc126159289][bookmark: _Hlk105742989][bookmark: _Toc85229185][bookmark: _Toc98774474]4.1	General
The telecom industry is experiencing a transformation towards cloud-native. Cloud-native VNFs may use technologies such as containerized functions, micro-service based architecture, self-management, scalability, etc. The management of VNFs following cloud-native principles is bringing profound changes to the operations and maintenance of telecom cloud-based networks, e.g. the combination of DevOps and Cloud increases the software delivery and efficiency. These new changes introduce new challenges on managing cloud-native VNFs, especially for the non-functional aspects like performance, reliability and security.
Reliability for cloud-native VNFs is really challenging because of their highly dynamic nature. Thus, highly dynamic management is needed due to the nature of cloud-native VNFs. In the scope of ISG NFV, ETSI GS NFV-EVE 011[i.2] specifies non-functional aspects for cloud-native VNFs, e.g., resiliency, scaling and composition. ETSI GS NFV-SEC 023[i.3] specifies the security and hardening requirements for VNFs running in a containerized environment. ETSI GR NFV-IFA 029 [i.4] investigates the use cases for application of cloud-native design principles, but it lacks the use cases analysis and has no recommendations on NFV-MANO functional enhancement derived from the use cases.
The present document focuses on the study of reliability aspects for supporting the management of cloud-native VNFs. Clause 5 introduces some cloud-native configuration capabilities and metrics related to reliability. Clause 6 studies a number of use cases for the purpose of deriving corresponding criteria and their associated configuration capabilities and metrics to evaluate the reliability for cloud-native VNFs. Clause 7 further elaborates on the identified criteria and their associated metrics of reliability evaluation. Finally, Clause 8 summarizes the recommendations for normative work in the future.
[bookmark: _Toc126159290]4.2	Micro-service
Micro-service architecture is a key concept for cloud native but it has many definitions. In typical software development, a micro-service architecture means that the software functions are provided as a set of loosely-coupled services that are fine-grained and lightweight with well-defined APIs. The concept of micro-service aims to reduce the dependencies among services and the complexity of the system by carefully defining the function scope and the interfaces.
In the context of NFV, a NFV micro-service is an atomic service module, delivered as an all-inclusive software package, that covers a specific and coherent functional scope, is consumable over network interfaces, is managed independently from other micro-services, and runs as a computing process, as specified in ETSI GS NFV-EVE 011 [i.2].While a VNF is realized by a set of VNFCs, each VNFC may be composed of one or multiple micro-services.
[bookmark: _Toc126159291]4.3	Containerized VNFs
In a cloud-native VNF environment, the OS-container becomes the recommended technology for the infrastructure services in support of the VNFs, even though VM-based virtualisation is still an option for fulfilling cloud-native objectives. The introduction of OS-containers has an impact on the NFV-MANO architecture, as specified in ETSI GS NFV-IFA010 [i.5] and ETSI GS NFV-IFA 040 [i.6], namely the introduction of new managed objects and a management function related to OS-container management and orchestration, i.e. MCIO and CISM. A Managed Container Infrastructure Object (MCIO) is a managed object representing the desired and actual state of a containerized workload for the OS-container management and orchestration. The Container Infrastructure Service Management (CISM) is responsible for the deployment, monitoring, and lifecycle management of containerized workloads as MCIOs running in OS-containers. Figure 4.3-1 shows the OS-container infrastructure service management architecture including MCIO and CISM.
Figure 4.3-1 shows the OS-container infrastructure service management architecture, as described in ETSI GS NFV 006 [i.10]. The Container Infrastructure Service (CIS) is responsible for providing the virtualized infrastructure as OS-containers. The Container Infrastructure Service Management (CISM) is responsible for the management of containerized workloads as MCIOs running in the CIS. The Container Cluster Management (CCM) is responsible for management of CIS clusters.

[image:]
Figure 4.3-1: Container-based NFV architectural framework (without infrastructure resources)
WAN
OSS/BSS
NFVI
NFV Management and Orchestration (NFV-MANO)
EM
Or-Vi
Or-Vnfm
Vi-Vnfm
Os-Ma-nfvo
Nf-Vi
Service, VNF, CIS Cluster and Infrastructure Description
VNF
Or-Or
CISM
CIR
CIS/CIS cluster
Ve-Vnfm-vnf
Or-Wi
NFVO
CCM
VIM
Vi-Cc
NFV reference points and interfaces
Other reference points and interfaces
NFV service interface (producer only)
NFV service interface (producer and consumer)
Ve-Vnfm-em
VNFM
WIM

Figure 4.3-1: Container-based NFV architectural framework

[bookmark: _Toc126159292]5	Cloud-native configuration capabilities and metrics related to reliability
[bookmark: _Toc126159293]5.1	Kubernetes objects
Kubernetes objects are persistent managed objects representing the managed container cluster and its different resources such as pods. Kubernetes objects can describe among others which containerized applications are running (and on which nodes), the resources available to those applications, and the policies applicable to those applications [i.8]. In the context of NFV Kubernetes objects are MCIOs.
Most importantly the Kubernetes object includes two fields: the spec field and the status field [i.9]. The spec field is set by the user and it characterizes the desired status of the entity represented by the Kubernetes object. The status field shows the current status of the entity represented by the Kubernetes object as supplied and updated by Kubernetes . Kubernetes continually and actively manages the actual status of each entity to match its desired status.
[bookmark: _Toc126159294]5.21	Management of clusters
[bookmark: _Toc126159295]5.21.1	Introduction
Current industry solutions for OS container management expect that a cluster of machines (running either in virtual machines or on bare-metal servers) is provided for their use. In the context of NFV, a cluster is called a CIS (Container Infrastructure Service) cluster which is composed of one or multiple CIS cluster nodes. A CIS cluster node, which can be realized as a VM or a bare-metal server, is a compute resource that runs a CIS instance or a CISM instance, or both.
The CCM (Container Cluster Management) is responsible for the lifecycle management and FCAPS management of the CIS cluster. The CCM consumer can define the essential cluster information, including the description of the CIS cluster nodes, the placement constraints and the affinity or anti-affinity rules, etc., in the CCD (CIS Cluster Descriptor) that is interpreted by the CCM.
The concept of CIS cluster and the functionalities of CCM are detailed in ETSI GS NFV-IFA 036 [i.7].
Editor’s note: the descriptions of CCM functionalities must be checked again after IFA036 is published.

[bookmark: _Toc126159296]5.21.2	RelevantExisting configuration capabilities
ETSI GS NFV-IFA 036 [i.7] defines the requirements for CIS cluster management. CCM is responsible for lifecycle management of the CIS cluster, including applying changes to the CIS cluster configuration, scaling the CIS cluster, and modification of CIS cluster software.
CIS cluster configuration attributes include CIS cluster nodes to be used in the CIS cluster, number of CIS cluster nodes, scaling characteristics, placement constraints, cluster networking, and cluster storage. For more details, please refer to clause 4.2.4 of [i.7].
CCM can construct CISM with high availability. For details of how CISM high availability can be achieved, please refer to clause 4.2.12 of [i.7].

[bookmark: _Toc126159297]5.21.3	RelevantExisting metrics
CCM reports information related to the CIS cluster configuration and CIS cluster status as defined in clause 4.2.4 of [i.7].
CCM provides performance measurements for CIS cluster nodes, CIS cluster storage, and CIS cluster nodes network, but not at overall CIS cluster level.

[bookmark: _Toc126159298]5.32	Management of pods
[bookmark: _Toc126159299]5.32.1	OverviewIntroduction
Pods are the most basic deployable resources in Kubernetes which are represented by Kubernetes objects. Pods contain one or more containers, such as Docker™ containers. When a pod runs multiple containers, the containers share the pod's resources. Pods run on nodes organized in a certain container cluster.
Pods follow a defined lifecycle, starting in the Pending phase, moving through the Running phase if at least one of its containers is running, or in the process of starting or restarting. Pods complete their lifecycle through either the Succeeded or Failed phases depending on whether any container in the pod has terminated in a failure. A pod will spend most of its operational life in the Running phase.
In a pod, Kubernetes tracks the container(s) status and determines what action to take to keep the pod’s actual status as desired. Kubernetes is able to restart containers to handle some failures, e.g., OOM (out-of-memory) failure when a container exceeds its resource limit. Container failures, which cannot be resolved by restart, are escalated to the pod level and cause the pod to be terminated in the Failed phase.
For stateless containerized applications, Kubernetes provides the Deployment object to realize declarative configuration for a set of pods. Users can create a Deployment to roll out a group of identical pods, scale the Deployment to increase or decrease the number of its pods, and update the Deployment which means changing this Deployment's pod template by updating the pods’ metadata and spec configurations (see clause 5.3.2), e.g., pods’ labels or container images.
For stateful containerized applications, the Kubernetes object StatefulSet is used to manage the roll-out and scaling of a set of pods. A StatefulSet provides guarantees about the ordering and uniqueness of these pods. Like a Deployment, a StatefulSet contains pods that are based on the same container spec. Unlike a Deployment, a StatefulSet maintains a sticky identity for each of its pods. Even though these pods are created from the same spec, they are not interchangeable: each has a persistent identifier that it maintains even across rescheduling [i.8].
Pods in a StatefulSet have a unique identity that is comprised of an ordinal and a stable network identity, and a stable storage. When pods are being deployed, they are created sequentially, which defines a succession. When pods are deleted, they are terminated in reverse order. Pods of a StatefulSet can be updated in a rolling fashion, which means an automated rolling update of their containers, labels, resource requests/limits, and annotations.
The Kubernetes objects expose some configurable attributes to request resources for running pods and their desired limits. These attributes allow capacity planning, assessment of current or historical scheduling limits, quick identification of workloads that cannot be scheduled due to a lack of resources, and comparison of actual usage to the pod's request.
For more details on pod management, refer to [i.8] and [i.9].

[bookmark: _Toc126159300]5.32.2	Existing cConfiguration capabilities
The Kubernetes object representing a pod includes the following configuration capabilities:
· metadata, which contains the identification and description of the pod. Commonly used metadata attributes for a pod are
· name,
· namespace, which configures the namespace to which this pod belongs.
· labels, which lists the pod’s custom labels.
· spec, which is a detailed configuration of the pod’s various resources and handling options. The key attributes for the pod’s resource configuration are the following.
· containers, which is used to configure the containers of the pod.
· nodeName, name of the node on which Kubernetes can schedule this pod.
· nodeSelector, which defines the node labels. Kubernetes has to schedule this pod to a node with these labels.
· volumes, which provides the storage volume information of the pod
· restartPolicy, which configures the strategy for this pod in case of pod failure
Kubernetes provides the capability to configure a single pod; however, it is more common to deploy a set of identical pods as a Deployment or a StatefulSet using pod templates.
For managing a set of stateless pods, the Kubernetes object Deployment includes the following configuration capabilities :
· metadata, which contains the identification and description of the Deployment. Commonly used metadata attributes for a Deployment are its name and labels.
· spec, which is a detailed configuration of the Deployment’s various resources. The key attributes for the Deployment’s resource configuration are the following.
· replicas, which is used to configure how many pod replicas are needed.
· selector, which defines how the Deployment controller finds which pods it should manage. For example, the user can select a label that is defined in the pod template, then the Deployment controller will manage pods with this label.
· template, which provides template for pods in the Deployment.
· strategy, which specifies the strategy used to replace pods of the old template by new ones when the Deployment is upgraded. It has two options "Recreate" or "RollingUpdate".
For a containerized application consisting of a pool of stateless pods, it can be configured in the sub-attribute maxUnavailable and maxSurge under the RollingUpdate strategy to control the rolling software modification process in Kubernetes. The configurable attribute maxUnavailable specifies the maximum number of pods that can be unavailable during the software modification process. The value can be an absolute number (for example, 5) or a percentage of desired pods (for example, 10%), ensuring that the total number of pods available at all times during the software modification process can meet the least availability need of the application. The configurable attribute maxSurge specifies the maximum number of pods that can be created over the desired number of pods. The value can be an absolute number (for example, 5) or a percentage of desired pods (for example, 10%), ensuring that the total number of pods running at any time during the software modification won’t go over the threshold to affect the system performance or occupy too many virtualised resources.
· progressDeadlineSeconds, which configures the number of seconds Kubernetes waits for the Deployment to progress before the system reports back that the Deployment has failed.
For managing a set of stateful pods, the Kubernetes object StatefulSet includes the following configuration capabilities:
· metadata, which contains the identification and description of the StatefulSet, e.g., the name and labels of the StatefulSet.
· spec, which is a detailed configuration of the StatefulSet’s various resources. The key attributes for the StatefulSet’s resource configuration are the following.
· replicas, which is used to configure how many pod replicas are needed.
· selector, which defines how the StatefulSet controller finds which pods it should manage. For example, the user can select a label that is defined in the pod template, then the StatefulSet controller will manage pods with this label.
· template, which provides template for pods in the StatefulSet, including the information for containers’ images, ports and volume mounts in the pod.
· serviceName, which defines the service this StatefulSet should correspond to.
· volumeClaimTemplate, which configures a persistent volume claim (PVC) template so that each pod in the StatefulSet will have its persistent volume stable storage.
· podManagementPolicy, which allows users to relax the StatefulSet’s management of pod ordering while preserving its pod uniqueness and identity guarantees. By default, in a StatefulSet, before a scaling operation is applied, all the predecessors of the new pod need to be in the Running phase; or before a pod is terminated, all of its successors need to be terminated (Succeeded or Failed).
· updateStrategy, which configures or disables automated rolling updates for containers, labels, resource request/limits, and annotations of the pods of a StatefulSet. It has two options "OnDelete" or "RollingUpdate". When the value is "OnDelete", Kubernetes will not automatically update the pods in the StatefulSet. Users must manually delete old pods so that the controller creates new pods that reflect modifications made to the template. The type "RollingUpdate" allows all or a partition of pods to be automatically updated when the StatefulSet's template is updated.
For the stateful containerized application software modification, the maxUnavailable can be configured for the StatefulSet similar to the Deployment. Besides the maxUnavailable, the sub-attribute partition under the RollingUpdate strategy can also be configured to define a set of pods that may be modified and a set of pods that should not be modified in this software modification process. This configuration can be useful if it is decided to roll out a subset for software modification validation (known in Kubernetes as a canary upgrade), or perform a phased roll-out for containerized application software modification depending on the likelihood of meeting the availability requirements of the application.
For more details of the existing pod configurable attributes in Kubernetes, please refer to Annex A.

[bookmark: _Toc126159301]5.32.3	Existing metrics
For pods management in Kubernetes, the status of pods summarizes the current situation of the pods in a container cluster. Fields in status for pods should be the most recent observations for pods’ situation, but they may contain information such as the results of allocations or similar operations which are executed in response to the Kubernetes object's spec. The key metrics showing the Kubernetes pod’s status are as follows:
· phase, showing which phase this pod is currently in.
· conditions, showing more detailed information per condition type on this pod’s readiness.
· type, there are four condition types: “PodScheduled”, “Initialized”, “ContainersReady” and “Ready”. “PodScheduled” shows if the pod has been scheduled to a node. “Initialized” shows if all init containers in this pod have been started successfully. “ContainersReady” shows if all containers in the pod are ready. “Ready” shows if the pod can provide its service. For all four condition types, the status value can be “True”, “False”, or “Unknown”.
· lastProbeTime, the timestamp of the last pod condition detection.
· lastTransitionTime, the timestamp of the last condition transition from one status value to another.
· reason, a machine-readable reason for the last condition transition.
· message, a human-readable detailed description of the last condition transition.
Besides, in Kubernetes, CPU usage and memory usage are two key performance metrics for pod’s computing resources.
· Pod CPU usage. CPU is reported as the average core usage measured in CPU units. One CPU, in Kubernetes, means one vCPU/Core for cloud providers, or one hyper-thread on bare-metal processors. The existing metrics include the number of cores and percentage (actual usage compared to the max limit) of CPU usage.
· Pod memory usage. Memory is reported as the working set, measured in bytes, at the instant the metric was collected. The existing metrics include the number of bytes and percentage (actual usage compared to the max limit) of Memory usage.
For monitoring a set of containerized applications, the key metrics showing the Kubernetes Deployment and StatefulSet’s status are as follows:
· replicas, showing how many pod replicas are now in this set of pods.
· availableReplicas, showing the number of available pod replicas in this set of pods. Available pods should be in the phase “Running” and the condition type “Ready”.
· unavailableReplicas, showing the number of unavailable pod replicas in this set of pods. Unavailable pods are not in the phase “Running”, or if in the “Running” phase, they are not in the condition “Ready”.
· conditions, showing detailed information per condition type on the readiness of this set of pods.
· type, there are two condition types: “Progressing” and “Complete”. “Progressing” shows if the Deployment or StatefulSet is now creating pods, scaling or has pods available. “Complete” shows if all of the pods in this set have been updated to the latest version specified by the user, if all new replicas are available and all old replicas have been terminated. For all two condition types, the status value can be “True”, “False”, or “Unknown”.
· lastTransitionTime, the timestamp of the last condition transition from one status value to another
· reason, a machine-readable reason for the last condition transition, e.g., “ProgressDeadlineExceed” for a Deployment.
· message, a human-readable detailed description of the last condition transition.
For more details of the existing pod metrics in Kubernetes, please refer to Annex A.

[bookmark: _Toc126159302]6	Use cases
Editor’s Note: This clause will provide use cases description which further supports the derivation of criteria and their associated metrics to evaluate the reliability for cloud-native VNFs. Use cases related to VNF upgrade, scaling and healing are expected to be studied.
[bookmark: _Toc85229186][bookmark: _Toc98774475][bookmark: _Toc126159303][bookmark: _Toc79509394]6.1	Introduction
[bookmark: _Toc85229187][bookmark: _Toc98774476]6.2	VNF upgrade
[bookmark: _Toc126159304]6.2	Cloud-native VNF software modification
[bookmark: _Toc126159305]6.2.1	Introduction
In ETSI NFV concepts, the software modification process includes software upgrade, software update, software fallback, and software rollback [i.1]. Cloud-native VNFs are expected to be equipped with appropriate mechanisms to monitor the VNF health and support the general VNF lifecycle. The ability to estimate reliability and availability is very useful for the successful software modification of cloud-native VNFs. For example, the software modification process for VNFs may take different paths depending on the likelihood of meeting the availability requirements of the VNFs. In clause 6.2, the VNF availability evaluation for containerized and microservice-based VNF software modification is discussed.
[bookmark: _Toc126159306]6.2.2	Containerized VNF software modification
[bookmark: _Toc126159307]6.2.2.1	VNF availability evaluation for containerized VNF software modification
Containerized implementation does not bring any inherent change to the overall logic of VNF software modification; however, the CISM and its profiled open-source solution Kubernetes provide more automatic capabilities for containerized VNF software modification. Similar to the case of VNFs deployed as virtual machines, containerized VNF software modification may be initiated by EM or NFVO (the latter NFVO case assumes that the NFVO has received an UpdateNS operation with updateType = ChangeVnfPkg from the OSS) using a ChangeCurrentVnfPackage operation. As a result of this operation, VNFM should request the update of Kubernetes managed objects (e.g. Deployment, StatefulSet) which implies that the new software will be deployed in new containers. Before the request, it would be useful to estimate if the current status of containerized applications managed by Kubernetes and their configuration would impact the VNF availability during the software modification, and re-configure Kubernetes (using for example replicas, updateStrategy) if necessary. Kubernetes can then follow the configured strategy for the containerized software modification process.
For both stateful and stateless containerized VNFs, Kubernetes provides several autonomous mechanisms for software modification. However, Kubernetes itself doesn’t have the ability to do the VNF availability calculation without enhancement or external assistance. Therefore a functional entity needs to evaluate the availability for containerized VNFs before the VNF software modification process is triggered. Please refer to clause 7 for a discussion on where this functional entity could be placed.
Beyond traditional VNF related metrics used for VNF generic OAM, metrics reflecting the container infrastructure status are also useful to be observed for this VNF availability calculation and estimation.
[bookmark: _Toc126159308]6.2.2.2	Container infrastructure related metrics for MCIO availability evaluation
The cloud-native technology is supposed to provide container infrastructure status observability for the applications running on it. In practice, container infrastructure status observability is the ability to understand the system using its outputs like metric monitoring, event logging, and tracing. Among these outputs, metric monitoring allows the management system to have a general understanding of the container infrastructure service health, event logging can provide real-time event logs generated during the execution of the applications that can explain the running status of the observed object system in detail, while tracing is request-oriented with abnormal point information useful in the case of debugging for containerized VNF software modification.
As one of the 3 key aspects (metric monitoring, event logging, tracing) in the cloud native observability practice, container infrastructure related metrics are the focus of the present use case for availability evaluation for containerized VNF software modification. As mentioned in clause 5, Kubernetes provides a set of pod and cluster metrics for monitoring the status of containerized implementation.
Beyond generic metrics which Kubernetes gathered from its own metrics server, custom metrics can also be monitored by the aggregated custom metrics server for carrier-grade telco cloud requirements, e.g. the network flow rate for different pods inside a certain CIS (container infrastructure service) instance (aka a Kubernetes node). These container infrastructure observability improvements, especially the Kubernetes pod related metrics, can help stakeholders ensure the availability for certain containerized VNFCs.
According to ETSI GS NFV-IFA 040 [i.6], a VNFC instance may be mapped to an MCIO instance. The following shows an example of MCIO instance availability calculation based on pod metrics.
According to ETSI GS NFV-REL 003 [i.11], the reliability and availability of a complex system such as an NFV deployment can be modelled by breaking it down into its constituent components, of which the reliability and availability are known. For repairable components, this can be expressed using cycles of uninterrupted working intervals (uptime), followed by repair periods after a failure has occurred (downtime). The average length of the first intervals is usually called the Mean Time Between Failures (MTBF), while the average length of the second intervals is the Mean Time To Repair (MTTR). The containerized VNF implementation can use pod as the constituent components mentioned, which metrics can be used to get the MTBF and the MTTR of a pod (aka an MCIO instance) to calculate the availability of a single containerized component as:
AMCIOinstance = AInfrastructure * MTBFpod / (MTBFpod + MTTRpod)
In the previous formula, the availability of the pod (and its included application) is independent of the availability of the infrastructure used to deploy the pod.
[bookmark: _Toc126159309]6.2.2.3	Model and calculation methods for containerized VNF availability
As discussed in clause 6.2.2.2, the availability of a MCIO instance can be measured according to related metrics. The evaluation of the availability of a MCIO instance should be performed as the first step for calculating the containerized VNF availability. Based on the availability of a MCIO instance, the robustness of the containerized VNF could be evaluated based on the topology model of MCIOs (e.g. containerized instances of the same VNFC with active-active model). Based on these models, the analysing function can provide the availability estimation of the containerized VNF to give a green light for its software modification.
Editor’s note: Detailed solution is needed, possibly in a later clause e.g. depending on the VNF requirements, obtain the VNFCs requirements, get the current VNFC availability, calculate the minimum number of MCIO instances needed, input such value in K8S before launching the s/w modification.
The following shows an example of containerized VNF-internal redundancy model and VNF availability calculation.
In order to meet the VNF availability requirement, the analysing function needs to continually estimate the availability of a VNF instance. To achieve this, the function responsible for the evaluation needs to have knowledge of the topology of the constituent VNFCs and the redundancy models that are used. The topology of the constituent VNFCs can be found in the VNFD which is used by the VNFM for the software modification.
Even though the methods to gather this information are not standardized, it is possible to give the following guidance on how the availability of a VNF instance can be estimated.
The availability of a VNF which is composed of VNFCs in series can be calculated as:
AVNF = AVNFCx * AVNFCy * …. * AVNFCz
For a pool of MCIOs with redundancy model RM(), the availability of a pool of n MCIO instances (instances of the same VNFC) is calculated as:
AVNFC = RM(AMCIO1, AMCIO2, …. , AMCIOn)
For the simplest example pool of MCIOs with active-active redundancy, the availability of a pool of n MCIO instances is calculated as:
AVNFC = 1 – ((1 – AMCIO1) * (1 – AMCIO2) * …. * (1 – AMCIOn))
[bookmark: _Toc126159310]6.2.2.4	Impact of the evaluation output on containerized VNF software modification
Different VNFs have different availability requirements to fulfil. For each containerized VNF, the CISM will continuously monitor the CaaS metrics as input for availability calculation. Based on this input, the analysing function is supposed to perform the VNF availability evaluation when the software modification is initiated by EM/NFVO. The software modification can be performed at a certain time when the analysing function confirms that the VNF availability requirements can be met during the software modification. If the calculation finds that the VNF availability requirements cannot be met, CISM needs to take management actions accordingly (e.g., allocate more resources) to reach these requirements. According to the analysis output, the analysing function can provide Kubernetes with the appropriate configuration parameters for this software modification (these configuration parameters can be carried in Helm charts and Kubernetes manifests which can be delivered by NFVO/VNFM to the CISM).
Even though it is not possible to directly calculate the availability of pods containing the updated software, it is possible to perform some estimation based on previous experience with pods which contain the older software- please refer to ETSI GS NFV-REL 003 [i.11] clause 5.3. In particular, it is assumed that the failure rate may typically be higher after a software modification, which implies that the MTBF is shorter, and thereby the availability is reduced. In practical terms, this means that software modification introduces some risk to VNF availability, and proactive measures may be needed to mitigate this risk.
The following shows an example of how the maxUnavailable attribute in Kubernetes may need to be changed to ensure VNF availability after VNF software modification. This simple example is intended to demonstrate how to calculate a Kubernetes configurable attribute, it is not intended to be a complete realistic example.
If a pool of 5 MCIO instances of the same VNFC are operating with active-active redundancy, the necessary value of maxUnavailable attribute in Kubernetes can be calculated to meet the VNFC availability requirement. As an example to demonstrate the use of the formula above, it is assumed that each MCIO instance hosting the new software has an availability of 99%. The formula in clause 6.2.2.3 can be used to calculate the availability of the containerized VNFC, and thereby the minimum viable MCIO pool size. In the example of 5 MCIO instances, to reach a VNFC availability level of 99.99%, the pool must contain at least 2 active MCIO instances, thus the maxUnavailable attribute should be set to 3 in this case. Similarly, to reach a VNFC availability level of 99.999%, the pool must contain at least 3 active MCIO instances, thus the maxUnavailable attribute should be set to 2 in this case.
[bookmark: _Toc126159311]6.2.2.5	Actors and roles
Table 6.2.2.5-1 describes actors and roles of the resiliency assurance for containerized VNF software modification initiated by NFVO.
Table 6.2.2.5-1: Resiliency assurance for containerized VNF software modification actors and roles
	#
	Role
	Description

	1
	NFVO
	NFV Orchestrator managing the NS instance.

	2
	VNFM
	VNF Manager managing one or more VNF instances of the NS instance.

	3
	CISM
	CIS Manager managing one or more container infrastructure services.

	4
	AEF
	Availability Estimation Function, which is responsible for performing the VNF availability evaluation/estimation, The function might or might not be part of NFV-MANO.

[bookmark: _Toc126159312]6.2.2.6	Pre-conditions
Table 6.2.2.6-1 describes the use case pre-conditions.
Table 6.2.2.6-1: Resiliency assurance for containerized VNF software modification pre-conditions
	#
	Pre-condition
	Additional description

	1
	The NS has been instantiated according to the relevant NSD and is working normally.
	The containerized infrastructure is managed using Kubernetes.

	2
	The NS instance provides its services according to the requested availability characteristics.
	

	3
	The AEF is equipped with models and algorithms and is ready to perform availability estimation for the containerized VNFs.
	

	4
	The NFVO has received an UpdateNS operation with updateType = ChangeVnfPkg from the OSS and decides to initiate software modification for one containerized VNF.
	

[bookmark: _Toc126159313]6.2.2.7	Post-conditions
Table 6.2.2.7-1 describes the use case post-conditions.
Table 6.2.2.7-1: Resiliency assurance for containerized VNF software modification post-conditions
	#
	Post-condition
	Additional description

	1
	The containerized VNF is equipped with the new version of software.
	

	2
	The NS instance continues to provide its services according to the requested availability characteristics.
	

[bookmark: _Toc126159314]6.2.2.8	Flow description of resiliency assurance for containerized VNF software modification
Table 6.2.2.8-1 describes the use case flow.
Table 6.2.2.8-1: Flow description of resiliency assurance for containerized VNF software modification
	#
	Actor/Role
	Action/Description

	Begins when
	NFVO → VNFM
	The NFVO sends a ChangeCurrentVnfPackage request to the VNFM.
(see notes 1 and 2)

	Step 1
	VNFM
	VNFM determines which VNFCs will be impacted by the software modification of the VNF. Impacts may be addition of VNFC(s), update of VNFC(s), or removal of VNFC(s).

	
	
	Step 2 to Step 9 are repeated for each impacted VNFC.

	Step 2
	VNFM → AEF
	VNFM requests AEF to perform the availability evaluation for the proposed VNFC software modification.

	Step 3
	AEF
	AEF reads the VNFD to fetch information (for example DeploymentFlavour) which is needed to infer the expected availability of the new VNFC.

	Step 4
	AEF → CISM
	AEF fetches information from CISM related to the VNFC, for example number of MCIOs and the status of these MCIOs.

	Step 5
	AEF
	AEF estimates the availability for the containerized VNFC as a result of the software modification.
(see note 3)

	Step 6
	AEF → VNFM
	AEF responds to VNFM with the analysis result. This analysis result may contain a recommendation to change Kubernetes configurable attributes before the software modification can proceed.

	Step 7
	VNFM → CISM
	If the analysis result recommends to change Kubernetes configurable attributes, VNFM sends updated attribute values to CISM according to the recommendations received from AEF. Otherwise, there is no need to change Kubernetes configurable attributes.

	Step 8
	VNFM → CISM
	VNFM requests the CISM to update the VNFC to the new software.

	Step 9
	CISM → VNFM
	CISM informs VNFM that the update is complete.

	Step 10
	VNFM → NFVO
	VNFM informs NFVO that the VNF software modification is complete.

	Ends when
	NFVO
	NFVO has been informed that the VNF software modification is complete.

Note 1: This is an optimistic flow, fault conditions are not considered.
Note 2: Aspects of service continuity during and after upgrade are not the core subject of this use case and are not described in this flow.
Note 3: Please refer to clause 7 for discussion of how this can be achieved.
Editor’s note: Contribution needed for clause 7 to describe estimation methods.
[bookmark: _Toc126159315]6.2.3	Microservice-based VNF software modification

[bookmark: _Toc85229195][bookmark: _Toc98774484][bookmark: _Toc126159316]6.3	VNF scaling
[bookmark: _Toc85229196][bookmark: _Toc98774485][bookmark: _Toc126159317]6.3.y	<Title of VNF scaling use case y>
[bookmark: _Toc85229197][bookmark: _Toc98774486][bookmark: _Toc126159318]6.3.y.1	Introduction and goal
[bookmark: _Toc85229198][bookmark: _Toc98774487][bookmark: _Toc126159319]6.3.y.2	Actors and roles
[bookmark: _Toc85229199][bookmark: _Toc98774488][bookmark: _Toc126159320]6.3.y.3	Pre-conditions
[bookmark: _Toc85229200][bookmark: _Toc98774489][bookmark: _Toc126159321]6.3.y.4	Post-conditions
[bookmark: _Toc85229201][bookmark: _Toc98774490][bookmark: _Toc126159322]6.3.y.5	Flow description #1
[bookmark: _Toc85229202][bookmark: _Toc98774491][bookmark: _Toc126159323]6.3.y.6	Flow description #2

[bookmark: _Toc85229203][bookmark: _Toc98774492]

[bookmark: _Toc126159324]7	Criteria and metrics of reliability evaluation for cloud-native VNFs
Editor’s Note: This clause will elaborate the criteria and their associated metrics of reliability evaluation for cloud-native VNFs, which are derived from the use case study in clause 5.

[bookmark: _Toc85229204][bookmark: _Toc98774493][bookmark: _Toc126159325]8	Recommendations
Editor’s Note: This clause will summarize the recommendations for the requirements of normative work derived from the study work in the present document.

[bookmark: _Toc85229205][bookmark: _Toc98774494][bookmark: _Toc126159326]9	Conclusion
Editor’s Note: The purpose of this clause is to provide concluding remarks once the GR draft is about to be completed.
[bookmark: _Toc455504149][bookmark: _Toc481503687][bookmark: _Toc527985151][bookmark: _Toc19024844][bookmark: _Toc19025517][bookmark: _Toc67663839]

[bookmark: _Toc126159327]Annex A: Existing Pod Metrics and Configurable Attributes in Kubernetes
Table A-1 shows the existing pod metrics and configurable attributes in Kubernetes.
Table A-1: Kubernetes pod metrics and configurable attributes
	Metric name
	Description
	Type

	kube_pod_annotations
	Kubernetes annotations converted to Prometheus labels
	Configurable Attibutes

	kube_pod_info
	Information about pod
	Configurable Attibutes Attibutes

	kube_pod_ips
	Pod IP addresses
	Configurable Attibutes

	kube_pod_start_time
	Start time in Unix timestamp for a pod
	Metrics

	kube_pod_completion_time
	Completion time in Unix timestamp for a pod
	Metircs

	kube_pod_owner
	Information about the Pod's owner
	Configurable Attibutes

	kube_pod_labels
	Kubernetes labels converted to Prometheus labels
	Configurable Attibutes

	kube_pod_nodeselectors
	Describes the Pod nodeSelectors
	Configurable Attibutes

	kube_pod_status_phase
	The pods current phase
	Metrics

	kube_pod_status_ready
	Describes whether the pod is ready to serve requests
	Metrics

	kube_pod_status_scheduled
	Describes the status of the scheduling process for the pod
	Metrics

	kube_pod_container_info
	Information about a container in a pod
	Configurable Attibutes

	kube_pod_container_status_waiting
	Describes whether the container is currently in waiting state
	Metrics

	kube_pod_container_status_waiting_reason
	Describes the reason the container is currently in waiting state
	Metrics

	kube_pod_container_status_running
	Describes whether the container is currently in running state
	Metrics

	kube_pod_container_state_started
	Start time in Unix timestamp for a pod container
	Metrics

	kube_pod_container_status_terminated
	Describes whether the container is currently in terminated state
	Metrics

	kube_pod_container_status_terminated_reason
	Describes the reason the container is currently in terminated state
	Metrics

	kube_pod_container_status_last_terminated_reason
	Describes the last reason the container was in terminated state
	Metrics

	kube_pod_container_status_ready
	Describes whether the containers readiness check succeeded
	Metrics

	kube_pod_container_status_restarts_total
	The number of container restarts per container
	Metrics

	kube_pod_container_resource_requests
	The number of requested request resource by a container
	Configurable Attibutes

	kube_pod_container_resource_limits
	The number of requested limit resource by a container

	Configurable Attibutes

	kube_pod_overhead_cpu_cores
	The pod overhead in regards to cpu cores associated with running a pod
	Metrics

	kube_pod_overhead_memory_bytes
	The pod overhead in regards to memory associated with running a pod
	Metrics

	kube_pod_runtimeclass_name_info
	The runtimeclass associated with the pod
	Configurable Attibutes

	kube_pod_created
	Unix creation timestamp
	Metrics

	kube_pod_deletion_timestamp
	Unix deletion timestamp
	Metrics

	kube_pod_restart_policy
	Describes the restart policy in use by this pod
	Configurable Attibutes

	kube_pod_init_container_info
	Information about an init container in a pod
	Configurable Attibutes

	kube_pod_init_container_status_waiting
	Describes whether the init container is currently in waiting state
	Metrics

	kube_pod_init_container_status_waiting_reason
	Describes the reason the init container is currently in waiting state
	Metrics

	kube_pod_init_container_status_running
	Describes whether the init container is currently in running state
	Metrics

	kube_pod_init_container_status_terminated
	Describes whether the init container is currently in terminated state
	Metrics

	kube_pod_init_container_status_terminated_reason
	Describes the reason the init container is currently in terminated state
	Metrics

	kube_pod_init_container_status_last_terminated_reason
	Describes the last reason the init container was in terminated state
	Metrics

	kube_pod_init_container_status_ready
	Describes whether the init containers readiness check succeeded
	Metrics

	kube_pod_init_container_status_restarts_total
	The number of restarts for the init container
	Metrics

	kube_pod_init_container_resource_limits
	The number of CPU cores requested limit by an init container
	Configurable Attibutes

	kube_pod_init_container_resource_requests
	The number of CPU cores requested by an init container
	Metrics

	kube_pod_spec_volumes_persistentvolumeclaims_info
	Information about persistentvolumeclaim volumes in a pod
	Configurable Attibutes

	kube_pod_spec_volumes_persistentvolumeclaims_readonly
	Describes whether a persistentvolumeclaim is mounted read only
	Configurable Attibutes

	kube_pod_status_reason
	The pod status reasons
	Metrics

	kube_pod_status_scheduled_time
	Unix timestamp when pod moved into scheduled status
	Metrics

	kube_pod_status_unschedulable
	Describes the unschedulable status for the pod
	Metrics

	kube_pod_tolerations
	Information about the pod tolerations
	Configurable Attibutes

[bookmark: _Toc455504150][bookmark: _Toc481503688][bookmark: _Toc527985152][bookmark: _Toc19024845][bookmark: _Toc19025518][bookmark: _Toc67663840][bookmark: _Toc126159328]Annex B: Title of annex
[bookmark: _Toc481503689][bookmark: _Toc527985153][bookmark: _Toc19024846][bookmark: _Toc19025519][bookmark: _Toc67663841][bookmark: _Toc126159329][bookmark: _Toc455504151]B.1	First clause of the annex
[bookmark: _Toc455504152][bookmark: _Toc481503690][bookmark: _Toc527985154][bookmark: _Toc19024847][bookmark: _Toc19025520][bookmark: _Toc67663842][bookmark: _Toc126159330]B.1.1	First subdivided clause of the annex

[bookmark: _Toc455504154][bookmark: _Toc481503692][bookmark: _Toc527985156][bookmark: _Toc19024848][bookmark: _Toc19025521][bookmark: _Toc67663843][bookmark: _Toc126159331]Annex: Bibliography

[bookmark: _Toc455504155][bookmark: _Toc481503693][bookmark: _Toc527985157][bookmark: _Toc19024849][bookmark: _Toc19025522][bookmark: _Toc67663844][bookmark: _Toc126159332]Annex: Change History
	Date
	Version
	Information about changes

	<Month year>
	<#>
	<Changes made are listed in this cell>

	October 2021
	0.0.1
	 Initial draft version including the skeleton of the GR and scope clause:
 NFVREL(21)000141r1, NFVREL(21)000142r2

	March 2022
	0.0.2
	 Early draft version including the following approved contributions:
 NFVREL(21)000149r2, NFVREL(21)000165r3, NFVREL(22)000024

	July 2022
	0.0.3
	Early draft version including the following approved contributions:
NFVREL(22)000027r2, NFVREL(22)000038r2, NFVREL(22)000039r4, NFVREL(22)000045r3, NFVREL(22)000063r1

	Jan 2023
	0.0.4
	Draft version including the following approved contributions:
NFVREL(23)000005r4, NFVREL(23)000002r2, NFVREL(22)000136, NFVREL(22)000125r10, NFVREL(22)000096r8, NFVREL(22)000101, NFVREL(22)000092r2, NFVREL(22)000064r1

[bookmark: _GoBack]

[bookmark: _Toc455504156][bookmark: _Toc481503694][bookmark: _Toc527985158][bookmark: _Toc19024850][bookmark: _Toc19025523][bookmark: _Toc67663845][bookmark: _Toc126159333]History
	Document history

	<Version>
	<Date>
	<Milestone>

	[bookmark: H_Pub]
	
	

	[bookmark: H_MAP]
	
	

	[bookmark: H_UAP]
	
	

	[bookmark: H_PE]
	
	

Latest changes made on 2022-03-14
ETSI
image2.png

image1.jpeg

