ETSI GS NFV-SEC 023 V0.0.7 (2023-11)
19
Release 4
[bookmark: doctype][bookmark: pages12]Disclaimer
The present document has been produced and approved by the <long ISGname> (<short ISGname>) ETSI Industry Specification Group (ISG) and represents the views of those members who participated in this ISG.
It does not necessarily represent the views of the entire ETSI membership.
[bookmark: docnumber][bookmark: docversion][bookmark: docdate]ETSI GS NFV-SEC 023 V0.0.7 (2023-11)

GROUP SPECIFICATION
[bookmark: doctitle]Network Functions Virtualisation (NFV);
Security;
Container Security Specification
Release 4
<
[image: ETSI_BG_final_new]
This DRAFT is a working document of ETSI. It is provided for information only and is for future development work within ETSI. DRAFTS may be updated, deleted, replaced, or obsoleted by other documents at any time.
ETSI and/or its Members have no liability for any current or further use/implementation of the present DRAFT.
Do not use as reference material.
Do not cite this document other than as "work in progress."
Any draft approved and PUBLISHED shall be obtained exclusively as a deliverables via the ETSI Standards search page at:
http://www.etsi.org/standards-search

[bookmark: page2]Reference
[bookmark: docworkitem]DGS/NFV-SEC023
Keywords
[bookmark: keywords]Container, Cyber Security, NFV, Security

[bookmark: ETSIinfo]ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
[bookmark: mailto]If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightaddon]© ETSI 2020.
[bookmark: tbcopyright]All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPPTM and LTETM are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Contents
Intellectual Property Rights	5
Foreword	5
Modal verbs terminology	5
Executive summary	5
Introduction	5
1	Scope	6
2	References	6
2.1	Normative references	6
2.2	Informative references	6
3	Definition of terms, symbols and abbreviations	7
3.1	Terms	7
3.2	Symbols	7
3.3	Abbreviations	7
4	NFV container deployments	7
4.1	Introduction	7
4.2 	Assumptions	8
4.3	Deployment Options	9
4.3.1	Container Platform	9
4.3.1.1	Container Infrastructure Services on bare metal	9
4.3.1.2	Container Infrastructure Services Nested within VMs	9
4.3.1.3	Container Infrastructure Services both on bare-metal and in VMs	9
4.3.2	Orchestration and Management	10
4. 4	Configurations	10
5	Threat Analysis	10
5.1 Introduction	10
5.2 Assets	10
5.3 Actors	11
5.4 Attacks	11
5.4.1 Image creation	11
5.4.2 Image management	11
5.4.3 Container escape attacks	12
6	Hardening Requirements and Security Solutions	13
Hardening Requirements and Security Solutions	13
6.1	Software Solutions	13
6.1.1	Namespaces	13
6.1.2	Control Groups	13
6.1.3	Capabilities	14
6.1.4	Secure computing mode	14
6.2	Hardware Solutions	15
6.2.1	Trusted Execution Support	15
6.2.1.1	vHMEE in host OS kernel	15
6.2.2.2	vHMEE in dedicated container	15
6.2.2	Secure Enclaves	15
6.3	Storage	15
6.4	Secure communication	15
6.5	Image Management	15
6.5.1	Validation of the containerized VNF Package during onboarding and instantiation	15
6.5.1.1	Introduction	15
6.5.1.2	Validation of the containerized VNF Package during onboarding	15
6.5.1.3	Validation of the MCIOP file artifacts and OS container images during instantiation	16
6.5.1.4 	OS container image software integrity validation at instantiation with attestation	17
Annex A (normative or informative): Title of annex	20
Annex B (normative or informative): Title of annex	21
B.1	First clause of the annex	21
B.1.1	First subdivided clause of the annex	21
Annex (informative): Authors & contributors	22
Annex (informative): Bibliography	23
Annex (informative): Change History	24
History	25

[bookmark: _Toc455504134][bookmark: _Toc481503672][bookmark: _Toc482690121][bookmark: _Toc482690598][bookmark: _Toc482693294][bookmark: _Toc484176722][bookmark: _Toc484176745][bookmark: _Toc484176768][bookmark: _Toc487530204][bookmark: _Toc40179631][bookmark: _Toc151288666]Intellectual Property Rights
Essential patents
IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
[bookmark: _Toc455504135][bookmark: _Toc481503673][bookmark: _Toc482690122][bookmark: _Toc482690599][bookmark: _Toc482693295][bookmark: _Toc484176723][bookmark: _Toc484176746][bookmark: _Toc484176769][bookmark: _Toc487530205][bookmark: _Toc40179632][bookmark: _Toc151288667]Foreword
[bookmark: For_tbname]This Group Specification (GS) has been produced by ETSI Industry Specification Group Network Function Virtualization (NFV).
[bookmark: _Toc455504136][bookmark: _Toc481503674][bookmark: _Toc482690123][bookmark: _Toc482690600][bookmark: _Toc482693296][bookmark: _Toc484176724][bookmark: _Toc484176747][bookmark: _Toc484176770][bookmark: _Toc487530206][bookmark: _Toc40179633][bookmark: _Toc151288668]Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
[bookmark: _Toc455504137][bookmark: _Toc481503675][bookmark: _Toc482690124][bookmark: _Toc482690601][bookmark: _Toc482693297][bookmark: _Toc484176725][bookmark: _Toc484176748][bookmark: _Toc484176771][bookmark: _Toc487530207][bookmark: _Toc40179634][bookmark: _Toc151288669]Executive summary

[bookmark: _Toc455504138][bookmark: _Toc481503676][bookmark: _Toc482690125][bookmark: _Toc482690602][bookmark: _Toc482693298][bookmark: _Toc484176726][bookmark: _Toc484176749][bookmark: _Toc484176772][bookmark: _Toc487530208][bookmark: _Toc40179635][bookmark: _Toc151288670]Introduction

[bookmark: _Toc455504139][bookmark: _Toc481503677][bookmark: _Toc482690126][bookmark: _Toc482690603][bookmark: _Toc482693299][bookmark: _Toc484176727][bookmark: _Toc484176750][bookmark: _Toc484176773][bookmark: _Toc487530209][bookmark: _Toc40179636][bookmark: _Toc151288671]1	Scope
The present document specifies the security and hardening requirement for running NFV software (e.g. VNFs) in containerised environments. The present document provides a threat analysis for a container based NFV deployment and a state of the art on container security. The present document proposes a set of requirements and solutions for attack surface reduction and privilege limitation and analyses existing solutions for resource limitations (cgroups); Hardware protections (HMEE); Container hardening (inc patching); Containers in VMs and containers on bare metal.

[bookmark: _Toc455504140][bookmark: _Toc481503678][bookmark: _Toc482690127][bookmark: _Toc482690604][bookmark: _Toc482693300][bookmark: _Toc484176728][bookmark: _Toc484176751][bookmark: _Toc484176774][bookmark: _Toc487530210][bookmark: _Toc40179637][bookmark: _Toc151288672]2	References
[bookmark: _Toc455504141][bookmark: _Toc481503679][bookmark: _Toc482690128][bookmark: _Toc482690605][bookmark: _Toc482693301][bookmark: _Toc484176729][bookmark: _Toc484176752][bookmark: _Toc484176775][bookmark: _Toc487530211][bookmark: _Toc40179638][bookmark: _Toc151288673]2.1	Normative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are necessary for the application of the present document.
[1]	ETSI GS NFV-IFA 040: "Network Functions Virtualisation (NFV) Release 4; Management and Orchestration; Requirements for service interfaces and object model for OS container management and orchestration specification".
[2]	ETSI GS NFV-SEC 021: "Network Functions Virtualisation (NFV); Security; VNF Package Security Specification".
[3]	ETSI GS NFV-SOL 004: "Network Functions Virtualisation (NFV); Protocols and Data Models; VNF Package and PNFD Archive specification".
[4]	ETSI GS NFV-IFA 011: "Network Functions Virtualisation (NFV); Management and Orchestration; VNF Descriptor and Packaging Specification".
[5]	ETSI GS NFV-SEC 006: "Network Functions Virtualisation (NFV);Security Guide;Report on Security Aspects and Regulatory Concerns"
[6]	ETSI GS NFV-SEC 012: "Network Functions Virtualisation (NFV);Security;System architecture specification for execution of sensitive NFV components'

[7]	Common Vulnerability Scoring System v3.1: Specification Document.
NOTE:	Available at https://www.first.org/cvss/v3.1/specification-document.

[bookmark: _Toc455504142][bookmark: _Toc481503680][bookmark: _Toc482690129][bookmark: _Toc482690606][bookmark: _Toc482693302][bookmark: _Toc484176730][bookmark: _Toc484176753][bookmark: _Toc484176776][bookmark: _Toc487530212][bookmark: _Toc40179639][bookmark: _Toc151288674]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: _Toc451532925] [i.1]	ETSI GS NFV 003: "Network Functions Virtualisation (NFV); Terminology for Main Concepts in NFV".
[i.2]	ETSI GR NFV-IFA 029: "Network Functions Virtualisation (NFV); Architecture; Report on the Enhancements of the NFV architecture towards "Cloud-native" and "PaaS"
[i.3]	ETSI GS NFV-MAN 001: "Network Functions Virtualisation (NFV); Management and Orchestration".
[i.4]	OCITM Image Format Specification v1.0.1, online
https://github.com/opencontainers/image-spec/releases/tag/v1.0.1
[i.5]	ETSI GS NFV-SOL 018: “Network Functions Virtualisation (NFV) Release 4; Protocols and Data Models; Profiling specification of protocol and data model solutions for OS Container management and orchestration”.
[i.6]	Extended BPF (eBPF), online https://ebpf.io/.

[bookmark: _Toc40179640][bookmark: _Toc151288675][bookmark: _Hlk527028731] 3	Definition of terms, symbols and abbreviations
[bookmark: _Toc451532926][bookmark: _Toc40179641][bookmark: _Toc151288676]3.1	Terms
For the purposes of the present document, the terms given in ETSI GS NFV 003 [i.1], ETSI GS NFV-IFA 040 [1], and the following apply:
.

[bookmark: _Toc455504145][bookmark: _Toc481503683][bookmark: _Toc482690132][bookmark: _Toc482690609][bookmark: _Toc482693305][bookmark: _Toc484176733][bookmark: _Toc484176756][bookmark: _Toc484176779][bookmark: _Toc487530215][bookmark: _Toc40179642][bookmark: _Toc151288677]3.2	Symbols
[bookmark: _Hlk527022222]For the purposes of the present document, the symbols given in ETSI GR NFV 003 [i.1] apply.

[bookmark: _Toc455504146][bookmark: _Toc481503684][bookmark: _Toc482690133][bookmark: _Toc482690610][bookmark: _Toc482693306][bookmark: _Toc484176734][bookmark: _Toc484176757][bookmark: _Toc484176780][bookmark: _Toc487530216][bookmark: _Toc40179643][bookmark: _Toc151288678]3.3	Abbreviations
[bookmark: _Hlk37860654]For the purposes of the present document, the abbreviations given in ETSI GR NFV 003 [i.1] and ETSI NFV-IFA 040 [1] apply.

[bookmark: _Toc455504147][bookmark: _Toc481503685][bookmark: _Toc482690134][bookmark: _Toc482690611][bookmark: _Toc482693307][bookmark: _Toc484176735][bookmark: _Toc484176758][bookmark: _Toc484176781][bookmark: _Toc487530217][bookmark: _Toc40179644][bookmark: _Toc151288679]4	NFV container deployments

[bookmark: _Toc455504148][bookmark: _Toc481503686][bookmark: _Toc482690135][bookmark: _Toc482690612][bookmark: _Toc482693308][bookmark: _Toc484176736][bookmark: _Toc484176759][bookmark: _Toc484176782][bookmark: _Toc487530218][bookmark: _Toc40179645][bookmark: _Toc151288680]4.1	Introduction
A VNF or VNFC designed to be deployed and managed on Container Infrastructure Service instances (CIS) is represented by a containerized workload running on OS containers. The management and orchestration of OS containers requires the services of the following two functions:
· Container Infrastructure Service Management (CISM) ; and
· Container Image Registry (CIR).
Requirements on the list of services to be offered by architectural elements providing the CISM and CIR functions and requirements on the interfaces to expose these services to various consumers are specified in in ETSI GS NFV-IFA 040 [1].
The study ETSI GR NFV-IFA 029 [i.2] identified several possible container deployment scenarios. These include:
Nested Container Infrastructure Services in VMs, Container Infrastructure Services on bare-metal, or NFVI providing Container Infrastructure Services on bare-metal and in VMs. Additionally, different mapping options of the CISM function to NFV-MANO are presented The characteristics, particularly those important for security aspects, of these deployment configurations are described in the following sub-clauses.

[bookmark: _Toc40179646][bookmark: _Toc151288681]4.2 	Assumptions
The assumptions in this clause are general and applicable to any deployment option or scenario in the subsequent clauses. They relate to: (1) modelling the containerized workloads; and (2) general aspects on the CIS infrastructure.
1)	Assumptions on modelling the containerized workloads
Existing de-facto standard container infrastructure management systems consider managing containerized workloads at a granularity which is higher than on a single container level. A set of OS containers that are tightly coupled to run in the same execution environment (i.e., on the same CIS instance) and designed to be scheduled together, is defined as the smallest manageable workload object. A VNFC instance is assumed to be 1:1 mapped to such a smallest manageable unit of a containerized workload.
The CISM manages and exposes Managed Container Infrastructure Objects (MCIOs). An MCIO whose declarative descriptor specifies compute/storage infrastructure resource requests represents such smallest manageable unit and is assumed to be 1:1 mapped to a VNFC.
The MCIOs are assumed to be specified agnostic to the possible container infrastructure deployment scenario.
As described in ETSI GS NFV-IFA 040 [1] clause 5.2.5, the OS container image is an abstract NFV object for OS container management and orchestration, representing a software image for an OS container. OS container images are referenced in the declarative descriptors of MCIOs. The MCIOs which are built from OS container images, are created by deploying their OS containers from their respective images. The OS container images are typically pulled by the CIS instances from the CIR based on the image names and CIR URLs. Dependent on the delivery method of the VNF SW, the VNF Package may include the OS container images as artifacts (e.g., as archive files).
An OS container image is assumed to consist of several components, one of them supporting the image content description and addressability of other image components. Existing de-facto standard image formats refer to such component as image manifest, which typically enables image content-addressability. An image manifest may point to other components necessary for the OS container runtime filesystem to be built. Existing de-facto standard image formats refer to such components as image layers. One or several layers may be required to create a complete OS container filesystem. The necessary ordered set of layers is also expected to be described in the image manifest. The image layers themselves can add, modify or remove files when applied on top of another image layer.
NOTE: The OCITM Image Format Specification v1.0.1 [i.4] is identified to map to the OS container image of the NFV object model, as described in ETSI GS NFV-SOL 018 [i.5] clause 5.5. The OCI™ image consists of several components: manifest, image index, filesystem layers, configuration.

OS container images are referenced in the declarative descriptors of MCIOs. Dependent on the delivery method of the VNF SW, the VNF Package may include the OS container images as artifacts.	Comment by LAZRI Kahina INNOV/NET: Stere ? J’en fais quoi de cette phrase ?
2)	General assumptions on the CIS infrastructure
A CISM instance manages multiple containerized workloads in a cluster of CIS instances. The cluster operator is assumed to follow the general principle of least privilege for namespace definition and namespace quota assignment, and for access policy definition.

NOTE: in a multi-namespace environment, particular CISM internal services may be exposed to all namespaces.

Editor’s Note: the assumption of the CISM function being collocated with CIS instances is for further study.
[bookmark: _Toc40179647][bookmark: _Toc151288682]4.3	Deployment Options
[bookmark: _Toc40179648][bookmark: _Toc151288683]4.3.1	Container Platform
IFA 029 [X] depicts a number of deployment options for VNFs or VNF as per clause 5.3.2. in IFA-029 components that utilize container-based virtualisation depending on the capabilities of the NFVI. This clause lists security considerations for the various deployment options.
NOTE: the option for Container-based NFV Micro-Services within the VNF is not considered because in this option, the VNFC uses its own internal container technology to execute the VNF components, all running within VMs. This is equivalent to the traditional VM based operation, as neither NFV-MANO nor NFVI provide any container infrastructure services.
[bookmark: _Toc151288684]4.3.1.1	Container Infrastructure Services on bare metal
In this deployment option, the VNF runs entirely within OS level containers which are provided by the CIS as depicted in IFA029 [X] clause 5.3.3. Whether each single VNF component runs in its own container is dependent on the VNF and how the managed container infrastructure object models are configured. The key aspects are that the NFVI provides the virtualisation layer that holds the container runtime environment as well as the OS for each container running directly on all NFVI hosts. The NFVI also provides the network for communications among VNFCs between NFVI hosts.
The LCM for VNFCs is performed by NFV-MANO using the usual templates such as VNFDs and VDUs. NFV-MANO however, consumes interfaces from the CISM with the latter doing all the necessary virtual resource allocation and management for the container infrastructure.
Due to VNFs running purely in OS containers without the use of VMs, this option is open to the general threats for containerized workloads that are described in clause 5.4. This includes vulnerabilities to the container runtime such as privilege escalation, escape attacks, information loss through side channel attacks, and remote code execution. Furthermore, as NFV-MANO entities make use of CISM northbound interfaces, the system is subject to CISM specific software and API vulnerabilities.
[bookmark: _Toc151288685]4.3.1.2	Container Infrastructure Services Nested within VMs
In this deployment option, the VNF runs within OS level containers which in turn are executed within VMs as depicted in IFA029 [X] clauses 5.3.4 and 5.3.5. Whether each VNF component runs in a single container or requires multiple containers is dependent on the VNF and how the managed container infrastructure object models are configured. The key aspects are that the NFVI provides the virtualisation layer with hypervisors supporting container infrastructure services running within VMs as well as the OS for each VM on all NFVI hosts. The NFVI also provides the networks for communications among VNFCs within and between VMs across NFVI hosts.
The LCM for VNFCs is performed by NFV-MANO using the usual templates such as VNFDs and VDUs. The VIM manages all the necessary virtual resource allocation for VMs when the container infrastructure is set up. NFV-MANO consumes interfaces from the CISM for managing containers which is also responsible for managing container related resources.
Due to VNFs running in OS containers nested within VMs, in terms of security, this option gains the isolation that VMs provide, and the ability to follow affinity and anti-affinity rules for VNFC placement in VMs and NFVI nodes in addition to container level security mechanisms. While this option is also open to the general threats for containerized workloads that are described in clause 5.4, these scope and surface area of these threats are reduced to the set of containers contained in each VM. As NFV-MANO entities make use of CISM northbound interfaces, this option is subject to CISM specific software and API vulnerabilities.
[bookmark: _Toc151288686]4.3.1.3	Container Infrastructure Services both on bare-metal and in VMs
In this deployment option, the VNF runs within OS level containers, some of which are executed within VMs and some of which are run directly on hosts as depicted in IFA029 [X] clauses 5.3.6. Whether each VNF component runs in a container bare-metal or in a container within a VM is dependent on the VNF and how the managed container infrastructure object models are configured. The key aspects are that the NFVI provides the virtualisation layer with hypervisors supporting container infrastructure services running within VMs, support for containers running directly on bare-metal, and the OS for each container or VM on all NFVI hosts. The NFVI also provides the virtual network for communications among VNFCs within and between VMs and containers across NFVI hosts.
The LCM for VNFCs is performed by NFV-MANO using the usual templates such as VNFDs and VDUs. The VIM manages all the necessary virtual resource allocation for VMs when the container infrastructure is set up. NFV-MANO consumes interfaces from the CISM for managing containers which is also responsible for managing container related resources.
This option being a combination of containers over bare-metal and containers within VMs inherits the security aspects of both. Containers running on bare-metal are open to the general threats for containerized workloads that are described in clause 5.4. And containers running within VMs gain the isolation that VMs provide, and the ability to follow affinity and anti-affinity rules for VNFC placement in VMs and NFVI nodes in addition to container level security mechanisms. And finally, as NFV-MANO entities make use of CISM northbound interfaces, this option is subject to CISM specific software and API vulnerabilities.
[bookmark: _Toc40179649][bookmark: _Toc151288687]4.3.2	Orchestration and Management
Editor's Note: Describe the characteristics, particularly those important for security aspects (e.g. external/internal interfaces, shared/isolated access to resources etc.) for the different CISM deployment options, CIR locations as per IFA029 Sec 7.2.4.
[bookmark: _Toc40179650][bookmark: _Toc151288688]4. 4	Configurations
Editor's Note: to create a list/matrix of potential deployment combinations which can be indexed and referenced for the applicability in the threat analysis and solutions in subsequent clauses.
[bookmark: _Toc40179651][bookmark: _Toc151288689]5	Threat Analysis
Editor's Note: Include Assets in threat analysis. Additionally, may want to add an Assets annex.

[bookmark: _Toc151288690]5.1 Introduction
This clause contains a structured method (based on SEC 012 [6]) to derive security requirements based on the assets that need to be protected, actors that may have an interest in attacking them, the attacks themselves, and the resulting requirements and mitigations that result. The point of view is generally CSP-centric, although some threats can come from the vendor domain, and ultimately impact the CSP, and those need to be mitigated as well.
[bookmark: _Toc151288691]5.2 Assets
Although the code itself of software applications is an asset that needs to be protected, the reason this code is attached is to get to data manipulated by the code, which has inherent value that can be of benefit to the attacker oustide the system. The assets with inherent value to be protected are:
1. Personally identifiable information of
a. CSP personnel
b. CSP customers (e.g., end retail customer)
c. CSP tenants
d. Vendor personnel
2. Security credentials/certificates of
a. CSP personnel
i. Identities
ii. API keys/tokens/passwords
b. System elements
i. Infrastructure layer
1. Identities
2. API keys/tokens/passwords
ii. Virtual layer level
1. Identities
2. API keys/tokens/passwords
iii. Application layer
1. Identities
2. API keys/tokens/passwords
3. Lawful interception target list
4. Hardware
5. Software
a. Management (Docker/Kubernetes)
b. Application
i. Catalog images
ii. Running instances
c. Security policies themselves
d. Licenses (and associated attributes used for enforcement)
[bookmark: _Toc151288692]5.3 Actors
While the attacks may be similar, the mitigations needed for attacks from various actors may differ. The following attackers shall be considered:
1. Software
a. External attackers
i. Highly resourced
ii. Opportunistic
b. Internal attackers of the
i. CSP admins
ii. CSP tenants
iii. Tenant admin
iv. Tenant customer end user
v. Vendors
2. Hardware

[bookmark: _Toc151288693]5.4 Attacks
[bookmark: _Toc151288694]5.4.1 Image creation
The primary source of vulnerabilities in containerized environments is in application and container images themselves. A common risk with containers is the usage of an image that contains vulnerabilities for generating a new container
· Image configuration flaws: the common vulnerability in images is to create standard users with unnecessary high privileges. This kind of common configuration weakness increases the attack surface of the entire system.
· Keys encoded in images: every administrator or user that has access to the image may gain an unauthorized access to all the information that is encoded in the image. Encoding sensitive information like passwords, private keys like SSH private keys or X.509 private keys exposes the whole system to internal and external attacks.
· Use of third-party images: portability of containers encourages developers to build new container images from existing ones making the usage of third party resources, for examples available on github a very common practice. As a result, this increases the risk to reuse vulnerable images or corrupted ones. Configuration flaws may be embedded intentionally or inadvertently in these images. Even worse, some images can embed malwares or hard coded routines that allow downloading malwares after image deployment.
· Vulnerabilities within container CIS: exploit of the container runtime may allow exploits for privilege escalation and escape attacks.

[bookmark: _Toc151288695]5.4.2 Image management
· Hijacked image repository: image repositories may be subject to attacks as they contain NFV images and confidential data like credentials and secret keys. If such an attack succeeds and container images are compromised, the all system will be compromised including applications and container OS. Such an attack may succeed through the exploitation of poor access policy configurations and software flaws. With this attack, unauthorized user may gain access to confidential data, modify the image repository, or in the worst scenario succeed to delete the entire image registry.
· Connection to registries: connexion to registries through unsecure channels may allow attackers to intercept traffic and access to confidential data like credentials and secret keys.
· Exploitation of outdated images: non patched, unmaintained images that are still present in repositories expose vulnerabilities that can be exploited by attackers to hijack the repository. Moreover, this practice increases the risk of deploying old image versions that contain unpatched vulnerabilities.
[bookmark: _Toc151288696]5.4.3 Container escape attacks
· Share of the same kernel: containers use OS-level virtualisation to offer lightweight virtualization where containers run as user space processes that share the host kernel. Sharing the same host kernel among multiple containers makes them by-design less resistant to isolation breakout attacks. As an example, recent vulnerability CVE-2019-5736 allowed a maliciously crafted container arbitrarily rewrite the containerization’s core software (runC, used in most containerization engines) enabling to get full root access over the host, incidentally taking control of the other containers collocated on the node and providing an entry point in the Demilitarized Zone (DMZ) for further attacks. Damages of these attacks may be exacerbated when workloads with different privileges levels share the same host OS.
· Enlarged attack surface: in full VM virtualisation, the hypervisor plays the role of the software component responsible of running and managing resources allocated to different VNFCI. In the NFVI design, the hypervisor is considered as a thin software layer designed to be easily audited. Containers rely on general purpose operating systems, not designed for multi-tenant environments, but to be compatible with most existing hardware architectures.

· Information leakage through side channel attacks: information leakage occurs when malicious process gains illegitimate access to so-resident process’s data. In the container use case, one container may. Spectre and Meltdown are high risk vulnerabilities that can be exploited by attackers to execute side channel attacks. These vulnerabilities affect containers and have been demonstrated in popular container platforms such as Docker, LXC and OpenVZ.
· Theft of resource: the objective of theft of resource attacks is to unduly obtain resources at the expense of the provider or at the one of co-localized containers possibly preventing them from properly benefiting from their own resources. This type of isolation breakout may result in billing issue, cross-container performance degradation, resource starvation and denial of service. Some Linux scheduler versions are vulnerable to this attack.
· Mac and ARP spoofing: when multiple containers share the same network card, one container may exploit driver vulnerabilities through usurpation of co-resident container MAC address. This attack allows a malicious user to receive an authorized traffic, to delete the traffic or to redirect the traffic to an external entity.
· DoS attacks: as I/O resources are shared among multiple containers, a bystander container may suffer from an external attack targeting a co-resident container. Moreover, malicious users can exploit this resource sharing to attack co-resident container by running intensive I/O tasks at their own containers (e.g. auto network flooding). Performance sensitive functions may experience SLO violation and DoS.
· Tampering host file systems: a container with unnecessary high permissions can mount a local file system on the host for tampering data belonging to other containers.
· Port scanning: vulnerable network function could have an exposed port that leaks its sensitive information upon port scanning. Exposed ports can lead to API abuse.
· Remote code execution on the host the exploit of container runtime vulnerabilities
· Vulnerable network functions can be exploited through traditional abuse methods like SQL injection and cross site scripting attacks.

5.4.4 Orchestration
· CISM API abuse: containers may exploit vulnerabilities related to management API to attack the other containers or container OS. These vulnerabilities can allow malicious (including compromised container) containers access directories outside their volume or delete arbitrary host files and directories.
· CISM specific vulnerabilities: software vulnerabilities (including API) within the management layer can lead to attack the orchestration layers and result in container escape.
· Unbounded administrative access: giving unnecessary high access privileges to users enlarges the attack surface of the whole platform. When access rights are not tailored to the specific needs of different users, the risk to attack or alter container execution either maliciously or inadvertently by users increases.
· Unauthorized access: an external or internal attacker may gain access to management accounts. Weak account management practices increases the risk of compromising high privileged management accounts resulting in attacks on the whole system.
· Consolidating workloads with heterogeneous trust levels within the same host:

[bookmark: _Toc40179657][bookmark: _Toc151288697]6	Hardening Requirements and Security Solutions
[bookmark: _Toc40179658][bookmark: _Toc151288698]Hardening Requirements and Security Solutions
[bookmark: _Toc40187207][bookmark: _Toc151288699]6.1	Software Solutions
In contrast to virtual machines that run their own kernel instances, containers running on the same physical host share the same OS kernel. This host kernel sharing enlarges the attack surface of the network functions that are executed within containers. While major current containers implementations offer software solutions to enforce isolation between containers, there are still multiple security challenges that require complementary hardware solutions. This section details existing software solutions that target ensuring security and performance isolation between containers.
[bookmark: _Toc40187208][bookmark: _Toc151288700]6.1.1	Namespaces
Namespaces are system abstractions designed to create resource virtualisation at the process level. Namespaces ensure that processes running within a container cannot access or see resources of processes running within another container. To do so, containers are executed as runtime processes within given namespaces. By limiting the visibility that a group of processes has over system resources, namespaces control what resources a container can see. The isolated resources include process pids, filesystem mounts, network stack, user UIDs, etc. Table 1 summarizes available Linux namespaces with the resources that are isolated by each of them. Namespaces are created through clone () and unshare() system calls. A namespace is keeps existing on the system until the last of the processes that belong to it is destroyed.

	Namespace
	Command
	Isolated resource

	Cgroup

	CLONE_NEWCGROU

	Cgroup root directory

	Namespace IPC
	CLONE_NEWIPC
	System V IPC, POSIX, message queues

	Network
	CLONE_NEWNET
	Network devices, stacks, port, etc.

	Mount
	CLONE_NEWNS
	Mount points

	PID
	CLONE_NEWPID
	Process ID

	User
	CLONE_NEWUSER
	User and group IS

	UTS
	CLONE_NEWUTS
	Hostname, NIS domain names

[bookmark: _Toc40187209]Table 1 Namespaces with isolated resources
[bookmark: _Toc151288701]6.1.2	Control Groups
Cgroups is designed to organize processes hierarchically and control how many resources can be used by them. By doing so, Cgroups ensure performance and resource isolation among multiple containers. CGroups rely on resource tracking and limiting. Thanks to Cgroups, one container cannot consume more resources (cpu, memory, storage, network) than its fare share. This protects container infrastructures from resource starvation attacks that can target either co-localized containers or the host OS. To summarize, cgroups provide four main functions:

· Resource control: controls container status through commands (stop, restart, frozen)
· Resource limit: defines the amount of computing resources that can be used by a given container
· Accounting: monitoring of consumed resources by a given group of containers
· Prioritization: during resource contention, it allows to give more resources for containers that belong to high priority group.

There are twelve cgroups that control different resources.

· cpu: providing cgroup tasks access to the CPU
· cpusets: assigning a set of CPUs and memory nodes to cgroups. Tasks in a cpuset cgroup may only be scheduled on CPUs assigned to that cpuset.
· blkio : limits per-cgroup block io.
· cpuacct : provides per-cgroup cpu usage accounting.
· devices : controls the ability of tasks to create or use devices nodes using either a blacklist or whitelist.
· freezer : provides a way to 'freeze' and 'thaw' whole cgroups. Tasks in the cgroup will not be scheduled while they are frozen.
· hugetlb : facilitates limiting hugetlb usage per cgroup.
· memory : allows memory, kernel memory, and swap usage to be tracked and limited.
· net_cls : provides an interface for tagging packets based on the sender cgroup. These tags can then be used by tc (traffic controller) to assign priorities.
· net_prio : allows setting network traffic priority on a per-cgroup basis.
· cpu : enables setting of scheduling preferences on per-cgroup basis.
· perf_event : enables per-cpu mode to monitor only threads in certain cgroups.
[bookmark: _Toc40187210][bookmark: _Toc151288702]6.1.3	Capabilities
Capabilities offer a running container with root privileges when executed tasks do not need such privileges. There are thirty-eight capabilities. When an application running within a container is executed with the only necessary capability, this protects the container from any malicious exploits that target services running without root privileges.
Capabilities allow protecting containers from running applications
[bookmark: _Toc40187211][bookmark: _Toc151288703]6.1.4	Secure computing mode
Seccomp is a Linux security tool that allows administrators to define system call security that must be blocked during container runtime. This Linux feature relies on the Seccomp () system call that is called from the container during its execution. The seccomp () system call executes a Berckeley Packet Filter (bpf) program. The seccomp feature defines a white list of system call profiles.
Seccomp policies are defined using JSON files. It is particularly useful to manage situations where a a container requires a critical capability, e.g. CAP_SYS_ADMIN, the seccomp control will restrict the syscall that would allow an attacker to escape from the container and gain access to the underlying file system. If the syscall mount is not allowed with capability CAP_SYS_ADMIN, most of the capacity-based escape techniques would fail.

Editor's Note: Need to add other basic Linux capabilities etc.
[bookmark: _Toc40179663][bookmark: _Toc151288704]6.2	Hardware Solutions
[bookmark: _Toc40179664][bookmark: _Toc151288705]6.2.1	Trusted Execution Support
[bookmark: _Toc40179665][bookmark: _Toc151288706]6.2.1.1	vHMEE in host OS kernel
[bookmark: _Toc40179666][bookmark: _Toc151288707]6.2.2.2	vHMEE in dedicated container
[bookmark: _Toc40179667][bookmark: _Toc151288708]6.2.2	Secure Enclaves
[bookmark: _Toc40179668][bookmark: _Toc151288709]6.3	Storage

[bookmark: _Toc40179669][bookmark: _Toc151288710]6.4	Secure communication

[bookmark: _Toc40179670][bookmark: _Toc151288711]6.5	Image Management

[bookmark: _Toc151288712]6.5.1	Validation of the containerized VNF Package during onboarding and instantiation
[bookmark: _Toc151288713]6.5.1.1	Introduction
The present clause describes the validation of the containerized VNF Package during onboarding by a service provider and the validation of the MCIOP file artifacts and OS container images artifacts during instantiation of containerized workloads.

	NOTE: The containerized VNF Package contains one or multiple MCIOPs.

[bookmark: _Toc151288714]6.5.1.2	Validation of the containerized VNF Package during onboarding
The requirements specified in ETSI GS NFV-SEC 021 [2], clause 5.1 shall apply.

During the onboarding of the containerized VNF Package, a validation of the VNF Package is performed. As described in ETSI GS NFV-SOL 004 [3], the validation relies on the existence in the NFVO of a root certificate of a trusted CA that shall have been delivered via a trusted channel that preserves its integrity (separate from the VNF package) to the NFVO and be pre-installed in the NFVO before the on-boarding of the VNF package. . Where the trusted CA is a public entity (e.g. a commercial CA) the signing certificate must be securely pre-installed into the NFVO. During verification of the containerized VNF package the certificate within or with the package must be checked with those which are already trusted before checking the rest of the chain of trust.

Assumption: Service provider has obtained from the VNF provider in advance all necessary VNF Package artifacts (keys, certificates, other information's) in order to proceed the process below.

The procedures for containerized VNF Package signing, in CMS format, and verification shall comply with ETSI GS NFV-IFA 011 [4] and ETSI GS NFV-SOL 004 [3], with the following additions:
1. The service provider shall ensure scanning for vulnerabilities and malware (either automated or manually driven) within the OS container image(s) is performed at on-boarding prior to any other onboarding or validation. Any high or critically rated vulnerabilities (as defined in clause 5 of the Common Vulnerability Scoring System v3.1: Specification Document [7]) or any malware shall prevent automatic certification and onboarding.
Note: Any manual onboarding of OS container images which do not fully pass the test criteria must have a full risk assessment, appropriate sign off and be recorded within an audit trail.
1. NFVO shall obtain a VNF provider-signed containerized VNF Package.
1. NFVO shall verify the VNF provider's signature(s) of the containerized VNF Package.
1. Service provider shall perform necessary steps to validate and test the containerized VNF Package as described in the use case "VNF Package validation and certification" in ETSI GS NFV-IFA 011 [4], clause 5.5.
This shall include scanning for vulnerabilities and malware (either automated or manually driven) within the OS container image(s). Any high or critically rated vulnerabilities (as defined in clause 5 of the Common Vulnerability Scoring System v3.1: Specification Document [7]) or any malware shall prevent automatic certification and onboarding.
Note: Any manual onboarding of OS container images which do not fully pass the test criteria must have a full risk assessment, appropriate sign off and be recorded within an audit trail.
1. Optional step: if the service provider policy mandates to sign containerized VNF Package artifacts, NFVO shall sign the containerized VNF Package artifacts using the appropriate signing key(s).
1. NFVO shall store the signed containerized VNF Package artifacts in the corresponding catalogue(s). Provided the VNF Package includes the OS container images, NFVO shall store the signed OS container images in the corresponding CIR(s). The signed MCIOPs file artifacts shall be stored in the corresponding repository.

[bookmark: _Toc151288715]6.5.1.3	Validation of the MCIOP file artifacts and OS container images during instantiation

The requirements specified in ETSI GS NFV-SEC 021 [2], clause 5.2 shall apply.

The objective of this step is to verify the containerized VNF Package artifacts authenticity and integrity during instantiation. Prior to instantiation of the containerized workloads, if the service provider policy for onboarding includes signing of containerized VNF Package artifacts, those signature(s) shall be verified. The pre-loaded root certificate, along with any other pre-loaded certificates in the chain of trust, are used in conjunction with the certificate chain, that is part of the VNF package, to validate the integrity and origin of the OS container images and MCIOP file artifacts.

Assumption: the cluster of CIS instances and the CISM function are available at the point when the containerized VNF is instantiated.

Verification of the integrity and authenticity of the OS container images at OS container image instantiation shall be performed at CIS instance runtime execution level.

The validation of the MCIOP file artifacts and OS container images during VNF instantiation shall be performed as follows:

· The signature validation of the MCIOP file artifacts is performed by the consumer of the CISM OS container workload management service interface. The consumer of this interface is responsible for validation when the MCIOP file artifacts are pulled from the corresponding repository in order to instantiate containerized workload(s) based on the MCIOP. The pre-loaded root certificate is used in conjunction with the certificate chain, that is part of the VNF package, to validate the integrity and origin of the MCIOP file artifacts.

· The signature validation of the OS container images when pulling from CIR is performed by the CIS instance at CIS instance runtime level. The CIS instance is responsible for validation at container runtime level when image pull is done from the CIR and the images are instantiated. The pre-loaded root certificate is used in conjunction with the certificate chain that is part of the VNF package, to validate the integrity and origin of the OS container images.

[bookmark: _Toc151288716]6.5.1.4 	OS container image software integrity validation at instantiation with attestation
This clause describes an alternative solution to validate the OS container software integrity during instantiation. This alternative solution can be employed in attestation environments and ensures a binding between the OS container image post build stage by the VNF provider, and the container instantiation stage (e.g., by the service provider or tenant).
The current solution is applicable to deployments where the VNF provider indicates the entire OS container filesystem including the application software (i.e., the service), except an indicated list of absolute paths, that can be measured for integrity during VNF instantiation. The measurement is realized as a digest (i.e., with a given hash function) performed over the indicated OS container filesystem excluding the indicated list of absolute paths.
When an OS container image is launched, the resulted OS container filesystem is instantiated from the merged image layers according to the image manifest rules. Knowing that the content of some file(s) may be different and unpredictable per container instance when the OS container image is launched, such files are expected to be part of the indicated list of absolute paths, which is excluded from the filesystem integrity measurement. Checks shall be performed on such list based on an attribute that the vendor specifies for the named files in the list of absolute paths. Such checks ensure that files with attributes different from those specified are not allowed.
The indicated OS container filesystem and the list of absolute paths that are excluded from the integrity measurement are part of a configured policy, hereafter referred to as “software digest policy”, which is set during the OS container image build phase by the VNF provider. The software digest policy shall include the measurement reference values.
The software digest policy for each of the OS container images contained in or referenced from the VNF package shall be included in the VNF package and shall be referenced from the VNF package manifest file.
The main functions for this solution are:
· Attest Client: this is a component within every OS container acting as an interface between the associated Dynamic Root of Trust Measurement and the Attestation Verifier Service instance in the corresponding cluster of CIS instances.

· Attestation Verifier Service (AVS): this is a component responsible for managing the reference values and attesting the instantiating OS containers that are subject to this solution. At least one AVS instance is deployed per cluster of CIS instances and represents a cluster-level AVS. It appraises the validity of quotes received from the Attest Clients and DRTMs, based on the reference values in the software digest policy from the VNF package, and produces attestation results to be used by other parties. The AVS acts as a decision gate keeper in case of verification failures and can interact with the cluster CISM instance to handle the required OS container lifecycle actions. Multiple AVS instances are assumed to be deployed in a hierarchy, with a central remote attestation verifier service (RAVS) at the highest level. An AVS instance consumes NFV-MANO interfaces for VNF LCM occurrence events and can query VNF package information.

NOTE-1: the AVS can be a generic service. The remote AVS can be located at a central location and/or as a tenant function.

· Dynamic Root of Trust Measurement (DRTM): this is a component responsible for performing the required measurement based on a given software digest policy, which is received upon indication from the associated Attest Client, during the OS container image launch. The outcome of this measurement is a verifiable digest that can be matched by the AVS instance with the set of reference values. The matching result provides evidence on the launched and running OS container image. If a list of absolute paths is present in the software digest policy, indicated to be excluded from the filesystem integrity measurement, then additional checks are performed by DRTM based on an attribute that the vendor specifies for the named files in the list of absolute paths to ensure that files with attributes different from those specified are not allowed. There are two types of DRTM: (1) “internal-to-container” DRTM (iDRTM), which is part of the OS container image; and (2) “external-to-containers” DRTM (eDRTM), which is not part of the OS container image and is associated with the CIS instance. DRTM may be designed to utilise existing security hardware. Verification that such utilization actually happens lies at the AVS. DRTM embeds the RTR and RTS functional-wise, but the specific nature of these RoT engines depends on the DRTM implementation.

NOTE-2: Examples of DRTM realizations include: (1) a pre-installed host OS program (and/or a kernel eBPF [i.6] program) deployed per CIS instance as an eDRTM; (2) part of an OS container image, a program executing in an HMEE as iDRTM.

The AVS instances shall obtain the software digest policy from the VNF package.
The deployment example illustrated in Figure 6.5.1.4-1 shows how the eDRTM associates with a CIS instance in a cluster.

[image: Diagram

Description automatically generated]
Figure 6.5.1.4-1: eDRTM association with a CIS instance running multiple containers

The main steps for the OS container image validation at instantiation corresponding to the solution described in this clause where DRTM is instantiated per CIS instance are illustrated in Figures 6.5.1.4-2, which represents an example of procedure flow for NS/VNF instantiation.
NOTE-3: The exact definition of the different steps and handling in the NS/VNF instantiation procedure (e.g., interactions between the NFV-MANO entities and CISM/CIR/CIS instances, validation of the MCIOP file artifacts as per clause 6.5.1.3, secure bootstrap of AVS instances) is not shown.
The procedure in Figure 6.5.1.4-2 does not consider the use of the iDRTM and works as follows:
1. Prior to NS/VNF instantiation, a remote AVS (RAVS) instance can be provided with known manifest information (step-1a). Also, the root certificate of a trusted CA used for signature validation is expected to be available at the eDRTM (step-1b).

2. The RAVS can register for consuming NFV-MANO interfaces for VNF LCM occurrence events and for querying VNF package information.

3. Any cluster-level AVS instance is expected to be attested by the RAVS instance at the cluster creation. Reference values can also be managed from the central RAVS instance.

4-5. For every VNF instance added to the NS instance: the software digest policies associated with the OS container images are obtained by the AVS(s) through querying the VNF package information and the selected artifacts.

6. The cluster-level AVS validates the manifest file signature.

7. The Attest Client in a launched OS container image shall be called first.
	
8. A request from the Attest Client to the cluster-level AVS (i.e., the cluster of the given CIS instance where the OS container image is launched) is sent.

9. The Attest Client receives the signed digest policy indication from the AVS, necessary for, e.g., the corresponding OS container filesystem to be measured.

10. The Attest Client indicates or makes the given software digest policy available to DRTM to perform the measurement. The digest policy signature is first verified by DRTM.

11-12-13. According to the software digest policy, the integrity measurement is taken and the checks on a possible non empty list of absolute paths performed. The result is signed by DRTM and reported to the cluster-level AVS instance (step-12). Any container-internal measurement may be forwarded as well. (see NOTE-4)

NOTE-4: On step-12: for sending the signed digest quote, the DRTM can be configured to reach the cluster-level AVS service when the CIS instance is added to the cluster. On step-13: if the OS container includes its own HMEE instance, then it can provide its own measurements.

14. The AVS instance compares the received digest measurement with expected reference values.

15. The attestation response is received by the container application via the Attest Client and proceeds with the next steps accordingly.

16. In case of a successful OS container image validation in step-14, the container is admitted in the cluster.

17. In case of a failed OS container image validation in step-14, the application logic shall handle the error.

Figure 6.5.1.4-2: OS container image validation with AVS

[bookmark: _Toc455504149][bookmark: _Toc481503687][bookmark: _Toc482690136][bookmark: _Toc482690613][bookmark: _Toc482693309][bookmark: _Toc484176737][bookmark: _Toc484176760][bookmark: _Toc484176783][bookmark: _Toc487530219][bookmark: _Toc40179671][bookmark: _Toc151288717]Annex A (normative or informative):
Title of annex

[bookmark: _Toc455504150][bookmark: _Toc481503688][bookmark: _Toc482690137][bookmark: _Toc482690614][bookmark: _Toc482693310][bookmark: _Toc484176738][bookmark: _Toc484176761][bookmark: _Toc484176784][bookmark: _Toc487530220][bookmark: _Toc40179672][bookmark: _Toc151288718]Annex B (normative or informative):
Title of annex
[bookmark: _Toc481503689][bookmark: _Toc482690138][bookmark: _Toc482690615][bookmark: _Toc482693311][bookmark: _Toc484176739][bookmark: _Toc484176762][bookmark: _Toc484176785][bookmark: _Toc487530221][bookmark: _Toc40179673][bookmark: _Toc455504151][bookmark: _Toc151288719]B.1	First clause of the annex
[bookmark: _Toc455504152][bookmark: _Toc481503690][bookmark: _Toc482690139][bookmark: _Toc482690616][bookmark: _Toc482693312][bookmark: _Toc484176740][bookmark: _Toc484176763][bookmark: _Toc484176786][bookmark: _Toc487530222][bookmark: _Toc40179674][bookmark: _Toc151288720]B.1.1	First subdivided clause of the annex

[bookmark: _Toc455504153][bookmark: _Toc481503691][bookmark: _Toc482690140][bookmark: _Toc482690617][bookmark: _Toc482693313][bookmark: _Toc484176741][bookmark: _Toc484176764][bookmark: _Toc484176787][bookmark: _Toc487530223][bookmark: _Toc40179675][bookmark: _Toc151288721]Annex (informative):
Authors & contributors
The following people have contributed to the present document:
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Rapporteur:, Kahina,Lazri, Orange
Other contributors:
Title, Firstname, Lastname, company

[bookmark: _Toc455504154][bookmark: _Toc481503692][bookmark: _Toc482690141][bookmark: _Toc482690618][bookmark: _Toc482693314][bookmark: _Toc484176742][bookmark: _Toc484176765][bookmark: _Toc484176788][bookmark: _Toc487530224][bookmark: _Toc40179676][bookmark: _Toc151288722]Annex (informative):
Bibliography

[bookmark: _Toc455504155][bookmark: _Toc481503693][bookmark: _Toc482690142][bookmark: _Toc482690619][bookmark: _Toc482693315][bookmark: _Toc484176743][bookmark: _Toc484176766][bookmark: _Toc484176789][bookmark: _Toc487530225][bookmark: _Toc40179677][bookmark: _Toc151288723]Annex (informative):
Change History
	Date
	Version
	Information about changes

	12 - 2019
	0.0.1
	First Draft

	
05-2020

	0.0.2
	Agreed output of NFVSEC#157 & 163 (NFVSEC(20)000004, NFVSEC(20)000030r1)

	05-2020
	 0.0.3
	
Agreed state of TS at NFVSEC#164 meeting start

	06-2020
	0.0.4
	NFVSEC(20)000040r1 (
NFVSEC#164-e-meeting

	06-2020
	0.0.4
	NFVSEC(20)000043r1(agreed output of
NFVSEC#164-e-meeting)

	06-2020
	0.0.4
	
Agreed output of NFVSEC#165

	07-2020
	0.0.4
	NFVSEC(20)000052r2 & NFVSEC(20)000052r3

	05-2022
	0.0.5
	
NFVSEC(22)000016 (Agreed output of NFVSEC#204-e-meeting)

	09-2022
	0.0.6
	NFVSEC(22)000041r4 (Agreed output of NFVSEC#214-e-meeting)

	11-2023
	0.0.7
	NFVSEC(23)000194r1 (Agreed output of NFVSEC#239/NFV#43 meeting)

[bookmark: _Toc455504156][bookmark: _Toc481503694][bookmark: _Toc482690143][bookmark: _Toc482690620][bookmark: _Toc482693316][bookmark: _Toc484176744][bookmark: _Toc484176767][bookmark: _Toc484176790][bookmark: _Toc487530226][bookmark: _Toc40179678][bookmark: _Toc151288724]History
	Document history

	<Version>
	<Date>
	<Milestone>

	[bookmark: H_Pub]
	
	

	[bookmark: H_MAP]
	
	

	[bookmark: H_UAP]
	
	

	[bookmark: H_PE]
	
	

Latest changes made on 2019-01-08
ETSI
image2.png
05 container (subset of VNFCI) 05 container (subset of VNFCI)
Container Attest Container Attest
application Client application Client
i

ClS instance

A

CiScluster |

image3.emf
CISM OSS/BSS NFVO VNFM CIR

CIS instance

OS container (subset of VNFCI)

Container

application

Attest

Client

eDRTM

Cluster

AVS

AVS

DB

Remote

AVS

Remote

AVS DB

1a. Enter any a-priori known manifest information

2. Register to consume NFV-MANO interfaces for VNF LCM occurrence events and query VNF package information

Instantiate NS

4. GET VNF package manifest

5. GET VNF package manifest

3. Attestation process

Instantiate workload on the CIS instance

(with AVS parameters)

7. First call

8. BootRequest

6. Validate VNF pkg. manifest signature

9. Indicate digest policy

10. Digest Indicate

11. Digest measurement

13. Send quote from any internal measurement

14. Validate the quote value

according to ref. values

in the manifest

15. Attestation response

17. handle

error case

16. App. logic

alt

validation failed

validation success

loop [for every VNF instance added to the NS instance]

loop [for every VNFC]

loop [for each container]

Report VNF/NS status

Read container locator

and measurement

12. Send digest quote

1b. Enter any a-priori known information (e.g., root CA certificate)

eDRTM verifies sw

digest policy signature

Microsoft_Visio_Drawing.vsdx
CISM
OSS/BSS
NFVO
VNFM
CIR
CIS instance
OS container (subset of VNFCI)
Container
application
Attest Client
eDRTM
Cluster
AVS
AVS DB
Remote AVS
Remote AVS DB
1a. Enter any a-priori known manifest information
2. Register to consume NFV-MANO interfaces for VNF LCM occurrence events and query VNF package information
Instantiate NS
4. GET VNF package manifest
5. GET VNF package manifest
3. Attestation process
Instantiate workload on the CIS instance (with AVS parameters)
7. First call
8. BootRequest
6. Validate VNF pkg. manifest signature
9. Indicate digest policy
10. Digest Indicate
11. Digest measurement
13. Send quote from any internal measurement
14. Validate the quote value
according to ref. values
in the manifest
15. Attestation response
17. handle
error case
16. App. logic
alt
validation failed
validation success
loop [for every VNF instance added to the NS instance]
[parameters]
loop [for every VNFC]
[parameters]
loop [for each container]
[parameters]
Report VNF/NS status
Read container locator and measurement
12. Send digest quote
1b. Enter any a-priori known information (e.g., root CA certificate)
eDRTM verifies sw digest policy signature

image1.jpeg

