ETSI GS NFV-SOL 014 V4.3.3 (2023-1)
65

ETSI GS NFV-SOL 014 V4.3.3 (2023-1)
Network Functions Virtualisation (NFV) Release 4;
Protocols and Data Models;
YAML data model specification for
descriptor-based virtualised resource management

GROUP SPECIFICATION

[image: ETSI_BG_final_new]
Disclaimer: This DRAFT is a working document of ETSI. It is provided for information only and is still under development within ETSI ISG NFV. DRAFTS may be updated, deleted, replaced, or obsoleted by other documents at any time.
ETSI or its Members accept no liability for any current or further use/implementation of the present DRAFT.
Do not use as reference material.
Do not cite this document other than as "work in progress".
· ETSI NFV public DRAFTS are available in: http://docbox.etsi.org/ISG/NFV/Open/Drafts/
· Report FEEDBACK via the NFV issue tracker: http://nfvwiki.etsi.org/index.php?title=NFV_Issue_Tracker
· Approved and PUBLISHED deliverables shall be obtained via the ETSI Standards search page at: http://www.etsi.org/standards-search

Reference
RGS/NFV-SOL014ed441
Keywords
management, model, NFV

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - APE 7112B
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
If you find a security vulnerability in the present document, please report it through our
Coordinated Vulnerability Disclosure Program:
https://www.etsi.org/standards/coordinated-vulnerability-disclosure
Notice of disclaimer & limitation of liability
The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of experience to understand and interpret its content in accordance with generally accepted engineering or
other professional standard and applicable regulations.
No recommendation as to products and services or vendors is made or should be implied.
[bookmark: EN_Delete_Disclaimer]No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness for any particular purpose or against infringement of intellectual property rights.
In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided "AS IS" with no warranties, express or implied, including but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use of or inability to use the software.
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2022.
All rights reserved.

Contents
Intellectual Property Rights	6
Foreword	6
Modal verbs terminology	6
1	Scope	7
2	References	7
2.1	Normative references	7
2.2	Informative references	8
3	Definition of terms, symbols and abbreviations	8
3.1	Terms	8
3.2	Symbols	8
3.3	Abbreviations	8
4	General aspects	9
4.1	Overview	9
4.2	Definition of input and output parameters in YAML	9
4.2.1	Introduction	9
4.2.2	Input parameters syntax definition	9
4.2.3	Output parameters syntax definition	10
4.3	Definition of output parameters as mapping to an API	10
4.4	Common data types	10
4.4.1	Introduction	10
4.4.2	Simple data types	10
4.4.3	Structured data types	11
5	Common data model	11
5.1	Description	11
5.2	Parameters to be used as input	12
5.2.1	Parameter: reservationId	12
5.2.2	Parameter: resourceGroupId	12
5.2.3	Parameter: groupName	12
5.2.4	Parameter: typeOfAffinityOrAntiAffinityConstraints	13
5.2.5	Parameter: stackName	13
5.2.6	Parameter: startTime	13
5.2.7	Parameter: endTime	13
5.2.8	Parameter: expiryTime	14
5.3	Parameters to be used as output	14
6	Data model for Virtualised Compute Management	14
6.1	Description	14
6.2	Parameters to be used as input	14
6.2.1	Parameter: computeName	14
6.2.2	Parameter: computeFlavourId	15
6.2.3	Parameter: vcImageId	15
6.2.4	Parameter: locationConstraints	15
6.2.5	Parameter: affinityOrAntiAffinityConstraintsForCompute	16
6.2.6	Parameter: interfaceData	17
6.2.7	Parameter: computeId	18
6.2.8	Parameter: networkInterfaceNew	18
6.2.9	Parameter: networkInterfaceUpdate	19
6.2.10	Parameter: flavour	21
6.2.11	Parameter: userData	24
6.2.12	Parameter: computePoolReservation	25
6.3	Parameters to be used as output	25
6.3.1	Parameter: nfvComputeInfo	25
7	Data model for Virtualised Network Management	31
7.1	Description	31
7.2	Parameters to be used as input	31
7.2.1	Parameter: networkResourceName	31
7.2.2	Parameter: networkResourceType	32
7.2.3	Parameter: typeNetworkData	32
7.2.4	Parameter: typeNetworkPortData	34
7.2.5	Parameter: typeSubnetData	35
7.2.6	Parameter: affinityOrAntiAffinityConstraintsForNetwork	36
7.2.7	Void	37
7.2.8	Parameter: locationConstraintsForNetwork	37
7.2.9	Parameter: queryNetworkFilter	38
7.2.10	Parameter: networkResourceId	38
7.2.11	Parameter: updateNetworkData	38
7.2.12	Parameter: updateSubnetData	40
7.2.13	Parameter: updateNetworkPort	42
7.2.14	Parameter: scopeOfAffinityOrAntiAffinityConstraintForNetwork	42
7.3	Parameters to be used as output	43
7.3.1	Parameter: nfvNetworkInfo	43
7.3.2	Parameter: nfvSubnetInfo	44
7.3.3	Parameter: nfvNetworkPortInfo	46
8	Data model for Virtualised Storage Management	47
8.1	Description	47
8.2	Parameters to be used as input	47
8.2.1	Parameter: storageName	47
8.2.2	Parameter: affinityOrAntiAffinityConstraintsForStorage	47
8.2.3	Parameter: storageData	49
8.2.4	Parameter: updateStorageData	49
8.2.5	Parameter: storageOperation	50
8.2.6	Parameter: newSize	50
8.2.7	Parameter: scopeOfAffinityOrAntiAffinityConstraintsForStorage	51
8.3	Parameters to be used as output	51
8.3.1	Parameter: nfvStorageInfo	51
9	Data model for Virtualised Resources Change Notification	53
9.1	Description	53
9.2	Parameters to be used as input	53
9.2.1	Parameter: callbackUriForChangeNotify	53
9.2.2	Parameter: inputFilter	53
9.2.3	Parameter: changeId	54
9.2.4	Parameter: virtualisedResourceId	54
9.2.5	Parameter: virtualisedResourceGroupId	54
9.2.6	Parameter: endOfChange	55
9.2.7	Parameter: changeTime	55
9.2.8	Parameter: vimId	55
9.2.9	Parameter: changeType	56
9.2.10	Parameter: changedResourceData	56
9.3	Parameters to be used as output	56
10	Data model for Virtualised Resources Fault Management	56
10.1	Description	56
10.2	Parameters to be used as input	57
10.2.1	Parameter: callbackUriForFaultNotify	57
10.2.2	Parameter: filter	57
10.2.3	Parameter: alarm	58
10.3	Parameters to be used as output	59
Annex A (informative):	Examples using OpenStack® Heat Orchestration Template	60
A.1	Introduction	60
A.2	Overview	60
A.2.1	Introduction	60
A.2.2	Template structure	60
A.3	Examples	60
A.3.1	Example#1: Allocate Virtualised Compute Resource operation	60
A.3.2	Example#2: Allocate Virtualised Network Resource operation	65
A.3.3	Example#3: Allocate Virtualised Storage Resource operation	70
A.3.4	Example#4: Create Compute Flavour operation	74
A.3.5	Example#5: API mapping of output parameters for Allocate Virtualised Storage Resource operation	76
A.3.6	Example#6: OpenStack Heat API sequence	77
A.3.7	Example#7: Virtualised Resources Change Notification Interface Subscribe operation	79
A.3.8	Example#8: Virtualised Resources Fault Management Interface Subscribe operation	82
A.3.9	Example#9: Create Compute Resource Reservation operation	85
A.4	Complex templates	87
Annex B (informative):	Explanations of concepts	88
B.1	Introduction	88
B.2	Concept of descriptor-based virtualised resource management	88
Annex C (informative):	Change History	90
History	91

[bookmark: _Toc109131687]Intellectual Property Rights
Essential patents
[bookmark: IPR_3GPP]IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations pertaining to these essential IPRs, if any, are publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).
Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
DECT™, PLUGTESTS™, UMTS™ and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. 3GPP™ and LTE™ are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners. GSM® and the GSM logo are trademarks registered and owned by the GSM Association.
[bookmark: _Toc109131688]Foreword
This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Network Functions Virtualisation (NFV).
[bookmark: _Toc109131689]Modal verbs terminology
In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.

[bookmark: _Toc109131690]1	Scope
The present document specifies a set of YAML-based data models for descriptor-based virtualised resource management fulfilling the requirements concerning the input and output information exchanged over the virtualised resource management interfaces specified in the ETSI GS NFV-IFA 005 [1], and the ETSI GS NFV-IFA 006 [2]. The present document focuses on data models used in the virtualised resource descriptors for the Virtualised Compute interfaces, Virtualised Network interfaces and Virtualised Storage interfaces, which are used to perform orchestration and lifecycle management for consumable virtualised resources comprised of compute, network and storage. The present document also focuses on data models used in the virtualised resource descriptors for the Virtualised Resources Change Notification interfaces and Virtualised Resources Fault Management interfaces. Other virtualised resource management interfaces, as well as data models for information specified in ETSI GS NFVIFA 011 [i.5] and ETSI GS NFV-IFA 014 [i.4], are out of the scope of the present document.
[bookmark: _Toc109131691]2	References
[bookmark: _Toc109131692]2.1	Normative references
References are either specific (identified by date of publication and/or edition number or version number) or nonspecific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are necessary for the application of the present document.
[bookmark: REF_GSNFV_IFA005][1]	ETSI GS NFV-IFA 005: "Network Functions Virtualisation (NFV) Release 4; Management and Orchestration; Or-Vi reference point - Interface and Information Model Specification".
[bookmark: REF_GSNFV_IFA006][2]	ETSI GS NFV-IFA 006: "Network Functions Virtualisation (NFV) Release 4; Management and Orchestration; Vi-Vnfm reference point - Interface and Information Model Specification".
[bookmark: REF_VOID][3]	Void.
[bookmark: REF_YAMLAINTMARKUPLANGUAGEYAMLVERSION123][4]	"YAML Ain't Markup Language (YAML™) Version 1.2", 3rd Edition. Oren Ben-Kiki, Clark Evans, Ingy döt Net.
NOTE:	Available at http://www.yaml.org/spec/1.2/spec.html.
[bookmark: REF_IETFRFC8259][5]	IETF RFC 8259: "The JavaScript Object Notation (JSON) Data Interchange Format".
NOTE:	Available at https://rfc-editor.org/rfc/rfc8259.
[bookmark: REF_GSNFV_SOL001][6]	ETSI GS NFV-SOL 001: "Network Functions Virtualisation (NFV) Release 4; Protocols and Data Models; NFV descriptors based on TOSCA specification".
[bookmark: REF_JSONSCHEMA][7]	JSON Schema.
NOTE:	Available at https://json-schema.org/.
[bookmark: REF_GSNFV_SOL013][8]	ETSI GS NFV-SOL 013: "Network Functions Virtualisation (NFV) Release 4; Protocols and Data Models; Specification of common aspects for RESTful NFV MANO APIs".
[bookmark: _Toc109131693]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or nonspecific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: REF_GSNFV003][i.1]	ETSI GS NFV 003: "Network Functions Virtualisation (NFV); Terminology for Main Concepts in NFV".
[bookmark: REF_HEATORCHESTRATIONTEMPLATEHOTSPECIFIC][i.2]	Heat Orchestration Template (HOT) specification.
NOTE:	Available at https://docs.openstack.org/heat/latest/template_guide/hot_spec.html.
[bookmark: REF_OPENSTACK_HEAT_ORCHESTRATIONSERVICEA][i.3]	Openstack®-heat - Orchestration service APIs.
NOTE 1:	Available at https://docs.openstack.org/api-ref/orchestration/.
NOTE 2:	The OpenStack® Word Mark and OpenStack Logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. ETSI is not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.
[bookmark: REF_GSNFV_IFA014][i.4]	ETSI GS NFV-IFA 014: "Network Functions Virtualisation (NFV) Release 4; Management and Orchestration; Network Service Templates Specification".
[bookmark: REF_GSNFV_IFA011][i.5]	ETSI GS NFV-IFA 011: "Network Functions Virtualisation (NFV) Release 4; Management and Orchestration; VNF Descriptor and Packaging Specification".
[bookmark: _Toc109131694]3	Definition of terms, symbols and abbreviations
[bookmark: _Toc109131695]3.1	Terms
For the purposes of the present document, the terms given in ETSI GS NFV 003 [i.1] apply.
[bookmark: _Toc109131696]3.2	Symbols
Void.
[bookmark: _Toc109131697]3.3	Abbreviations
For the purposes of the present document, the abbreviations given in ETSI GS NFV 003 [i.1] and the following apply:
JSON	JavaScript Object Notation
YAML	YAML Ain't Markup Language
[bookmark: _Toc109131698]4	General aspects
[bookmark: _Toc109131699]4.1	Overview
The present document defines the data model for the following interfaces used over the Vi-Vnfm and Or-Vi reference point, using YAML [4] as a data-serialization language:
Virtualised Compute interfaces.
Virtualised Network interfaces.
Virtualised Storage interfaces.
Virtualised Resources Change Notification interfaces.
Virtualised Resources Fault Management interfaces.
The design of the data model for the above interfaces is based on the information model and requirements defined in ETSI GS NFV-IFA 005 [1] and ETSI GS NFV-IFA 006 [2]. Protocols that use these data models are out of the scope of the present version of the present document.
In clause 4, general aspects are specified that apply to multiple data model on the Vi-Vnfm and Or-Vi reference point. The present document defines data models for input and output parameters derived from the above-mentioned information model. The data instances are used as input and output parameters specified in a virtualised resource descriptor, e.g. a HOT [i.2]. As an alternative, output parameters can also be obtained from an API provided by the template system of the underlying VIM implementation, e.g. the HEAT API [i.3], and be mapped to the data model defined in the present document.
In the subsequent clauses, the data model of the parameters to be used in virtualised resource descriptors as input and output for the individual interfaces are specified. Annex A provides examples of the use of the input and output parameters using HOT [i.2].
[bookmark: _Toc109131700]4.2	Definition of input and output parameters in YAML
[bookmark: _Toc109131701]4.2.1	Introduction
Clause 4.2 specifies the types and section definitions in YAML that are applicable for the present document, in particular, for the declaration of the input and output parameters.
[bookmark: _Toc109131702]4.2.2	Input parameters syntax definition
The set of parameters that are used as input to an operation for which a corresponding template is defined shall be prefixed by a tag named "nfv" and shall comply with the following YAML syntax definition:
nfv:
 <parameter_name>:
 type: <the type of parameter>
 description: <description of the parameter>
 default: <default value of the parameter>
 enum:
 - <enumerated values 1>
 - <enumerated values 2>
 ...
 <parameter_name_N>:
 ...

Where applicable, then name of a structured input parameter ends with the string "Data" (e.g. subnetData). A description of the syntax definition fields for declaring an input parameter follows. The fields shall comply with the provisions set out in Table 4.2.2-1.
Table 4.2.2-1: Input parameters syntax definition
	Field
	Required
	Description

	nfv
	yes
	The tag emphasizes a group of parameters defined in the present document.

	<parameter_name_1>
	yes
	The name of the first parameter.

	<parameter_name_N>
	no
	The name of the last parameter.

	type
	yes
	The type of each parameter. It shall be a simple data type as defined in clause 4.4.2 or structured data types in clause 4.4.3.

	description
	yes
	A human readable description for each parameter.

	default
	no
	A default value for each parameter.

	enum
	no
	A set of enumerated values for a parameter to restrict the value. It is applicable to parameters of type string or number.

[bookmark: _Toc109131703]4.2.3	Output parameters syntax definition
If a set of output parameters of an operation is defined in a template, these parameters shall comply with the following YAML [4] syntax definition:
 <parameter_name>: value
 description: <description of the parameter>
 type: <type>

Where applicable, then name of a structured output parameter ends with the string "Info" (e.g. nfvSubnetInfo). A description of the syntax definition fields for declaring an output parameter follows. The fields shall comply with the provisions set out in Table 4.2.3-1.
Table 4.2.3-1: Output parameters syntax definition
	Field
	Required
	Description

	parameter_name
	yes
	The name of the parameter, which shall start with the prefix "nfv".

	type
	yes
	The type of the parameter.

	description
	yes
	A human readable description for the parameter.

[bookmark: _Toc109131704]4.3	Definition of output parameters as mapping to an API
The present document defines the set of attributes for each output parameter in the data model in clauses 6, 7 and 8. Besides providing the output parameters that are defined in the data model using the output parameters facility of a template (e.g. parameters in the "outputs" section of a HOT [i.2]), it is also possible to obtain these parameters via VIMlevels APIs such as (such as the HEAT API [i.3]). In the latter case, the output parameters of a VIM-level API can be mapped to the data model for the output parameters defined in the present document. Taking this approach can offer performance advantages in case many resources are required to be managed by the same template. The choice of the mapping of a parameter to a template output parameter, or to a VIM-level API is a deployment decision outside the scope of the present document.
[bookmark: _Toc109131705]4.4	Common data types
[bookmark: _Toc109131706]4.4.1	Introduction
Clause 4.4 specifies the common data types that are used for declaring the parameters and grammar elements throughout the present document.
[bookmark: _Toc109131707]4.4.2	Simple data types
The present document uses the following simple data types as defined in Table 4.4.2-1. In order to accommodate tags with a broader meaning, the YAML specification recommends JSON schema [7] to be supported as an option. JSON schema is commonly supported by modern computing languages. Virtualised resource descriptors complying with the present document shall comply with the YAML v1.2 [4] and JSON schema [7] specifications.
Table 4.4.2-1: Simple data types
	Type name
	Description
	Example(s)

	String
	A string as defined in YAML v1.2 [4].
	"a string"

	Number
	A number as defined in IETF RFC 8259 [5] referred in JSON Schema [7].
	"23", "-1.023E3"

	Boolean
	A data type that can take the following values: true, false. The type is defined in JSON Schema [7] and referred in YAML v1.2 [4].
	"true", "false"

[bookmark: _Toc109131708]4.4.3	Structured data types
Following the format stated with the label of "nfv" in Table 4.4.3-1, individual structured data type is represented in the present document using ">" recursively as inlined definition.
Table 4.4.3-1: Input or Output data model for {parameter name}
	Parameter Name and Attributes
	Type
	Description

	{parameter name}
	{object, array}
	Type of the parameter

	{description}
	-
	Description of the parameter

	{attribute}
	{attribute type}
	Type of {attribute}

	>{sub attribute}
	{sub attribute type in the attribute}
	Type of {sub attribute}

object in JSON schema [7] is a type representing mapping from "keys" to "values". The syntax of object for parameter definition is represented with the following definition:
{parameter name}:
 description: <description of the parameter>
 type: object
 required:
 - {1st mandatory attribute}
 - {2nd mandatory attribute}
 - …
 properties:
 {1st attribute}:
 type: e.g. object
 properties:
 {sub attribute}
 {2nd attribute}:
 …

array in JSON schema [7] is a type representing an ordered list of elements. The syntax of array for parameter definition is represented with the following definition:
{parameter name}:
 description: <description of the parameter>
 type: array
 minItems: {lower bound of cardinality}
 maxItems: {upper bound of cardinality}
 items:
 - type: e.g. object
 properties:
 {sub attribute}

[bookmark: _Toc109131709]5	Common data model
[bookmark: _Toc109131710]5.1	Description
This clause specifies data models for input and output parameters commonly used in different resource management.
[bookmark: _Toc109131711]5.2	Parameters to be used as input
[bookmark: _Toc109131712]5.2.1	Parameter: reservationId
The parameter used when pointing to a virtualised compute, network or storage resource shall follow the indications provided in Table 5.2.1-1.
Table 5.2.1-1: Input data model for reservationId
	Parameter Name and Attributes
	Type
	Description

	reservationId
	String
	Identifier of the resource reservation applicable to this virtualised resource management operation

The syntax of the reservationId shall comply with the following definition:
 reservationId:
 type: string
 description: >
 Identifier of the resource reservation applicable to this virtualised resource
 management operation
 default: ""

[bookmark: _Toc109131713]5.2.2	Parameter: resourceGroupId
The parameter used when pointing to a logical grouping of virtual resources assigned to a tenant shall follow the indications provided in Table 5.2.2-1.
Table 5.2.2-1: Input data model for resourceGroupId
	Parameter Name and Attributes
	Type
	Description

	resourceGroupId
	String
	Unique identifier of the "infrastructure resource group", logical grouping of virtual resources assigned to a tenant within an Infrastructure Domain

The syntax of the resourceGroupId shall comply with the following definition:
 resourceGroupId:
 description: >
 The identifier of the infrastructure resource group, logical grouping of virtual
 resources assigned to a tenant within an Infrastructure Domain of this
 virtualised resource management operation
 type: string
 default: ""

[bookmark: _Toc109131714]5.2.3	Parameter: groupName
The parameter used when giving a group name of a virtualised compute, network or storage resource affinity or antiaffinity constraints group to be created shall follow the indications provided in Table 5.2.3-1.
Table 5.2.3-1: Input data model for groupName
	Parameter Name and Attributes
	Type
	Description

	groupName
	String
	Name of the group, given by the consumer

The syntax of the groupName shall comply with the following definition:
 groupName:
 type: string
 description: >
 Name of the group, given by the consumer
 default: ""

[bookmark: _Toc109131715]5.2.4	Parameter: typeOfAffinityOrAntiAffinityConstraints
The parameter used when indicating whether this is an affinity or anti-affinity group for virtualised compute, network or storage resources shall follow the indications provided in Table 5.2.4-1.
Table 5.2.4-1: Input data model for typeOfAffinityOrAntiAffinityConstraints
	Parameter Name and Attributes
	Type
	Description

	typeOfAffinityOrAntiAffinityConstraints
	String
	Indicates whether this is an affinity or anti-affinity group

The syntax of the typeOfAffinityOrAntiAffinityConstraints shall comply with the following definition:
 typeOfAffinityOrAntiAffinityConstraints:
 description: >
 Indicates whether this is an affinity or anti-affinity group.
 type: string
 enum:
 - affinity
 - anti-affinity

[bookmark: _Toc109131716]5.2.5	Parameter: stackName
The parameter used when pointing to a stack of virtual resources defined by a descriptor shall follow the indications provided in Table 5.2.5-1.
Table 5.2.5-1: Input data model for stackName
	Parameter Name and Attributes
	Type
	Description

	stackName
	String
	Name of the stack, given by the consumer

The syntax of the stackName shall comply with the following definition:
 stackName:
 type: string
 description: >
 Name of the stack, given by the consumer
 default: ""

[bookmark: _Toc109131717]5.2.6	Parameter: startTime
The parameter used when giving a date and time when the consumption of the resources starts shall follow the indications provided in Table 5.2.6-1.
Table 5.2.6-1: Input data model for startTime
	Parameter Name and Attributes
	Type
	Description

	startTime
	String
	Specifies when the consumption of the resources starts.

The syntax of the startTime shall comply with the following definition:
 startTime:
 type: string
 description: >
 Specifies when the consumption of the resources starts
 default: ""

[bookmark: _Toc109131718]5.2.7	Parameter: endTime
The parameter used when giving a date and time when the reservation ends shall follow the indications provided in Table 5.2.7-1.
Table 5.2.7-1: Input data model for endTime
	Parameter Name and Attributes
	Type
	Description

	endTime
	String
	Specifies when the reservation ends (when the issuer of the request expects that the resources will no longer be needed) and used by the VIM to schedule the reservation.

The syntax of the endTime shall comply with the following definition:
 endTime:
 type: string
 description: >
 Specifies when the reservation ends (when the issuer of the request expects that the resources will no longer be needed) and used by the VIM to schedule the reservation
 default: ""

[bookmark: _Toc109131719]5.2.8	Parameter: expiryTime
The parameter used when giving a date and time when the VIM can release the reservation in case no allocation request against this reservation was made shall follow the indications provided in Table 5.2.8-1.
Table 5.2.8-1: Input data model for expiryTime
	Parameter Name and Attributes
	Type
	Description

	expiryTime
	String
	Specifies when the VIM can release the reservation in case no allocation request against this reservation was made.

The syntax of the expiryTime shall comply with the following definition:
 expiryTime:
 type: string
 description: >
 Specifies when the VIM can release the reservation in case no allocation request against this reservation was made
 default: ""

[bookmark: _Toc109131720]5.3	Parameters to be used as output
None.
[bookmark: _Toc109131721]6	Data model for Virtualised Compute Management
[bookmark: _Toc109131722]6.1	Description
This clause specifies data models for input and output parameters for Virtualised Compute Management.
[bookmark: _Toc109131723]6.2	Parameters to be used as input
[bookmark: _Toc109131724]6.2.1	Parameter: computeName
The parameter used when providing a name for a virtualised compute resource to be allocated shall follow the indications provided in Table 6.2.1-1.
Table 6.2.1-1: Input data model for computeName
	Parameter Name and Attributes
	Type
	Description

	computeName
	String
	Name for a virtualised compute resource to be allocated

The syntax of the computeName shall comply with the following definition:
 computeName:
 type: string
 description: >
 Name provided by the consumer for the virtualised compute resource to
 allocate
 default: ""

[bookmark: _Toc109131725]6.2.2	Parameter: computeFlavourId
The parameter used when providing an identifier of the Compute Flavour for a virtualised compute resource to be allocated shall follow the indications provided in Table 6.2.2-1.
Table 6.2.2-1: Input data model for computeFlavourId
	Parameter Name and Attributes
	Type
	Description

	computeFlavourId
	String
	Identifier of the Compute Flavour that provides information about the particular memory, CPU and disk resources for virtualised compute resource to allocate

The syntax of the computeFlavourId shall comply with the following definition:
 computeFlavourId:
 type: string
 description: >
 Identifier of the Compute Flavour that provides information about the particular
 memory, CPU and disk resources for virtualised compute resource to allocate
 default: ""

[bookmark: _Toc109131726]6.2.3	Parameter: vcImageId
The parameter used when providing an identifier of the virtualisation container software image for a virtualised compute resource to be allocated shall follow the indications provided in Table 6.2.3-1.
Table 6.2.3-1: Input data model for vcImageId
	Parameter Name and Attributes
	Type
	Description

	vcImageId
	String
	Identifier of the virtualisation container software image

The syntax of the vcImageId shall comply with the following definition:
 vcImageId:
 type: string
 description: >
 Identifier of the virtualisation container software image
 default: ""

[bookmark: _Toc109131727]6.2.4	Parameter: locationConstraints
The parameter used when providing a location constraints for a virtualised compute resource to be allocated shall follow the indications provided in Table 6.2.4-1.
Table 6.2.4-1: Input data model for locationConstraints
	Parameter Name and Attributes
	Type
	Description

	locationConstraints
	String
	If present, it defines location constraints for the resource(s) is (are) requested to be allocated, e.g. in what particular resource zone

The syntax of the locationConstraints shall comply with the following definition:
 locationConstraints:
 type: string
 description: >
 If present, it defines location constraints for the resource(s) is (are)
requested to be allocated, e.g. in what particular resource zone.
 default: ""

[bookmark: _Toc109131728]6.2.5	Parameter: affinityOrAntiAffinityConstraintsForCompute
The parameter used when giving resource affinity or anti-affinity constraints related to virtualised compute resources shall follow the indications provided in Table 6.2.5-1. The parameter is a list of elements with affinity or anti affinity information of the virtualised compute resource to be allocated ETSI GS NFV-IFA 005 [1] and ETSI GS NFVIFA 006 [2]. All the listed constraints shall be fulfilled for a successful operation.
Table 6.2.5-1: Input data model for affinityOrAntiAffinityConstraintsForCompute
	Parameter Name and Attributes
	Type
	Description

	affinityOrAntiAffinityConstraintsForCompute
	Array of Object
	Name of the parameter.

	>typeOfAffinityOrAntiAffinityConstraintForCompute
	String
	Indicates whether this is an affinity or anti-affinity constraint.

Allowed to affinity and anti-affinity.

	>scopeOfAffinityOrAntiAffinityConstraintForCompute
	String
	Qualifies the scope of the constraint. In case of compute resource: e.g. "NFVI-PoP" or "NFVI-Node".

Allowed to NFVI-PoP, NFVI-Node.
Defaults to "NFVI-Node" if absent.

	>affinityAntiAffinityResourceList
	Object
	Consumer-managed list of identifiers of virtualised resources with which the actual resource is requested to be affine or anti-affine.
See note and condition.

	>>resource
	Array of Object
	List of identifiers of virtualised resources.

	>affinityAntiAffinityResourceGroup
	String
	Identifier of the producer-managed group of virtualised resources with which the actual resource is requested to be affine or anti-affine.
See note and condition.

	NOTE:	It is a prerequisite for the consumer to create a VirtualisedComputeResourceAffinityOrAntiAffinityConstraintsGroup and get groupIdentifier using the appropriate operation, Create Virtualised Compute Resource Affinity Or AntiAffinity Constraints Group, defined in ETSI GS NFV-IFA 005 [1] and ETSI GS NFV-IFA 006 [2].

	CONDITION:	If explicit resource lists for affinity/anti-affinity (see clause 8.4.8.1 in ETSI GS NFV-IFA 005 [1] and ETSI GS NFV-IFA 006 [2]) are supported, the affinityAntiAffinityResourceList shall be supported. If named resource groups for affinity/anti-affinity (see clause 8.4.8.1 in ETSI GS NFV-IFA 005 [1] and ETSI GS NFV-IFA 006 [2]) are supported, affinityAntiAffinityResourceGroup shall be supported. The mechanisms shall not be mixed in the scope of a resourceGroup (also known as VIM tenant).

The syntax of the affinityOrAntiAffinityConstraintsForCompute shall comply with the following definition:
 affinityOrAntiAffinityConstraintsForCompute:
 description: >
 A list of elements with affinity or antiaffinity information of
 the virtualised compute resource to allocate.
 oneOf:
 - type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 required:
 - typeOfAffinityOrAntiAffinityConstraintForCompute
 properties:
 typeOfAffinityOrAntiAffinityConstraintForCompute:
 type: string
 enum:
 - affinity
 - anti-affinity
 scopeOfAffinityOrAntiAffinityConstraintForCompute:
 type: string
 enum:
 - NFVI-PoP
 - NFVI-Node
 default: NFVI-Node
 affinityAntiAffinityResourceList:
 type: object
 required:
 - resource
 properties:
 resource:
 type: array
 minItems: 1 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: string
 - type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 required:
 - typeOfAffinityOrAntiAffinityConstraintForCompute
 properties:
 typeOfAffinityOrAntiAffinityConstraintForCompute:
 type: string
 enum:
 - affinity
 - anti-affinity
 scopeOfAffinityOrAntiAffinityConstraintForCompute:
 type: string
 enum:
 - NFVI-PoP
 - NFVI-Node
 default: NFVI-Node
 affinityAntiAffinityResourceGroup:
 type: string

[bookmark: _Toc109131729]6.2.6	Parameter: interfaceData
The parameter used when giving interfaceData related to virtualised compute resources shall follow the indications provided in Table 6.2.6-1. The parameter is a list of data about network interface data which are specific to a Virtual Compute Resource instance.
NOTE:	">" is used to specify an "inlined definition".
Table 6.2.6-1: Input data model for interfaceData
	Parameter Name and Attributes
	Type
	Description

	interfaceData
	Array of Object
	Name of the parameter.

	>ipAddress
	Array of Object
	The virtual network interface can be configured with specific IP address(es) associated to the network to be attached to.

	>macAddress
	String
	The MAC address desired for the virtual network interface.

The syntax of the interfaceData shall comply with the following definition:
 interfaceData: # VirtualInterfaceData IE in ETSI GS NFV-IFA 005 and ETSI GS NFV-IFA 006
 description: >
 The data of network interfaces which are specific to a Virtual Compute
 Resource instance
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 properties:
 ipAddress: # IpAddress IE in SOL013
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: string
 macAddress: # MacAddress IE in ETSI GS NFV-SOL 013
 type: string

[bookmark: _Toc109131730]6.2.7	Parameter: computeId
The parameter used when pointing to an identifier of the virtualised compute resource to operate shall follow the indications provided in Table 6.2.7-1.
Table 6.2.7-1: Input data model for computeId
	Parameter Name and Attributes
	Type
	Description

	computeId
	String
	Identifier of the virtualised compute resource to operate

The syntax of the computeId shall comply with the following definition:
 computeId:
 type: string
 description: >
 Identifier of the virtualised compute resource to operate
 default: ""

[bookmark: _Toc109131731]6.2.8	Parameter: networkInterfaceNew
The parameter used when giving networkInterfaceNew related to virtualised compute resources shall follow the indications provided in Table 6.2.8-1. The parameter is a list of data about new virtual network interface(s) to add to the compute resource.
NOTE:	">" is used to specify an "inlined definition".
Table 6.2.8-1: Input data model for networkInterfaceNew
	Parameter Name and Attributes
	Type
	Description

	networkInterfaceNew
	Array of Object
	Name of the parameter.

	>networkId
	String
	In the case when the virtual network interface is attached to the network, it identifies such a network.

	>networkPortId
	String
	If the virtual network interface is attached to a specific network port, it identifies such a network port.

	>typeVirtualNic
	String (see note)
	Type of network interface.
Allowed value: normal-virtual-NIC.

	>typeConfiguration
	Array of String
(see note)
	Extra configuration that the virtual network interface supports based on the type of virtual network interface.

	>bandwidth
	Number
	The bandwidth of the virtual network interface (in Mbps).

	>accelerationCapabilityForVirtualNetworkInterface
	Array of String
(see note)
	It specifies if the virtual network interface requires certain acceleration capabilities (e.g. RDMA, packet dispatch, TCP Chimney).

	>metadata
	Array of Object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource. metadata is optional. It is out of scope to detail what are the sub-keys and possible values.

	NOTE:	networkInterfaceNew parameter is used in Update Virtualised Compute Resource operation. In the case, the virtualised compute resource has been allocated with resource constraints (e.g. supported hardware). The new network interface, extra configurations and acceleration capability may not be accepted if those requests are unmatched to the constraints.

The syntax of the networkInterfaceNew shall comply with the following definition:
 networkInterfaceNew: # VirtualNetworkInterfaceData in ETSI GS NFV-IFA 005 and ETSI GS NFVIFA 006
 description: >
 The new virtual network interface(s) to add to the compute resource.
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 required:
 - typeVirtualNic
 properties:
 networkId:
 type: string
 networkPortId:
 type: string
 typeVirtualNic:
 type: string
 typeConfiguration:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: string
 bandwidth:
 type: number
 accelerationCapabilityForVirtualNetworkInterface:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: string
 metadata:
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object

[bookmark: _Toc109131732]6.2.9	Parameter: networkInterfaceUpdate
The parameter used when giving networkInterfaceUpdate related to virtualised compute resources shall follow the indications provided in Table 6.2.9-1. The parameter is a list of data about virtual network interface(s) to update on the compute resource.
NOTE:	">" is used to specify an "inlined definition".
Table 6.2.9-1: Input data model for networkInterfaceUpdate
	Parameter Name and Attributes
	Type
	Description

	networkInterfaceUpdate
	Array of Object
	Name of the parameter.

	>resourceId
	String
	Identifier of the virtual network interface.

	>ownerId
	String
	Identifier of the owner of the network interface (e.g. a virtualised compute resource).

	>networkId
	String
	In the case when the virtual network interface is attached to the network, it identifies such a network.

	>networkPortId
	String
	If the virtual network interface is attached to a specific network port, it identifies such a network port.

	>ipAddress
	Array of String
	The virtual network interface can be configured with specific IP address(es) associated to the network to be attached to.

	>typeVirtualNic
	String (see note)
	Type of network interface. The type allows for defining how such interface is to be realized, e.g. normal virtual NIC, with direct PCI passthrough, etc.

	>typeConfiguration
	Array of String (see note)
	Extra configuration that the virtual network interface supports based on the type of virtual network interface, including support for SR-IOV with configuration of Virtual Functions (VF).

	>macAddress
	String
	The MAC address of the virtual network interface.

	>bandwidth
	Number
	The bandwidth of the virtual network interface (in Mbps).

	>accelerationCapabilityForVirtualNetworkInterface
	Array of String (see note)
	Shows the acceleration capabilities utilized by the virtual network interface.

	>operationalState
	String
	The operational state of the virtual network interface.
Allowed value: enabled, disabled.

	>metadata
	Array of Object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource. metadata is optional. It is out of scope to detail what are the sub-keys and possible values.

	NOTE:	networkInterfaceUpdate parameter is used in Update Virtualised Compute Resource operation. In the case, the virtualised compute resource has been allocated with resource constraints (e.g. supported hardware). The new network interface, extra configurations and accelerationCapabilityForVirtualNetworkInterface may not be accepted if those requests are unmatched to the constraints.

The syntax of the networkInterfaceUpdate shall comply with the following definition:
 networkInterfaceUpdate: # VirtualNetworkInterface IE in ETSI GS NFV-IFA 005 and ETSI GS NFVIFA 006
 description: >
 The virtual network interface(s) to update on the compute resource.
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 required:
 - resourceId
 - ownerId
 - typeVirtualNic
 - macAddress
 - bandwidth
 - operationalState
 properties:
 resourceId:
 type: string
 ownerId:
 type: string
 networkId:
 type: string
 networkPortId:
 type: string
 ipAddress: # IpAddress IE in ETSI GS NFV-SOL 013
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
items:
 type: string
 typeVirtualNic:
 type: string
 typeConfiguration:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: string
 macAddress:
 type: string
 bandwidth:
 type: number
 accelerationCapabilityForVirtualNetworkInterface:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: string
 operationalState:
 type: string
 enum:
 - enabled
 - disabled
 metadata:
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values.
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object

[bookmark: _Toc109131733]6.2.10	Parameter: flavour
The parameter used when requesting operations related to the creation of flavours shall follow the indications provided in Table 6.2.10-1. This parameter is applicable only for Or-Vi interface.
NOTE:	">" is used to specify an "inlined definition".
Table 6.2.10-1: Input data model for flavour
	Parameter Name and Attributes
	Type
	Description

	flavour
	Object
	Name of the parameter.

	>flavourId
	String
	Identifier given to the compute flavour.

	>accelerationCapabilityForVirtualComputeFlavour
	Array of String
	Selected acceleration capabilities (e.g. crypto, GPU) from the set of capabilities offered by the compute node acceleration resources.

	>virtualMemory
	Object
	The virtual memory of the virtualised compute.

	>>virtualMemSize
	Number
	Amount of virtual Memory (e.g. in MB).

	>>virtualMemOversubscriptionPolicy
	String
	The memory core oversubscription policy in terms of virtual memory to physical memory on the platform. The cardinality can be 0 during the allocation request, if no particular value is requested.
E.g. virtual memory : physical memory.

	>>numaEnabled
	Boolean
	It specifies the memory allocation to be cognisant of the relevant process/core allocation. The cardinality can be 0 during the allocation request, if no particular value is requested.

	>virtualCpu
	Object
	The virtual CPU(s) of the virtualised compute. The cardinality can be 0 during the allocation request, if no particular CPU architecture type is requested.

	>>cpuArchitecture
	String
	CPU architecture type. Examples are x86, ARM®.

	>>numVirtualCpu
	Number
	Number of virtual CPUs.

	>>cpuClock
	Number
	Minimum CPU clock rate (e.g. in MHz) available for the virtualised CPU resources. The cardinality can be 0 during the allocation request, if no particular value is requested.

	>>virtualCpuOversubscriptionPolicy
	String
	The CPU core oversubscription policy, e.g. the relation of virtual CPU cores to physical CPU cores/threads. The cardinality can be 0 during the allocation request, if no particular value is requested.
E.g. virtual CPU core : physical CPU core= 4:1.

	>>virtualCpuPinning
	Object
	The virtual CPU pinning configuration for the virtualised compute resource.

	>>>vitualCpuPinningPolicy
	String
	The policy can take values of "static" or "dynamic". In case of "static" the virtual CPU cores are requested to be allocated to logical CPU cores according to the rules defined in virtualCpuPinningRules. In case of "dynamic" the allocation of virtual CPU cores to logical CPU cores is decided by the VIM (e.g. SMT (Simultaneous Multi-Threading) requirements).
Allowed value: static, dynamic.

	>>>virtualCpuPinningRules
	Array of Object
	A list of rules that should be considered during the allocation of the virtual CPU-s to logical CPU-s in case of "static" virtualCpuPinningPolicy.

	>>>>cores
	Number
	The number of core in the virtual CPU.

	>>>>sockets
	Number
	The number of socket in the virtual CPU.

	>>>>threads
	Number
	The number of thread in the virtual CPU.

	>storageAttributes
	Array of Object
	Element containing information about the size of virtualised storage resource (e.g. size of volume, in GB), the type of storage (e.g. volume, object), and support for RDMA.

	>>typeOfStorage
	String
	Type of virtualised storage resource (e.g. volume, object).

	>>sizeOfStorage
	Number
	Size of virtualised storage resource (e.g. size of volume, in GB).

	>virtualNetworkInterface
	Array of Object
	The virtual network interfaces of the virtualised compute.

	>>networkId
	String
	In the case when the virtual network interface is attached to the network, it identifies such a network. The cardinality can be 0 in the case that a network interface is created without being attached to any specific network.

	>>networkPortId
	String
	If the virtual network interface is attached to a specific network port, it identifies such a network port. The cardinality can be 0 in the case that a network interface is created without any specific network port attachment.

	>typeVirtualNic
	Not specified
(see note)
	Type of network interface. The type allows for defining how such interface is to be realized, e.g. normal virtual NIC, with direct PCI passthrough, etc.

	>typeConfiguration
	Not specified
(see note)
	Extra configuration that the virtual network interface supports based on the type of virtual network interface.

	>>bandwidth
	Number
	The bandwidth of the virtual network interface (in Mbps).

	>>accelerationCapabilityForVirtualNetworkInterface
	Array of String
	It specifies if the virtual network interface requires certain acceleration capabilities (e.g. RDMA, packet dispatch, TCP Chimney). The cardinality can be 0, if no particular acceleration capability is requested.

	>>metadata
	Array of Object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource. metadata is optional. It is out of scope to detail what are the sub-keys and possible values.

	NOTE:	There is only part of flavour as specified in ETSI GS NFV-IFA 005 [1] and ETSI GS NFV-IFA 006 [2] are included in this version of the present document, the following are attributes not included:
typeVirtualNic;
typeConfiguration.

The syntax of the flavour shall comply with the following definition:
 flavour:
 description: >
 The flavour provides information about the particular memory, CPU
 and disk resources for virtualised compute resource to allocate
 type: object
 required:
 - flavourId
 - virtualMemory
 - virtualCpu
 properties:
 flavourId:
 type: string
 accelerationCapabilityForVirtualComputeFlavour:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: string
 virtualMemory:
 type: object
 required:
 - virtualMemSize
 properties:
 virtualMemSize:
 type: number
 virtualMemOversubscriptionPolicy:
 type: string
 numaEnabled:
 type: boolean
 virtualCpu:
 type: object
 required:
 - numVirtualCpu
 properties:
 cpuArchitecture:
 type: string
 numVirtualCpu:
 type: number
 cpuClock:
 type: number
 virtualCpuOversubscriptionPolicy:
 type: string
 virtualCpuPinning:
 type: object
 required:
 - cpuPinningPolicy
 properties:
 cpuPinningPolicy:
 type: string
 enum:
 - static
 - dynamic
 cpuPinningRules:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 properties:
 cores:
 type: number
 sockets:
 type: number
 threads:
 type: number
 storageAttributes:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 properties:
 typeOfStorage:
 type: string
 sizeOfStorage:
 type: number
 virtualNetworkInterface:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 properties:
 networkId:
 type: string
 networkPortId:
 type: string
 bandwidth:
 type: number
 accelerationCapabilityForVirtualNetworkInterface:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: string
 metadata:
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values.
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object

[bookmark: _Toc109131734]6.2.11	Parameter: userData
The parameter used when providing user data to customize the virtualised compute resource at boot time shall follow the indications provided in Table 6.2.11-1.
Table 6.2.11-1: Input data model for userData
	Parameter Name and Attributes
	Type
	Description

	userData
	Object
	Name of the parameter.

	>content
	String
	Contains the user data to customize the virtualised compute resource at boot-time.

	>method
	String
	Method used as transportation media to convey the content of the userData to the virtualised compute resource.
Allowed value: CONFIG_DRIVE.

The syntax of the userData shall comply with the following definition:
 userData:
 description: >
 Contains user data to customize the virtualised compute resource at boot time
 type: object
 required:
 - content
 properties:
 content:
 type: string
 method:
 type: string
 enum:
 - CONFIG_DRIVE
 default: ""

[bookmark: _Toc109131735]6.2.12	Parameter: computePoolReservation
The parameter used when giving amount of compute resources to be reserved shall follow the indications provided in Table 6.2.12-1.
Table 6.2.12-1: Input data model for computePoolReservation
	Parameter Name and Attributes
	Type
	Description

	computePoolReservation
	Object
	Amount of compute resources to be reserved.

	>numCpuCores
	Number
	Number of CPU cores to be reserved.

	>numVcInstances
	Number
	Number of virtualised container instances to be reserved.

	>virtualMemSize
	Number
	Size of virtual memory to be reserved (in MB).

	>computeAttributes
	Object
	Information specifying additional attributes of the compute resource to be reserved.

	>>accelerationCapabilityForVirtualComputePoolReservation
	Array of String
	Selected acceleration capabilities (e.g. crypto, GPU) from the set of capabilities offered by the compute node acceleration resources.

	>>cpuArchitecture
	String
	CPU architecture type. Examples are "x86", "ARM".

	>>virtualCpuOversubscriptionPolicy
	String
	CPU core oversubscription policy in terms of virtual CPU cores to physical CPU cores/threads on the platform.

The syntax of the computePoolReservation shall comply with the following definition:
 computePoolReservation:
 description: >
 Amount of compute resources to be reserved.
 type: object
 required:
 - numCpuCores
 - numVcInstances
 - virtualMemSize
 properties:
 numCpuCores:
 type: number
 numVcInstances:
 type: number
 virtualMemSize:
 type: number
 computeAttributes:
 type: object
 properties:
 accelerationCapabilityForVirtualComputePoolReservation
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: string
 cpuArchitecture
 type: string
 virtualCpuOversubscriptionPolicy
 type: string
 default: ""

[bookmark: _Toc109131736]6.3	Parameters to be used as output
[bookmark: _Toc109131737]6.3.1	Parameter: nfvComputeInfo
The parameter is used when returning information for a virtualised compute resource, and its output data model shall follow the indications provided in Table 6.3.1-1. This parameter maps to the "computeData" parameter defined in ETSI GS NFV-IFA 005 [1].
Table 6.3.1-1: Output data model for nfvComputeInfo
	Parameter Name and Attributes
	Type
	Description

	nfvComputeInfo
	Object
	Element containing information of the newly instantiated virtualised compute resource as VirtualCompute.

	>computeId
	String
	Identifier of the virtualised compute resource.

	>computeName
	String
	Name of the virtualised compute resource.

	>flavourId
	String
	Identifier of the given compute flavour used to instantiate this virtual compute.

	>accelerationCapabilityForVirtualComputeFlavour
	Array of String
	Selected acceleration capabilities (e.g. crypto, GPU) from the set of capabilities offered by the compute node acceleration resources.

	>virtualCpu
	Object
	The virtual CPU(s) of the virtualised compute as VirtualCpu.

	>>cpuArchitecture
	String
	CPU architecture type. Examples are x86, ARM®.
See note.

	>>numVirtualCpu
	Number
	Number of virtual CPUs.

	>>cpuClock
	Number
	Minimum CPU clock rate in Hz available for the virtualised CPU resources.

	>>virtualCpuOversubscriptionPolicy
	String
	The CPU core oversubscription policy, e.g. the relation of virtual CPU cores to physical CPU cores/threads. The cardinality can be 0 if no policy has been defined during the allocation request.

	>>virtualCpuPinning
	Object
	The virtual CPU pinning configuration for the virtualised compute resource.

	>>>cpuPinningPolicy
	String
	The policy can take values of "static" or "dynamic". In case of "static" the virtual CPU cores are requested to be allocated to logical CPU cores according to the rules defined in virtualCpuPinningRules. In case of "dynamic" the allocation of virtual CPU cores to logical CPU cores is decided by the VIM (e.g. SMT (Simultaneous Multi-Threading) requirements).
Allowed value: static, dynamic.

	>>>cpuPinningRules
	Array of Object
	A list of rules that should be considered during the allocation of the virtual CPU-s to logical CPUs in case of "static" virtualCpuPinningPolicy.

	>>>>core
	Number
	The number of core in the virtual CPU.

	>>>>sockets
	Number
	The number of socket in the virtual CPU.

	>>>>threads
	Number
	The number of thread in the virtual CPU.

	>virtualMemory
	Object
	The virtual memory of the compute as VirtualMemory.

	>>virtualMemSize
	Number
	Amount of virtual memory in byte.

	>>virtualMemOversubscriptionPolicy
	String
	The memory core oversubscription policy in terms of virtual memory to physical memory on the platform. The cardinality can be 0 if no policy has been defined during the allocation request.

	>>numaEnabled
	Boolean
	It specifies the memory allocation to be cognisant of the relevant process/core allocation.

	>virtualNetworkInterface
	Array of Object
	Element with information of the instantiated virtual network interfaces of the compute resource.

	>>resourceId
	String
	Identifier of the virtual network interface.

	>>ownerId
	String
	Identifier of the owner of the network interface (e.g. a virtualised compute resource).

	>>networkId
	String (Reference to VirtualNetwork)
	In the case when the virtual network interface is attached to the network, it identifies such a network. The cardinality can be 0 in the case that a network interface is created without being attached to any specific network.

	>>networkPortId
	String (Reference to VirtualNetworkPort)
	If the virtual network interface is attached to a specific network port, it identifies such a network port. The cardinality can be 0 in the case that a network interface is created without any specific network port attachment.

	>>ipAddress
	Array of String
	The virtual network interface can be configured with specific IP address(es) associated to the network to be attached to. The cardinality can be 0 in the case that a network interface is created without being attached to any specific network, or when an IP address can be automatically configured, e.g. by DHCP.

	>>typeVirtualNic
	String
	Type of network interface. The type allows for defining how such interface is to be realized, e.g. normal virtual NIC, with direct PCI passthrough, etc.

	>>typeConfiguration
	Array of String
	Extra configuration that the virtual network interface supports based on the type of virtual network interface, including support for SR-IOV with configuration of Virtual Functions (VF).

	>>macAddress
	String
	The MAC address of the virtual network interface.

	>>bandwidth
	Number
	The bandwidth of the virtual network interface (in Mbps).

	>> accelerationCapabilityForVirtualNetworkInterface
	Array of String
	Shows the acceleration capabilities utilized by the virtual network interface. The cardinality can be 0, if no acceleration capability is utilized.

	>>operationalState
	String
	The operational state of the virtualised subnetwork.
Allowed values are: enabled, disabled.

	>>metadata
	Array of Object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource. metadata is optional. It is out of scope to detail what are the sub-keys and possible values.

	>>virtualDisks
	Array of Object
	Element with information of the virtualised storage resources (volumes, ephemeral) that are attached to the compute resource.

	>>>storageId
	String
	Identifier of the virtualised storage resource.

	>>>storageName
	String
	Name of the virtualised storage resource.

	>>>flavourId
	String
	Identifier of the storage flavour used to instantiate this virtual storage.

	>>>typeOfStorage
	String
	Type of virtualised storage resource (e.g. volume, object).

	>>>sizeOfStorage
	Number
	Size of virtualised storage resource (e.g. size of volume, in GB).

	>>>rdmaEnabled
	Boolean
	Indicates if the storage supports RDMA.

	>>>ownerId
	String
	Identifier of the virtualised resource that owns and uses such a virtualised storage resource. The value can be NULL if the virtualised storage is not attached yet to any other resource (e.g. a virtual machine).

	>>>zoneId
	String
	It identifies the resource zone where the virtual storage resources have been allocated.

	>>>hostId
	String
	Identifier of the host where the virtualised storage resource is allocated.

	>>>operationalState
	String
	Operational state of the resource.
Allowed value: enabled, disabled.

	>>>metadata
	Array of Object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource. metadata is optional. It is out of scope to detail what are the sub-keys and possible values.

	>vcImageId
	String
	Identifier of the virtualisation container software image (e.g. virtual machine image).

	>zoneId
	String
	If present, it identifies the resource zone where the virtual compute resources have been allocated.

	>hostId
	String
	Identifier of the host the virtualised compute resource is allocated on.

	>operationalState
	String
	Operational state of the compute resource.
Possible values are: "enabled" or "disabled".

	>metadata
	Array of Object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource. metadata is optional. It is out of scope to detail what are the sub-keys and possible values.

	NOTE:	See "cpu_architecture" in tosca.datatypes.nfv.VirtualCpu, ETSI GS NFV-SOL 001 [6].

When used as an output parameter in a template, the syntax of the nfvComputeInfo shall comply with the following definition:
 nfvComputeInfo:
 description: >
 Element containing information of the newly instantiated virtualised
 compute resource.
 type: object
 required:
 - computeId
 - flavourId
 - virtualCpu
 - virtualMemory
 - virtualDisks
 - hostId
 - operationalState
 properties:
 computeId:
 description: >
 Identifier of the virtualised compute resource.
 type: string
 computeName:
 description: >
 Name of the virtualised compute resource.
 type: string
 flavourId:
 description: >
 Identifier of the given compute flavour used to instantiate this
 virtual compute.
 type: string
 accelerationCapabilityForVirtualComputeFlavour:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: string
 virtualCpu:
 description: >
 The virtual CPU(s) of the virtualised compute.
 type: object
 properties:
 cpuArchitecture:
 description: >
 CPU architecture type.
 type: string
 numVirtualCpu:
 description: >
 Number of virtual CPUs.
 type: number
 cpuClock:
 description: >
 Minimum CPU clock rate in Hz available for the virtualised
 CPU resources.
 type: number
 virtualCpuOversubscriptionPolicy:
 description: >
 The CPU core oversubscription policy, e.g. the relation of
 virtual CPU cores to physical CPU cores/threads. The cardinality
 can be 0 if no policy has been defined during the allocation request.
 type: string
 virtualCpuPinning:
 description: >
 The virtual CPU pinning configuration for the virtualised
 compute resource.
 type: object
 required:
 - cpuPinningPolicy
 properties:
 cpuPinningPolicy:
 type: string
 enum:
 - static
 - dynamic
 cpuPinningRules:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 properties:
 cores:
 type: number
 sockets:
 type: number
 threads:
 type: number
 virtualMemory:
 description: >
 The virtual memory of the compute.
 type: object
 properties:
 virtualMemSize:
 description: >
 Amount of virtual memory in byte.
 type: number
 virtualMemOversubscriptionPolicy:
 description: >
 The memory core oversubscription policy in terms of virtual memory
 to physical memory on the platform. The cardinality can be 0 if
 no policy has been defined during the allocation request.
 type: string
 numaEnabled:
 description: >
 It specifies the memory allocation to be cognisant of
 the relevant process/core allocation.
 type: boolean
 virtualNetworkInterface:
 description: >
 Element with information of the instantiated virtual network
 interfaces of the compute resource.
 resourceId:
 type: string
 ownerId:
 type: string
 networkId:
 type: string
 networkPortId:
 type: string
 ipAddress: # IpAddress IE in ETSI GS NFV-SOL 013
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # maximum value of cardinality
 items:
 type: string
 typeVirtualNic:
 type: string
 typeConfiguration:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: string
 macAddress:
 type: string
 bandwidth:
 type: number
 accelerationCapabilityForVirtualNetworkInterface":
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: string
 operationalState:
 type: string
 enum:
 - enabled
 - disabled
 metadata:
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values.
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 virtualDisks:
 description: >
 Element with information of the virtualised storage resources
 (volumes, ephemeral) that are attached to the compute resource.
 type: array
 minItems: 1 # lower bound of cardinality
 maxItems: N # maximum value of cardinality
 items:
 type: object
 required:
 - storageId
 - flavourId
 - typeOfStorage
 - sizeOfStorage
 - operationalState
 properties:
 storageId:
 description: >
 Identifier of the virtualised storage resource
 type: string
 storageName:
 description: >
 Name of the virtualised storage resource
 type: string
 flavourId:
 description: >
 Identifier of the storage flavour used to instantiate
 this virtual storage
 type: string
 typeOfStorage:
 description: >
 Type of virtualised storage resource
 type: string
 sizeOfStorage:
 description: >
 Size of virtualised storage resource
 type: number
 rdmaEnabled:
 description: >
 Indicates if the storage supports RDMA.
 type: boolean
 ownerId:
 description: >
 Identifier of the virtualised resource that owns and uses such
 a virtualised storage resource. The value can be NULL if the
 virtualised storage is not attached yet to any other resource
 type: string
 zoneId:
 description: >
 It identifies the resource zone where the virtual storage
 resources have been allocated
 type: string
 hostId:
 description: >
 Identifier of the host where the virtualised storage resource
 is allocated.
 type: string
 operationalState:
 description: >
 Operational state of the resource.
 type: string
 enum:
 - enabled
 - disabled
 metadata:
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values.
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 vcImageId:
 description: >
 Identifier of the virtualisation container software image.
 type: string
 zoneId:
 description: >
 If present, it identifies the resource zone where the virtual
 compute resources have been allocated.
 type: string
 hostId:
 description: >
 Identifier of the host the virtualised compute resource is allocated on.
 type: string
 operationalState:
 description: >
 Operational state of the compute resource.
 type: string
 enum:
 - enabled
 - disabled
 metadata:
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values.
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object

[bookmark: _Toc109131738]7	Data model for Virtualised Network Management
[bookmark: _Toc109131739]7.1	Description
This clause specifies data models for input and output parameters for Virtualised Network Management.
[bookmark: _Toc109131740]7.2	Parameters to be used as input
[bookmark: _Toc109131741]7.2.1	Parameter: networkResourceName
The parameter used when providing a name for a virtualised network resource shall follow the indications provided in Table 7.2.1-1.
Table 7.2.1-1: Input data model for networkResourceName
	Parameter Name and Attributes
	Type
	Description

	networkResourceName
	String
	Name for a virtualised compute resource.

The syntax of the networkResourceName shall comply with the following definition:
 networkResourceName:
 description: >
 Name provided by the consumer for the virtualised network resource
 type: string
 default: ""

[bookmark: _Toc109131742]7.2.2	Parameter: networkResourceType
The parameter used when setting the type of a virtualised network resource shall follow the indications provided in Table 7.2.2-1.
Table 7.2.2-1: Input data model for networkResourceType
	Parameter Name and Attributes
	Type
	Description

	networkResourceType
	String
	The network data provides information about the particular virtual network resource.
Possible values are: "network", "subnet", or "network-port".

The syntax of the networkResourceType shall comply with the following definition:
 networkResourceType:
 description: >
 The network data information applicable to the particular virtual network
 resource of the virtualised resource management operation
 type: string
 enum:
 - network
 - subnet
 - network-port
 default: ""

[bookmark: _Toc109131743]7.2.3	Parameter: typeNetworkData
The parameter used when providing the network data information about the particular virtual network shall follow the indications provided in Table 7.2.3-1.
Table 7.2.3-1: Input data model for typeNetworkData
	Parameter Name and Attributes
	Type
	Description

	typeNetworkData
	Object
	The network data provides information about the particular virtual network resource.

	>bandwidth
	Number
	Minimum network bandwidth (in Mbps).

	>networkType
	String
	The type of network that maps to the virtualised network. This list is extensible. Examples are: "local", "vlan", "vxlan", "gre", "l3-vpn", etc.

	>segmentType
	String
	The isolated segment for the virtualised network. For instance, for a "vlan" networkType, it corresponds to the vlan identifier; and for a "gre" networkType, this corresponds to a gre key.

	>networkQos
	Array of Object
	Element providing information about Quality of Service attributes that the network is requested to support.

	>>qosName
	String
	Name given to the QoS parameter.

	>>qosValue
	Number
	Value of the QoS parameter.

	>isShared
	Boolean
	It defines whether the virtualised network is shared among consumers.

	>sharingCriteria
	String
	Only present for shared networks. Indicate the sharing criteria/constraint for this network. These criteria might be a list of authorized consumers.

	>layer3Attributes
	Array of Object
	The attribute list allows setting up a network providing defined layer 3 connectivity.

	>>networkId
	String
	The identifier of the virtualised network that the virtualised sub-network is attached to.

	>>ipVersion
	String
	The IP version of the network/subnetwork. Allowed_values: IPv4, IPv6.

	>>gatewayIp
	String
	Specifies the IP address of the network/subnetwork gateway when the gateway is selected by the requestor.

	>>cidr
	String
	The CIDR of the network/subnetwork, i.e. network address and subnet mask.

	>>isDhcpEnabled
	Boolean
	True when DHCP is to be enabled for this network/subnetwork, or false otherwise.

	>>addressPool
	Array of Object
	Address pools for the network/subnetwork.

	>>>start
	String
	The first IP address in the addressPool.
See note.

	>>>end
	String
	The last IP address in the addressPool.
See note.

	>>metadata
	Array of Object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource. Metadata is optional. It is out of scope to detail what are the sub-keys and possible values.

	>metadata
	Array of Object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource. Metadata is optional. It is out of scope to detail what are the sub-keys and possible values.

	NOTE:	In case of an IPV4 address, string that consists of four decimal integers separated by dots, each integer ranging from 0 to 255. In case of an IPV6 address, string that consists of groups of zero to four hexadecimal digits, separated by colons.

The syntax of the typeNetworkData shall comply with the following definition:
 typeNetworkData:
 description: >
 The network data information about the particular virtual network
 resource of the virtualised resource management operation
 required:
 - bandwidth
 type: object # VirtualNetworkData IE in ETSI GS NFV-IFA 005 and ETSI GS NFV-IFA 006
 properties:
 bandwidth:
 type: number
 networkType:
 type: string
 segmentType:
 type: string
 networkQos:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 properties:
 qosName:
 type: string
 qosValue:
 type: number
 isShared:
 type: boolean
 sharingCriteria:
 type: string
 layer3Attributes: # NetworkSubnetData IE in ETSI GS NFV-IFA 005 and ETSI GS NFV-IFA 006
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 properties:
 networkId:
 type: string
 ipVersion:
 type: string
 enum:
 - IPv4
 - IPv6
 gatewayIp:
 type: string
 cidr:
 type: string
 isDhcpEnabled:
 type: boolean
 addressPool:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 properties:
 start:
 type: string
 end:
 type: string
 metadata:
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values.
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 metadata:
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values.
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 default: ""

[bookmark: _Toc109131744]7.2.4	Parameter: typeNetworkPortData
The parameter used when setting the network port data provides information about the particular network port shall follow the indications in Table 7.2.4-1.
Table 7.2.4-1: Input data model for typeNetworkPortData
	Parameter Name and Attributes
	Type
	Description

	typeNetworkPortData
	Object
	The network port data provides information about the particular network port.

	>portType
	String
	Type of network port. Examples of types are access ports (layer 2 or 3), or trunk ports (layer 1) that become transport for multiple layer 2 or layer 3 networks.

	>networkId
	String
	Identifier of the network that the port belongs to.

	>segmentId
	String
	The isolated segment the network port belongs to. For instance, for a "vlan", it corresponds to the vlan identifier; and for a "gre", this corresponds to a gre key.

	>bandwidth
	Number
	The bandwidth of the virtual network port (in Mbps).

	>metadata
	Array of Object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource. metadata is optional. It is out of scope to detail what are the sub-keys and possible values.

The syntax of the typeNetworkPortData shall comply with the following definition:
 typeNetworkPortData:
 description: >
 The network port data information about the particular network port
 of the virtualised resource management operation
 required:
 - portType
 type: object # VirtualNetworkPortData IE in ETSI GS NFV-IFA 005 and ETSI GS NFV-IFA 006
 properties:
 portType:
 type: string
 networkId:
 type: string
 segmentId:
 type: string
 bandwidth:
 type: number
 metadata:
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values.
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 default: ""

[bookmark: _Toc109131745]7.2.5	Parameter: typeSubnetData
The parameter used when setting the subnet data information about the particular subnetwork resource shall follow the indications in Table 7.2.5-1.
Table 7.2.5-1: Input data model for typeSubnetData
	Parameter Name and Attributes
	Type
	Description

	typeSubnetData
	Object
	The subnet data provides information about the particular sub-network resource.

	>networkId
	String
	The identifier of the virtualised network that the virtualised sub-network is attached to.

	>ipVersion
	String
	The IP version of the network/subnetwork.
Allowed Value: IPv4, IPv6.

	>gatewayIp
	String
	The identifier of the virtualised network that the virtualised sub-network is attached to.

	>cidr
	String
	The IP version of the network/subnetwork.
Allowed Value: IPv4, IPv6.

	>isDhcpEnabled
	Boolean
	Specifies the IP address of the network/subnetwork gateway when the gateway is selected by the requestor.

	>addressPool
	Array of Object
	The CIDR of the network/subnetwork, i.e. network address and subnet mask.

	>>start
	String
	The first IP address in the addressPool.
See note.

	>>end
	String
	The last IP address in the addressPool.
See note.

	>metadata
	Array of Object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource. metadata is optional. It is out of scope to detail what are the sub-keys and possible values.

	NOTE:	In case of an IPV4 address, string that consists of four decimal integers separated by dots, each integer ranging from 0 to 255. In case of an IPV6 address, string that consists of groups of zero to four hexadecimal digits, separated by colons.

The syntax of the typeSubnetData shall comply with the following definition:
 typeSubnetData:
 description: >
 The subnet data information about the particular subnetwork of
 the virtualised resource management operation
 type: object # NetworkSubnetData IE in ETSI GS NFV-IFA 005 and ETSI GS NFV-IFA 006
 properties:
 networkId:
 type: string
 ipVersion:
 type: string
 enum:
 - IPv4
 - IPv6
 gatewayIp:
 type: string
 cidr:
 type: string
 isDhcpEnabled:
 type: boolean
 addressPool:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 properties:
 start:
 type: string
 end:
 type: string
 metadata:
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values.
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 default: ""

[bookmark: _Toc109131746]7.2.6	Parameter: affinityOrAntiAffinityConstraintsForNetwork
The parameter used when providing the list of elements with affinity or anti affinity information of the virtualised network resource shall follow the indications in Table 7.2.6-1.
Table 7.2.6-1: Input data model for affinityOrAntiAffinityConstraintsForNetwork
	Parameter Name and Attributes
	Type
	Description

	affinityOrAntiAffinityConstraintsForNetwork
	Array of Object
	A list of elements with affinity or anti affinity information of the virtualised network resource. All the listed constraints shall be fulfilled for a successful operation.

	>typeOfAffinityOrAntiAffinityConstraintForNetwork
	String
	Indicates whether this is an affinity or anti-affinity constraint.
Allowed_values: affinity, anti-affinity.

	>scopeOfAffinityOrAntiAffinityConstraintForNetwork
	String
	Qualifies the scope of the constraint. In case of ports: e.g. "virtual switch or router" or "physical NIC", or "physical network" or "NFVI Node". In case of networks: e.g. "physical NIC", "physical network" or "NFVI Node". In case of subnets: it should be ignored. Defaults to "NFVI Node" if absent.
Allowed_values: virtual-switch, router, physicalNIC, physical-network, NFVI-Node.

	>affinityAntiAffinityResourceList
	Array
	Consumer-managed list of identifiers of virtualised resources with which the actual resource is requested to be affine or anti-affine.
See note and condition.

	>>resource
	Array of String
	List of identifiers of virtualised resources.

	>affinityAntiAffinityResourceGroup
	String
	Identifier of the producer-managed group of virtualised resources with which the actual resource is requested to be affine or anti-affine. See note and condition.

	NOTE:	It is a prerequisite for the consumer to create a VirtualisedNetworkResourceAffinityOrAntiAffinityConstraintsGroup and get groupIdentifier using the appropriate operation, Create Virtualised Network Resource Affinity Or AntiAffinity Constraints Group, defined in ETSI GS NFV-IFA 005 [1], and the ETSI GS NFV-IFA 006 [2].

	CONDITION:	If explicit resource lists for affinity/anti-affinity (see clause 8.4.8.1 in ETSI GS NFV-IFA 005 [1] and ETSI GS NFV-IFA 006 [2]) are supported, the affinityAntiAffinityResourceList shall be supported. If named resource groups for affinity/anti-affinity (see clause 8.4.8.1 in ETSI GS NFV-IFA 005 [1], and the ETSI GS NFV-IFA 006 [2]) are supported, affinityAntiAffinityResourceGroup shall be supported. The mechanisms shall not be mixed in the scope of a resourceGroup (also known as VIM tenant).

The syntax of the affinityOrAntiAffinityConstraintsForNetwork shall comply with the following definition:
 affinityOrAntiAffinityConstraintsForNetwork:
 description: >
 A list of elements with affinity or anti affinity information of the virtualised
 network resource of the virtualised resource management
 operation
 oneOf:
 - type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 required:
 - typeOfAffinityOrAntiAffinityConstraintForNetwork
 type: object
 properties:
 typeOfAffinityOrAntiAffinityConstraintForNetwork:
 type: string
 enum:
 - affinity
 - anti-affinity
 scopeOfAffinityOrAntiAffinityConstraintForNetwork:
 type: string
 enum:
 - virtual-switch
 - router
 - physical-NIC
 - physical-network
 - NFVI-Node
 default: NFVI-Node
 affinityAntiAffinityResourceList:
 required:
 - resource
 type: object
 properties:
 resource:
 type: array
 minItems: 1 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: string
 - type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 required:
 - typeOfAffinityOrAntiAffinityConstraintForNetwork
 type: object
 properties:
 typeOfAffinityOrAntiAffinityConstraintForNetwork:
 type: string
 enum:
 - affinity
 - anti-affinity
 scopeOfAffinityOrAntiAffinityConstraintForNetwork:
 type: string
 enum:
 - virtual-switch
 - router
 - physical-NIC
 - physical-network
 - NFVI-Node
 default: NFVI-Node
 affinityAntiAffinityResourceGroup:
 type: string
 default: ""

[bookmark: _Toc109131747]7.2.7	Void
[bookmark: _Toc109131748]7.2.8	Parameter: locationConstraintsForNetwork
The parameter used when defining the location constraints for the resource(s) shall follow the indicators provided in Table 7.2.8-1.
Table 7.2.8-1: Input data model for locationConstraints
	Parameter Name and Attributes
	Type
	Description

	locationConstraintsForNetwork
	String
	Defines location constraints for the resource(s), e.g. in what particular resource zone.

The syntax of the locationConstraintsForNetwork shall comply with the following definition:
 locationConstraintsForNetwork:
 description: >
 The definition of the location constraints for the resource(s),
 e.g. in what particular resource zone, of the virtualised resource management
 operation
 type: string
 default: ""

[bookmark: _Toc109131749]7.2.9	Parameter: queryNetworkFilter
The parameters used when invoking the operation shall follow the indications provided in Table 7.2.9-1.
Table 7.2.9-1: Input data model for queryNetworkFilter
	Parameter Name and Attributes
	Type
	Description

	queryNetworkFilter
	Not specified
(see note)
	Query filter based on e.g. name, identifier, metadata information or status information, expressing the type of information to be retrieved. It can also be used to specify one or more resources to be queried by providing their identifiers.

	NOTE:	Query operation is not covered in the present document.

The syntax of the queryNetworkFilter shall comply with the following definition:
 queryNetworkFilter:
 description: >
 The query filter based on name, identifier, metadata information or status
 information, expressing the type of information to be retrieved of the
 virtualised resource management operation
 type: Not specified
 default: ""

[bookmark: _Toc109131750]7.2.10	Parameter: networkResourceId
The parameter used when pointing to a virtualised network resource shall follow the indications provided in Table 7.2.10-1.
Table 7.2.10-1: Input data model for networkResourceId
	Parameter Name and Attributes
	Type
	Description

	networkResourceId
	String
	Identifier of a virtualised resource.

The syntax of the networkResourceId shall comply with the following definition:
 networkResourceId:
 description: >
 Identifier of a virtualised network resource
 type: string
 default: ""

[bookmark: _Toc109131751]7.2.11	Parameter: updateNetworkData
The parameter used when providing the network data information about the particular virtual network shall follow the indications provided in Table 7.2.11-1.
Table 7.2.11-1: Input data model for updateNetworkData
	Parameter Name and Attributes
	Type
	Description

	updateNetworkData
	Object
	Network data information about the particular virtual network resource.

	>bandwidth
	Number
	Minimum network bandwidth (in Mbps).

	>networkType
	String
	The type of network that maps to the virtualised network. This list is extensible. Examples are: "local", "vlan", "vxlan", "gre", "l3-vpn", etc.

	>segmentType
	String
	The isolated segment for the virtualised network. For instance, for a "vlan" networkType, it corresponds to the vlan identifier; and for a "gre" networkType, this corresponds to a gre key.

	>networkQos
	Array of Object
	Element providing information about Quality of Service attributes that the network is requested to support.

	>>qosName
	String
	Name given to the QoS parameter.

	>>qosValue
	Number
	Value of the QoS parameter.

	>isShared
	Boolean
	It defines whether the virtualised network is shared among consumers.

	>sharingCriteria
	String
	Only present for shared networks. Indicate the sharing criteria/constraint for this network. These criteria might be a list of authorized consumers.

	>layer3Attributes
	Array of Object
	The attribute list allows setting up a network providing defined layer 3 connectivity.

	>>networkId
	String
	The identifier of the virtualised network that the virtualised sub-network is attached to.

	>>ipVersion
	String
	The IP version of the network/subnetwork.
Allowed_values: IPv4, IPv6.

	>>gatewayIp
	String
	Specifies the IP address of the network/subnetwork gateway when the gateway is selected by the requestor.

	>>cidr
	String
	The CIDR of the network/subnetwork, i.e. network address and subnet mask.

	>>isDhcpEnabled
	Boolean
	True when DHCP is to be enabled for this network/subnetwork, or false otherwise.

	>>addressPool
	Array of Object
	Address pools for the network/subnetwork.

	>>>start
	String
	The first IP address in the addressPool.
See note.

	>>>end
	String
	The last IP address in the addressPool.
See note.

	>>metadata
	Array of Object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource. Metadata is optional. It is out of scope to detail what are the sub-keys and possible values.

	>metadata
	Array of Object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource. Metadata is optional. It is out of scope to detail what are the sub-keys and possible values.

	NOTE:	In case of an IPV4 address, string that consists of four decimal integers separated by dots, each integer ranging from 0 to 255. In case of an IPV6 address, string that consists of groups of zero to four hexadecimal digits, separated by colons.

The syntax of the updateNetworkData shall comply with the following definition:
 updateNetworkData:
 description: >
 This element contains the network data information of a particular
 virtual network resource
 required:
 - bandwidth
 type: object # VirtualNetworkData in ETSI GS NFV-IFA 005 and ETSI GS NFV-IFA 006
 properties:
 bandwidth:
 type: number
 networkType:
 type: string
 segmentType:
 type: string
 networkQos:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # maximum value of cardinality
 items:
 type: object
 required:
 - qosName
 - qosValue
 properties:
 qosName:
 type: string
 qosValue:
 type: number
 isShared:
 type: boolean
 sharingCriteria:
 type: string
 layer3Attributes: # NetworkSubnetData IE in ETSI GS NFV-IFA 005 and ETSI GS NFV-IFA 006
 type: array
 items:
 type: object
 properties:
 networkId:
 type: string
 ipVersion:
 type: string
 enum:
 - IPv4
 - IPv6
 gatewayIp:
 type: string
 cidr:
 type: string
 isDhcpEnabled:
 type: boolean
 addressPool:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 properties:
 start:
 type: string
 end:
 type: string
 metadata:
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values.
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 - type: object
 metadata:
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values.
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 default: ""

[bookmark: _Toc109131752]7.2.12	Parameter: updateSubnetData
The parameter used when setting the subnet data information about the particular subnetwork resource shall follow the indications in Table 7.2.12-1.
Table 7.2.12-1: Input data model for updateSubnetData
	Parameter Name and Attributes
	Type
	Description

	updateSubnetData
	Object
	Subnet data information about the particular virtual subnet resource.

	>networkId
	String
	The identifier of the virtualised network that the virtualised sub-network is attached to.

	>ipVersion
	String
	The IP version of the network/subnetwork.
Allowed Value: IPv4, IPv6.

	>gatewayIp
	String
	Specifies the IP address of the network/subnetwork gateway when the gateway is selected by the requestor.

	>cidr
	String
	The CIDR of the network/subnetwork, i.e. network address and subnet mask.

	>isDhcpEnabled
	Boolean
	True when DHCP is to be enabled for this network/subnetwork, or false otherwise.

	>addressPool
	Array of Object
	Address pools for the network/subnetwork.

	>>start
	String
	The first IP address in the addressPool.
See note.

	>>end
	String
	The last IP address in the addressPool.
See note.

	>metadata
	Array of Object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource.

	NOTE:	In case of an IPV4 address, string that consists of four decimal integers separated by dots, each integer ranging from 0 to 255. In case of an IPV6 address, string that consists of groups of zero to four hexadecimal digits, separated by colons.

The syntax of the updateSubnetData shall comply with the following definition:
 updateSubnetData:
 description: >
 The subnet data information of a particular subnet resource
 type: object
 properties:
 networkId:
 type: string
 ipVersion:
 type: string
 enum:
 - IPv4
 - IPv6
 gatewayIp:
 type: string
 cidr:
 type: string
 isDhcpEnabled:
 type: boolean
 addressPool:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # maximum value of cardinality
 items:
 type: object
 properties:
 start:
 type: string
 end:
 type: string
 metadata:
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values.
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 default: ""

[bookmark: _Toc109131753]7.2.13	Parameter: updateNetworkPort
The parameter used when providing the network port data provides information about the particular network port shall follow the indications in Table 7.2.13-1.
Table 7.2.13-1: Input data model for updateNetworkPort
	Parameter Name and Attributes
	Type
	Description

	updateNetworkPort
	Object
	Network port data information about the particular virtual network port resource.

	>portType
	String
	Type of network port. Examples of types are access ports (layer 2 or 3), or trunk ports (layer 1) that become transport for multiple layer 2 or layer 3 networks.

	>networkId
	String
	Identifier of the network that the port belongs to.

	>segmentId
	String
	The isolated segment the network port belongs to. For instance, for a "vlan", it corresponds to the vlan identifier; and for a "gre", this corresponds to a gre key.

	>bandwidth
	Number
	The bandwidth of the virtual network port (in Mbps).

	>metadata
	Array of Object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource.

The syntax of the updateNetworkPort shall comply with the following definition:
 updateNetworkPort:
 description: >
 The network port data information of a particular network port
 resource
 required:
 - portType type: object # VirtualNetworkData in ETSI GS NFV-IFA 005 and ETSI GS NFV-IFA 006
 properties:
 portType:
 type: string
 networkId:
 type: string
 segmentId:
 type: string
 bandwidth:
 type: number
 metadata:
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values.
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 default: ""

[bookmark: _Toc109131754]7.2.14	Parameter: scopeOfAffinityOrAntiAffinityConstraintForNetwork
The parameter used when providing the type of the affinity or anti-affinity group shall follow the indications in Table 7.2.14-1.
Table 7.2.14-1: Input data model for scopeOfAffinityOrAntiAffinityConstraintForNetwork
	Parameter Name and Attributes
	Type
	Description

	scopeOfAffinityOrAntiAffinityConstraintForNetwork
	String
	Qualifies the scope of the constraint, e.g. NFVI Node, NIC.
Defaults to NFVI Node if absent.

The syntax of the scopeOfAffinityOrAntiAffinityConstraintForNetwork shall comply with the following definition:
 scopeOfAffinityOrAntiAffinityConstraintForNetwork:
 description: >
 It qualifies the scope of the constraint, e.g. NFVI Node, NIC of the
 virtualised resource management operation
 type: string
 enum:
 - NFVI-Node
 - NIC
 default: NFVI-Node

[bookmark: _Toc109131755]7.3	Parameters to be used as output
[bookmark: _Toc109131756]7.3.1	Parameter: nfvNetworkInfo
The parameter is used when returning information for a virtualised network resource, and its output data model shall follow the indications provided in Table 7.3.1-1. This parameter maps to the "networkData" parameter defined in ETSI GS NFV-IFA 005 [1].
Table 7.3.1-1: Output data model for nfvNetworkInfo
	Parameter Name and Attributes
	Type
	Description

	nfvNetworkInfo
	Object
	If network types are created satisfactorily, it contains the data relative to the instantiated virtualised network resource as VirtualNetwork.

	>networkResourceId
	String
	Identifier of the virtualised network resource.

	>networkResourceName
	String
	Name of the virtualised network resource.

	>subnet
	String
	Only present if the network provides layer 3 connectivity.

	>networkPort
	Not specified
(see note)
	Element providing information of an instantiated virtual network port.

	>bandwidth
	Number
	Minimum network bandwidth (in Mbps).

	>networkType
	String
	The type of network that maps to the virtualised network.
Examples are: "local", "vlan", "vxlan", "gre", "l3vpn". The cardinality can be "0" to cover the case where this attribute is not required to create the virtualised network.

	>segmentType
	String
	The isolated segment for the virtualised network. For instance, for a "vlan" networkType, it corresponds to the vlan identifier; and for a "gre" networkType, this corresponds to a gre key. The cardinality can be "0" for flat networks without any specific segmentation.

	>networkQoS
	Array of Object
	Element providing information about Quality of Service attributes that the network supports. Cardinality can be "0" for virtual network without any QoS requirements.

	>>qosName
	String
	Name given to the QoS parameter.

	>>qosValue
	Number
	Value of the QoS parameter.

	>isShared
	Boolean
	It defines whether the virtualised network is shared among consumers.

	>sharingCriteria
	String
	Only present for shared networks. Indicate the sharing criteria for this network. This criteria might be a list of authorized consumers.

	>zoneId
	String
	If present, it identifies the Resource Zone where the virtual network resources have been allocated.

	>operationalState
	String
	The operational state of the virtualised network.
Possible values are: "enabled", "disabled".

	>metadata
	Array of Object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource. Metadata is optional. It is out of scope to detail what are the sub-keys and possible values.

	NOTE:	In Allocate Virtualised Network Resource operation output parameters, ETSI GS NFV-IFA 005 [1] and ETSI GS NFV-IFA 006 [2], networkPort attribute is specified with duplication. The data model is specified as an attribute in networkData parameter as well as networkPortData as a parameter in the operation.

When used as an output parameter in a template, the syntax of the networkInfo shall comply with the following definition:
 nfvNetworkInfo:
 type: object
 required:
 - networkResourceId
 - bandwidth
 - networkType
 - isShared
 - operationalState
 properties:
 networkResourceId:
 type: string
 networkResourceName:
 type: string
 subnet:
 type: string
 bandwidth:
 type: number
 networkType:
 type: string
 segmentType:
 type: string
 networkQoS:
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # maximum value of cardinality
 items:
 - type: object
 properties:
 qosName:
 type: string
 qosValue:
 type: number
 isShared:
 type: boolean
 sharingCriteria:
 type: string
 zoneId:
 type: string
 operationalState:
 type: string
 description: >
 Operational state of the compute resource.
 enum:
 - enabled
 - disabled
 metadata:
 type: array
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values.
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object

[bookmark: _Toc109131757]7.3.2	Parameter: nfvSubnetInfo
The parameter is used when returning information for a subnet resource, and its output data model shall follow the indications provided in Table 7.3.2-1. This parameter maps to the "subnetData" parameter defined in ETSI GS NFVIFA 005 [1].
Table 7.3.2-1: Output data model for nfvSubnetInfo
	Parameter Name and Attributes
	Type
	Description

	nfvSubnetInfo
	Object
	If subnet types are created satisfactorily, it contains the data relative to the allocated subnet as NetworkSubnet.

	>resourceId
	String
	Identifier of the virtualised subnetwork.

	>networkId
	String
	The identifier of the virtualised network that the virtualised subnetwork is attached to. The cardinality can be 0 to cover the case where this type is used to describe the L3 attributes of a network rather than a subnetwork.

	>ipVersion
	String
	The IP version of the network/subnetwork.
Possible values are: "IPv4", "IPv6".

	>gatewayIp
	String
	The IP V4 or IPV6 address of the network/subnetwork gateway.

	>cidr
	String
	The CIDR of the network/subnetwork, i.e. network address and subnet mask.

	>isDhcpEnabled
	Boolean
	True when DHCP is enabled for this network/subnetwork, or false otherwise.

	>addressPool
	Array of Object
	Address pools for the network/subnetwork. The cardinality can be 0 when VIM is allowed to allocate all addresses in the CIDR except for the address of the network/subnetwork gateway.

	>>start
	String
	The first IP address in the addressPool.
See note.

	>>end
	String
	The last IP address in the addressPool.
See note.

	>operationalState
	String
	The operational state of the virtualised subnetwork.
Allowed values are: enabled, disabled.

	>metadata
	Array of Object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource. metadata is optional. It is out of scope to detail what are the sub-keys and possible values.

	NOTE:	In case of an IPV4 address, string that consists of four decimal integers separated by dots, each integer ranging from 0 to 255. In case of an IPV6 address, string that consists of groups of zero to four hexadecimal digits, separated by colons.

When used as an output parameter in a template, the syntax of the nfvSubnetInfo shall comply with the following definition:
 nfvSubnetInfo:
 type: object
 required:
 - resourceId
 - ipVersion
 - gatewayIp
 - cidr
 - isDhcpEnabled
 - operationalState
 object:
 resourceId:
 type: string
 networkId:
 type: string
 ipVersion:
 type: string
 enum:
 - IPv4
 - IPv6
 gatewayIp:
 type: string
 cidr:
 type: string
 isDhcpEnabled:
 type: boolean
 addressPool:	
 type: array
 items:
 - type: object
 properties:
 start:
 type: string
 end:
 type: string
 operationalState:
 type: string
 enum:
 - enabled
 - disabled
 metadata:
 type: array
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values.
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object

[bookmark: _Toc109131758]7.3.3	Parameter: nfvNetworkPortInfo
The parameter is used when returning information for a network port resource, and its output data model shall follow the indications provided in Table 7.3.3-1. This parameter maps to the "networkPortData" parameter defined in ETSI GS NFV-IFA 005 [1].
Table 7.3.3-1: Output data model for nfvNetworkPortInfo
	Parameter Name and Attributes
	Type
	Description

	nfvNetworkPortInfo
	Object
	If network port types are created satisfactorily, it contains the data relative to the allocated network port as VirtualNetworkPort.

	>resourceId
	String
	Identifier of the virtual network port.

	>networkId
	String
	Identifier of the network that the port belongs to.

	>attachedResourceId
	String
	Identifier of the attached resource to the network port (e.g. a virtualised compute resource, or identifier of the virtual network interface). The cardinality can be "0" if there is no specific resource connected to the network port.

	>portType
	String
	Type of network port. Examples of types are access ports (layer 2 or 3), or trunk ports (layer 1) that become transport for multiple layer 2 or layer 3 networks.
Possible values are: "access ports", "trunk ports".

	>segmentId
	String
	The isolated segment the network port belongs to. For instance, for a "vlan", it corresponds to the vlan identifier; and for a "gre", this corresponds to a gre key. The cardinality can be "0" for flat networks without any specific segmentation.

	>bandwidth
	Number
	The bandwidth of the virtual network port (in Mbps). Cardinality can be "0" for virtual network ports without any specific allocated bandwidth.

	>operationalState
	String
	The operational state of the virtualised network port.
Possible values are: "enabled", "disabled".

	>metadata
	Array of Object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource. metadata is optional. It is out of scope to detail what are the sub-keys and possible values.

When used as an output parameter in a template, the syntax of the nfvNetworkPortInfo shall comply with the following definition:
 nfvNetworkPortInfo:
 type: object
 required:
 - resourceId
 - portType
 - operationalState
 properties:
 resourceId:
 type: string
 attachedResourceId:
 type: string
 portType:
 type: string
 enum:
 - access ports
 - trunk ports
 segmentId:
 type: string
 bandwidth:
 type: number
 operationalState:
 type: string
 enum:
 - enabled
 - disabled
 metadata:
 type: array
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values.
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object

[bookmark: _Toc109131759]8	Data model for Virtualised Storage Management
[bookmark: _Toc109131760]8.1	Description
This clause specifies data models for input and output parameters for Virtualised Storage Management.
[bookmark: _Toc109131761]8.2	Parameters to be used as input
[bookmark: _Toc109131762]8.2.1	Parameter: storageName
The parameter used when providing a name for a virtualised storage resource shall follow the indications provided in Table 8.2.1-1.
Table 8.2.1-1: Input data model for storageName
	Parameter Name and Attributes
	Type
	Description

	storageName
	String
	Name provided by the consumer for the virtualised storage resource to allocate. It can be used for identifying resources from consumer side.

The syntax of the storageName shall comply with the following definition:
 storageName:
 description: >
 Name provided by the consumer for the virtualised storage resource to allocate.
 It can be used for identifying resources from consumer side.
 type: string
 default: ""

[bookmark: _Toc109131763]8.2.2	Parameter: affinityOrAntiAffinityConstraintsForStorage
The parameter used when giving resource affinity or anti-affinity constraints related to virtualised storage resources shall follow the indications provided in Table 8.2.2-1. The parameter is a list of elements with affinity or anti affinity information of the virtualised storage resource to be allocated ETSI GS NFV-IFA 005 [1] and ETSI GS NFVIFA 006 [2]. All the listed constraints shall be fulfilled for a successful operation.
Table 8.2.2-1: Input data model for affinityOrAntiAffinityConstraintsForStorage
	Parameter Name and Attributes
	Type
	Description

	affinityOrAntiAffinityConstraintsForStorage
	Array of Object
	A list of elements with affinity or anti-affinity information of the virtualised storage resource to be allocated.

	>typeOfAffinityOrAntiAffinityConstraintForStorage
	String
	Indicates whether this is an affinity or anti-affinity constraint.
Allowed to affinity and anti-affinity.

	>scopeOfAffinityOrAntiAffinityConstraintForStorage
	String
	Qualifies the scope of the constraint for the virtualised storage resource.
In case of storage resource:
e.g. NFVI-Node.
Persistent storage node is a type of NFVINode which supports, for example, Object, Block or File-based storage service.
Ephemeral storage service is supported in a compute node. So this is not included in this attribute.
Allowed to NFVI-Node.
Defaults to "NFVI-Node" if absent.

	>affinityAntiAffinityResourceList
	Object
	Consumer-managed list of identifiers of virtualised resources with which the actual resource is requested to be affine or antiaffine.
See note and condition.

	>>resource
	Array of String
	List of identifiers of virtualised resources.

	>affinityAntiAffinityResourceGroup
	String
	Identifier of the producer-managed group of virtualised resources with which the actual resource is requested to be affine or antiaffine.
See note and condition.

	NOTE:	It is a prerequisite for the consumer to create a VirtualisedStorageResourceAffinityOrAntiAffinityConstraintsGroup and get groupIdentifier using the appropriate operation, Create Virtualised Storage Resource Affinity Or AntiAffinity Constraints Group, defined in ETSI GS NFV-IFA 005 [1] and ETSI GS NFV-IFA 006 [2].

	CONDITION:	If explicit resource lists for affinity/anti-affinity (see clause 8.4.8.1 in ETSI GS NFV-IFA 005 [1] and ETSI GS NFV-IFA 006 [2]) are supported, the affinityAntiAffinityResourceList shall be supported. If named resource groups for affinity/anti-affinity (see clause 8.4.8.1 in ETSI GS NFV-IFA 005 [1] and ETSI GS NFV-IFA 006 [2]) are supported, affinityAntiAffinityResourceGroup shall be supported. The mechanisms shall not be mixed in the scope of a resourceGroup (also known as VIM tenant).

The syntax of the affinityOrAntiAffinityConstraintsForCompute shall comply with the following definition:
 affinityOrAntiAffinityConstraintsForStorage:
 description: >
 A list of elements with affinity or anti-affinity information of
 the virtualised storage resource to allocate.
 oneOf:
 - type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 required:
 - typeOfAffinityOrAntiAffinityContrraintForStorage
 properties:
 typeOfAffinityOrAntiAffinityConstraintForStorage:
 type: string
 enum:
 - affinity
 - anti-affinity
 scopeOfAffinityOrAntiAffinityConstraintForStorage:
 type: string
 enum:
 - NFVI-Node
 default: NFVI-Node
 affinityAntiAffinityResourceList:
 type: object
 required:
 - resource
 properties:
 resource:
 type: array
 minItems: 1 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: string
 - type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object
 required:
 - typeOfAffinityOrAntiAffinityContrraintForStorage
 properties:
 typeOfAffinityOrAntiAffinityConstraintForStorage:
 type: string
 enum:
 - affinity
 - anti-affinity
 scopeOfAffinityOrAntiAffinityConstraintForStorage:
 type: string
 enum:
 - NFVI-Node
 default: NFVI-Node
 affinityAntiAffinityResourceGroup:
 type: string

[bookmark: _Toc109131764]8.2.3	Parameter: storageData
The parameter used when providing information about the type and size of the storage shall follow the indications provided in Table 8.2.3-1.
Table 8.2.3-1: Input data model for storageData
	Parameter Name and Attributes
	Type
	Description

	storageData
	Object
	The storage data provides information about the type and size of the storage.

	NOTE:	This storageData is specified for input parameter with VirtualStorageFlavour IE in allocate Virtualised Storage Resource operation.

The syntax of the storageData shall comply with the following definition:
 storageData:
 description: >
 The storage data provides information about the type and size of the storage.
 type: object
 required:
 - flavourId
 - storageAttributes
 properties:
 flavourId:
 type: string
 storageAttributes:
 type: object
 properties:
 typeOfStorage:
 type: string
 sizeOfStorage:
 type: number

[bookmark: _Toc109131765]8.2.4	Parameter: updateStorageData
The parameter used when providing information about the type and size of the storage to be updated shall follow the indications provided in Table 8.2.4-1.
Table 8.2.4-1: Input data model for updateStorageData
	Parameter Name and Attributes
	Type
	Description

	updateStorageData
	Object
	The element contains the fields that can be updated of a storage resource.

The syntax of the updateStorageData shall comply with the following definition:
 updateStorageData:
 description: >
 The element contains the fields that can be updated of a storage resource.
 type: object
 required:
 - flavourId
 - storageAttributes
 properties:
 flavourId:
 type: string
 storageAttributes:
 typeOfStorage:
 type: string
 sizeOfStorage:
 type: number

[bookmark: _Toc109131766]8.2.5	Parameter: storageOperation
The parameter used when providing a type of operation for a virtualised storage operation shall follow the indications provided in Table 8.2.5-1.
Table 8.2.5-1: Input data model for storageOperation
	Parameter Name and Attributes
	Type
	Description

	storageOperation
	String
	Type of operation to perform on the virtualised storage resource. Possible values include: "create snapshot", and "delete snapshot".

The syntax of the storageOperation shall comply with the following definition:
 storageOperation:
 description: >
 Type of operation to perform on the virtualised storage resource.
 type: string
 enum:
 - create-snapshot
 - delete-snapshot
 default: ""

[bookmark: _Toc109131767]8.2.6	Parameter: newSize
The parameter used when providing a resized amount of an allocated virtualised storage resource shall follow the indications provided in Table 8.2.6-1.
Table 8.2.6-1: Input data model for storageOperation
	Parameter Name and Attributes
	Type
	Description

	newSize
	Number
	Resized amount of allocated virtualised storage resource.

The syntax of the newSize shall comply with the following definition:
 newSize:
 description: >
 Resized amount of allocated virtualised storage resource.
 type: number
 default: ""

[bookmark: _Toc109131768]8.2.7	Parameter: scopeOfAffinityOrAntiAffinityConstraintsForStorage
The parameter used when qualifying the scope of the affinity constraint shall follow the indications provided in Table 8.2.7-1.
Table 8.2.7-1: Input data model for scopeOfAffinityOrAntiAffinityConstraintsForStorage
	Parameter Name and Attributes
	Type
	Description

	scopeOfAffinityOrAntiAffinityConstraintsForStorage
	String
	If applicable. Qualifies the scope of the affinity constraint, e.g. NFVI-Node. Defaults to NFVI-Node if absent.

The syntax of the scopeOfAffinityOrAntiAffinityConstraints shall comply with the following definition:
 scopeOfAffinityOrAntiAffinityConstraints:
 description: >
 Qualifies the scope of the affinity constraint,
 type: string
 enum:
 - NFVI-Node
 default: NFVI-Node

[bookmark: _Toc109131769]8.3	Parameters to be used as output
[bookmark: _Toc109131770]8.3.1	Parameter: nfvStorageInfo
The parameter is used when returning information for a virtualised storage resource, and its output data model shall follow the indications provided in Table 8.3.1-1. This parameter maps to the "storageResource" parameter defined in ETSI GS NFV-IFA 005 [1].
Table 8.3.1-1: Output data model for nfvStorageInfo
	Parameter Name and Attributes
	Type
	Description

	nfvStorageInfo
	Object
	Information of an instantiated virtualised storage resource.

	>storageId
	String
	Identifier of the virtualised storage resource.

	>storageName
	String
	Name of the virtualised storage resource.

	>flavourId
	String
	Identifier of the storage flavour used to instantiate this virtual storage.

	>sizeOfStorage
	Number
	Size of virtualised storage resource (e.g. size of volume, in GB).

	>rdmaEnabled
	Boolean
	Indicates if the storage supports RDMA.

	>ownerId
	String
	Identifier of the virtualised resource that owns and uses such a virtualised storage resource. The value can be NULL if the virtualised storage is not attached yet to any other resource (e.g. a virtual machine).

	>zoneId
	String
	It identifies the resource zone where the virtual storage resources have been allocated.

	>hostId
	String
	Identifier of the host where the virtualised storage resource is allocated.

	>operationalState
	String
	Operational state of the resource.
Allowed value: enabled, disabled.

	>metadata
	Array of object
	List of metadata key-value pairs used by the consumer to associate meaningful metadata to the related virtualised resource. metadata is optional. It is out of scope to detail what are the sub-keys and possible values.

When used as an output parameter in a template, the syntax of the nfvStorageInfo shall comply with the following definition:
 nfvStorageInfo:
 description: >
 Information of an instantiated virtualised storage resource
 type: object
 required:
 - storageId
 - flavourId
 - typeOfStorage
 - sizeOfStorage
 - operationalState
 properties:
 storageId:
 description: >
 Identifier of the virtualised storage resource
 type: string
 storageName:
 description: >
 Name of the virtualised storage resource
 type: string
 flavourId:
 description: >
 Identifier of the storage flavour used to instantiate this virtual storage
 type: string
 typeOfStorage:
 description: >
 Type of virtualised storage resource
 type: string
 sizeOfStorage:
 description: >
 Size of virtualised storage resource
 type: number
 rdmaEnabled:
 description: >
 Indicates if the storage supports RDMA.
 type: boolean
 ownerId:
 description: >
 Identifier of the virtualised resource that owns and uses such
a virtualised storage resource. The value can be NULL if the
virtualised storage is not attached yet to any other resource
 type: string
 zoneId:
 description: >
 It identifies the resource zone where the virtual
storage resources have been allocated
 type: string
 hostId:
 description: >
 Identifier of the host where the virtualised storage resource is allocated.
 type: string
 operationalState:
 description: >
 Operational state of the resource.
 type: string
 enum:
 - enabled
 - disabled
 metadata:
 description: >
 metadata is optional. It is out of scope to detail what are the sub-keys and possible values.
 type: array
 minItems: 0 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: object

[bookmark: _Toc109131771]9	Data model for Virtualised Resources Change Notification
[bookmark: _Toc109131772]9.1	Description
This clause specifies data models for input and output parameters for Virtualised Resources Change Notification.
[bookmark: _Toc109131773]9.2	Parameters to be used as input
[bookmark: _Toc109131774]9.2.1	Parameter: callbackUriForChangeNotify
The parameter used when providing a URI of the endpoint to send change notifications to in a subscribe operation shall follow the indications provided in Table 9.2.1-1.
Table 9.2.1-1: Input data model for callbackUriForChangeNotify
	Parameter Name and Attributes
	Type
	Description

	callbackUriForChangeNotify
	String
	The URI of the endpoint to send the change notification to.

The syntax of the callbackUri shall comply with the following definition:
 callbackUri:
 description: >
 The URI of the endpoint to send the change notification to.
 type: string
 default: ""

[bookmark: _Toc109131775]9.2.2	Parameter: inputFilter
The parameter used when selecting change notifications to in a subscribe operation shall follow the indications provided in Table 9.2.2-1.
Table 9.2.2-1: Input data model for inputFilter
	Parameter Name and Attributes
	Type
	Description

	inputFilter
	Object
	Input filter for selecting change notifications.

	>hostId
	String
	Identifier of the host. When selected host will change (e.g. maintenance), VIM will send the change notification.

The syntax of the inputFilter shall comply with the following definition:
 inputFilter:
 description: >
 Input filter for selecting change notifications.
 type: object
 properties:
 hostId:
 description: >
 Identifier of the host. When selected host will change (e.g. maintenance), VIM will send the change notification.
 type: string

[bookmark: _Toc109131776]9.2.3	Parameter: changeId
The parameter used when providing an identifier of the change on the virtualised resource in a change notification shall follow the indications provided in Table 9.2.3-1.
Table 9.2.3-1: Input data model for changeId
	Parameter Name and Attributes
	Type
	Description

	changeId
	String
	Unique identifier of the change on the virtualised resource.

The syntax of the changeId shall comply with the following definition:
 changeId:
 description: >
 Unique identifier of the change on the virtualised resource.
 type: string
 default: ""

[bookmark: _Toc109131777]9.2.4	Parameter: virtualisedResourceId
The parameter used when providing the identifier of the instantiated virtualised resource for which the change notification is issued shall follow the indications provided in Table 9.2.4-1.
Table 9.2.4-1: Input data model for virtualisedResourceId
	Parameter Name and Attributes
	Type
	Description

	virtualisedResourceId
	String
	Identifier of the instantiated virtualised resource for which the change notification is issued.

The syntax of the virtualisedResourceId shall comply with the following definition:
 virtualisedResourceId:
 description: >
 Identifier of the instantiated virtualised resource for which the change notification is issued.
 type: string
 default: ""

[bookmark: _Toc109131778]9.2.5	Parameter: virtualisedResourceGroupId
The parameter used when providing the identifier of the affinity or anti-affinity group of the virtualised resource for which the change notification is issued shall follow the indications provided in Table 9.2.5-1.
Table 9.2.5-1: Input data model for virtualisedResourceGroupId
	Parameter Name and Attributes
	Type
	Description

	virtualisedResourceGroupId
	String
	Identifier of the affinity or anti-affinity group of the virtualised resource for which the change notification is issued.

The syntax of the virtualisedResourceGroupId shall comply with the following definition:
 virtualisedResourceGroupId:
 description: >
 Identifier of the affinity or anti-affinity group of the virtualised resource for which the change notification is issued.
 type: string
 default: ""

[bookmark: _Toc109131779]9.2.6	Parameter: endOfChange
The parameter used when providing whether this change notification is the end of the changes shall follow the indications provided in Table 9.2.6-1.
Table 9.2.6-1: Input data model for endOfChange
	Parameter Name and Attributes
	Type
	Description

	endOfChange
	Boolean
	If the value is True it indicates the end of the changes of virtualised resources for which the notification of type of change is issued.

The syntax of the endOfChange shall comply with the following definition:
 endOfChange:
 description: >
 If the value is True it indicates the end of the changes of virtualised resources for which the notification of type of change is issued.
 type: boolean
 default: "true"

[bookmark: _Toc109131780]9.2.7	Parameter: changeTime
The parameter used when providing the time of changes in a change notification shall follow the indications provided in Table 9.2.7-1.
Table 9.2.7-1: Input data model for changeTime
	Parameter Name and Attributes
	Type
	Description

	changeTime
	String
	Specifies the anticipated time of change of the virtualised resource for which the change notification is issued or the ending time of changes of virtualised resources if the value of the endOfChange is "true".

The syntax of the changeTime shall comply with the following definition:
 changeTime:
 description: >
 Specifies the anticipated time of change of the virtualised resource for which the change notification is issued or the ending time of changes of virtualised resources if the value of the endOfChange is "true".
 type: string
 default: ""

[bookmark: _Toc109131781]9.2.8	Parameter: vimId
The parameter used when providing the identifier of the VIM reporting the change notification shall follow the indications provided in Table 9.2.8-1.
Table 9.2.8-1: Input data model for vimId
	Parameter Name and Attributes
	Type
	Description

	vimId
	String
	Identifier of the VIM reporting the change.

The syntax of the vimId shall comply with the following definition:
 vimId:
 description: >
 Identifier of the VIM reporting the change.
 type: string
 default: ""

[bookmark: _Toc109131782]9.2.9	Parameter: changeType
The parameter used when providing the type of change notification shall follow the indications provided in Table 9.2.91.
Table 9.2.9-1: Input data model for changeType
	Parameter Name and Attributes
	Type
	Description

	changeType
	String
	Categorizes the type of change. Possible values can be related to maintenance and operation of the NFVI.
Allowed value: normal, maintenance, evacuation, optimization.

The syntax of the changeType shall comply with the following definition:
 changeType:
 description: >
 Categorizes the type of change. Possible values can be related to maintenance and operation of the NFVI.
 type: string
 enum:
 - normal
 - maintenance
 - evacuation
 - optimization
 default: ""

[bookmark: _Toc109131783]9.2.10	Parameter: changedResourceData
The parameter used when providing details of the changes of the resource in a change notification shall follow the indications provided in Table 9.2.10-1.
Table 9.2.10-1: Input data model for changedResourceData
	Parameter Name and Attributes
	Type
	Description

	changedResourceData
	String
	Details of the changes of the resource. Its content can differ based on the different values of the attribute changeType.

The syntax of the changedResourceData shall comply with the following definition:
 changedResourceData:
 description: >
 Details of the changes of the resource. Its content can differ based on the different values of the attribute changeType.
 type: string
 default: ""

[bookmark: _Toc109131784]9.3	Parameters to be used as output
None.
[bookmark: _Toc109131785]10	Data model for Virtualised Resources Fault Management
[bookmark: _Toc109131786]10.1	Description
This clause specifies data models for input and output parameters for Virtualised Resources Fault Management.
[bookmark: _Toc109131787]10.2	Parameters to be used as input
[bookmark: _Toc109131788]10.2.1	Parameter: callbackUriForFaultNotify
The parameter used when providing a URI of the endpoint to send fault notifications to in a subscribe operation shall follow the indications provided in Table 10.2.1-1.
Table 10.2.1-1: Input data model for callbackUriForFaultNotify
	Parameter Name and Attributes
	Type
	Description

	callbackUriForFaultNotify
	String
	The URI of the endpoint to send the fault notification to.

The syntax of the callbackUri shall comply with the following definition:
 callbackUriForFaultNotify:
 description: >
 The URI of the endpoint to send the fault notification to.
 type: string
 default: ""

[bookmark: _Toc109131789]10.2.2	Parameter: filter
The parameter used when selecting fault notifications to in a subscribe operation shall follow the indications provided in Table 10.2.2-1.
Table 10.2.2-1: Input data model for filter
	Parameter Name and Attributes
	Type
	Description

	filter
	Object
	Input filter for selecting fault notifications.

	>computeId
	String
	Identifier of the virtualised compute resource. When selected virtualised compute resource was affected by faults, VIM will send notifications.

	>networkResourceId
	String
	Identifier of the virtualised network resource. When selected virtualised network resource was affected by faults, VIM will send notifications.

	>storageId
	String
	Identifier of the virtualised storage resource. When selected virtualised storage resource was affected by faults, VIM will send notifications.

The syntax of the filter shall comply with the following definition:
 filter:
 description: >
 Input filter for selecting fault notifications.
 type: object
 properties:
 computeId:
 description: >
 Identifier of the virtualised compute resource. When selected virtualised compute resource was affected by faults, VIM will send notifications.
 type: string
 networkResourceId:
 description: >
 Identifier of the virtualised network resource. When selected virtualised network resource was affected by faults, VIM will send notifications.
 type: string
 storageId:
 description: >
 Identifier of the virtualised storage resource. When selected virtualised storage resource was affected by faults, VIM will send notifications.
 type: string

[bookmark: _Toc109131790]10.2.3	Parameter: alarm
The parameter used when providing Information about an alarm in a fault notification shall follow the indications provided in Table 10.2.3-1.
Table 10.2.3-1: Input data model for alarm
	Parameter Name and Attributes
	Type
	Description

	alarm
	Object
	Information about an alarm.

	>alarmId
	String
	Alarm identifier.

	>managedObjectId
	String
	Identifier of the affected managed Object. The Managed Objects for this information element will be virtualised resources.

	>alarmRaisedTime
	String
	Timestamp indicating when the alarm was first raised by the managed object.

	>alarmChangedTime
	String
	Timestamp indicating when the alarm was last changed. It shall be present if the alarm has been updated.

	>alarmClearedTime
	String
	Timestamp indicating when the alarm was cleared. It shall be present if the alarm has been cleared.

	>state
	String
	State of the alarm.
Allowed value: FIRED, UPDATED, CLEARED.

	>perceivedSeverity
	String
	Perceived severity of the virtualised managed object failure.
Allowed value: CRITICAL, MAJOR, MINOR, WARNING, INDETERMINATE, CLEARED.

	>eventTime
	String
	Timestamp indicating when the fault was observed.

	>eventType
	String
	Type of the event.
Allowed value: COMMUNICATION_ALARM, PROCESSING_ALARM, ENVIRONMENT_ALARM, QOS_ALARM, EQUIPMENT_ALARM.

	>faultType
	String
	Information related to the type of the fault. The allowed values for the faultType attribute depend on the type of the related managed object. For example, a resource of type "compute" may have faults of type "CPU failure", "memory failure", "network card failure", etc.

	>probableCause
	String
	Information about the probable cause of the fault.

	>isRootCause
	Boolean
	Parameter indicating if this fault is the root for other correlated alarms. If "true", then the alarms listed in the parameter correlatedAlarmId are caused by this fault.

	>correlatedAlarmId
	Array of String
	List of other alarms correlated to this fault.

	>faultDetails
	Array of String
	Provides additional information about the fault, e.g. information about the threshold, monitored attributes, indication of the trend of the monitored parameter, etc.

The syntax of the alarm shall comply with the following definition:
 alarm:
 description: >
 Information about an alarm.
 type: object
 properties:
 alarmId:
 type: string
 managedObjectId:
 type: string
 alarmRaisedTime:
 type: string
 alarmChangedTime:
 type: string
 alarmClearedTime:
 type: string
 state:
 type: string
 enum:
 - FIRED
 - UPDATED
 - CLEARED
 perceivedSeverity:
 type: string
 enum:
 - CRITICAL
 - MAJOR
 - MINOR
 - WARNING
 - INDETERMINATE
 - CLEARED
 eventTime:
 type: string
 eventType:
 type: string
 enum:
 - COMMUNICATION_ALARM
 - PROCESSING_ALARM
 - ENVIRONMENT_ALARM
 - QOS_ALARM
 - EQUIPMENT_ALARM
 faultType:
 type: string
 probableCause:
 type: string
 isRootCause:
 type: boolean
 correlatedAlarmId:
 type: array
 minItems: 1 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: string
 faultDetails:
 type: array
 minItems: 1 # lower bound of cardinality
 maxItems: N # upper bound of cardinality
 items:
 type: string

[bookmark: _Toc109131791]10.3	Parameters to be used as output
None.

[bookmark: _Toc109131792]Annex A (informative):
Examples using OpenStack® Heat Orchestration Template
[bookmark: _Toc109131793]A.1	Introduction
The present annex provides implementation examples of the data models defined for the various interfaces over the OrVi and Vi-Vnfm reference points using the OpenStack's Heat Orchestration Template (HOT). The purpose is to describe how the input and output parameters of the interfaces' operations can be mapped onto the HOT. In this context, an overview of the HOT template and its structure is provided, followed by selected implementation examples of interface operations using HOT templates.
[bookmark: _Toc109131794]A.2	Overview
[bookmark: _Toc109131795]A.2.1	Introduction
An OpenStack's HOT template describes the intended virtualised resource topology, the relationship between the virtualised resources to be provisioned, the type of virtualised resources and their setup in YAML text files. The template is treated as "code" by the orchestration engine while provisioning the set of virtualised resources that are declared. In addition, the template specifies input and output parameters to be exchanged with the user (e.g. the API client).
[bookmark: _Toc109131796]A.2.2	Template structure
The structure of a HOT is specified in HOT template guide [i.2].
[bookmark: _Toc109131797]A.3	Examples
[bookmark: _Toc109131798]A.3.1	Example#1: Allocate Virtualised Compute Resource operation
This is an example of "Create stack" in OpenStack Orchestration Service API corresponding to the Allocate Virtualised Compute Resource operation (ETSI GS NFV-IFA 005 [1] and ETSI GS NFV-IFA 006 [2]).
The input data is given as an argument and starts with "parameters". Parameters grouped by "nfv" are specified in the present document. The input data is expressed in JSON format, as this is determined by the HOT specification [i.2].
Following the input parameter specifications in the present example (see further below), input parameters "computeName", "affinityOrAntiAffinityConstraints", "computeFlavourId", "vcImageId", "interfaceData", "metaData", "locationConstraints", "userData" are given as keys with their values. This covers the input parameter values part.
The following example illustrates the input parameters that can be passed to a HEAT API call for the Allocate Virtualised Compute Resource operation.
{
 "parameters": {
 "nfv": {
 "computeName": "test-instance-from-stack",
 "affinityOrAntiAffinityConstraintsForCompute": {
 "type": "affinity",
 "scope": "NFVI Node",
 "affinityAntiAffinityResourceGroup": "d10312a4-9d68-4cd4-831e-fd0edf3c0649"
 },
 "computeFlavourId": 10,
 "vcImageId": "2fe6b099-f936-429b-b644-048b96b70417",
 "interfaceData": {
 "count": 3,			
 "0": {
 "ipAddress": "172.17.1.15",
 "macAddress": "fa:16:3e:aa:bb:cc",
 },
 "1": {
 "ipAddress": "20.20.20.15",
 "macAddress": "fa:16:3e:ab:ca:bc",
 },
 "2": {
 "ipAddress": "30.30.30.15",
 "macAddress": "fa:16:3e:dd:ee:ff",
 }
 },
 "metaData": {
 "test-key": "test-value"
 },
 "locationConstraints": "nova",
 "userData": "test-userData"
 },
 "gap": {
 "networkId": {
 "0": "c4440f4f-66ef-4e42-9c41-7b3b449813d1",
 "1": "f6a6471d-032d-4c58-9432-c17ea1f72873",
 "2": "91652985-5fed-43f9-adae-8af0471bda03"
 }
 }
 },
 "stack_name": "compute-test-stack"
}

Below is the corresponding example of the referred HOT that uses the parameters provided in the example above.
The "parameters" section in the template has definitions for input data to be provided when instantiating the template. In this case the parameter "nfv" is represented in the JSON format.
When input data, "computeName": "test-instance-from-stack", is given, then test-instance-from-stack as a string value is assigned to the input parameter, computeName. In the same way, other values are captured and assigned to the other input parameters in the template.
The resources section describes what type and how virtualised resources are provisioned. In the resource handling, actual values of the input parameters are assigned to parameters used by OpenStack when performing the resource handling. For example, the line:
 external_id: { get_param: computeFlavourId }

assigns 3 (see in the example of input data above) to external_id.
The outputs section of the template describes output data for the user, e.g. when in terms of the Allocate Virtualised Compute Resource the nfvComputeInfo is requested. The naming and structure of output parameters in the present document and the ones used and provided by default by the OpenStack Heat Orchestration can differ. Because of this, name translation and output parameter structuring are necessary. The template section in the nfvComputeInfo resolves such a translation. For instance, a key/value pair for computeId is written with:
"computeId": "$computeId"

and the value of computeId, which is determined by the variable $computeId, whose value is assigned by using an intrinsic function as shown below:
 $computeId: { get_attr: [virtualisedComputeResource, show, id] }

The intrinsic function, get_attr, gets the virtualised compute identifier from the virtualisedComputeResource.
NOTE:	An alternative to putting output parameters in the template is to use API mapping, as defined in clause 4.3.
The "stack_name" is a required parameter to generate an identifier that points to a stack of the virtualised resources, as shown in clause A.3.6.
The following is an example of a HOT for the Allocate Virtualised Compute Resource operation.
heat_template_version: 2018-08-31
description: Allocate Virtualised Compute Resource operation

parameters:
 nfv:
 type: json
 description:
 default: ""

 gap:
 type: json
 description:
 default: ""

conditions:
 Constraints_ResourceList_is_null: { equals: [{ get_param: [nfv, affinityOrAntiAffinityConstraintsForCompute, affinityAntiAffinityResourceList] }, ""] }
 Constraints_type_is_affinity: { equals : [{ get_param: [nfv, affinityOrAntiAffinityConstraintsForCompute, type] }, "affinity"] }

resources:
 interfaceResource:
 type: OS::Heat::ResourceGroup
 properties:
 count: { get_param: [nfv, interfaceData, count] }
 resource_def:
 type: http://controller/Allocate-Virtualised-Compute-Resource-operation/createPort.yaml
 properties:
 interfaceData: { get_param: [nfv, interfaceData] }
 networkId: { get_param: [gap, networkId] }
 index: "%index%"

 forOutput-flavorResource:
 type: OS::Nova::Flavor
 external_id: { get_param: [nfv, computeFlavourId] }

 forOutput-flavorExtraSpecs:
 type: OS::Heat::ResourceGroup
 depends_on: [forOutput-flavorResource]
 properties:
 count: 1
 resource_def:
 type: http://controller/Allocate-Virtualised-Compute-Resource-operation/getFlavorExtraSpecs.yaml
 properties:
 policy: { get_attr: [forOutput-flavorResource, extra_specs, "hw:cpu_policy"] }
 cores: { get_attr: [forOutput-flavorResource, extra_specs, "hw:cpu_cores"] }
 sockets: { get_attr: [forOutput-flavorResource, extra_specs, "hw:cpu_sockets"] }
 threads: { get_attr: [forOutput-flavorResource, extra_specs, "hw:cpu_threads"] }

 forOutput-portStatusResource:
 type: OS::Heat::ResourceGroup
 depends_on: [virtualisedComputeResource]
 properties:
 count: { get_param: [nfv, interfaceData, count] }
 resource_def:
 type: http://controller/Allocate-Virtualised-Compute-Resource-operation/getPortStatus.yaml
 properties:
 status: { get_attr: [interfaceResource, show, status] }
 index: "%index%"

 forOutput-virtualisedComputeResourceStatus:
 type: OS::Heat::ResourceGroup
 depends_on: [virtualisedComputeResource]
 properties:
 count: 1
 resource_def:
 type: http://controller/Allocate-Virtualised-Compute-Resource-operation/getComputeResourceStatus.yaml
 properties:
 status: { get_attr: [virtualisedComputeResource, show, status] }

 virtualisedComputeResource:
 type: OS::Nova::Server
 depends_on: [interfaceResource]
 properties:
 name: { get_param: [nfv, computeName] }
 scheduler_hints:
 if:
 - Constraints_ResourceList_is_null
 - group: { get_param: [nfv, affinityOrAntiAffinityConstraintsForCompute, affinityAntiAffinityResourceGroup] }
 - if:
 - Constraints_type_is_affinity
 - same_host:
 repeat:
 for_each:
 <%Resource%>: { get_param: [nfv, affinityOrAntiAffinityConstraintsForCompute, affinityAntiAffinityResourceList] }
 template:
 <%Resource%>
 - different_host:
 repeat:
 for_each:
 <%Resource%>: { get_param: [nfv, affinityOrAntiAffinityConstraintsForCompute, affinityAntiAffinityResourceList] }
 template:
 <%Resource%>
 flavor: { get_param: [nfv, computeFlavourId] }
 image: { get_param: [nfv, vcImageId] }
 networks:
 repeat:
 for_each:
 <%Port%>: { get_attr: [interfaceResource, id] }
 template:
 port: <%Port%>
 metadata: { get_param: [nfv, metaData] }
 availability_zone: { get_param: [nfv, locationConstraints] }
 user_data: { get_param: [nfv, userData] }
 user_data_format: "RAW"

outputs:
 nfvComputeInfo:
 value:
 str_replace:
 template: |
 {
 "computeId": "$computeId",
 "computeName": "$computeName",
 "flavourId": "$flavourId",
 "virtualCpu": {
 "numVirtualCpu": "$numVirtualCpu",
 "virtualCpuPinning": "$virtualCpuPinning"
 },
 "virtualMemory": {
 "virtualMemSize": "$virtualMemSize"
 },
 "virtualNetworkInterface": "$virtualNetworkInterface",
 "virtualDisks": [
 {
 "storageId": "$storageId",
 "typeOfStorage": "disk",
 "sizeOfStorage": "$sizeOfStorageDisk",
 "operationalState": "$storageOperationalState"
 },
 {
 "storageId": "$storageId",
 "typeOfStorage": "ephemeral",
 "sizeOfStorage": "$sizeOfStorageEphemeral",
 "operationalState": "$storageOperationalState"
 },
 {
 "storageId": "$storageId",
 "typeOfStorage": "swap",
 "sizeOfStorage": "$sizeOfStorageSwap",
 "operationalState": "$storageOperationalState"
 }
],
 "vcImageId": "$vcImageId",
 "zoneId": "$zoneId",
 "hostId": "$hostId",
 "operationalState": "$operationalState",
 "metaData": "$metadata"
 }
 params:
 $computeId: { get_attr: [virtualisedComputeResource, show, id] }
 $computeName: { get_attr: [virtualisedComputeResource, show, name] }
		 $flavourId: { get_attr: [forOutput-flavorResource, show, id] }
 $numVirtualCpu: { get_attr: [forOutput-flavorResource, show, vcpus] }
 $virtualCpuPinning: {get_attr: [forOutput-flavorExtraSpecs, resource.0.cpuPinning] }
 $virtualMemSize: { get_attr: [forOutput-flavorResource, show, ram] }
 $virtualNetworkInterface:
 repeat:
 for_each:
 <%resourceId%>: { get_attr: [interfaceResource, show, id] }
 <%ownerId%>: { get_attr: [interfaceResource, show, device_id] }
 <%networkId%>: { get_attr: [interfaceResource, show, network_id] }
 <%ipAddress%>: { get_attr: [interfaceResource, show, fixed_ips, 0, ip_address] }
 <%typeVirtualNic%>: { get_attr: [interfaceResource, show, "binding:vnic_type"] }
 <%macAddress%>: { get_attr: [interfaceResource, show, mac_address] }
 <%operationalState%>: { get_attr: [forOutput-portStatusResource, status] }
 template:
 "resourceId": <%resourceId%>
 "ownerId": <%ownerId%>
 "networkId": <%networkId%>
 "ipAddress": <%ipAddress%>
 "typeVirtualNic": <%typeVirtualNic%>
 "macAddress": <%macAddress%>
 "operationalState": <%operationalState%>
 permutations: false
 $storageId: { get_attr: [virtualisedComputeResource, show, id] }
 $sizeOfStorageDisk: { get_attr: [forOutput-flavorResource, show, disk] }
 $sizeOfStorageEphemeral: { get_attr: [forOutput-flavorResource, show, "OS-FLV-EXT-DATA:ephemeral"] }
 $sizeOfStorageSwap:
 yaql:
 expression: $.data.swap_MB/1024
 data:
 swap_MB: { get_attr: [forOutput-flavorResource, show, swap] }
 $storageOperationalState: { get_attr: [forOutput-virtualisedComputeResourceStatus, resource.0.status] }
 $vcImageId: { get_attr: [virtualisedComputeResource, show, image, id] }
 $zoneId: { get_attr: [virtualisedComputeResource, show, "OS-EXT-AZ:availability_zone"] }
 $hostId: { get_attr: [virtualisedComputeResource, show, "OS-EXT-SRV-ATTR:host"] }
 $operationalState: { get_attr: [forOutput-virtualisedComputeResourceStatus, resource.0.status] }
 $metadata: { get_attr: [virtualisedComputeResource, show, metadata] }

Below is an output example using template output parameters related to the allocated compute resource as provided by "Show output" in OpenStack Orchestration Service API [i.3]. Attributes defined in "nfvComputeInfo" of the HOT can be seen in the body of "output_value". virtualDisks is prepared in the ephemeral storage in the hypervisor of the host compute node in this sample. Thus, the value of storageId is equal to the computeId. The storage resource is managed in the hypervisor of the host compute node.
{
 "output":
 "output_value":
 {
 "computeId": "735ee7f9-92ce-4c00-8c7d-63eeeda75368",
 "computeName": "test-instance-from-stack",
 "flavourId": "10",
 "virtualCpu":
 {
 "numVirtualCpu": "1",
 "virtualCpuPinning":
 {
 "cpuPinningPolicy": "dynamic"
 }
 },
 "virtualMemory":
 {
 "virtualMemSize": "64"
 },
 "virtualNetworkInterface":
 [
 {
 "ipAddress": "172.17.1.15",
 "macAddress": "fa:16:3e:aa:bb:cc",
 "networkId": "c4440f4f-66ef-4e42-9c41-7b3b449813d1",
 "operationalState": "disabled",
 "ownerId": "735ee7f9-92ce-4c00-8c7d-63eeeda75368",
 "resourceId": "658fdc3b-679e-49bd-9dbb-9d19a60f0321",
 "typeVirtualNic": "normal"
 },
 {
 "ipAddress": "20.20.20.15",
 "macAddress": "fa:16:3e:ab:ca:bc",
 "networkId": "f6a6471d-032d-4c58-9432-c17ea1f72873",
 "operationalState": "disabled",
 "ownerId": "735ee7f9-92ce-4c00-8c7d-63eeeda75368",
 "resourceId": "5b090b65-81bc-43a8-abbb-b306d1ac87c1",
 "typeVirtualNic": "normal"},
 {
 "ipAddress": "30.30.30.15",
 "macAddress": "fa:16:3e:dd:ee:ff",
 "networkId": "91652985-5fed-43f9-adae-8af0471bda03",
 "operationalState": "disabled",
 "ownerId": "735ee7f9-92ce-4c00-8c7d-63eeeda75368",
 "resourceId": "e840e0b4-4cf0-4e14-82c5-481e086abd4a",
 "typeVirtualNic": "normal"
 }
],
 "virtualDisks":
 [
 {
 "storageId": "735ee7f9-92ce-4c00-8c7d-63eeeda75368",
 "typeOfStorage": "disk",
 "sizeOfStorage": "10",
 "operationalState": "enable"
 },
 {
 "storageId": "735ee7f9-92ce-4c00-8c7d-63eeeda75368",
 "typeOfStorage": "ephemeral",
 "sizeOfStorage": "5",
 "operationalState": "enable"
 },
 {
 "storageId": "735ee7f9-92ce-4c00-8c7d-63eeeda75368",
 "typeOfStorage": "swap",
 "sizeOfStorage": "1",
 "operationalState": "enable"
 }
],
 "vcImageId": "2fe6b099-f936-429b-b644-048b96b70417",
 "zoneId": "nova",
 "hostId": "compute3",
 "operationalState": "enable",
 "metaData":
 {
 "test-key": "test-value"
 }
 },
 "output_key": "nfvComputeInfo",
 "description": "No description given"
 }
}

[bookmark: _Toc109131799]A.3.2	Example#2: Allocate Virtualised Network Resource operation
This is an example of "Create stack" in OpenStack Orchestration Service API [i.3] corresponding to the Allocate Virtualised Network Resource operation (ETSI GS NFV-IFA 005 [1] and ETSI GS NFV-IFA 006 [2]).
The input data is given as an argument and starts with "parameters". The input data is expressed in JSON format, as this is determined by the HOT specification [i.2].
Parameters grouped by "nfv" are specified in the present document. Following the input parameter specifications in the present example (see further below), input parameters, networkResourceName, networkResourceType, typeNetworkData, are given as keys with their values. This covers the input parameter values part.
The following example illustrates the input parameters that can be passed to a HEAT API call for the Allocate Virtualised Network Resource operation.
{
	"parameters": {
		"nfv": {
			"networkResourceName": "test-network-from-stack",
			"networkResourceType": "network",
			"typeNetworkData": {
				"bandwidth": 100,
				"networkType": "flat",
				"isShared": false,
				"layer3Attributes": {
					"ipVersion": "IPv4",
					"gatewayIp": "10.0.0.1",
					"cidr": "10.0.0.0/24",
					"isDhcpEnabled": false,
					"addressPool": [
						{
							"start": "10.0.0.101",
							"end": "10.0.0.110"
						}
]
				}
			}
		}
	},
	"stack_name": "network-test-stack"
}

NOTE 1:	resourceGroupId is not covered in the present example. ETSI GS NFV-IFA 005 [1], and the ETSI GS NFV-IFA 006 [2] do not specify the required operations for the management of resource groups for infrastructure tenants (e.g. creation of a resource group, etc.).
NOTE 2:	The example is prepared to highlight only an allocation of virtualised network resource. The parameters of affinityOrAntiAffinityConstraintsForNetwork and locationConstraintForNetwork are not used in this example (cardinality is 0).
Below is the corresponding example of the HOT that uses the parameters provided in the example above.
The parameters section in the template has definitions for input data to be provided when instantiating the template. In this case, parameter, nfv is typed as JSON format.
When input data "networkResourceName": "test-network-from-stack", is given, then testnetwork-from-stack as a string value is assigned to the input parameter networkResourceName. In the same way, other values are captured and assigned to the other input parameters in the template.
In this use case, networkType is flat; the cardinality of segmentType can be "0" to allow for the flat networks without any specific segmentation.
The resources section describes what type and how virtualised resources are provisioned. In the resource handling, actual values of the input parameters are assigned to parameters used by OpenStack when performing the resource handling. For example, the line:
 name: { get_param: networkResourceName }

gets the value, test-network-from-stack (see in the example of input data above), of the input parameter, networkResourceName, and then assigns test-network-from-stack to name.
The outputs section of the template describes output data for the user, e.g. when in terms of the Allocate Virtualised Network Resource the networkResource is requested. The naming and structure of output parameter in the present document and the ones used and provided by default by the OpenStack Heat Orchestration can differ. Because of this, name translation and output parameter structuring are necessary.
The template section in the nfvNetworkInfo resolves such a translation. For instance, a key/value pair for networkResourceId is written with:
"networkResourceId": "$networkResourceId"

and the value of networkResourceId, which is determined by the variable $networkResourceId, whose value is assigned by using an intrinsic function as shown below:
 $networkResourceId: { get_attr: [networkResource, resource.0.show, id] }

The intrinsic function get_attr gets the virtualised network identifier from the networkResource.
NOTE 3:	An alternative to putting output parameters in the template is to use API mapping, as defined in clause 4.3.
The "stack_name" is a required parameter to generate an identifier that points to a stack of the virtualised resources, as shown in clause A.3.6.
The following is an example of a HOT for the Allocate Virtualised Network Resource operation.
heat_template_version: 2018-08-31
description: Allocate Virtualised Network Resource operation.

parameters:
 nfv:
 type: json
 description:
 default: ""

conditions:
 networkResourceType_is_network: { equals: [{ get_param: [nfv, networkResourceType] }, "network"] }
 networkResourceType_is_subnet: { equals: [{ get_param: [nfv, networkResourceType] }, "subnet"] }
 networkResourceType_is_network-port: { equals: [{ get_param: [nfv, networkResourceType] }, "network-port"] }
 layer3Attributes_is_null: { equals: [{ get_param: [nfv, typeNetworkData, layer3Attributes] }, ""] }
 layer3Attributes_ipVersion_is_IPv4: { equals: [{ get_param: [nfv, typeNetworkData, layer3Attributes, ipVersion] }, "IPv4"] }
 typeSubnetData_ipVersion_is_IPv4: { equals: [{ get_param: [nfv, typeSubnetData, ipVersion] }, "IPv4"] }

resources:
 forOutput-networkStatusResource:
 type: OS::Heat::ResourceGroup
 depends_on: networkResource
 properties:
 count: 1
 resource_def:
 type: http://controller/Allocate-Virtualised-Network-Resource-operation/getResourceStatus.yaml
 properties:
 status: { get_attr: [networkResource, resource.0.show, status] }

 forOutput-networkPortStatusResource:
 type: OS::Heat::ResourceGroup
 depends_on: networkPortResource
 properties:
 count: 1
 resource_def:
 type: http://controller/Allocate-Virtualised-Network-Resource-operation/getResourceStatus.yaml
 properties:
 status: { get_attr: [networkPortResource, resource.0.show, status] }

 portTypeDecidedByExistingNetwork:
 type: OS::Heat::ResourceGroup
 properties:
 count: 1
 resource_def:
 if:
 - networkResourceType_is_network-port
 - type: http://controller/Allocate-Virtualised-Network-Resource-operation/getPortTypeDecidedByExistingNetwork.yaml
 properties:
 network_id: { get_param: [nfv, typeNetworkPortData, networkId] }
 - type: OS::Heat::None

 networkResource:
 type: OS::Heat::ResourceGroup
 properties:
 count: 1
 resource_def:
 if:
 - networkResourceType_is_network
 - type: OS::Neutron::ProviderNet
 properties:
 name: { get_param: [nfv, networkResourceName] }
 network_type: { get_param: [nfv, typeNetworkData, networkType] }
 shared: { get_param: [nfv, typeNetworkData, isShared] }
 physical_network: "provider_network"
 - type: OS::Heat::None

 subnetOfNewNetworkResource:
 type: OS::Heat::ResourceGroup
 depends_on: networkResource
 properties:
 count: 1
 resource_def:
 if:
 - layer3Attributes_is_null
 - type: OS::Heat::None
 - type: OS::Neutron::Subnet
 properties:
 network: { get_attr: [networkResource, refs, 0] }
 ip_version: { if: [layer3Attributes_ipVersion_is_IPv4, 4, 6] }
 gateway_ip: { get_param: [nfv, typeNetworkData, layer3Attributes, gatewayIp] }
 cidr: { get_param: [nfv, typeNetworkData, layer3Attributes, cidr] }
 enable_dhcp: { get_param: [nfv, typeNetworkData, layer3Attributes, isDhcpEnabled] }
 allocation_pools: { get_param: [nfv, typeNetworkData, layer3Attributes, addressPool] }

 subnetResource:
 type: OS::Heat::ResourceGroup
 properties:
 count: 1
 resource_def:
 if:
 - networkResourceType_is_subnet
 - type: OS::Neutron::Subnet
 properties:
 name: { get_param: [nfv, networkResourceName] }
 network: { get_param: [nfv, typeSubnetData, networkId] }
 ip_version: { if: [typeSubnetData_ipVersion_is_IPv4, 4, 6] }
 gateway_ip: { get_param: [nfv, typeSubnetData, gatewayIp] }
 cidr: { get_param: [nfv, typeSubnetData, cidr] }
 enable_dhcp: { get_param: [nfv, typeSubnetData, isDhcpEnabled] }
 allocation_pools: { get_param: [nfv, typeSubnetData, addressPool] }
 - type: OS::Heat::None

 networkPortResource:
 type: OS::Heat::ResourceGroup
 depends_on: portTypeDecidedByExistingNetwork
 properties:
 count: 1
 resource_def:
 if:
 - networkResourceType_is_network-port
 - type: OS::Neutron::Port
 properties:
 name: { get_param: [nfv, networkResourceName] }
 network: { get_param: [nfv, typeNetworkPortData, networkId] }
 binding:vnic_type: { get_attr: [portTypeDecidedByExistingNetwork, resource.0.type] }
 - type: OS::Heat::None

outputs:
 nfvNetworkInfo:
 value:
 if:
 - networkResourceType_is_network
 - str_replace:
 template: |
 {
 "networkResourceId": "$networkResourceId",
 "networkResourceName": "$networkResourceName",
 "subnet": {
 "resourceId": "$resourceId",
 "networkId": "$networkId",
 "ipVersion": "IPv$ipVersion",
 "gatewayIp": "$gatewayIp",
 "cidr": "$cidr",
 "isDhcpEnabled": "$isDhcpEnabled",
 "addressPool": "$addressPool"
 },
 "networkType": "$networkType",
 "isShared": "$isShared",
 "zoneId": "$zoneId",
 "operationalState": "$operationalState"
 }
 params:
 $networkResourceId: { get_attr: [networkResource, resource.0.show, id] }
 $networkResourceName: { get_attr: [networkResource, resource.0.show, name] }
 $resourceId: { get_attr: [subnetOfNewNetworkResource, resource.0.show, id] }
 $networkId: { get_attr: [subnetOfNewNetworkResource, resource.0.show, network_id] }
 $ipVersion: { get_attr: [subnetOfNewNetworkResource, resource.0.show, ip_version] }
 $gatewayIp: { get_attr: [subnetOfNewNetworkResource, resource.0.show, gateway_ip] }
 $cidr: { get_attr: [subnetOfNewNetworkResource, resource.0.show, cidr] }
 $isDhcpEnabled: { get_attr: [subnetOfNewNetworkResource, resource.0.show, enable_dhcp] }
 $addressPool: { get_attr: [subnetOfNewNetworkResource, resource.0.show, allocation_pools] }
 $networkType: { get_attr: [networkResource, resource.0.show, "provider:network_type"] }
 $isShared: { get_attr: [networkResource, resource.0.show, shared] }
 $zoneId: { list_concat: { get_attr: [networkResource, show, availability_zones] } }
 $operationalState: { get_attr: [forOutput-networkStatusResource, resource.0.status] }
 - str_replace:
 template:
 This is output of Network.
 Please specify output of $resourceType.
 params:
 $resourceType: { get_param: [nfv, networkResourceType] }

 nfvSubnetInfo:
 value:
 if:
 - networkResourceType_is_subnet
 - str_replace:
 template: |
 {
 "resourceId": "$resourceId",
 "networkId": "$networkId",
 "ipVersion": "IPv$ipVersion",
 "gatewayIp": "$gatewayIp",
 "cidr": "$cidr",
 "isDhcpEnabled": "$isDhcpEnabled",
 "addressPool": "$addressPool"
 }
 params:
 $resourceId: { get_attr: [subnetResource, resource.0.show, id] }
 $networkId: { get_attr: [subnetResource, resource.0.show, network_id] }
 $ipVersion: { get_attr: [subnetResource, resource.0.show, ip_version] }
 $gatewayIp: { get_attr: [subnetResource, resource.0.show, gateway_ip] }
 $cidr: { get_attr: [subnetResource, resource.0.show, cidr] }
 $isDhcpEnabled: { get_attr: [subnetResource, resource.0.show, enable_dhcp] }
 $addressPool: { get_attr: [subnetResource, resource.0.show, allocation_pools] }
 - str_replace:
 template:
 This is output of Subnet.
 Please specify output of $resourceType.
 params:
 $resourceType: { get_param: [nfv, networkResourceType] }

 nfvNetworkPortInfo:
 value:
 if:
 - networkResourceType_is_network-port
 - str_replace:
 template: |
 {
 "resourceId": "$resourceId",
 "networkId": "$networkId",
 "attachedResourceId": "$attachedResourceId",
 "operationalState": "$portOperationalState"
 }
 params:
 $resourceId: { get_attr: [networkPortResource, resource.0.show, id] }
 $networkId: { get_attr: [networkPortResource, resource.0.show, network_id] }
 $attachedResourceId: { get_attr: [networkPortResource, resource.0.show, id] }
 $portOperationalState: { get_attr: [forOutput-networkPortStatusResource, resource.0.status] }
 - str_replace:
 template:
 This is output of NetworkPort.
 Please specify output of $resourceType.
 params:
 $resourceType: { get_param: [nfv, networkResourceType] }

Below is an output example using template output parameters related to the allocated network resource as provided by "Show output" in OpenStack Orchestration Service API [i.3]. Attributes defined in nfvNetworkInfo of the HOT can be seen in the body of output_value.
Parameters grouped by "nfv" are specified in the present document.
{
	"output": {
		"output_value": {
				"networkResourceId": "8b6fbb50-9382-40fc-9adf-1e1ed3a6e6b0",
				"networkResourceName": "test-network-from-stack",
				"subnet": {
					"resourceId": "bbfee0fb-e28e-465b-8982-5aaaa0ef5afe",
					"networkId": "8b6fbb50-9382-40fc-9adf-1e1ed3a6e6b0",
					"ipVersion": "IPv4",
					"gatewayIp": "10.0.0.1",
					"cidr": "10.0.0.0/24",
					"isDhcpEnabled": false,
					"addressPool": [
						{
							"end": "10.0.0.110",
							"start": "10.0.0.101"
						}
]
				},
				"networkType": "flat",
				"isShared": false,
				"zoneId": [
					"nova"
],
				"operationalState": "enable"
			},
			"output_key": "nfvNetworkInfo",
			"description": "No description given"
	}
}

[bookmark: _Toc109131800]A.3.3	Example#3: Allocate Virtualised Storage Resource operation
This is an input parameter example of "Create stack" in OpenStack Orchestration Service API [i.3] corresponding to the Allocate Virtualised Storage Resource operation (ETSI GS NFV-IFA 005 [1] and ETSI GS NFV-IFA 006 [2]).
The input data is given as an argument and starts with "parameters". The input data is expressed in JSON format, as this is determined by the HOT specification [i.2].
Parameters grouped by "nfv" are specified in the present document. Following the input parameter specifications in the present example (see further below), input parameters "storageName", "affinityOrAntiAffinityConstraintsForStorage", "storageData", "locationConstraints", "metaData", "stack_name" are given as keys with their values. This covers the input parameter values part.
The following example illustrates the input parameters that can be passed to a HEAT API call for the Allocate Virtualised Storage Resource operation.
{
 "parameters":
 {
 "nfv":
 {
 "storageName": "test-volume-from-stack",
 "affinityOrAntiAffinityConstraintsForStorage":
 {
 "typeOfAffinityOrAntiAffinityConstraintForStorage": "affinity",
 "scopeOfAffinityOrAntiAffinityConstraintForStorage": "NFVI-Node",
 "affinityAntiAffinityResourceList":
 {
 "resource": [
 "4fc36790-ce40-439e-bc72-05a821a59b2b",
 "3f26f7ac-df5c-43bb-bace-87d6ec7b5374"
]
 }
 },
 "storageData":
 {
 "storageAttributes":
 {
 "typeOfStorage": "volume",
 "sizeOfStorage": 1
 }
 },
 "locationConstraints": "nova",
 "metaData":
 {
 "test-key": "test-value"
 }
 }
 },
 "stack_name": "storage-test-stack"
}

Below is the corresponding example of the HOT that uses the parameters provided in the example above.
The parameters section in the template has definitions for input data to be provided when instantiating the template. In this case, parameter, nfv, is typed as JSON format.
When the input data "storageName": "test-volume-from-stack" is given, then test-volume-from-stack as a string value is assigned to the input parameter storageName. In the same way, other values are captured and assigned to the other input parameters in the template.
JSON format is used for the structured data (e.g. affinityOrAntiAffinityConstraintsForStorage, storageData, metaData) as determined by the HOT specification [i.2]. The input data is accepted as a JSON data and then used in the resource handlings written in the resource section.
When the input attribute data "typeOfAffinityOrAntiAffinityConstraintForStorage": "affinity" is given, and the condition Constraints_type_is_affinity becomes true, then same_host of scheduler_hints is selected in the if_clause. Finally, the virtualised storage resource is instantiated on an NFVINode, which hosts the resources specified by affinityAntiAffinityResourceList.
The affinity/anti-affinity attributes, e.g. scopeOfAffinityOrAntiAffinityConstraintForStorage, affinityAntiAffinityResourceGroup, are passed because those parameters are specified in the present document, but are not defined in OpenStack HEAT specification. Those attribute values are therefore not used in HEAT operations, however, are used by the logic of the example template. The parameter "flavourId" is specified in the present document but it is not specified and used in OpenStack HEAT; it is therefore omitted from the example.
The resources section describes what type and how virtualised resources are provisioned. In the resource handling, actual values of the input parameters are assigned to parameters used by OpenStack when performing the resource handling. For example, the line:
 name: { get_param: storageName }

gets the value test-volume-from-stack (see in the example of input data above), of the input parameter storageName, and then assigns test-volume-from-stack to name.
The outputs section of the template describes output data for the user, e.g. when in terms of the Allocate Virtualised Storage Resource the nfvStorageInfo is requested. The naming and structure of output parameters in the present document and the ones used and provided by default by the OpenStack Heat Orchestration may differ. Because of this, name translation and output parameter structuring are necessary.
The template section in the nfvStorageInfo resolves such a translation. For instance, a key/value pair for storageId is written with:
"storageId": "$storageId"

and the value of storageId, which is determined by the variable $storageId, whose value is assigned by using an intrinsic function as shown below:
 $storageId: { get_attr: [virtualisedStorageResource, resource.0.show, id] }

The intrinsic function get_attr gets the virtualised storage identifier from the virtualisedStorageResource.
NOTE 1:	An alternative to putting output parameters in the template is to use API mapping, as defined in clause 4.3.
The "stack_name" is a required parameter to generate an identifier that points to a stack of the virtualised resources, as shown in clause A.3.6.
The following is an example of a HOT for the Allocate Virtualised Storage Resource operation.
heat_template_version: 2018-08-31
description: Allocate Virtualised Storage Resource operation

parameters:
 nfv:
 type: json
 description:
 default: {}

conditions:
 typeOfStorage_if_volume: { equals : [{ get_param: [nfv, storageData, storageAttributes, typeOfStorage] }, "volume"] }
 Constraints_type_is_affinity: { equals : [{ get_param: [nfv, affinityOrAntiAffinityConstraintsForStorage, typeOfAffinityOrAntiAffinityConstraintForStorage] }, "affinity"] }

resources:
 virtualisedStorageResource:
 type: OS::Heat::ResourceGroup
 properties:
 count: 1
 resource_def:
 if:
 - typeOfStorage_if_volume
 - type: OS::Cinder::Volume
 properties:
 name: { get_param: [nfv, storageName] }
 scheduler_hints:
 if:
 - Constraints_type_is_affinity
 - same_host:
 repeat:
 for_each:
 <%Resource%>: { get_param: [nfv, affinityOrAntiAffinityConstraintsForStorage, affinityAntiAffinityResourceList, resource] }
 template:
 <%Resource%>
 - different_host:
 repeat:
 for_each:
 <%Resource%>: { get_param: [nfv, affinityOrAntiAffinityConstraintsForStorage, affinityAntiAffinityResourceList, resource] }
 template:
 <%Resource%>
 size: { get_param: [nfv, storageData, storageAttributes, sizeOfStorage] }
 availability_zone: { get_param: [nfv, locationConstraints] }
 metadata: { get_param: [nfv, metaData] }
 - type: OS::Heat::None

 forOutput-virtualisedStorageResourceStatus:
 type: OS::Heat::ResourceGroup
 depends_on: virtualisedStorageResource
 properties:
 count: 1
 resource_def:
 type: http://controller/Allocate-Virtualised-Storage-Resource-operation/getVirtualisedStorageResourceStatus.yaml
 properties:
 status: { get_attr: [virtualisedStorageResource, resource.0.show, status] }

outputs:
 nfvStorageInfo:
 value:
 str_replace:
 template: |
 {
 "storageId": "$storageId",
 "storageName": "$storageName",
 "typeOfStorage": "$typeOfStorage",
 "sizeOfStorage": "$sizeOfStorage",
 "ownerId": "$ownerId",
 "zoneId": "$zoneId",
 "hostId": "$hostId",
 "operationalState": "$operationalState",
 "metadata": "$metadata"
 }
 params:
 $storageId: { get_attr: [virtualisedStorageResource, resource.0.show, id] }
 $storageName: { get_attr: [virtualisedStorageResource, resource.0.show, name] }
 $typeOfStorage: { get_param: [nfv, storageData, storageAttributes, typeOfStorage] }
 $sizeOfStorage: { get_attr: [virtualisedStorageResource, resource.0.show, size] }
 $ownerId: { get_attr: [virtualisedStorageResource, resource.0.show, attachments, 0, server_id] }
 $zoneId: { get_attr: [virtualisedStorageResource, resource.0.show, availability_zone] }
 $hostId: { get_attr: [virtualisedStorageResource, resource.0.show, "os-vol-host-attr:host"] }
 $operationalState: { get_attr: [forOutput-virtualisedStorageResourceStatus, resource.0.status] }
 $metadata: { get_attr: [virtualisedStorageResource, resource.0.show, metadata] }

Below is an output example of the output parameters related to the allocated storage resource as provided by "Show output" in OpenStack Orchestration Service API [i.3]. Specified attributes defined in nfvStorageInfo of the HOT can be seen in the body of output_value.
NOTE 2:	An alternative to model output parameters is API mapping, as defined in clause 4.3.
Parameters grouped by "nfv" are specified in the present document.
{
 "output":
 {
 "output_value":
 {
 "storageId": "f4e0afb5-1165-46a4-95e7-2405bfed9b5e",
 "storageName": "test-volume-from-stack",
 "typeOfStorage": "volume",
 "sizeOfStorage": 1,
 "ownerId": "",
 "zoneId": "nova",
 "hostId": "compute1@lvm#LVM",
 "operationalState": "enable",
 "metadata":
 {
 "test-key": "test-value"
 }
 },
 "output_key": "nfvStorageInfo",
 "description": "No description given"
 }
}

[bookmark: _Toc109131801]A.3.4	Example#4: Create Compute Flavour operation
This is an example of "Create stack" in OpenStack Orchestration Service API [i.3] corresponding to the Create Compute Flavour operation (ETSI GS NFV-IFA 005 [1] and ETSI GS NFV-IFA 006 [2]).
The input data is given as an argument and starts with "parameters". The input data is expressed in JSON format, as this is determined by the HOT specification [i.2].
Parameters grouped by "nfv" are specified in the present document. Following the input parameter specifications in the present example (see further below), input parameters flavourId, accelerationCapabilityForVirtualComputeFlavor, virtualMemory, virtualCpu, virtualNetworkInterface are given as keys with their corresponding values. This example covers the input parameter values part.
The following example illustrates the input parameters that can be passed to a HEAT API call for the Compute Flavour operation.
{
 "parameters": {
 "nfv": {
 "flavourId": 10,
 "accelerationCapabilityForVirtualComputeFlavor": "gpu",
 "virtualMemory": {
 "virtualMemSize": 100
 },
 "virtualCpu": {
 "numVirtualCpu": 8,
 "virtualCpuPinning": {
 "cpuPinningPolicy": "static",
 "cpuPinningRules": {
 "cores": 2,
 "sockets": 2,
 "threads": 2
 }
	 }
 },
 "storageAttributes": [
 {
 "typeOfStorage": "disk",
 "sizeOfStorage": 10
 },
 {
 "typeOfStorage": "ephemeral",
 "sizeOfStorage": 20
 },
 {
 "typeOfStorage": "swap",
 "sizeOfStorage": 30
 }
],
 "virtualNetworkInterface": {
 "accelerationCapabilityForVirtualNetworkInterface": "dpdk"
 }
 }
 },
 "stack_name": "flavour-test-stack"
}

Below is the corresponding example of the HOT that uses the parameters provided in the example above.
The parameters section in the template has definitions for input data to be provided when instantiating the template. In this case, parameter, nfv is typed as JSON format.
By the function get_param, the value of the input parameters are taken from input parameters and paired with resource keys in the property section; flavorid is paired with 10 of flavourId, ram is paired with 100 of virtualMemSize and vcpus is paired with 8 of numVirtualCpu.
The value of disk is determined by the result of the if-clauses. The status of typeOfStorage_0_is_disk, typeOfStorage_1_is_disk, typeOfStorage_2_is_disk is determined by the comparison with each element of typeOfStorage in the input parameters. In this example, typeOfStorage_0_is_disk becomes true because the value of the element storageAttributes[0].typeOfStorage is equal to "disk". So the value of storageAttributes[0].sizeOfStorage is taken and disk is paired with 10.
In the same way, ephemeral and swap are paired with 20 and 30 respectively.
extra_specs are key/value pairs in OpenStack. In this use case, input parameters:
"cpuPinningPolicy": "static"
"accelerationCapabilityForVirtualNetworkInterface": "dpdk"
"accelerationCapabilityForVirtualComputeFlavor": "gpu"

are given, so the value of cores, sockets, threads are paired as follows:
"hw:cpu_sockets": 2
"hw:cpu_cores": 2
"hw:cpu_threads": 2

More extra_specs are specified but those are not defined in the present document.
More resource handling (e.g. crypto, RDMA, packet dispatch, TCP Chimney, dynamic) can be added but this example does not propose to cover all.
The "stack_name" is a required parameter to generate an identifier that points to a stack of the virtualised resources, as shown in clause A.3.6.
heat_template_version: 2018-08-31
description: Create Compute Flavour operation.

parameters:
 nfv:
 type: json
 description:
 default: {}

conditions:
 cpuPinningPolicy_is_static: { equals: [{ get_param: [nfv, virtualCpu, virtualCpuPinning, cpuPinningPolicy] }, "static"] }
 accelerationCapabilityForVirtualNetworkInterface_is_dpdk: { equals: [{ get_param: [nfv, virtualNetworkInterface, accelerationCapabilityForVirtualNetworkInterface] }, "dpdk"] }
 accelerationCapabilityForVirtualComputeFlavor_is_gpu: { equals: [{ get_param: [nfv, accelerationCapabilityForVirtualComputeFlavor] }, "gpu"] }
 typeOfStorage_0_is_disk: { equals: [{ get_param: [nfv, storageAttributes, 0, typeOfStorage] }, "disk"] }
 typeOfStorage_1_is_disk: { equals: [{ get_param: [nfv, storageAttributes, 1, typeOfStorage] }, "disk"] }
 typeOfStorage_2_is_disk: { equals: [{ get_param: [nfv, storageAttributes, 2, typeOfStorage] }, "disk"] }
 typeOfStorage_0_is_ephemeral: { equals: [{ get_param: [nfv, storageAttributes, 0, typeOfStorage] }, "ephemeral"] }
 typeOfStorage_1_is_ephemeral: { equals: [{ get_param: [nfv, storageAttributes, 1, typeOfStorage] }, "ephemeral"] }
 typeOfStorage_2_is_ephemeral: { equals: [{ get_param: [nfv, storageAttributes, 2, typeOfStorage] }, "ephemeral"] }
 typeOfStorage_0_is_swap: { equals: [{ get_param: [nfv, storageAttributes, 0, typeOfStorage] }, "swap"] }
 typeOfStorage_1_is_swap: { equals: [{ get_param: [nfv, storageAttributes, 1, typeOfStorage] }, "swap"] }
 typeOfStorage_2_is_swap: { equals: [{ get_param: [nfv, storageAttributes, 2, typeOfStorage] }, "swap"] }

resources:
 virtualisedComputeFlavour:
 type: OS::Nova::Flavor
 properties:
 flavorid: { get_param: [nfv, flavourId] }
 ram: { get_param: [nfv, virtualMemory, virtualMemSize] }
 vcpus: { get_param: [nfv, virtualCpu, numVirtualCpu] }
 disk:
 if:
 - typeOfStorage_0_is_disk
 - { get_param: [nfv, storageAttributes, 0, sizeOfStorage] }
 - if:
 - typeOfStorage_1_is_disk
 - { get_param: [nfv, storageAttributes, 1, sizeOfStorage] }
 - if:
 - typeOfStorage_2_is_disk
 - { get_param: [nfv, storageAttributes, 2, sizeOfStorage] }
 - 0
 ephemeral:
 if:
 - typeOfStorage_0_is_ephemeral
 - { get_param: [nfv, storageAttributes, 0, sizeOfStorage] }
 - if:
 - typeOfStorage_1_is_ephemeral
 - { get_param: [nfv, storageAttributes, 1, sizeOfStorage] }
 - if:
 - typeOfStorage_2_is_ephemeral
 - { get_param: [nfv, storageAttributes, 2, sizeOfStorage] }
 - 0
 swap:
 if:
 - typeOfStorage_0_is_swap
 - { get_param: [nfv, storageAttributes, 0, sizeOfStorage] }
 - if:
 - typeOfStorage_1_is_swap
 - { get_param: [nfv, storageAttributes, 1, sizeOfStorage] }
 - if:
 - typeOfStorage_2_is_swap
 - { get_param: [nfv, storageAttributes, 2, sizeOfStorage] }
 - 0
 extra_specs:
 if:
 - cpuPinningPolicy_is_static
 - if:
 - accelerationCapabilityForVirtualNetworkInterface_is_dpdk
 - if:
 - accelerationCapabilityForVirtualComputeFlavor_is_gpu
 - {
 "hw:cpu_policy": "dedicated",
 "hw:cpu_sockets": { get_param: [nfv, virtualCpu, virtualCpuPinning, cpuPinningRules, sockets] },
 "hw:cpu_cores": { get_param: [nfv, virtualCpu, virtualCpuPinning, cpuPinningRules, cores] },
 "hw:cpu_threads": { get_param: [nfv, virtualCpu, virtualCpuPinning, cpuPinningRules, threads] },
 "hw:mem_page_size": "large",
 "pci_passthrough:alias": "a1:2"
 }
 - {} ### another pattern's process(e.g. crypto).
 - {} ### another pattern's process(e.g. RDMA, packet dispatch, TCP Chimney).
 - {} ### another pattern's process(e.g. dynamic).

NOTE:	The unit of sizeOfStorage is GB, but the unit of swap area is MB in OpenStack.
There are no output parameters related to the flavour creation, as the flavour can be identified based on the stackId attribute passed as part of the input parameters.
[bookmark: _Toc109131802]A.3.5	Example#5: API mapping of output parameters for Allocate Virtualised Storage Resource operation
Clause A.3.3 provides an example of the Allocate Virtualised Storage Resource operation using template outputs. The present clause illustrates the alternative of API parameter mapping to allow a client to access the output information defined in the present document data model in clause 8.3.1 using the OpenStack HEAT API. Table A.3.5-1 lists the attributes that a client would obtain from invoking "resource show" in the HEAT API in order to access the output information defined in the present document data model. For the input part, this alternative uses the same approach as clause A.3.3.
Table A.3.5-1: Output attributes mapping between the present document
data model and Openstack HEAT API
	Attribute per the present document data model
	Attribute per HEAT API

	nfvStorageInfo
	

	>storageId
	resource/attributes/id

	>storageName
	resource/attributes/name

	>flavourId
	(not supported by HEAT)

	>sizeOfStorage
	resource/attributes/size

	>rdmaEnabled
	(not supported by HEAT)

	>ownerId
	resource/attributes/attachments/server_id

	>zoneId
	resource/attributes/availability_zone

	>hostId
	os-vol-host-attr:host

	>operationalState
	resource/attributes/status

	>metadata
	resource/attributes/metadata

[bookmark: _Toc109131803]A.3.6	Example#6: OpenStack Heat API sequence
Clause A.3 provides examples of resource management operation interfaces using OpenStack Orchestration Service API [i.3] and templates. The present clause illustrates sequence diagrams which show how to use the APIs.
Figure A.3.6-1 illustrates the sequence diagram of Allocate Virtualised Compute/Network/Storage Resource operation, Create Virtualised Compute Resource Affinity Or AntiAffinity Constraints Group operation and Attach Virtualised Storage Resource operation using "create stack" and "show stack".
[image:]
Figure A.3.6-1
Figure A.3.6-2 illustrates the sequence diagram of Query Virtualised Compute/Network/Storage Resource operation using "find stack" and "show stack".
[image: D:\Users\0000011195075\Box\External\EX_NECCI_NFV\EX_SOL014\202109xx\api\stack_get.png]
Figure A.3.6-2
Figure A.3.6-3 illustrates the sequence diagram of Update Virtualised Compute/Network/Storage Resource operation using "find stack", "update stack" and "show stack".
[image:]
Figure A.3.6-3
Figure A.3.6-4 illustrates the sequence diagram of Scale Virtualised Compute/Storage Resource operation using "find stack", "update stack" and "show stack". In the case of Storage, only increase operation is supported.
[image:]
Figure A.3.6-4
Figure A.3.6-5 illustrates the sequence diagram of Terminate Virtualised Compute/Network/Storage Resource operation and Detach Virtualised Storage Resource operation using "find stack" and "delete stack". The consumer gets stack_name associated with identifier of the resource using Query Virtualised Compute/Network/Storage Resource operation. This sequence terminates all resources associated with stack_name.
[image:]
Figure A.3.6-5
In the case of Heat, parameter "stackName" in clause 5.2.5 is passed as parameter "stack_name". That is, Consumer manages virtualised resources by generating an identifier that points to a stack of the virtualised resources defined in a descriptor and passing the identifier as input parameter "stack_name".
[bookmark: _Toc109131804]A.3.7	Example#7: Virtualised Resources Change Notification Interface Subscribe operation
This is an example of "Create stack" in OpenStack Orchestration Service API [i.3] corresponding to the Subscribe operation in the Change Notification Interface (ETSI GS NFV-IFA 005 [1] and ETSI GS NFV-IFA 006 [2]).
The input data is given as an argument and starts with "parameters". The input data is expressed in JSON format, as this is determined by the HOT specification [i.2].
Parameters grouped by "nfv" are specified in the present document. Following the input parameter specifications in the present example (see further below), input parameters callbackUriForChangeNotify, inputFilter are given as keys with their corresponding values. This example covers the input parameter values part.
The following example illustrates the input parameters that can be passed to a HEAT API call for the Subscribe operation.
{
 "parameters": {
 "nfv": {
 "callbackUriForChangeNotify": "http://10.0.0.56",
 "inputFilter": {
 "hostId": "ussuri-compute1"
 }
 }
 },
 "stack_name": "change-notify-compute"
}

Below is the corresponding example of the HOT that uses the parameters provided in the example above.
The parameters section in the template has definitions for input data to be provided when instantiating the template. In this case, parameter, nfv is typed as JSON format.
By the function get_param, the values of the input parameters are taken from input parameters and paired with resource keys in the property section; alarm_actions is paired with "http://10.0.0.56" of callbackUriForChangeNotify, value of traits.host in query is paired with " ussuri-compute1" of hostId of inputFilter.
This HOT is intended to subscribe for change notifications of compute hosts. The conditions for change notifications should be matched to the operation rule for change notifications. This HOT assumes the following operation rule:
When maintenance a compute host, operators allocate a virtualised compute resource on the maintenance target compute host , and this is executed by the VIM user whose user_id is "c794077f19f142819716e3116724ccfe".
heat_template_version: 2018-08-31
description: Virtualised Compute Resources Change Notification Interface Subscribe operation.

parameters:
 nfv:
 type: json
 description:
 default: {}

resources:
 maintenance:
 type: OS::Aodh::EventAlarm
 properties:
 event_type: compute.instance.create.end
 alarm_actions:
 - { get_param: [nfv, callbackUriForChangeNotify] }
 query:
 - field: traits.host
 op: eq
 value: { get_param: [nfv, inputFilter, hostId] }
 - field: traits.user_id
 op: eq
 value: c794077f19f142819716e3116724ccfe
 repeat_actions: true

The following is an example of a change notification by OpenStack Aodh.
{
 "alarm_name": "change-notify-compute-maintenance-dricxhhg53iq",
 "alarm_id": "a76dd860-daad-456c-8ff3-0e7cbed12117",
 "severity": "low",
 "previous": "insufficient data",
 "current": "alarm",
 "reason": "Event <id=1cafb631-0c9a-4fdc-8d3c-d4ff9b0eba43,event_type=compute.instance.create.end> hits the query <query=[{field: traits.host, op: eq, type: string, value: ussuri-compute1}, {field: traits.user_id, op: eq, type: string, value: c794077f19f142819716e3116724ccfe}]>.",
 "reason_data": {
 "type": "event",
 "event": {
 "message_id": "1cafb631-0c9a-4fdc-8d3c-d4ff9b0eba43",
 "event_type": "compute.instance.create.end",
 "generated": "2021-08-19T05:11:35.822867",
 "traits": [
 [
 "service",
 1,
 "compute"
],
 [
 "request_id",
 1,
 "req-462d2144-88e7-4307-bbec-cd972a07bfa0"
],
 [
 "project_id",
 1,
 "f4453d4fab274ff4a1e9cfe76a82d928"
],
 [
 "user_id",
 1,
 "c794077f19f142819716e3116724ccfe"
],
 [
 "tenant_id",
 1,
 "f4453d4fab274ff4a1e9cfe76a82d928"
],
 [
 "instance_id",
 1,
 "c33af9b4-7ebd-4894-944c-e16880630d5b"
],
 [
 "display_name",
 1,
 "vm-for-maintenance"
],
 [
 "resource_id",
 1,
 "c33af9b4-7ebd-4894-944c-e16880630d5b"
],
 [
 "cell_name",
 1,
 ""
],
 [
 "host",
 1,
 "ussuri-compute1"
],
 [
 "memory_mb",
 2,
 64
],
 [
 "disk_gb",
 2,
 15
],
 [
 "root_gb",
 2,
 10
],
 [
 "ephemeral_gb",
 2,
 5
],
 [
 "vcpus",
 2,
 1
],
 [
 "instance_type_id",
 1,
 "11"
],
 [
 "instance_type",
 1,
 "m1.nano"
],
 [
 "state",
 1,
 "active"
],
 [
 "launched_at",
 4,
 "2021-08-19T05:11:35.661283"
],
 [
 "availability_zone",
 1,
 "nova"
]
],
 "raw": {},
 "message_signature": "86cfec1c900658c76dd0e5efe9ed8e4e074c97d76718c898d36ae43aef269630"
 }
 }
}
Table A.3.7-1 illustrates the mapping between the input parameters for change notifications defined in the present document data model and the information in change notifications by OpenStack Aodh.
Table A.3.7-1: Mapping between the present document change notification
parameters and notification from Openstack Aodh
	Parameter in the present document
	Notification from Openstack Aodh

	changeId
	reason_data/event/message_id

	virtualisedResourceId
	(not supported by Aodh)

	virtualisedResourceGroupId
	(not supported by Aodh)

	endOfChange
	(not supported by Aodh)

	changeTime
	reason_data/event/generated

	vimId
	(not supported by Aodh)

	changeType
	alarm_name (see note)

	changedResourceData
	(not supported by Aodh)

	NOTE:	Due to current specifications of OpenStack Heat and OpenStack Aodh, "alarm_name" is determined to be a concatenation of "stack_name", "resource name in HOT" and "random string generated by Heat". This is not matched to allowed value of changeType, but like changeType, "alarm_name" is used to distinguish the type of notification.

[bookmark: _Toc109131805]A.3.8	Example#8: Virtualised Resources Fault Management Interface Subscribe operation
This is an example of "Create stack" in OpenStack Orchestration Service API [i.3] corresponding to the Subscribe operation in the Fault Management Interface (ETSI GS NFV-IFA 005 [1] and ETSI GS NFV-IFA 006 [2]).
The input data is given as an argument and starts with "parameters". The input data is expressed in JSON format, as this is determined by the HOT specification [i.2].
Parameters grouped by "nfv" are specified in the present document. Following the input parameter specifications in the present example (see further below), input parameters callbackUriForFaultNotify, filter is given as keys with their corresponding values. This example covers the input parameter values part.
The following example illustrates the input parameters that can be passed to a HEAT API call for the Subscribe operation.
{
 "parameters": {
 "nfv": {
 "callbackUriForFaultNotify": "http://10.0.0.56",
 "filter": {
 "computeId": "3e5cb24b-044d-4c65-8488-60ebd2c797cc"
 }
 }
 },
 "stack_name": "fault-notify-compute"
}

Below is the corresponding example of the HOT that uses the parameters provided in the example above.
The parameters section in the template has definitions for input data to be provided when instantiating the template. In this case, parameter, nfv is typed as JSON format.
By the function get_param, the values of the input parameters are taken from input parameters and paired with resource keys in the property section; alarm_actions is paired with "http://10.0.0.56" of callbackUriForFaultNotify, value of traits.instance_id in query is paired with "3e5cb24b-044d-4c65-8488-60ebd2c797cc" of computeId of filter.
This HOT is intended to subscribe for fault notifications of virtualised compute resources. The conditions for fault notifications should be matched to the operation when faults were observed. This HOT assumes the following operation:
When the monitoring system observes faults relating a virtualised compute resource, the monitoring system changes the state of the virtualised compute resource to "error" or shutdown the virtualised compute resource.
heat_template_version: 2018-08-31
description: Virtualised Compute Resources Fault Management Interface Subscribe operation.

parameters:
 nfv:
 type: json
 description:
 default: {}

resources:
 errorState:
 type: OS::Aodh::EventAlarm
 properties:
 alarm_actions:
 - { get_param: [nfv, callbackUriForFaultNotify] }
 query:
 - field: traits.instance_id
 op: eq
 value: { get_param: [nfv, filter, computeId] }
 - field: traits.state
 op: eq
 value: error
 repeat_actions: true

 stoppedState:
 type: OS::Aodh::EventAlarm
 properties:
 event_type: compute.instance.power_off.*
 alarm_actions:
 - { get_param: [nfv, callbackUriForFaultNotify] }
 query:
 - field: traits.instance_id
 op: eq
 value: { get_param: [nfv, filter, computeId] }
 repeat_actions: true

The following is an example of a fault notification by OpenStack Aodh.
{
 "alarm_name": "fault-notify-compute-stoppedState-bla6fvjo5nrf",
 "alarm_id": "5429876f-c8c4-42e6-a8be-5a5dae68b5c4",
 "severity": "low",
 "previous": "alarm",
 "current": "alarm",
 "reason": "Event <id=4a55319f-dc22-413d-b21a-34d3728c72c0,event_type=compute.instance.power_off.end> hits the query <query=[{field: traits.instance_id, op: eq, type: string, value: 3e5cb24b-044d-4c65-8488-60ebd2c797cc}]>.",
 "reason_data": {
 "type": "event",
 "event": {
 "message_id": "4a55319f-dc22-413d-b21a-34d3728c72c0",
 "event_type": "compute.instance.power_off.end",
 "generated": "2021-08-19T08:12:20.805018",
 "traits": [
 [
 "service",
 1,
 "compute"
],
 [
 "request_id",
 1,
 "req-72fd8bda-9444-4e65-8b02-8485cdbb843c"
],
 [
 "project_id",
 1,
 "f4453d4fab274ff4a1e9cfe76a82d928"
],
 [
 "user_id",
 1,
 "4d75edbddee64505878e5c59c042b70c"
],
 [
 "tenant_id",
 1,
 "f4453d4fab274ff4a1e9cfe76a82d928"
],
 [
 "instance_id",
 1,
 "3e5cb24b-044d-4c65-8488-60ebd2c797cc"
],
 [
 "display_name",
 1,
 "test-vm"
],
 [
 "resource_id",
 1,
 "3e5cb24b-044d-4c65-8488-60ebd2c797cc"
],
 [
 "cell_name",
 1,
 ""
],
 [
 "host",
 1,
 "ussuri-compute2"
],
 [
 "memory_mb",
 2,
 64
],
 [
 "disk_gb",
 2,
 1
],
 [
 "root_gb",
 2,
 1
],
 [
 "ephemeral_gb",
 2,
 0
],
 [
 "vcpus",
 2,
 1
],
 [
 "instance_type_id",
 1,
 "9"
],
 [
 "instance_type",
 1,
 "m1.nano"
],
 [
 "state",
 1,
 "stopped"
],
 [
 "launched_at",
 4,
 "2021-08-06T01:30:56"
]
],
 "raw": {},
 "message_signature": "e01fc1dc4fbba2f50168a99da48973dc4964d50bb7ee6c5c5be9f8101a10bd94"
 }
 }
}

Table A.3.8-1 illustrates the mapping between the input parameter and attributes for fault notifications defined in the present document data model and the information in fault notifications by OpenStack Aodh.
Table A.3.8-1: Mapping between the present document fault notification
parameters and notification from Openstack Aodh
	Attribute in the present document
	Notification from Openstack Aodh

	alarm
	

	>alarmId
	reason_data/event/message_id

	>managedObjectId
	reason_data/event/traits/instance_id

	>alarmRaisedTime
	reason_data/event/generated

	>alarmChangedTime
	(not supported by Aodh)

	>alarmClearedTime
	(not supported by Aodh)

	>state
	(not supported by Aodh)

	>perceivedSeverity
	severity

	>eventTime
	(not supported by Aodh)

	>eventType
	(not supported by Aodh)

	>faultType
	alarm_name (see note)

	>probableCause
	(not supported by Aodh)

	>isRootCause
	(not supported by Aodh)

	>correlatedAlarmId
	(not supported by Aodh)

	>faultDetails
	(not supported by Aodh)

	NOTE:	Due to current specifications of OpenStack Heat and OpenStack Aodh, "alarm_name" is determined to be a concatenation of "stack_name", "resource name in HOT" and "random string generated by Heat". Like faultType, "alarm_name" is used to distinguish the type of notification.

[bookmark: _Toc109131806]A.3.9	Example#9: Create Compute Resource Reservation operation
This is an example of "Create stack" in OpenStack Orchestration Service API [i.3] corresponding to the Create Compute Resource Reservation operation (ETSI GS NFV-IFA 005 [1]).
The input data is given as an argument and starts with "parameters". The input data is expressed in JSON format, as this is determined by the HOT specification [i.2].
Parameters grouped by "nfv" are specified in the present document. Following the input parameter specifications in the present example (see further below), input parameters startTime, endTime, computePoolReservation are given as keys with their corresponding values. This example covers the input parameter values part.
The following example illustrates the input parameters that can be passed to a HEAT API call for the Create Compute Resource Reservation operation.
{
 "parameters": {
 "nfv": {
 "startTime": "2022-03-28 06:00",
 "endTime": "2023-03-28 06:00",
 "computePoolReservation": {
 "numCpuCores": 1,
 "numVcInstances": 1,
 "virtualMemSize": 1024
 }
 }
 },
 "stack_name": "compute-reservation-test-stack"
}

Below is the corresponding example of the HOT that uses the parameters provided in the example above.
The parameters section in the template has definitions for input data to be provided when instantiating the template. In this case, parameter, nfv is typed as JSON format.
By the function get_param, the value of the input parameters are taken from input parameters and paired with resource keys in the property section; start_date is paired with "2022-03-28 06:00" of startTime, memory_mb is paired with 1024 of virtualMemSize of computePoolReservation.
The outputs section of the template describes output data for the user, e.g. when in terms of the Create Compute Resource Reservation the nfvComputeReservationInfo is requested. The naming and structure of output parameters in the present document and the ones used and provided by default by the OpenStack Heat Orchestration may differ. Because of this, name translation and output parameter structuring are necessary.
The "stack_name" is a required parameter to generate an identifier that points to a stack of the virtualised resources, as shown in clause A.3.6.
heat_template_version: 2018-08-31
description: Create Compute Resource Reservation operation.

parameters:
 nfv:
 type: json
 description:
 default: {}

resources:
 computeResourceReservation:
 type: OS::Blazar::Lease
 properties:
 name: "computeResourceReservation"
 start_date: { get_param: [nfv, startTime] }
 end_date: { get_param: [nfv, endTime] }
 reservations:
 - "vcpus": { get_param: [nfv, computePoolReservation, numCpuCores] }
 "amount": { get_param: [nfv, computePoolReservation, numVcInstances] }
 "memory_mb": { get_param: [nfv, computePoolReservation, virtualMemSize] }
 "disk_gb": 0
 "resource_type": "virtual:instance"

outputs:
 nfvComputeReservationInfo:
 value:
 str_replace:
 template: |
 {
 "reservationId": "$reservationId"
 }
 params:
 $reservationId: { get_attr: [computeResourceReservation, show, reservations, 0, id] }

Below is an output example of the output parameters related to the compute resource reservation resource as provided by "Show output" in OpenStack Orchestration Service API [i.3]. Specified attributes defined in nfvComputeReservationInfo of the HOT can be seen in the body of output_value.
Parameters grouped by "nfv" are specified in the present document.
{
 "output": {
 "output_value": {
 "reservationId": "e0bd181d-0d82-466b-bd26-30dd9c750175"
 },
 "output_key": "nfvComputeReservationInfo",
 "description": "No description given"
 }
}

[bookmark: _Toc109131807]A.4	Complex templates
ETSI GS NFV-IFA 005 [1] and ETSI GS NFV-IFA 006 [2] define interfaces for the management of individual resources, and the examples in the present document are introduced to be consistent with those specifications.
On the other hand, HEAT is primarily used to manage a group of different types of virtualised resources, called "stack".
Sets of virtualised resources that are commonly used in the different stacks can be written in individual dedicated templates, so that they can be referenced in other templates. Such templates can be referred to as "nested templates".
Multiple levels of nesting of templates are allowed.

[bookmark: _Toc109131808]Annex B (informative):
Explanations of concepts
[bookmark: _Toc109131809]B.1	Introduction
This annex provides explanations of certain concepts introduced in the present document.
[bookmark: _Toc109131810]B.2	Concept of descriptor-based virtualised resource management
In the present document, input and output parameter data models are specified using YAML [4].
The input parameter data model consists of:
an input section defined in the virtualised resource descriptor;
the corresponding actual input data as arguments to exchange when invoking operations over the Vi-Vnfm and Or-Vi reference points;
the corresponding input data definitions in YAML [4], which are presented in the "parameter to be used as input" clauses 5 to 8 of the present document.
The input data to be used over the reference points in virtualised resource descriptor is compliant with input data definition.
The output parameter data model consists of:
an output section defined in the virtualised resource descriptor;
the corresponding actual output data as return values to exchange in a response to an operation invoked over Vi-Vnfm and Or-Vi reference points;
the corresponding output data definitions in YAML [4], which are presented in the "parameter to be used as output" clauses 5 to 8 of the present document.
The output data to be exposed over the reference points from virtualised resource descriptor is compliant with output data definition.
Descriptor-based virtualised resource management provisions virtualised resource via virtualised resource descriptor that includes input section and output section.
Figure B.2-1 illustrates the concepts described above. The method for passing input data as arguments and output data as return values is out of the scope of the present document. The present document provides examples of virtualised resource descriptors, arguments and return values for each solution identified in Annex A.
Descriptor-based virtualised resource management
Virtualised Resource Descriptor
(e.g Heat Orchestration Template
 (HOT))
Input section
(e.g. Parameter section
 in HOT)
Output section
(e.g. Outputs section
 in HOT)
Input data

Output data

to be used
(e.g. Key/Value of
 API arguments, file)

to be exposed
(e.g. Key/Value of
 API return value, file)
compliant
compliant
Output data definition
(YAML)
Input data definition
(YAML)
Informative

Figure B.2-1: Concept of descriptor-based virtualised resource management

[bookmark: _Toc109131811]Annex C (informative):
Change History
	Date
	Version
	Information about changes

	February 2021
	3.0.1
	Initial draft for SOL014ed351

	March 2021
	3.0.2
	Implements
· NFVSOL(21)000166 Improvements towards OpenAPI-based data models for general aspects
· NFVSOL(21)000160r1 SOL014ed351 Improvements towards OpenAPI-based data models in virtualised storage resource data model
· NFVSOL(21)000143r1 SOL014ed351 Improvements towards OpenAPI-based data models in virtualised compute resource data model
· NFVSOL(21)000142 SOL014ed Improvements towards OpenAPI-based data models in common data model
· NFVSOL(21)000119 SOL014ed351 Improvements towards OpenAPI-based data models in Virtualised Network Management
· NFVSOL(21)000059 SOL014 networkResourceName in OpenAPI

	September 2021
	3.5.2
	Implements
· NFVSOL(21)000452r1 - SOL014ed361 OpenStack Heat API sequence examples and new parameter stackName
· NFVSOL(21)000453 - SOL014e361 Example of Change Notification Interface
· NFVSOL(21)000462 - SOL014e361 New data models for Change and Fault management
· NFVSOL(21)000485 - SOL014ed361 Update Heat template and parameter examples to upgrade version and support required parameter

	October 2021
	3.5.3
	Implements
· NFVSOL(21)0000486r4 - SOL014ed361 Profiling OpenStack Orchestration API to map IFA operations to resource declarations

	November 2021
	3.5.4
	Implements
· NFVSOL(21)000571 - SOL014ed361 new parameter userData

	April 2022
	4.0.1
	Initial draft for SOL014ed431 based on SOL014ed361
Implements
· NFVSOL(22)000185 – SOL014e431 mirror of CR 165 New data models for Compute Resource Reservation management

	June 2022
	4.0.2
	Implements
· NFVSOL(22)000284 – SOL014ed431-Changing the term "inline" to "inlined"

	January 2023
	4.3.2
	Initial draft for SOL014ed441 based on the published version 4.3.1 of ETSI GS NFV-SOL 014

	January 2023
	4.3.3
	Update RFC reference according to the new format

[bookmark: _Toc109131812]History
	Document history

	[bookmark: H_PE]V4.3.1
	July 2022
	Publication

	
	
	

	
	
	

	
	
	

	
	
	

ETSI
image2.png

image3.png

image4.png

image5.png

image6.png

image1.jpeg

