Network Functions Virtualisation (NFV) Release 3; Management and Orchestration; Performance Measurements Specification

Disclaimer

The present document has been produced and approved by the Network Functions Virtualisation (NFV) ETSI Industry Specification Group (ISG) and represents the views of those members who participated in this ISG. It does not necessarily represent the views of the entire ETSI membership.
Reference
RGS/NFV-IFA027ed371

Keywords
management, MANO, measurement, NFV, performance

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16
Siret N° 348 623 562 00017 - APE 7112B
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° w061004871

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search

The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx

If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommitteeSupportStaff.aspx

If you find a security vulnerability in the present document, please report it through our Coordinated Vulnerability Disclosure Program:
https://www.etsi.org/standards/coordinated-vulnerability-disclosure

Notice of disclaimer & limitation of liability
The information provided in the present deliverable is directed solely to professionals who have the appropriate degree of experience to understand and interpret its content in accordance with generally accepted engineering or other professional standard and applicable regulations.

No recommendation as to products and services or vendors is made or should be implied.

No representation or warranty is made that this deliverable is technically accurate or sufficient or conforms to any law and/or governmental rule and/or regulation and further, no representation or warranty is made of merchantability or fitness for any particular purpose or against infringement of intellectual property rights.

In no event shall ETSI be held liable for loss of profits or any other incidental or consequential damages.

Any software contained in this deliverable is provided “AS IS” with no warranties, express or implied, including but not limited to, the warranties of merchantability, fitness for a particular purpose and non-infringement of intellectual property rights and ETSI shall not be held liable in any event for any damages whatsoever (including, without limitation, damages for loss of profits, business interruption, loss of information, or any other pecuniary loss) arising out of or related to the use of or inability to use the software.

Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.

The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI 2022.
All rights reserved.
Contents

Intellectual Property Rights ... 5
Foreword .. 5
Modal verbs terminology .. 5

1 Scope ... 6
2 References .. 6
2.1 Normative references .. 6
2.2 Informative references ... 7
3 Definition of terms, symbols and abbreviations ... 7
3.1 Terms ... 7
3.2 Symbols .. 7
3.3 Abbreviations .. 7

4 Overview ... 8
4.1 Introduction ... 8
4.2 Use cases .. 8
4.2.1 Use case of virtual compute related measurements ... 8
4.2.2 Use case of network data volume related measurements .. 8
4.3 Measurements received at VIM .. 8

5 Performance measurement definition template ... 9
6 Measured object types .. 11
6.1 Introduction ... 11
6.2 Measured object type definitions .. 11
6.2.1 Virtual compute ... 11
6.2.2 VNF ... 11
6.2.3 VNF component .. 11
6.2.4 Virtual network ... 11
6.2.5 Virtual storage ... 12
6.2.6 Internal connection point of a VNF instance ... 12
6.2.7 External connection point of a VNF instance ... 12
6.2.8 Service access point ... 12

7 Performance measurements ... 12
7.1 Performance measurements produced by VIM ... 12
7.1.1 Introduction .. 12
7.1.2 Mean virtual CPU usage .. 12
7.1.3 Peak virtual CPU usage .. 12
7.1.4 Mean memory usage .. 14
7.1.5 Peak memory usage .. 14
7.1.6 Mean disk usage ... 15
7.1.7 Peak disk usage ... 15
7.1.8 Number of incoming bytes on virtual compute ... 15
7.1.9 Number of outgoing bytes on virtual compute ... 16
7.1.10 Number of incoming packets on virtual compute .. 17
7.1.11 Number of outgoing packets on virtual compute ... 17
7.1.12 Number of incoming bytes of a virtual network ... 18
7.1.13 Number of outgoing bytes of a virtual network ... 18
7.1.14 Number of incoming packets of a virtual network .. 19
7.1.15 Number of outgoing packets of a virtual network .. 19
7.1.16 Mean usage of Virtualised storage resource .. 20
7.1.17 Peak usage of Virtualised storage resource ... 20

7.2 Performance measurements produced by VNFM .. 21
7.2.1 Introduction .. 21
7.2.2 Mean virtual CPU usage of VNF/VNFC instance .. 21
7.2.3 Peak virtual CPU usage of VNF/VNFC instance .. 22
7.2.4 Mean memory usage of VNF/VNFC instance .. 23
7.2.5 Peak memory usage of VNF/VNFC instance .. 23
7.2.6 Mean disk usage of VNF/VNFC instance ... 24
7.2.7 Peak disk usage of VNF/VNFC instance ... 24
7.2.8 Number of incoming bytes of VNF internal CP .. 25
7.2.9 Number of outgoing bytes of VNF internal CP .. 25
7.2.10 Number of incoming packets of VNF internal CP .. 26
7.2.11 Number of outgoing packets of VNF internal CP ... 27
7.2.12 Number of incoming bytes of VNF external CP ... 27
7.2.13 Number of outgoing bytes of VNF external CP ... 28
7.2.14 Number of incoming packets of VNF external CP .. 29
7.2.15 Number of outgoing packets of VNF external CP .. 30
7.3 Performance measurements produced by NFVO .. 30
 7.3.1 Introduction... 30
 7.3.2 Number of incoming bytes of SAP ... 31
 7.3.3 Number of outgoing bytes of SAP ... 31
 7.3.4 Number of incoming packets of SAP ... 32
 7.3.5 Number of outgoing packets of SAP ... 33

Annex A (informative): Mapping of ETSI GS NFV-TST 008 to OpenStack® measurements35
Annex B (informative): Security and Regulatory Concerns... 36
 B.1 Risk analysis and assessment ... 36
Annex C (informative): Change History .. 38
History .. 39
Intellectual Property Rights

Essential patents

IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The declarations pertaining to these essential IPRs, if any, are publicly available for **ETSI members and non-members**, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org/).

Pursuant to the ETSI Directives including the ETSI IPR Policy, no investigation regarding the essentiality of IPRs, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Trademarks

The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.

DECT™, **PLUGTESTS™**, **UMTS™** and the ETSI logo are trademarks of ETSI registered for the benefit of its Members. **3GPP™** and **LTE™** are trademarks of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners. **oneM2M™** logo is a trademark of ETSI registered for the benefit of its Members and of the oneM2M Partners. **GSM®** and the **GSM logo** are trademarks registered and owned by the GSM Association.

Foreword

This Group Specification (GS) has been produced by ETSI Industry Specification Group (ISG) Network Functions Virtualisation (NFV).

Modal verbs terminology

In the present document "shall", "shall not", "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).

"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
1 Scope

The present document specifies the performance measurements and use cases for descriptors and interfaces, including Or-Vnfm reference point, Ve-Vnfm reference point, Vi-Vnfm reference point, Or-Vi reference point and Os-Ma-nfvo reference point, based on the performance metrics collected at NFVI.

2 References

2.1 Normative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at https://docbox.etsi.org/Reference/.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are necessary for the application of the present document.

[1] ETSI GS NFV-IFA 005: "Network Functions Virtualisation (NFV) Release 3; Management and Orchestration; Or-Vi reference point - Interface and Information Model Specification".

[6] ETSI GS NFV-SEC 004: "Network Functions Virtualisation (NFV); NFV Security; Privacy and Regulation; Report on Lawful Interception Implications".

[8] ETSI GS NFV-SEC 010: "Network Functions Virtualisation (NFV); NFV Security; Report on Retained Data problem statement and requirements".

[9] ETSI GS NFV-SEC 012: "Network Functions Virtualisation (NFV) Release 3; Security; System architecture specification for execution of sensitive NFV components".

2.2 Informative references

References are either specific (identified by date of publication and/or edition number or version number) or non-specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

NOTE: While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1] Openstack® measurements.

NOTE 1: Available at https://docs.openstack.org/ceilometer/pike/admin/telemetry-measurements.html.

NOTE 2: The OpenStack® Word Mark and OpenStack Logo are either registered trademarks/service marks or trademarks/service marks of the OpenStack Foundation, in the United States and other countries and are used with the OpenStack Foundation's permission. ETSI is not affiliated with, endorsed or sponsored by the OpenStack Foundation, or the OpenStack community.

[i.2] ETSI GR NFV 003: "Network Functions Virtualisation (NFV); Terminology for Main Concepts in NFV".

3 Definition of terms, symbols and abbreviations

3.1 Terms

For the purposes of the present document, the terms given in ETSI GR NFV 003 [i.2] and ETSI GS NFV-IFA 014 [5] apply.

3.2 Symbols

Void.

3.3 Abbreviations

For the purposes of the present document, the abbreviations given in ETSI GR NFV 003 [i.2], ETSI GS NFV-IFA 014 [5] and the following apply:

NOTE: An abbreviation defined in the present document takes precedence over the definition of the same abbreviation, if any, in ETSI GR NFV 003 [i.2].

OM Object Mapping
SC Status Counter
TF Transparent Forwarding
4 Overview

4.1 Introduction

The present document specifies the performance measurements that are exposed on various NFV MANO reference points (e.g. Or-Vnfm, Ve-Vnfm-em, Vi-Vnfm, Or-Vi and Os-Ma-nfvo). ETSI GS NFV-TST 008 [10] specifies the Network Function Virtualisation Infrastructure (NFVI) performance metrics that will be reported to Virtualised Infrastructure Manager (VIM). VIM processes the performance metrics received from NFVI to generate performance measurements to be sent to NFV Orchestrator (NFVO) and VNF Manager (VNFM). VNFM and NFVO conduct further processing to generate performance measurements.

4.2 Use cases

4.2.1 Use case of virtual compute related measurements

Virtual compute related measurements are used to monitor the loading conditions of virtual compute resources that include memory and CPU. Monitoring parameters associated with the compute related measurements and of interest for a VNF can be declared in the VNFD (see ETSI GS NFV-IFA 011 [4]). The measurements can be used as the triggers to the scale VNF operation (see clause 7.2.4 in ETSI GS NFV-IFA 008 [3]).

When the measurement indicated that the virtualised resources are overloaded, it can trigger the scale out operation. When the measurement indicated that the virtualised resources are underloaded, it can trigger the scale in operation.

4.2.2 Use case of network data volume related measurements

Network data volume related measurements are used to measure the data volume of networking interfaces (see clause 7.1 in ETSI GS NFV-TST 008 [10], including incoming/outgoing of IP data packets and IP data octets. These measurements provide the traffic condition of the network interfaces. When the traffic condition is too high, then it may request the application to take appropriate action.

4.3 Measurements received at VIM

Table 4.3-1 lists the measurements received at VIM to be used to define the performance measurements in clause 6. The measurements are derived from the performance metrics defined in ETSI GS NFV-TST 008 [10].
Table 4.3-1: Measurements received at VIM

<table>
<thead>
<tr>
<th>Measurements received at VIM</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>cpu_utilization</td>
<td>Measure the percentage of CPU utilization in the measurement interval that can be derived from Processor Utilization metric (see clause 6.6 in ETSI GS NFV-TST 008 [10]).</td>
</tr>
<tr>
<td>memory_utilization</td>
<td>Measure the percentage of memory utilization in the measurement interval that can be derived from the amount of memory used, which is the sum of Memory Buffered, Memory Cached, Memory Free, Memory Slab (see clause 8.6 in ETSI GS NFV-TST 008 [10]), and the amount of memory allocated.</td>
</tr>
<tr>
<td>disk_utilization</td>
<td>Measure the percentage of disk utilization. See Annex A for an example of the measurement mapping from disk.usage and disk.allocation measurements. No disk metric is defined in ETSI GS NFV-TST 008 [10], since the methods of measurement for storage systems vary widely and depend on the implementation (see clause 8.9 in ETSI GS NFV-TST 008 [10]).</td>
</tr>
<tr>
<td>num_of_incoming_packets</td>
<td>Measure the number of incoming packets in the measurement interval that can be derived from received Packet Count metric (see clause 7.6 in ETSI GS NFV-TST 008 [10]).</td>
</tr>
<tr>
<td>num_of_outgoing_packets</td>
<td>Measure the number of outgoing packets in the measurement interval that can be derived from transmitted Packet Count metric (see clause 7.6 in ETSI GS NFV-TST 008 [10]).</td>
</tr>
<tr>
<td>num_of_incoming_bytes</td>
<td>Measure the number of incoming octets in the measurement interval that can be derived from received Octet Count metric (see clause 7.6 in ETSI GS NFV-TST 008 [10]).</td>
</tr>
<tr>
<td>num_of_outgoing_bytes</td>
<td>Measure the number of outgoing octets in the measurement interval that can be derived from transmitted Octet Count metric (see clause 7.6 in ETSI GS NFV-TST 008 [10]).</td>
</tr>
</tbody>
</table>

5 Performance measurement definition template

This clause defines the template to be used to describe the performance measurements.

a) **Description**

 This clause contains the description of the performance measurement.

b) **Collection Method**

 This clause contains the method in which this measurement is obtained:

 - **Status Counter (SC):** The entity receives a metric at each predetermined interval. A measurement is generated from processing (e.g. arithmetic mean, peak) all of the samples received in the collection period (see clause 7.7.2.2 in ETSI GS NFV-IFA 006 [2]).

 - **Transparent Forwarding (TF):** The entity maintains a measurement count that stores the content of the metric that it received.

 - **Object Mapping (OM):** The entity receives a metric for measured object A in the collection period and maps the received metric from measured object A to measured object B. A measurement is generated for measured object B by processing the metric(s), which may be mapped from one or more measured object(s) A to a single measured object B. It is noted that:
 - The source metric for measured object A and the target measurement for measured object B may or may not contain subcounters. How the mapping is done for the case that either of the source metric and target measurement contain subcounters is to be defined case by case in the trigger of the measurement definition.
 - Multiple source metrics for measured object A may be mapped to a single target measurement for measured object B. How the mapping is done for this case is to be defined in the trigger of the measurement definition.

c) **Trigger**

 This clause contains the trigger which causes the counter to be updated.
d) **Measurement Unit**

This clause contains the unit of the measurement value.

e) **Measurement Group**

This clause contains the group to which a measurement belongs.

f) **Measured Object Type**

This clause describes the object of a measurement. See clause 6 for the measured object types defined for the performance measurements specified in the present document.

g) **Measurement Name**

This clause describes the name of a measurement:

- The measurement name is used to identify a measurement. In case the sub-counter is used, the measurement is identified by \(<\text{measurement type}\.\text{<sub-counter name}>\).

- The measurement name is used to identify the performanceMetric in the performance report (e.g. see clause 9.7.6 of ETSI GS NFV-IFA 008 [3]).

- In the create PM Job operation, the measurement type is the content of performanceMetric to identify the type of measurement(s) to be collected (e.g. see clause 7.4.2.2 of ETSI GS NFV-IFA 008 [3]). The PM Job is applicable to the sub-counters, if the measurement contains sub-counters.

- Examples of measurement names without sub-counters are:
 - VcpuUsageMean;
 - VcpuUsagePeak.

- Examples of valid measurement names with sub-counters are:
 - VcpuUsageMeanVnf.vCompute1:
 - wherein the "vCompute1" is the value of computeId of the VirtualCompute Instance (see clause 8.4.3.2.2 of ETSI GS NFV-IFA 006 [2]).
 - VcpuUsageMeanVnf.vCompute2:
 - wherein the "vCompute2" is the value of computeId of the VirtualCompute Instance (see clause 8.4.3.2.2 of ETSI GS NFV-IFA 006 [2]).

h) **Measurement Context**

This clause describes the context information of a measurement at the time that the measurement is generated, see ETSI GS NFV-TST 008 [10] for more information. The measurement context provides additional information (than performance name and value) which could facilitate the measurement consumer to do the tasks that rely on more detailed information associated with the performance measurement, such as trouble shooting, VNF/VNFC scaling, etc.

The measurement context is only provided in case the measurement producer has knowledge about the context information.

Each measurement may have its specific context, so the detailed measurement context is defined in each measurement definition.
6 Measured object types

6.1 Introduction

This clause defines the measured object types for the performance measurements specified in the present document. Depending on the measurement type, the related measured object can be structured or unstructured. A measurement either relates to an object identified by a combination of object instance identifier and sub-object instance identifier (in case of a structured measured object), or to an object identified by an object instance identifier (in case of an unstructured measured object).

6.2 Measured object type definitions

6.2.1 Virtual compute

The measured object type "VirtualCompute" is used to collect and report the performance measurements for one or more instances of the Virtualised compute resource.

The objectType, when used in PM job or performance report, is equal to "VirtualCompute".

The objectInstanceId, when used in PM job or performance report, corresponds to computeId (see clause 8.4.3.2.2 of ETSI GS NFV-IFA 006 [2] or clause 8.4.3.2.2 of ETSI GS NFV-IFA 005 [1]) of the measured Virtualised compute resource.

6.2.2 VNF

The measured object type "Vnf" is used to collect and report the performance measurements for one or more VNF instances.

The objectType, when used in PM job or performance report, is equal to "Vnf".

The objectInstanceId, when used in PM job or performance report, corresponds to vnfInstanceId that identifies the measured VNF instance.

6.2.3 VNF component

The measured object type "Vnfc" is used to collect and report the performance measurements for one or more VNFC instances.

The objectType, when used in PM job or performance report, is equal to "Vnfc".

The objectInstanceId, when used in PM job or performance report, corresponds to vnfInstanceId of the VNF instance that contains the measured VNFC instance. The subObjectInstanceId, when used in PM job or performance report, corresponds to the vnfcInstanceId that identifies the measured VNFC instance.

6.2.4 Virtual network

The measured object type "VirtualNetwork" is used to collect and report the performance measurements for one or more instances of the virtual network.

The objectType, when used in PM job or performance report, is equal to "VirtualNetwork".

The objectInstanceId, when used in PM job or performance report, corresponds to networkResourceId (see clause 8.4.5.2 of ETSI GS NFV-IFA 006 [2] or clause 8.4.5.2 of ETSI GS NFV-IFA 005 [1]) of the measured virtual network instance.
6.2.5 Virtual storage

The measured object type "VirtualStorage" is used to collect and report the performance measurements for one or more instances of the Virtualised storage resource.

The objectType, when used in PM job or performance report, is equal to "VirtualStorage".

The objectInstanceId, when used in PM job or performance report, corresponds to storageId (see clause 8.4.7.2 of ETSI GS NFV-IFA 006 [2] or clause 8.4.7.2 of ETSI GS NFV-IFA 005 [1]) of the measured Virtualised storage resource.

6.2.6 Internal connection point of a VNF instance

The measured object type "VnfIntCp" is used to collect and report the performance measurements for one or more instances of the VNF internal CP.

The objectType, when used in PM job or performance report, is equal to "VnfIntCp".

The objectInstanceId, when used in PM job or performance report, corresponds to the vnfInstanceId of the VNF instance which the VNF internal CP belongs to. The subObjectInstanceId, when used in PM job or performance report, corresponds to the instance identifier of the measured VNF internal CP instance.

6.2.7 External connection point of a VNF instance

The measured object type "VnfExtCp" is used to collect and report the performance measurements for one or more instances of the VNF external CP.

The objectType, when used in PM job or performance report, is equal to "VnfExtCp".

The objectInstanceId, when used in PM job or performance report, corresponds to the vnfInstanceId of the VNF instance that exposes the measured VNF external CP instance. The subObjectInstanceId, when used in PM job or performance report, corresponds to the instance identifier of the measured VNF external CP instance.

6.2.8 Service access point

The measured object type "Sap" is used to collect and report the performance measurements for one or more SAP instances of an NS instance.

The objectType, when used in PM job or performance report, is equal to "Sap".

The objectInstanceId, when used in PM job or performance report, corresponds to the NsInstanceId of the NS instance that exposes the measured SAP. The subObjectInstanceId, when used in PM job or performance report, corresponds to the instance identifier of the measured SAP instance

7 Performance measurements

7.1 Performance measurements produced by VIM

7.1.1 Introduction

The performance measurements defined in this clause 7.1 are applicable to the following reference points:

- Vi-Vnfm;
- Or-Vi (for indirect mode of resource allocation, in case indirect mode is supported).

7.1.2 Mean virtual CPU usage

a) Description: This measurement provides the mean virtual CPU usage of the Virtualised compute resource.
b) **Collection Method:** SC.

c) **Trigger:** VIM receives the cpu_utilization measurement for the virtual compute instance from NFVI at the pre-defined interval, and then takes the arithmetic mean of the virtual CPU usage metrics received in the collection period.

d) **Measurement Unit:** Each measurement is a real value (Unit: %).

e) **Measurement Group:** VirtualisedComputeResource.

f) **Measured Object Type:** VirtualCompute.

g) **Measurement Name:** VCPUUsageMean.

h) **Measurement Context:**

- **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last cpu_utilization measurement received from NFVI in the collection period.

- **TickInterval:** Indicates the tick interval (see ETSI GS NFV-TST 008 [10]) of the last cpu_utilization measurement received from NFVI in the collection period.

- **MeasurementInterval:** Equals the "number of cpu_utilization measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the cpu_utilization measurements" received from NFVI in the collection period.

- **ExecutionContext:** Indicates the execution context (see ETSI GS NFV-TST 008 [10]) of the cpu_utilization measurement with peak value received from NFVI in the collection period. When a single "non-Idle" VCPU Utilization is required, the sum of the utilization of all the non-Idle execution contexts should be reported as the "active" execution context.

7.1.3 Peak virtual CPU usage

a) **Description:** This measurement provides the peak virtual CPU usage of the Virtualised compute resource.

b) **Collection Method:** SC.

c) **Trigger:** VIM receives the cpu_utilization measurement for the virtual compute instance from NFVI at the pre-defined interval, and then selects the maximum metric among the virtual CPU usage metrics received in the collection period.

d) **Measurement Unit:** Each measurement is a real value (Unit: %).

e) **Measurement Group:** VirtualisedComputeResource.

f) **Measured Object Type:** VirtualCompute.

g) **Measurement Name:** VCPUUsagePeak.

h) **Measurement Context:**

- **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the cpu_utilization measurement with peak value received from NFVI in the collection period.

- **TickInterval:** Indicates the tick interval (see ETSI GS NFV-TST 008 [10]) of the cpu_utilization measurement with peak value received from NFVI in the collection period.

- **MeasurementInterval:** Equals the "number of cpu_utilization measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the cpu_utilization measurements" received from NFVI in the collection period.

- **ExecutionContext:** Indicates the execution context (see ETSI GS NFV-TST 008 [10]) of the cpu_utilization measurement with peak value received from NFVI in the collection period. When a single "non-Idle" VCPU Utilization is required, the sum of the utilization of all the non-Idle execution contexts should be reported as the "active" execution context.
7.1.4 Mean memory usage

a) **Description:** This measurement provides the mean memory usage of the Virtualised compute resource.

b) **Collection Method:** SC.

c) **Trigger:** VIM receives the memory_utilization measurement for the virtual compute instance from NFVI at the pre-defined interval, and then takes the arithmetic mean of the memory usage metrics received in the collection period.

d) **Measurement Unit:** Each measurement is a real value (Unit: %).

e) **Measurement Group:** VirtualisedComputeResource.

f) **Measured Object Type:** VirtualCompute.

g) **Measurement Name:** VMemoryUsageMean.

h) **Measurement Context:**
- **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last memory_utilization measurement received from NFVI in the collection period.
- **MeasurementInterval:** Equals the "number of memory_utilization measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the memory_utilization measurements" received from NFVI in the collection period.
- **MeasurementSystemRam:** Indicates the system RAM (see ETSI GS NFV-TST 008 [10]) of the measured Virtualised compute resource.
- **MeasurementSystemSwapSpace:** Indicates the system SWAP space (see ETSI GS NFV-TST 008 [10]) of the measured Virtualised compute resource.

7.1.5 Peak memory usage

a) **Description:** This measurement provides the peak memory usage of the Virtualised compute resource.

b) **Collection Method:** SC.

c) **Trigger:** VIM receives the memory_utilization measurement for the virtual compute instance from NFVI at the pre-defined interval, and then selects the maximum metric among the memory usage metrics received in the collection period.

d) **Measurement Unit:** Each measurement is a real value (Unit: %).

e) **Measurement Group:** VirtualisedComputeResource.

f) **Measured Object Type:** VirtualCompute.

g) **Measurement Name:** VMemoryUsagePeak.

h) **Measurement Context:**
- **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last memory_utilization measurement with peak value received from NFVI in the collection period.
- **MeasurementInterval:** Equals the "number of memory_utilization measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the memory_utilization measurements" received from NFVI in the collection period.
- **MeasurementSystemRam:** Indicates the system RAM (see ETSI GS NFV-TST 008 [10]) of the measured Virtualised compute resource.
- **MeasurementSystemSwapSpace:** Indicates the system SWAP space (see ETSI GS NFV-TST 008 [10]) of the measured Virtualised compute resource.
7.1.6 Mean disk usage

a) **Description:** This measurement provides the mean disk usage of the Virtualised compute resource.

b) **Collection Method:** SC.

c) **Trigger:** VIM receives the disk_utilization measurement for the virtual compute instance from NFVI at the pre-defined interval, and then takes the arithmetic mean of the disk usage metrics received in the collection period.

d) **Measurement Unit:** Each measurement is a real value (Unit: %).

e) **Measurement Group:** VirtualisedComputeResource.

f) **Measured Object Type:** VirtualCompute.

g) **Measurement Name:** VDiskUsageMean.

h) **Measurement Context:**

- **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last disk_utilization measurement received from NFVI in the collection period.

- **MeasurementInterval:** Equals the "number of disk_utilization measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the disk_utilization measurements" received from NFVI in the collection period.

7.1.7 Peak disk usage

a) **Description:** This measurement provides the peak disk usage of the Virtualised Compute Resource.

b) **Collection Method:** SC.

c) **Trigger:** VIM receives the disk_utilization measurement for the virtual compute instance from NFVI at the pre-defined interval, and then selects the maximum metric among the disk usage metrics received in the collection period.

d) **Measurement Unit:** Each measurement is a real value (Unit: %).

e) **Measurement Group:** VirtualisedComputeResource.

f) **Measured Object Type:** VirtualCompute.

g) **Measurement Name:** VDiskUsagePeak.

h) **Measurement Context:**

- **MeasurementEndTime:** It indicates the end time (see ETSI GS NFV-TST 008 [10]) of the disk_utilization measurement with peak value received from NFVI in the collection period.

- **MeasurementInterval:** Equals the "number of disk_utilization measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the disk_utilization measurements" received from NFVI in the collection period.

7.1.8 Number of incoming bytes on virtual compute

a) **Description:** This measurement provides the number of bytes received at the virtual compute. This measurement is split into subcounters per virtual network interface, which is the communication endpoint under an instantiated compute resource.

b) **Collection Method:** OM.
c) **Trigger:** VIM receives one or more `num_of_incoming_bytes` measurement for a virtual network interface from NFVI in the collection period, and maps the received `num_of_incoming_bytes` measurement(s) from the virtual network interface to the Virtual Compute instance. The VIM generates the measurement for the subject Virtual Compute instance by assigning the value of the received `num_of_incoming_bytes` measurement(s) to the sub-counter(s) per virtual network interface.

d) **Measurement Unit:** Each measurement is a real value.

e) **Measurement Group:** VirtualNetworkInterface.

f) **Measured Object Type:** VirtualCompute.

g) **Measurement Name:** `VNetByteIncoming.vNetItfId`, where `vNetItfId` is equal to the resourceId of the measured virtual network interface.

h) **Measurement Context:**
 - **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last `num_of_incoming_bytes` measurement received from NFVI for the measured virtual network interface in the collection period.
 - **MeasurementInterval:** Equals the "number of `num_of_incoming_bytes` measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the `num_of_incoming_bytes` measurements" received from NFVI for the measured virtual network interface in the collection period.
 - **MeasurementInterfaceStatus:** Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last `num_of_incoming_bytes` measurement received from NFVI for the measured virtual network interface in the collection period is generated.

7.1.9 Number of outgoing bytes on virtual compute

a) **Description:** This measurement provides the number of bytes transmitted at the virtual compute. This measurement is split into subcounters per virtual network interface, which is the communication endpoint under an instantiated compute resource.

b) **Collection Method:** OM.

c) **Trigger:** VIM receives one or more `num_of_outgoing_bytes` measurement for a virtual network interface from NFVI in the collection period, and maps the received `num_of_outgoing_bytes` measurement(s) from the virtual network interface to the Virtual Compute instance. The VIM generates the measurement for the subject Virtual Compute instance by assigning the value of the received `num_of_outgoing_bytes` measurement(s) to the sub-counter(s) per virtual network interface.

d) **Measurement Unit:** Each measurement is an integer value.

e) **Measurement Group:** VirtualNetworkInterface.

f) **Measured Object Type:** VirtualCompute.

g) **Measurement Name:** `VNetByteOutgoing.vNetItfId`, where `vNetItfId` is equal to the resourceId of the measured virtual network interface.

h) **Measurement Context:**
 - **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last `num_of_outgoing_bytes` measurement received from NFVI for the measured virtual network interface in the collection period.
 - **MeasurementInterval:** Equals the "number of `num_of_outgoing_bytes` measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the `num_of_outgoing_bytes` measurements" received from NFVI for the measured virtual network interface in the collection period.
 - **MeasurementInterfaceStatus:** Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last `num_of_outgoing_bytes` measurement received from NFVI for the measured virtual network interface in the collection period is generated.
7.1.10 Number of incoming packets on virtual compute

a) **Description:** This measurement provides the number of packets received at the virtual compute. This measurement is split into subcounters per virtual network interface, which is the communication endpoint under an instantiated compute resource.

b) **Collection Method:** OM.

c) **Trigger:** VIM receives one or more num_of_incoming_packets measurement for a virtual network interface from NFVI in the collection period, and maps the received num_of_incoming_packets measurement(s) from the virtual network interface to the Virtual Compute instance. The VIM generates the measurement for the subject Virtual Compute instance by assigning the value of the received num_of_incoming_packets measurement(s) to the sub-counter(s) per virtual network interface.

d) **Measurement Unit:** Each measurement is an integer value.

e) **Measurement Group:** VirtualNetworkInterface.

f) **Measured Object Type:** VirtualCompute.

g) **Measurement Name:** VNetPacketIncoming.vNetItfId, where vNetItfId is equal to the resourceId of the measured virtual network interface.

h) **Measurement Context:**
 - **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last num_of_incoming_packets measurement received from NFVI for the measured virtual network interface in the collection period.
 - **MeasurementInterval:** Equals the "number of num_of_incoming_packets measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the num_of_incoming_packets measurements" received from NFVI for the measured virtual network interface in the collection period.
 - **MeasurementInterfaceStatus:** Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last num_of_incoming_packets measurement received from NFVI for the measured virtual network interface in the collection period is generated.

7.1.11 Number of outgoing packets on virtual compute

a) **Description:** This measurement provides the number of packets transmitted at the virtual compute. This measurement is split into subcounters per virtual network interface, which is the communication endpoint under an instantiated compute resource.

b) **Collection Method:** OM.

c) **Trigger:** VIM receives one or more num_of_outgoing_packets measurement for a virtual network interface from NFVI in the collection period, and maps the received num_of_outgoing_packets measurement(s) from the virtual network interface to the Virtual Compute instance. The VIM generates the measurement for the subject Virtual Compute instance by assigning the value of the received num_of_outgoing_packets measurement(s) to the sub-counter(s) per virtual network interface.

d) **Measurement Unit:** Each measurement is an integer value.

e) **Measurement Group:** VirtualNetworkInterface.

f) **Measured Object Type:** VirtualCompute.

g) **Measurement Name:** VNetPacketOutgoing.vNetItfId, where vNetItfId is equal to the resourceId of the measured virtual network interface.

h) **Measurement Context:**
 - **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last num_of_outgoing_packets measurement received from NFVI for the measured virtual network interface in the collection period.
- **MeasurementInterval**: Equals the "number of num_of_outgoing_packets measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of num_of_outgoing_packets measurements" received from NFVI for the measured virtual network interface in the collection period.

- **MeasurementInterfaceStatus**: Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last num_of_outgoing_packets measurement received from NFVI for the measured virtual network interface in the collection period is generated.

7.1.12 Number of incoming bytes of a virtual network

a) **Description**: This measurement provides the number of bytes received at a virtual network instance. This measurement is split into subcounters per virtual network port.

b) **Collection Method**: OM.

c) **Trigger**: VIM receives one or more measurements indicating the number of incoming bytes for a virtual network port of a virtual network instance from NFVI in the collection period, and maps the received measurement(s) from the virtual network port to the virtual network instance. The VIM generates the measurement for the subject virtual network instance by assigning the value, or summing up multiple values, of the received measurement(s) to the sub-counter(s) per virtual network port.

d) **Measurement Unit**: Each measurement is an integer value.

e) **Measurement Group**: VirtualisedNetworkResource.

f) **Measured Object Type**: VirtualNetwork.

g) **Measurement Name**: ByteIncoming.vNPort, where vNPort is equal to the resourceId of the measured virtual network port.

h) **Measurement Context**:

 - **MeasurementEndTime**: Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last measurement indicating the number of incoming bytes of the measured virtual network port received from NFVI in the collection period.

 - **MeasurementInterval**: Equals the "number of measurements indicating the number of incoming bytes" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of measurements indicating the number of incoming bytes" received from NFVI for the measured virtual network port in the collection period.

 - **MeasurementInterfaceStatus**: Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last measurement indicating the number of incoming bytes of the measured virtual network port received from NFVI in the collection period is generated.

7.1.13 Number of outgoing bytes of a virtual network

a) **Description**: This measurement provides the number of bytes transmitted at a virtual network instance. This measurement is split into subcounters per virtual network port.

b) **Collection Method**: OM.

c) **Trigger**: VIM receives one or more measurements indicating the number of outgoing bytes for a virtual network port of a virtual network instance from NFVI in the collection period, and maps the received measurement(s) from the virtual network port to the virtual network instance. The VIM generates the measurement for the subject virtual network instance by assigning the value, or summing up multiple values, of the received measurement(s) to the sub-counter(s) per virtual network port.

d) **Measurement Unit**: Each measurement is an integer value.

e) **Measurement Group**: VirtualisedNetworkResource.

f) **Measured Object Type**: VirtualNetwork.
g) **Measurement Name:** ByteOutgoing.\textsubscript{vNPort}, where \textsubscript{vNPort} is equal to the \textit{resourceId} of the measured virtual network port.

h) **Measurement Context:**
- **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last measurement indicating the number of outgoing bytes of the measured virtual network port received from NFVI in the collection period.
- **MeasurementInterval:** Equals the "number of measurements indicating the number of outgoing bytes" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of measurements indicating the number of outgoing bytes" received from NFVI for the measured virtual network port in the collection period.
- **MeasurementInterfaceStatus:** Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last measurement indicating the number of outgoing bytes of the measured virtual network port received from NFVI in the collection period is generated.

7.1.14 Number of incoming packets of a virtual network

a) **Description:** This measurement provides the number of packets received at a virtual network instance. This measurement is split into subcounters per virtual network port.

b) **Collection Method:** OM.

c) **Trigger:** VIM receives one or more measurements indicating the number of incoming packets for a virtual network port of a virtual network instance from NFVI in the collection period, and maps the received measurement(s) from the virtual network port to the virtual network instance. The VIM generates the measurement for the subject virtual network instance by assigning the value, or summing up multiple values, of the received measurement(s) to the sub-counter(s) per virtual network port.

d) **Measurement Unit:** Each measurement is an integer value.

e) **Measured Object Type:** VirtualNetwork.

f) **Measurement Name:** PacketIncoming.\textsubscript{vNPort}, where \textsubscript{vNPort} is equal to the \textit{resourceId} of the measured virtual network port.

h) **Measurement Context:**
- **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last measurement indicating the number of incoming packets of the measured virtual network port received from NFVI in the collection period.
- **MeasurementInterval:** Equals the "number of measurements indicating the number of incoming packets" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of measurements indicating the number of incoming packets" received from NFVI for the measured virtual network port in the collection period.
- **MeasurementInterfaceStatus:** Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last measurement indicating the number of incoming packets of the measured virtual network port received from NFVI in the collection period is generated.

7.1.15 Number of outgoing packets of a virtual network

a) **Description:** This measurement provides the number of packets transmitted at a virtual network instance. This measurement is split into subcounters per virtual network port.

b) **Collection Method:** OM.
c) **Trigger:** VIM receives one or more measurements indicating the number of outgoing packets for a virtual network port of a virtual network instance from NFVI in the collection period, and maps the received measurement(s) from the virtual network port to the virtual network instance. The VIM generates the measurement for the subject virtual network instance by assigning the value, or summing up multiple values, of the received measurement(s) to the sub-counter(s) per virtual network port.

d) **Measurement Unit:** Each measurement is an integer value.

e) **Measurement Group:** VirtualisedNetworkResource.

f) **Measured Object Type:** VirtualNetwork.

g) **Measurement Name:** PacketOutgoing.vPort, where vPort is equal to the resourceId of the measured virtual network port.

h) **Measurement Context:**
 - **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last measurement indicating the number of outgoing packets of the measured virtual network port received from NFVI in the collection period.
 - **MeasurementInterval:** Equals the "number of measurements indicating the number of outgoing packets" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of measurements indicating the number of outgoing packets" received from NFVI for the measured virtual network port in the collection period.
 - **MeasurementInterfaceStatus:** Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last measurement indicating the number of outgoing packets of the measured virtual network port received from NFVI in the collection period is generated.

7.1.16 Mean usage of Virtualised storage resource

a) **Description:** This measurement provides the mean usage of a Virtualised storage resource.

b) **Collection Method:** TF.

c) **Trigger:** VIM receives one or more measurements indicating the usage of a Virtualised storage resource from NFVI in the collection period, and generates the measurement by averaging multiple values of the received measurement(s).

d) **Measurement Unit:** Each measurement is a real value (Unit: %).

e) **Measurement Group:** VirtualisedStorageResource.

f) **Measured Object Type:** VirtualStorage.

g) **Measurement Name:** UsageMeanVStorage.

h) **Measurement Context:**
 - **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last measurement indicating the usage of the virtualised storage resource received from NFVI in the collection period.
 - **MeasurementInterval:** Equals the "number of measurements indicating the usage of the Virtualised storage resource" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of measurements indicating the usage of the Virtualised storage resource" received from NFVI for the measured Virtualised storage resource in the collection period.

7.1.17 Peak usage of Virtualised storage resource

a) **Description:** This measurement provides the peak usage of a Virtualised storage resource.

b) **Collection Method:** TF.
c) **Trigger**: VIM receives one or more measurements indicating the usage of a Virtualised storage resource from NFVI in the collection period, and generates the measurement by taking the maximum of multiple values of the received measurement(s).

d) **Measurement Unit**: Each measurement is a real value (Unit: %).

e) **Measurement Group**: VirtualisedStorageResource.

f) **Measured Object Type**: VirtualStorage.

g) **Measurement Name**: UsagePeakVStorage.

h) **Measurement Context**:

 - **MeasurementEndTime**: Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the measurement indicating the usage of the virtualised storage resource received from NFVI in the collection period.

 - **MeasurementInterval**: Equals the "number of measurements indicating the usage of the Virtualised storage resource" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of measurements indicating the usage of the Virtualised storage resource" received from NFVI for the measured Virtualised storage resource in the collection period.

7.2 Performance measurements produced by VNFM

7.2.1 Introduction

The performance measurements defined in this clause 7.2 are applicable to the following reference points:

- Ve-Vnfm-em.
- Or-Vnfm, with the exceptions that measurements do not apply which are related to aspects internal to the VNF instance, as follows:
 - the measured object type "VNFC" does not apply to this reference point;
 - the measured object type "VnfIntCp" do not apply to this reference point, unless the measured connection point is related to an externally-manged internal virtual link.

7.2.2 Mean virtual CPU usage of VNF/VNFC instance

a) **Description**: This measurement provides the mean virtual CPU usage of the underlying Virtual Compute instance(s), related to a VNF instance, or to a VNFC instance in a VNF instance. This measurement is split into sub-counters per Virtual Compute instance.

b) **Collection Method**: OM.

c) **Trigger**: VNFM receives one or more VCPUUsageMean measurement(s) (see clause 7.1.2) for the VirtualCompute instance(s) from the VIM in the collection period, and maps the received VCPUUsageMean measurement(s) from the VirtualCompute instance to the VNF instance, or the combination of VNF instance and VNFC instance. The VNFM generates the measurement for the subject VNF/VNFC instance by assigning the value or averaging multiple values of the received VCPUUsageMean measurement(s) to the sub-counter(s) per VirtualCompute instance.

d) **Measurement Unit**: Each measurement is a real value (Unit: %).

e) **Measurement Group**: VirtualisedComputeResource.

f) **Measured Object Type**: VNF, VNFC.

g) **Measurement Name**: VCPUUsageMeanVnf.vComputeId, where vComputeId is equal to the objectInstanceId of the measured object of the mapped measurement.
Measurement Context:

- **MeasurementEndTime**: Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last VcpuUsageMean measurement received from NFVI for the measured Virtualised compute resource in the collection period.

- **TickInterval**: Indicates the tick interval (see ETSI GS NFV-TST 008 [10]) of the last VcpuUsageMean measurement received from NFVI for the measured Virtualised compute resource in the collection period.

- **MeasurementInterval**: Equals the "number of VcpuUsageMean measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the VcpuUsageMean measurements" received from NFVI for the measured Virtualised compute resource in the collection period.

- **ExecutionContext**: Indicates the execution context (see ETSI GS NFV-TST 008 [10]) of the VcpuUsageMean measurements received from NFVI for the measured Virtualised compute resource in the collection period. When a single "non-Idle" VCPU Utilization is required, the sum of the utilization of all the non-Idle execution contexts should be reported as the "active" execution context.

7.2.3 Peak virtual CPU usage of VNF/VNFC instance

a) **Description**: This measurement provides the peak virtual CPU usage of the underlying Virtual Compute instance(s) related to a VNF instance or to a VNFC instance in a VNF instance. This measurement is split into sub-counters per Virtual Compute instance.

b) **Collection Method**: OM.

c) **Trigger**: VNFM receives one or more VcpuUsagePeak measurement(s) (see clause 7.1.3) for the VirtualCompute instance(s) from the VIM in the collection period, and maps the received VcpuUsagePeak measurement(s) from the VirtualCompute instance to the VNF instance, or the combination of VNF instance and VNFC instance. The VNFM generates the measurement for the subject VNF/VNFC instance by assigning the value, or taking the maximum of multiple values of the received VcpuUsagePeak measurement(s) to the sub-counter(s) per VirtualCompute instance.

d) **Measurement Unit**: Each measurement is a real value (Unit: %).

e) **Measurement Group**: VirtualisedComputeResource.

f) **Measured Object Type**: VNF, VNFC.

g) **Measurement Name**: VcpuUsagePeakVnf.vComputeId, where vComputeId is equal to the objectInstanceId of the measured object of the mapped measurement.

h) **Measurement Context**:

- **MeasurementEndTime**: Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last VcpuUsageMean measurement received from NFVI for the measured Virtualised compute resource in the collection period.

- **TickInterval**: Indicates the tick interval (see ETSI GS NFV-TST 008 [10]) of the VcpuUsageMean measurement with peak value received from NFVI for the measured Virtualised compute resource in the collection period.

- **MeasurementInterval**: Equals the "number of VcpuUsageMean measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the VcpuUsageMean measurements" received from NFVI for the measured Virtualised compute resource in the collection period.

- **ExecutionContext**: Indicates the execution context (see ETSI GS NFV-TST 008 [10]) of the VcpuUsageMean measurements received from NFVI for the measured Virtualised compute resource in the collection period. When a single "non-Idle" VCPU Utilization is required, the sum of the utilization of all the non-Idle execution contexts should be reported as the "active" execution context.
7.2.4 Mean memory usage of VNF/VNFC instance

a) **Description:** This measurement provides the mean memory usage of the underlying Virtual Compute instance(s) related to a VNF instance or to a VNFC instance in a VNF instance. This measurement is split into sub-counters per Virtual Compute instance.

b) **Collection Method:** OM.

c) **Trigger:** VNFM receives one or more VMemoryUsageMean measurement(s) (see clause 7.1.4) for the VirtualCompute instance(s) from the VIM in the collection period, and maps the received VMemoryUsageMean measurement(s) from the VirtualCompute instance to the VNF instance, or the combination of VNF instance and VNFC instance. The VNFM generates the measurement for the subject VNF/VNFC instance by assigning the value or averaging the multiple values of the received VMemoryUsageMean measurement(s) to the sub-counter(s) per VirtualCompute instance.

d) **Measurement Unit:** Each measurement is a real value (Unit: %).

e) **Measurement Group:** VirtualisedComputeResource.

f) **Measured Object Type:** VNF, VNFC.

g) **Measurement Name:** VMemoryUsageMeanVnf.vComputeId, where vComputeId is equal to the objectInstanceId of the measured object of the mapped measurement.

h) **Measurement Context:**
 - **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last VMemoryUsageMean measurement received from NFVI for the measured Virtualised compute resource in the collection period.
 - **MeasurementInterval:** Equals the "number of VMemoryUsageMean measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the VMemoryUsageMean measurements" received from NFVI for the measured Virtualised compute resource in the collection period.
 - **MeasurementSystemRam:** Indicates the system RAM (see ETSI GS NFV-TST 008 [10]) of the measured Virtualised compute resource.
 - **MeasurementSystemSwapSpace:** Indicates the system SWAP space (see ETSI GS NFV-TST 008 [10]) of the measured Virtualised compute resource.

7.2.5 Peak memory usage of VNF/VNFC instance

a) **Description:** This measurement provides the peak memory usage of the underlying Virtual Compute instance(s) related to a VNF instance or to a VNFC instance in a VNF instance. This measurement is split into sub-counters per Virtual Compute instance.

b) **Collection Method:** OM.

c) **Trigger:** VNFM receives one or more VMemoryUsagePeak measurement(s) (see clause 7.1.5) for the VirtualCompute instance(s) from the VIM in the collection period, and maps the received VMemoryUsagePeak measurement(s) from the VirtualCompute instance to the VNF instance, or the combination of VNF instance and VNFC instance. The VNFM generates the measurement for the subject VNF/VNFC instance by assigning the value or taking the maximum of multiple values of the received VMemoryUsagePeak measurement(s) to the sub-counter(s) per VirtualCompute instance.

d) **Measurement Unit:** Each measurement is a real value (Unit: %).

e) **Measurement Group:** VirtualisedComputeResource.

f) **Measured Object Type:** VNF, VNFC.

g) **Measurement Name:** VMemoryUsagePeakVnf.vComputeId, where vComputeId is equal to the objectInstanceId of the measured object of the mapped measurement.
h) Measurement Context:

- **MeasurementEndTime**: Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the VMemoryUsageMean measurement with peak value received from NFVI for the measured Virtualised compute resource in the collection period.

- **MeasurementInterval**: Equals the "number of VMemoryUsageMean measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10])" of the VMemoryUsageMean measurements" received from NFVI for the measured Virtualised compute resource in the collection period.

- **MeasurementSystemRam**: Indicates the system RAM (see ETSI GS NFV-TST 008 [10]) of the measured Virtualised compute resource.

- **MeasurementSystemSwapSpace**: Indicates the system SWAP space (see ETSI GS NFV-TST 008 [10]) of the measured Virtualised compute resource.

7.2.6 Mean disk usage of VNF/VNFC instance

a) **Description**: This measurement provides the mean disk usage of the underlying Virtual Compute instance related to a VNF instance or to a VNFC instance in a VNF instance. This measurement is split into sub-counters per Virtual Compute instance.

b) **Collection Method**: OM.

c) **Trigger**: VNFM receives one or more VDiskUsageMean measurement(s) (see clause 7.1.6) for the VirtualCompute instance(s) from the VIM in the collection period, and maps the received VDiskUsageMean measurement(s) from the VirtualCompute instance to the VNF instance, or the combination of VNF instance and VNFC instance. The VNFM generates the measurement for the subject VNF/VNFC instance by assigning the value, or averaging the multiple values of the received VDiskUsageMean measurement(s) to the sub-counter(s) per VirtualCompute instance.

d) **Measurement Unit**: Each measurement is a real value (Unit: %).

e) **Measurement Group**: VirtualisedComputeResource.

f) **Measured Object Type**: VNF, VNFC.

g) **Measurement Name**: VDiskUsageMeanVnf.vComputerId, where vComputerId is equal to the objectInstanceId of the measured object of the mapped measurement.

h) Measurement Context:

- **MeasurementEndTime**: Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last VDiskUsageMean measurement received from NFVI for the measured Virtualised compute resource in the collection period.

- **MeasurementInterval**: Equals the "number of VDiskUsageMean measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10])" of the VDiskUsageMean measurements" received from NFVI for the measured Virtualised compute resource in the collection period.

7.2.7 Peak disk usage of VNF/VNFC instance

a) **Description**: This measurement provides the peak disk usage of the underlying Virtual Compute instances related to a VNF instance or to a VNFC instance in a VNF instance. This measurement is split into sub-counters per Virtual Compute instance.

b) **Collection Method**: OM.

c) **Trigger**: VNFM receives one or more VDiskUsagePeak measurement(s) (see clause 7.1.7) for the VirtualCompute instance(s) from the VIM in the collection period, and maps the received VDiskUsagePeak measurement(s) from the VirtualCompute instance to the VNF instance, or the combination of VNF instance and VNFC instance. The VNFM generates the measurement for the subject VNF/VNFC instance by assigning the value or taking the maximum of multiple values of the received VDiskUsagePeak measurement(s) to the sub-counter(s) per VirtualCompute instance.
d) **Measurement Unit**: Each measurement is a real value (Unit: %).

e) **Measurement Group**: VirtualisedComputeResource.

f) **Measured Object Type**: VNF, VNFC.

g) **Measurement Name**: VDiskUsagePeakVnf.\(v\text{ComputeId}\), where \(v\text{ComputeId}\) is equal to the \(\text{objectInstanceId}\) of the measured object of the mapped measurement.

h) **Measurement Context**:
 - **MeasurementEndTime**: Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the VDiskUsageMean measurement with peak value received from NFVI for the measured Virtualised compute resource in the collection period.
 - **MeasurementInterval**: Equals the "number of VDiskUsageMean measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the VDiskUsageMean measurements" received from NFVI for the measured Virtualised compute resource in the collection period.

7.2.8 Number of incoming bytes of VNF internal CP

a) **Description**: This measurement provides the number of bytes received by a VNF internal Connection Point (CP).

b) **Collection Method**: OM.

c) **Trigger**: VNFM receives one or more VNetByteIncoming.\(v\text{NetIfId}\) measurement(s) (see clause 7.1.8) for the Virtual Compute instance(s) from the VIM in the collection period, and maps the received VNetByteIncoming.\(v\text{NetIfId}\) measurement(s) from the Virtual Compute instance to the VNF internal CP instance. The VNFM generates the measurement for the subject VNF internal CP instance by assigning the value, or summing up multiple values, of the mapped VNetByteIncoming.\(v\text{NetIfId}\) subcounter(s).

d) **Measurement Unit**: Each measurement is an integer value.

e) **Measurement Group**: VnfInternalCP.

f) **Measured Object Type**: VnfIntCP.

g) **Measurement Name**: ByteIncomingVnfIntCp.

h) **Measurement Context**:
 - **MeasurementEndTime**: Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last VNetByteIncoming.\(v\text{NetIfId}\) measurement received from NFVI for the measured CP in the collection period.
 - **MeasurementInterval**: Equals the "number of VNetByteIncoming.\(v\text{NetIfId}\) measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the VNetByteIncoming.\(v\text{NetIfId}\) measurements" received from NFVI for the measured CP in the collection period.
 - **MeasurementInterfaceStatus**: Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last VNetByteIncoming.\(v\text{NetIfId}\) measurement received from NFVI for the measured CP in the collection period is generated.

7.2.9 Number of outgoing bytes of VNF internal CP

a) **Description**: This measurement provides the number of bytes transmitted by a VNF internal CP.

b) **Collection Method**: OM.
c) **Trigger:** VNFM receives one or more VNetByteOutgoing.vNetIfId measurement(s) (see clause 7.1.9) for the Virtual Compute instances from the VIM in the collection period, and maps the received VNetByteOutgoing.vNetIfId measurement(s) from the Virtual Compute instance to the VNF internal CP instance. The VNFM generates the measurement for the subject VNF internal CP instance by mapping the value of vNetIfId to the CP of the VNFC instance, and assigning the value, or summing up multiple values, of the mapped VNetByteOutgoing.vNetIfId subcounter(s).

d) **Measurement Unit:** Each measurement is an integer value.

e) **Measured Group:** VnfInternalCP.

f) **Measured Object Type:** VnfIntCP.

g) **Measurement Name:** ByteOutgoingVnfIntCp.

h) **Measurement Context:**

- **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last VNetByteOutgoing.vNetIfId measurement received from NFVI for the measured CP in the collection period.

- **MeasurementInterval:** Equals the "number of VNetByteOutgoing.vNetIfId measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the VNetByteOutgoing.vNetIfId measurements" received from NFVI for the measured CP in the collection period.

- **MeasurementInterfaceStatus:** Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last VNetByteOutgoing.vNetIfId measurement received from NFVI for the measured CP in the collection period is generated.

7.2.10 **Number of incoming packets of VNF internal CP**

a) **Description:** This measurement provides the number of packets received by a VNF internal CP.

b) **Collection Method:** OM.

c) **Trigger:** VNFM receives one or more VNetPacketIncoming.vNetIfId measurement(s) (see clause 7.1.10) for the Virtual Compute instances from the VIM in the collection period, and maps the received VNetPacketIncoming.vNetIfId measurement(s) from the Virtual Compute instance to the VNF internal CP instance. The VNFM generates the measurement for the subject VNF internal CP instance by mapping the value of vNetIfId to the CP of the VNFC instance, and assigning the value, or summing up multiple values, of the mapped VNetPacketIncoming.vNetIfId subcounter(s).

d) **Measurement Unit:** Each measurement is an integer value.

e) **Measurement Group:** VnfInternalCP.

f) **Measured Object Type:** VnfIntCP.

g) **Measurement Name:** PacketIncomingVnfIntCp.

h) **Measurement Context:**

- **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last VNetPacketIncoming.vNetIfId measurement received from NFVI for the measured CP in the collection period.

- **MeasurementInterval:** Equals the "number of VNetPacketIncoming.vNetIfId measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the VNetPacketIncoming.vNetIfId measurements" received from NFVI for the measured CP in the collection period.

- **MeasurementInterfaceStatus:** Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last VNetPacketIncoming.vNetIfId measurement received from NFVI for the measured CP in the collection period is generated.
7.2.11 Number of outgoing packets of VNF internal CP

a) **Description:** This measurement provides the number of packets transmitted by a VNF internal CP.

b) **Collection Method:** OM.

c) **Trigger:** VNFM receives one or more VNetPacketOutgoing.vNetIfId measurement(s) (see clause 7.1.11) for the Virtual Compute instances from the VIM in the collection period, and maps the received VNetPacketOutgoing.vNetIfId measurement(s) from the Virtual Compute instance to the VNF internal CP instance. The VNFM generates the measurement for the subject VNF internal CP instance by mapping the value of vNetIfId to the CP of the VNF instance, and assigning the value, or summing up multiple values, of the mapped VNetPacketOutgoing.vNetIfId subcounter(s).

d) **Measurement Unit:** Each measurement is an integer value.

e) **Measurement Group:** VnfInternalCP.

f) **Measured Object Type:** VnfIntCP.

g) **Measurement Name:** PacketOutgoingVnfIntCp.

h) **Measurement Context:**

 - **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last VNetPacketOutgoing.vNetIfId measurement received from NFVI for the measured CP in the collection period.

 - **MeasurementInterval:** Equals the "number of VNetPacketOutgoing.vNetIfId measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the VNetPacketOutgoing.vNetIfId measurements" received from NFVI for the measured CP in the collection period.

 - **MeasurementInterfaceStatus:** Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last VNetPacketOutgoing.vNetIfId measurement received from NFVI for the measured CP in the collection period is generated.

7.2.12 Number of incoming bytes of VNF external CP

a) **Description:** This measurement provides the number of incoming bytes received by a VNF external CP.

b) **Collection Method:** OM.

c) **Trigger:**

 - The measurement is triggered based on the mapping of the measured VNF external CP (see clause 7.1.3 of ETSI GS NFV-IFA 011 [4]).

 - In case the VNF external CP is mapped to a VNF internal CP:

 - The VNFM generates the measurement by mapping the performance measurement VNetByteIncomingVnf.vnfcInstanceId.cpId (as defined in clause 7.2.8) from VNF internal CP to VNF external CP.

 - In case the VNF external CP is mapped to an internal VL:

 - The VNFM receives one or more ByteIncoming.vNPort measurement(s) (see clause 7.1.12) for the virtual network port(s) from VIM in the collection period, and maps the received ByteIncoming.vNPort subcounter(s) from the virtual network port firstly to the VNF internal VL and then to the VNF external CP (see note). The VNFM generates the measurement for the subject VNF external CP by assigning the value, or summing up multiple values, of the mapped ByteIncoming.vNPort subcounter(s).

 NOTE: The mapping between VNF internal VL and VNF external CP has dependency on the connectivity modelling between them. The exact mapping is out of scope of the present document.

d) **Measurement Unit:** Each measurement is an integer value.
7.2.13 Number of outgoing bytes of VNF external CP

a) **Description**: This measurement provides the number of outgoing bytes transmitted by a VNF external CP.

b) **Collection Method**: OM.

c) **Trigger**:
- The measurement is triggered based on the mapping of the measured VNF external CP (see clause 7.1.3 of ETSI GS NFV-IFA 011 [4]).
 - In case the VNF external CP is mapped to a VNF internal CP:
 - The VNFM generates the measurement by mapping the performance measurement VNetByteOutgoingVnf.vnfcInstanceId.cpId (as defined in clause 7.2.9) from VNF internal CP to VNF external CP.
 - In case the VNF external CP is mapped to an internal VL:
 - The VNFM receives one or more ByteOutgoing.vNPort measurement(s) (see clause 7.1.13) for the virtual network port(s) from VIM in the collection period, and maps the received ByteOutgoing.vNPort subcounter(s) from the virtual network port firstly to the VNF internal VL and then to the VNF external CP (see note). The VNFM generates the measurement for the subject VNF external CP by assigning the value, or summing up multiple values, of the mapped ByteOutgoing.vNPort subcounter(s).

NOTE: The mapping between VNF internal VL and VNF external CP has dependency on the connectivity modelling between them. The exact mapping is out of scope of the present document.

d) **Measurement Unit**: Each measurement is an integer value.

e) **Measurement Group**: VnfExternalCP.

f) **Measured Object Type**: VnfExtCP.

g) **Measurement Name**: ByteOutgoingVnfExtCp.

h) **Measurement Context**:
- **MeasurementEndTime**: Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last VNetByteOutgoing.vNetItfId or ByteOutgoing.vNPort measurement received from NFVI for the measured CP in the collection period.

- **MeasurementInterval**: Equals the "number of VNetByteOutgoing.vNetItfId measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the VNetByteOutgoing.vNetItfId measurements" received from NFVI for the measured CP in the collection period, or the "number of ByteOutgoing.vNPort measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the ByteOutgoing.vNPort measurements" received from NFVI for the measured CP in the collection period.

- **MeasurementInterfaceStatus**: Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last VNetByteOutgoing.vNetItfId or ByteOutgoing.vNPort measurement received from NFVI for the measured CP in the collection period is generated.
7.2.14 Number of incoming packets of VNF external CP

a) Description: This measurement provides the number of incoming packets received by a VNF external CP.

b) Collection Method: OM.

c) Trigger:
- The measurement is triggered based on the mapping of the measured VNF external CP (see clause 7.1.3 of ETSI GS NFV-IFA 011 [4]).
- In case the VNF external CP is mapped to a VNF internal CP:
 - The VNFM generates the measurement by mapping the performance measurement `VNetPacketIncomingVnf.vnfeInstanceId.cpId` (as defined in clause 7.2.10) from VNF internal CP to VNF external CP.
- In case the VNF external CP is mapped to an internal VL:
 - The VNFM receives one or more `PacketIncoming.vnPort` measurement(s) (see clause 7.1.14) from the virtual network port(s) VIM in the collection period, and maps the received `PacketIncoming.vnPort` subcounter(s) from the virtual network port firstly to the VNF internal VL and then to the VNF external CP (see note). The VNFM generates the measurement for the subject VNF external CP by assigning the value, or summing up multiple values, of the mapped `PacketIncoming.vnPort` subcounter(s).

NOTE: The mapping between VNF internal VL and VNF external CP has dependency on the connectivity modelling between them. The exact mapping is out of scope of the present document.

d) Measurement Unit: Each measurement is an integer value.

e) Measurement Group: VnfExternalCP.

f) Measured Object Type: VnfExtCP.

g) Measurement Name: PacketIncomingVnfExtCp.

h) Measurement Context:
- MeasurementEndTime: Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last `VNetPacketIncoming.vnNetIfId` or `PacketIncoming.vnPort` measurement received from NFVI for the measured CP in the collection period.
- MeasurementInterval: Equals the "number of VNetPacketIncoming.vnNetIfId measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the VNetPacketIncoming.vnNetIfId measurements" received from NFVI for the measured CP in the collection period, or the "number of PacketIncoming.vnPort measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the PacketIncoming.vnPort measurements" received from NFVI for the measured CP in the collection period.
- MeasurementInterfaceStatus: Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last `VNetPacketIncoming.vnNetIfId` or `Packet Incoming.vnPort` measurement received from NFVI for the measured CP in the collection period is generated.
7.2.15 Number of outgoing packets of VNF external CP

a) **Description:** This measurement provides the number of outgoing packets transmitted by a VNF external CP.

b) **Collection Method:** OM.

c) **Trigger:**

- The measurement is triggered based on the mapping of the measured VNF external CP (see clause 7.1.3 of ETSI GS NFV-IFA 011 [4]).

- In case the VNF external CP is mapped to a VNF internal CP:
 - The VNFM generates the measurement by mapping the performance measurement VNetPacketOutgoingVnf.vnfcInstanceId.cpId (as defined in clause 7.2.11) from VNF internal CP to VNF external CP.

- In case the VNF external CP is mapped to an internal VL:
 - The VNFM receives one or more PacketOutgoing.vNPort measurement(s) (see clause 7.1.15) for the virtual network port(s) from VIM in the collection period, and maps the received PacketOutgoing.vNPort subcounter(s) from the virtual network port firstly to the VNF internal VL and then to the VNF external CP (see note). The VNFM generates the measurement for the subject VNF external CP by assigning the value, or summing up multiple values, of the mapped PacketOutgoing.vNPort subcounter(s).

NOTE: The mapping between VNF internal VL and VNF external CP has dependency on the connectivity modelling between them. The exact mapping is out of scope of the present document.

d) **Measurement Unit:** Each measurement is an integer value.

e) **Measurement Group:** VnfExternalCP.

f) **Measured Object Type:** VnfExtCP.

g) **Measurement Name:** PacketOutgoingVnfExtCp.

h) **Measurement Context:**

- **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last VNetPacketOutgoing.vnNetItfId or PacketOutgoing.vnPort measurement received from NFVI for the measured CP in the collection period.

- **MeasurementInterval:** Equals the "number of VNetPacketOutgoing.vnNetItfId measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the VNetPacketOutgoing.vnNetItfId measurements" received from NFVI for the measured CP in the collection period, or the "number of PacketOutgoing.vnPort measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the PacketOutgoing.vnPort measurements" received from NFVI for the measured CP in the collection period.

- **MeasurementInterfaceStatus:** Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last VNetPacketOutgoing.vnNetItfId or PacketOutgoing.vnPort measurement received from NFVI for the measured CP in the collection period is generated.

7.3 Performance measurements produced by NFVO

7.3.1 Introduction

The performance measurements defined in this clause 7.3 are applicable to the following reference points:

- Os-Ma-Nfvo.
7.3.2 Number of incoming bytes of SAP

a) **Description:** This measurement provides the number of incoming bytes received by an SAP of an NS instance.

b) **Collection Method:** OM.

c) **Trigger:**

- The measurement is triggered based on the mapping of the measured SAP.
- In case the SAP is mapped to a VNF external CP:
 - The NFVO receives one or more ByteIncomingVnfExtCp measurement(s) (see clause 7.2.12) from VNF in the collection period, and maps the received ByteIncomingVnfExtCp measurement(s) from the VNF external CP to SAP. The NFVO generates the measurement for the subject SAP by assigning the value, or summing up multiple values, of the mapped ByteIncomingVnfExtCp measurement(s).
- In case the SAP is mapped to an NS VL:
 - The NFVO receives one or more ByteIncoming.vNPort measurement(s) (see clause 7.1.12) for the virtual network port(s) from VIM in the collection period, and maps the received ByteIncoming.vNPort subcounter(s) from the virtual network port firstly to the NS VL and then to the SAP (see note). The NFVO generates the measurement for the subject SAP by assigning the value, or summing up multiple values, of the mapped ByteIncoming.vNPort subcounter(s).

NOTE: The mapping between NS VL and SAP has dependency on the connectivity modelling between them. The exact mapping is out of scope of the present document.

d) **Measurement Unit:** Each measurement is an integer value.

e) **Measurement Group:** ServiceAccessPoint.

f) **Measured Object Type:** Sap.

g) **Measurement Name:** ByteIncomingSap.

h) **Measurement Context:**

- **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last ByteIncomingVnfExtCp or ByteIncoming.vNPort measurement received from NFVI for the measured SAP in the collection period.
- **MeasurementInterval:** Equals the "number of ByteIncomingVnfExtCp measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the ByteIncomingVnfExtCp measurements" received from NFVI for the measured SAP in the collection period, or the "number of ByteIncoming.vNPort measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the ByteIncoming.vNPort measurements" received from NFVI for the measured SAP in the collection period.
- **MeasurementInterfaceStatus:** Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last ByteIncomingVnfExtCp or ByteIncoming.vNPort measurement received from NFVI for the measured SAP in the collection period is generated.

7.3.3 Number of outgoing bytes of SAP

a) **Description:** This measurement provides the number of outgoing bytes transmitted by an SAP of an NS instance.

b) **Collection Method:** OM.

c) **Trigger:**

- The measurement is triggered based on the mapping of the measured SAP.
- In case the SAP is mapped to a VNF external CP:
 - The NFVO receives one or more ByteOutgoingVnfExtCp measurement(s) (see clause 7.2.13) from VNFM in the collection period, and maps the received ByteOutgoingVnfExtCp measurement(s) from the VNF external CP to SAP. The NFVO generates the measurement for the subject SAP by assigning the value, or summing up multiple values, of the mapped ByteOutgoingVnfExtCp measurement(s).

- In case the SAP is mapped to an NS VL:
 - The NFVO receives one or more ByteOutgoing.vNPort measurement(s) (see clause 7.1.13) for the virtual network port(s) from VIM in the collection period, and maps the received ByteOutgoing.vNPort subcounter(s) from the virtual network port firstly to the NS VL and then to the SAP (see note). The NFVO generates the measurement for the subject SAP by assigning the value, or summing up multiple values, of the mapped ByteOutgoing.vNPort subcounter(s).

NOTE: The mapping between NS VL and SAP has dependency on the connectivity modelling between them. The exact mapping is out of scope of the present document.

d) **Measurement Unit:** Each measurement is an integer value.

e) **Measurement Group:** ServiceAccessPoint.

f) **Measured Object Type:** Sap.

g) **Measurement Name:** ByteOutgoingSap.

h) **Measurement Context:**
 - **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last ByteOutgoingVnfExtCp or ByteOutgoing.vNPort measurement received from NFVI for the measured SAP in the collection period.
 - **MeasurementInterval:** Equals the "number of ByteOutgoingVnfExtCp measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the ByteOutgoingVnfExtCp measurements" received from NFVI for the measured SAP in the collection period, or the "number of ByteOutgoing.vNPort measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the ByteOutgoing.vNPort measurements" received from NFVI for the measured SAP in the collection period.
 - **MeasurementInterfaceStatus:** Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last ByteOutgoingVnfExtCp or ByteOutgoing.vNPort measurement received from NFVI for the measured SAP in the collection period is generated.

7.3.4 Number of incoming packets of SAP

a) **Description:** This measurement provides the number of incoming packets received by an SAP of an NS instance.

b) **Collection Method:** OM.

c) **Trigger:**
 - The measurement is triggered based on the mapping of the measured SAP.
 - In case the SAP is mapped to a VNF external CP:
 - The NFVO receives one or more PacketIncomingVnfExtCp measurement(s) (see clause 7.2.14) from VNFM in the collection period, and maps the received PacketIncomingVnfExtCp measurement(s) from the VNF external CP to SAP. The NFVO generates the measurement for the subject SAP by assigning the value, or summing up multiple values, of the mapped PacketIncomingVnfExtCp measurement(s).
In case the SAP is mapped to an NS VL:

- The NFVO receives one or more PacketIncoming.vNPort measurement(s) (see clause 7.1.14) for the virtual network port(s) from VIM in the collection period, and maps the received PacketIncoming.vNPort subcounter(s) from the virtual network port firstly to the NS VL and then to the SAP (see note). The NFVO generates the measurement for the subject SAP by assigning the value, or summing up multiple values, of the mapped PacketIncoming.vNPort subcounter(s).

NOTE: The mapping between NS VL and SAP has dependency on the connectivity modelling between them. The exact mapping is out of scope of the present document.

d) **Measurement Unit:** Each measurement is an integer value.
e) **Measurement Group:** ServiceAccessPoint.
f) **Measured Object Type:** Sap.
g) **Measurement Name:** PacketIncomingSap.
h) **Measurement Context:**

- **MeasurementEndTime:** Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last PacketIncomingVnfExtCp or PacketIncoming.vNPort measurement received from NFVI for the measured SAP in the collection period.
- **MeasurementInterval:** Equals the "number of PacketIncomingVnfExtCp measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the PacketIncomingVnfExtCp measurements" received from NFVI for the measured SAP in the collection period, or the "number of PacketIncoming.vNPort measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the PacketIncoming.vNPort measurements" received from NFVI for the measured SAP in the collection period.
- **MeasurementInterfaceStatus:** Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last PacketIncomingVnfExtCp or PacketIncoming.vNPort measurement received from NFVI for the measured SAP in the collection period is generated.

7.3.5 Number of outgoing packets of SAP

a) **Description:** This measurement provides the number of outgoing packets transmitted by an SAP of an NS instance.
b) **Collection Method:** OM.
c) **Trigger:**

- The measurement is triggered based on the mapping of the measured SAP.
- In case the SAP is mapped to a VNF external CP:

 - The NFVO receives one or more PacketOutgoingVnfExtCp measurement(s) (see clause 7.2.15) from VNFM in the collection period, and maps the received PacketOutgoingVnfExtCp measurement(s) from the VNF external CP to SAP. The NFVO generates the measurement for the subject SAP by assigning the value, or summing up multiple values, of the mapped PacketOutgoingVnfExtCp measurement(s).

- In case the SAP is mapped to an NS VL:

 - The NFVO receives one or more ByteOutgoing.vNPort measurement(s) (see clause 7.1.15) for the virtual network port(s) from VIM in the collection period, and maps the received ByteOutgoing.vNPort subcounter(s) from the virtual network port firstly to the NS VL and then to the SAP (see note). The NFVO generates the measurement for the subject SAP by assigning the value, or summing up multiple values, of the mapped ByteOutgoing.vNPort subcounter(s).

NOTE: The mapping between NS VL and SAP has dependency on the connectivity modelling between them. The exact mapping is out of scope of the present document.
d) **Measurement Unit**: Each measurement is an integer value.

e) **Measurement Group**: ServiceAccessPoint.

f) **Measured Object Type**: Sap.

g) **Measurement Name**: PacketOutgoingSap.

h) **Measurement Context**:

- **MeasurementEndTime**: Indicates the end time (see ETSI GS NFV-TST 008 [10]) of the last PacketOutgoingVnfExtCp or ByteOutgoing.vNPort measurement received from NFVI for the measured SAP in the collection period.

- **MeasurementInterval**: Equals the "number of PacketOutgoingVnfExtCp measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the PacketOutgoingVnfExtCp measurements" received from NFVI for the measured SAP in the collection period, or the "number of ByteOutgoing.vNPort measurements" * "measurement interval (see ETSI GS NFV-TST 008 [10]) of the ByteOutgoing.vNPort measurements" received from NFVI for the measured SAP in the collection period.

- **MeasurementInterfaceStatus**: Indicates the interface status (see ETSI GS NFV-TST 008 [10]) when the last PacketOutgoingVnfExtCp or ByteOutgoing.vNPort measurement received from NFVI for the measured SAP in the collection period is generated.
Annex A (informative):
Mapping of ETSI GS NFV-TST 008 to OpenStack® measurements

Table A-1 provides the mapping of ETSI GS NFV-TST 008 [10] metrics to OpenStack® compute measurements in Mitaka release [1.1].

<table>
<thead>
<tr>
<th>NFV-TST 008 metrics</th>
<th>OpenStack® Telemetry measurements</th>
</tr>
</thead>
<tbody>
<tr>
<td>Processor Utilization</td>
<td>cpu_util</td>
</tr>
<tr>
<td>(see note 1)</td>
<td>Gauge %</td>
</tr>
<tr>
<td>Memory</td>
<td>instance ID</td>
</tr>
<tr>
<td>(see note 5)</td>
<td>Pollster</td>
</tr>
<tr>
<td>Memory Buffered, Memory Cached, Memory Free, Memory Slab (see note 2)</td>
<td>vSphere® Average CPU utilization</td>
</tr>
<tr>
<td>memory.usage</td>
<td>instance ID</td>
</tr>
<tr>
<td>(see note 5)</td>
<td>Pollster vSphere®</td>
</tr>
<tr>
<td>(see note 3)</td>
<td>disk.allocation</td>
</tr>
<tr>
<td>(see note 6)</td>
<td>instance ID</td>
</tr>
<tr>
<td>(see note 4)</td>
<td>disk.usage</td>
</tr>
<tr>
<td>Octet Count received</td>
<td>network.incoming.bytes</td>
</tr>
<tr>
<td>Octet Count transmitted</td>
<td>network.outgoing.bytes</td>
</tr>
<tr>
<td>Packet Count received</td>
<td>network.incoming.packets</td>
</tr>
<tr>
<td>Packet Count transmitted</td>
<td>network.outgoing.packets</td>
</tr>
<tr>
<td>Name</td>
<td>Type</td>
</tr>
<tr>
<td>-----------------------</td>
<td>-----------------</td>
</tr>
<tr>
<td>Processor Utilization</td>
<td>cpu_util</td>
</tr>
<tr>
<td>(see note 1) Memory</td>
<td></td>
</tr>
<tr>
<td>(see note 3) Memory</td>
<td></td>
</tr>
<tr>
<td>Octet Count received</td>
<td>network.incoming bytes</td>
</tr>
<tr>
<td>Octet Count transmitted</td>
<td>network.outgoing bytes</td>
</tr>
<tr>
<td>Packet Count received</td>
<td>network.incoming packets</td>
</tr>
<tr>
<td>Packet Count transmitted</td>
<td>network.outgoing packets</td>
</tr>
</tbody>
</table>

NOTE 1: The size of the memory allocated to an instance can be derived from VirtualMemory (see clause 8.4.3.5 in ETSI GS NFV-IFA 006 [2]).

NOTE 2: The size of the memory used by an instance can be computed from the sum of Memory Buffered, Memory Cached, Memory Free, and Memory Slab.

NOTE 3: The size of the disk allocated to an instance can be derived from VirtualStorageData (see clause 8.4.6.3 in ETSI GS NFV-IFA 006 [2]).

NOTE 4: No corresponding metric is defined in ETSI GS NFV-TST 008 [10].

NOTE 5: memory.usage and memory can be used to compute memory_utilization = 100 × memory.usage/memory.

NOTE 6: disk.usage and disk.allocation can be used to compute disk_utilization = 100 × disk.usage/disk.allocation.
Annex B (informative):
Security and Regulatory Concerns

B.1 Risk analysis and assessment

Table B.1-1 is the output of the Threat, Risk, and Vulnerability Analysis according to ETSI GS NFV-SEC 006 [7].

<table>
<thead>
<tr>
<th>A</th>
<th>Security Environment</th>
</tr>
</thead>
<tbody>
<tr>
<td>a.1 Assumptions</td>
<td></td>
</tr>
<tr>
<td>a.1.1</td>
<td>A new set of management and orchestration functions in addition to existing EM and OSS functions is introduced by NFV. Such NFV-MANO functions have the role to manage the NFVI to control the collection of virtualised resources consumed by VMs.</td>
</tr>
<tr>
<td>a.1.2</td>
<td>NFV-MANO management functions include performance Management that is capable of controlling and collecting performance metrics.</td>
</tr>
<tr>
<td>a.1.3</td>
<td>An NFV-MANO service is one or more capabilities that are offered via NFV-MANO functional blocks (i.e. NFVO, VNFM, and VIM) and invoked using a defined interface.</td>
</tr>
<tr>
<td>a.2 Assets</td>
<td></td>
</tr>
<tr>
<td>a.2.1</td>
<td>NFVO: it is responsible for processing the VNFM and VIM performance metrics to generate the NS related performance metrics to be sent to OSS/BSS.</td>
</tr>
<tr>
<td>a.2.2</td>
<td>VNFM: it is responsible for processing the VIM performance metrics to generate the VNF related performance measurements to be sent to EM and NFVO.</td>
</tr>
<tr>
<td>a.2.3</td>
<td>VIM: it is responsible for processing the NFVI performance metrics to generate the Virtualised resource related performance measurements to be sent to NFVO and VNFM.</td>
</tr>
<tr>
<td>a.2.4</td>
<td>NFVI: it is responsible for collecting the NFVI performance metrics, and reporting them to VIM.</td>
</tr>
<tr>
<td>a.2.5</td>
<td>Performance metrics: performance information that need to be reported/acquired.</td>
</tr>
<tr>
<td>a.3 Threat agents</td>
<td></td>
</tr>
<tr>
<td>a.3.1</td>
<td>Unauthorized user of assets (e.g. reports, notifications, queries, fault information, resource information).</td>
</tr>
<tr>
<td>a.3.2</td>
<td>(Industrial) espionage agent.</td>
</tr>
<tr>
<td>a.3.3</td>
<td>Sabotage agent.</td>
</tr>
<tr>
<td>a.3.4</td>
<td>Internal threat agent, e.g. corrupt employee.</td>
</tr>
<tr>
<td>a.4 Threats</td>
<td></td>
</tr>
<tr>
<td>a.4.1</td>
<td>Unauthorized read (viewing/copying/consuming of data and interfaces).</td>
</tr>
<tr>
<td>a.4.2</td>
<td>Unauthorized write action (Masquerade (“spoofing”), Forgery, Loss or corruption of information).</td>
</tr>
<tr>
<td>a.4.3</td>
<td>Unauthorized access.</td>
</tr>
<tr>
<td>a.4.4</td>
<td>Repudiation (end point and threat agents).</td>
</tr>
<tr>
<td>a.4.5</td>
<td>Denial of service.</td>
</tr>
</tbody>
</table>
Security Objectives

b.1 Security objectives for the asset

<table>
<thead>
<tr>
<th>Requirement</th>
<th>Description</th>
</tr>
</thead>
<tbody>
<tr>
<td>b.1.1</td>
<td>The system should ensure that only authorized and authenticated entities can access (read or write) the provided interfaces and that data is exchanged in a confidential manner. Therefore, requirements for access controls and communications security (see clauses 8.5 and 8.6 in ETSI GS NFV-SEC 012 [9]) should be followed.</td>
</tr>
<tr>
<td>b.1.2</td>
<td>The system should ensure the authenticity and integrity of all data exchanged on the interfaces. Therefore, requirements for authentications controls (see clause 8.4 in ETSI GS NFV-SEC 012 [9]) should be followed.</td>
</tr>
<tr>
<td>b.1.3</td>
<td>The system should prevent replay of any data. Therefore, requirements for authentications controls (see clause 8.4 in ETSI GS NFV-SEC 012 [9]) should be followed.</td>
</tr>
<tr>
<td>b.1.4</td>
<td>The system should be accountable for the data provided, that is why the system should ensure collected data (e.g. performance metrics, timestamps) is authentic.</td>
</tr>
<tr>
<td>b.1.5</td>
<td>The system should ensure that interception is possible where required to support regulatory requirements (such as Lawful Interception ETSI GS NFV-SEC 004 [6] and Retained Data ETSI GS NFV-SEC 010 [8]) and not possible otherwise.</td>
</tr>
<tr>
<td>b.1.6</td>
<td>The system should provide means to detect and mitigate denial of service attacks.</td>
</tr>
</tbody>
</table>
Change History

<table>
<thead>
<tr>
<th>Date</th>
<th>Version</th>
<th>Information about changes</th>
</tr>
</thead>
<tbody>
<tr>
<td>2016-12</td>
<td>0.1.0</td>
<td>Implemented NFVIFA-F2F#43 approved contributions;</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(16)0001456r2,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(16)0001457r1.</td>
</tr>
<tr>
<td>2017-06</td>
<td>0.2.0</td>
<td>Implemented approved contributions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000333r1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000335r1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000336r1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000384r1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000385r2,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000386r3,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000521r1.</td>
</tr>
<tr>
<td>2017-08</td>
<td>0.3.0</td>
<td>Implemented approved contributions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000602r2,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000603r6.</td>
</tr>
<tr>
<td>2017-08</td>
<td>0.4.0</td>
<td>Implemented approved contributions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000604r5,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000605r5,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000708.</td>
</tr>
<tr>
<td>2017-09</td>
<td>0.5.0</td>
<td>Implemented approved contributions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000728r1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000780r2,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000781r2,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000782r2.</td>
</tr>
<tr>
<td>2017-09</td>
<td>0.5.1</td>
<td>Implemented the changes of the approved contributions that were not implemented in</td>
</tr>
<tr>
<td></td>
<td></td>
<td>0.5.0:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000728r1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000781r2,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000782r2.</td>
</tr>
<tr>
<td>2017-10</td>
<td>0.6.0</td>
<td>Implemented the changes of the approved contributions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000606r7,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)000857r1.</td>
</tr>
<tr>
<td>2017-11</td>
<td>0.7.0</td>
<td>Implemented the changes of the approved contributions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)001023,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)001024,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)001042,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)001045.</td>
</tr>
<tr>
<td>2017-12</td>
<td>0.8.0</td>
<td>Implemented the changes of the approved contributions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)0001043r3,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(17)0001044r3.</td>
</tr>
<tr>
<td>2018-02</td>
<td>0.9.0</td>
<td>Implemented the changes of the approved contribution:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(18)000062r2.</td>
</tr>
<tr>
<td>2018-04</td>
<td>0.9.1</td>
<td>Implemented some editorial changes, and leftover changes from NFVIFA(18)000062r2,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>and the changes of the approved contributions:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(18)000261,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(18)000194r4,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(18)000204r1,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(18)000330r1.</td>
</tr>
<tr>
<td>2019-11</td>
<td>2.4.3</td>
<td>Implemented the changes of the approved contribution:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(19)000720,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(19)000721,</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(19)000722.</td>
</tr>
<tr>
<td>2020-02</td>
<td>3.0.1</td>
<td>Implemented the change #3 and #4 in NFVIFA(19)000721</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rapporteur action: aligning "VdiskUsage*" and "Measured Object Type: SAP" to naming</td>
</tr>
<tr>
<td></td>
<td></td>
<td>conventions.</td>
</tr>
<tr>
<td>2020-11</td>
<td>3.3.3</td>
<td>Implemented the changes of the approved contribution:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(20)000581r1.</td>
</tr>
<tr>
<td>2022-05</td>
<td>3.6.2</td>
<td>Starting version for 1H2022 specification work. Unmodified with respect to published</td>
</tr>
<tr>
<td></td>
<td></td>
<td>version v3.6.1.</td>
</tr>
<tr>
<td>2022-08</td>
<td>3.6.3</td>
<td>Implemented the changes of the approved contribution:</td>
</tr>
<tr>
<td></td>
<td></td>
<td>NFVIFA(22)000496.</td>
</tr>
</tbody>
</table>
History

<table>
<thead>
<tr>
<th>Document history</th>
</tr>
</thead>
<tbody>
<tr>
<td>V3.3.1</td>
</tr>
<tr>
<td>V3.5.1</td>
</tr>
<tr>
<td>V3.6.1</td>
</tr>
<tr>
<td>V3.7.1</td>
</tr>
</tbody>
</table>