Welcome to the World of Standards

World Class Standards

ETSI NFV ARCHITECTURE & INTERFACES

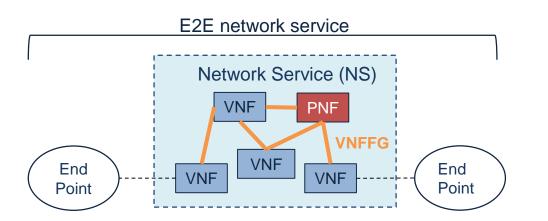
Bruno Chatras, ETSI NFV Vice-Chair, Orange Dr. Uwe Rauschenbach, ETSI NFV IFA rapporteur, Nokia

© ETSI 2016. All rights reserved

Agenda

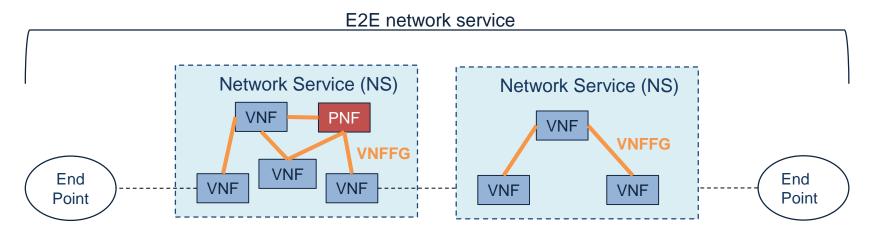
ETSI NFV Concepts

- NFV architectural framework
- Main Management and Orchestration concepts
- The ETSI NFV IFA group and its work
 - IFA Work program
- Orill down into IFA007/8: VNF lifecycle management
 - What is a VNF?
 - Packaging a VNF
 - Managing the VNF lifecycle
- Conclusion

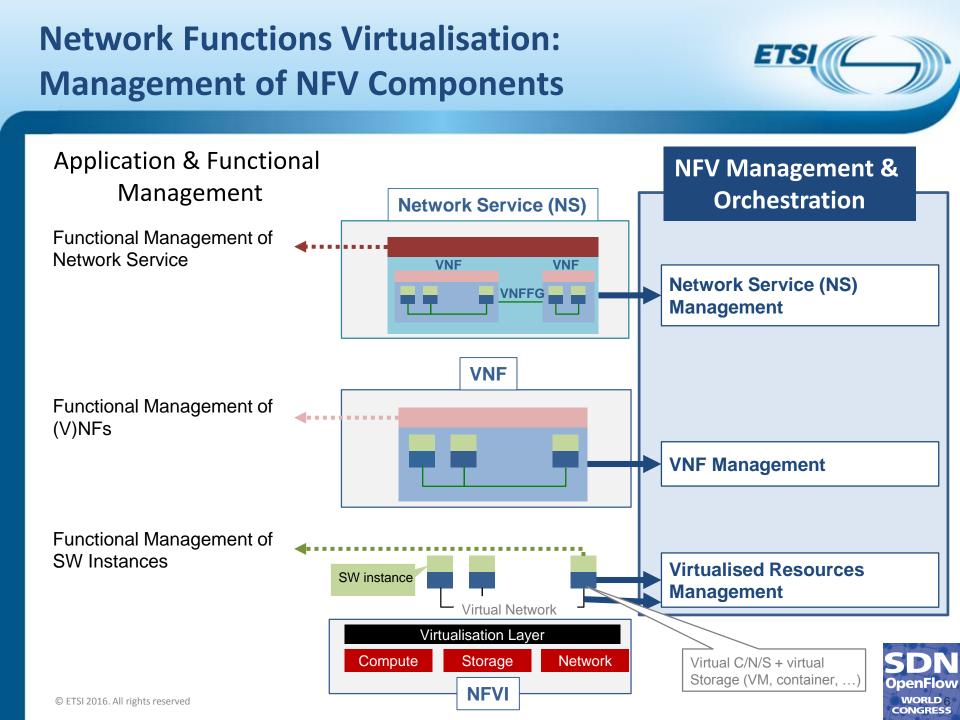

ET

ETSI World Class Standards

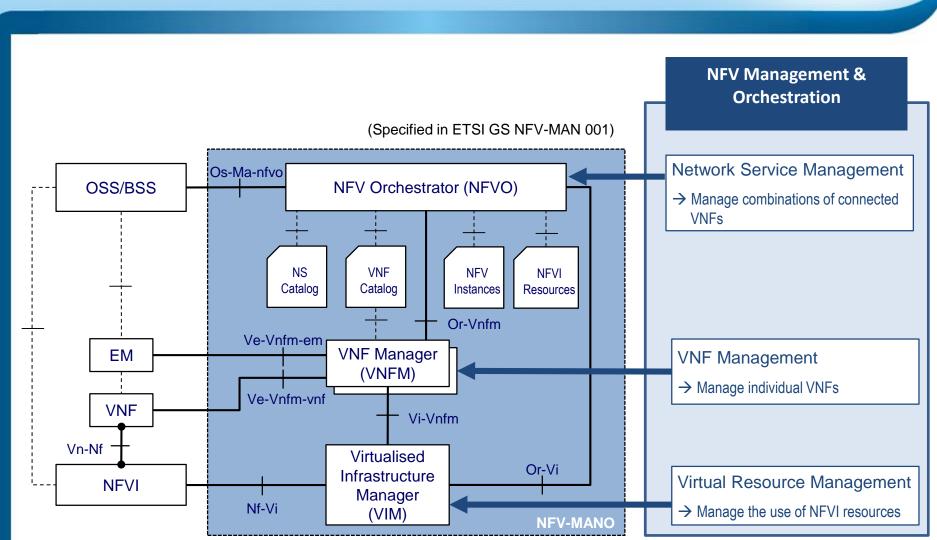
PART 1 ETSI NFV CONCEPTS



Network Functions Virtualization: VNFs, NS and E2E Network Service



The NFV Idea:


to realize network functions completely in software, and to design them such that they can be deployed on a Network Functions Virtualisation Infrastructure (i.e. "in the cloud").

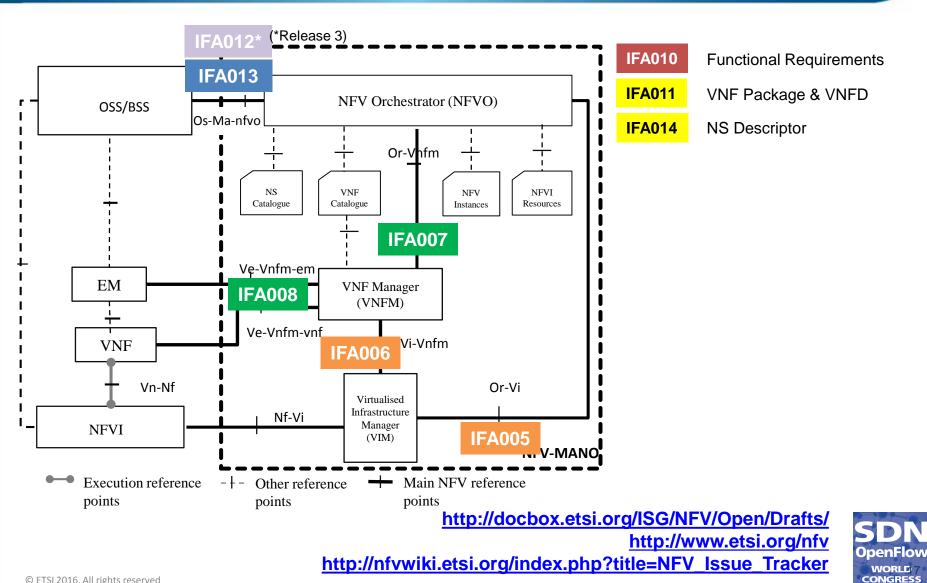
ETSI NFV Architecture, and MANO

ETS

6

PART 2 THE ETSI NFV IFA WORKING GROUP

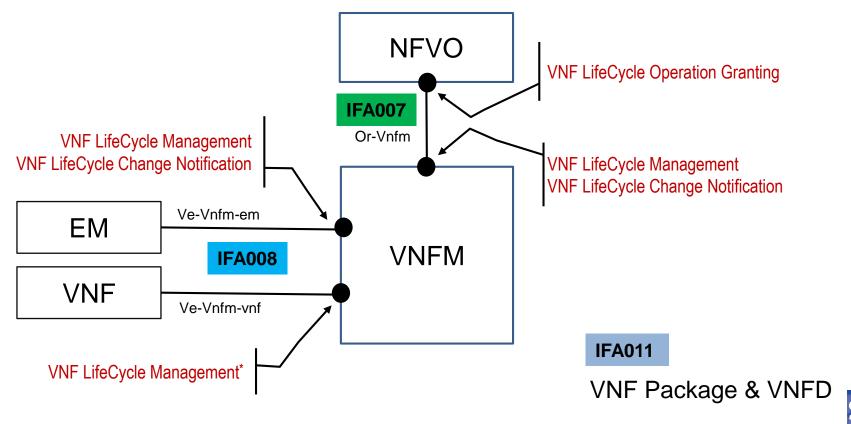
ETSI NFV ISG Interfaces and Architecture WG (IFA) WG


Feb'13	٨	ETSI NFV ISG Created
	٨	ETSI NFV Management and Orchestration (MANO) WG Created
Dec'13	٥	ETSI NFV Architectural Framework v1.2.1 Published
Nov'14	8	ETSI NFV MANO WG Closed
1101 11	٨	ETSI NFV IFA Created
	٨	Release 2 work starts
Jan'15	6	MAN001 - ETSI NFV Management and Orchestration Report – Published
Apr'16	8	First IFA WG Release 2 specifications published
	٨	Release 3 work starts
Sep'16	٨	Completion of Release 2 work on requirements, interfaces and information model
Soon	8	Publication of IFA WG Release 2 specifications

IFA WG Scope

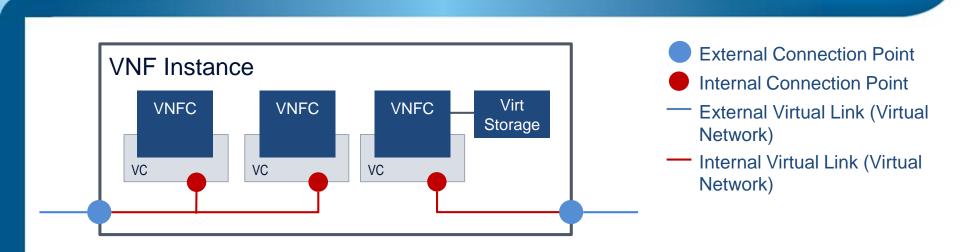
- Solution Normative Interface Specifications
- Over the second seco
- **Over a contract of a contract**
- Acceleration Use cases, Specifications and Reports
- Informative Reports on new features evaluating interface and architecture enhancements

ETSI NFV IFA WG Group Specifications related to MANO interfaces



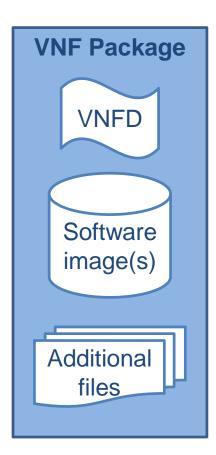
PART 3 VNF LIFECYCLE MANAGEMENT

VNF lifecycle management


VNF lifecycle management requires the VNF Descriptor (IFA011) and a number of interfaces defined in IFA007 and IFA008.

WORI D

What is a VNF? A look inside


- VNF instance uses virtualized resources (Compute, Networking, Storage)
 - VNF Components (VNFCs)
 - Internal components of a VNF, each providing a part of the functionality of a VNF (i.e. a part of the VNF's application software)
 - Each VNFC instance maps 1:1 to a "Virtualization Container (VC)" (typically a Virtual Machine)
 - Resources: Virtualised Compute plus optional Virtualised Storage
 - Internal virtual links (VLs, virtual networking), interconnecting the VNFCs via Internal Connection Points (CPs)
- A VNF provides external connection points
 - external CPs allow to connect the VNF via external VLs to other virtual or physical network functions
 - external VLs are part of the Network Service, not of the VNF

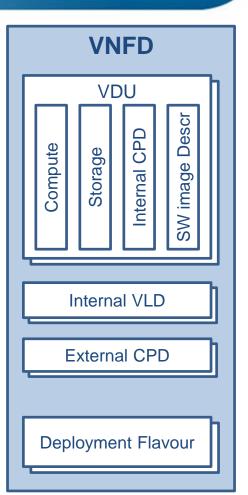
ET

Packaging a VNF VNF Package

- Contains
 - the VNF descriptor (VNFD) that defines metadata for package onboarding and VNF management
 - the software images needed to run the VNF
 - optional additional files to manage the VNF (e.g. scripts, vendor-specific files etc.)
- Is digitally signed and delivered by the VNF provider as a whole
- Is immutable (protected from modification)
- Is stored in a repository by the NFVO
- Can be accessed by VNFM

The VNFD in the VNF package contains a number of identifiers which allow unique identification of a VNF package (as created by the VNF provider), and keeping track of VNF package versions.

vnfdld	Identifier of the VNFD and the associated VNF Package. This attribute shall be globally unique. It is also used in interfaces.		Global Id	
vnfProvider	Provider of the VNF and of the VNFD.			
vnfProductName	Name to identify the VNF Product. Invariant for the VNF Product lifetime.		For correlation and versioning	
vnfSoftwareVersion	Software version of the VNF. This is changed when there is any change to the software that is included in the VNF Package.	Ļ		
vnfdVersion	Identifies the version of the VNFD.			
vnfProductInfoName	Human readable name for the VNF Product. Can change during the VNF Product lifetime.		Info for	
vnfProductInfoDescription	Human readable description of the VNF Product. Can change during the VNF Product lifetime.	display		


	7-10 /
Oper	nFlow
Oper	
	ORLD
CON	GRESS

5 © ETSI 2016. All rights reserved

Packaging a VNF VNF Descriptor (VNFD)

Oefines VNF properties, such as

- Resources needed (amount and type of Virtual Compute, Storage, Networking)
- Software metadata
- Connectivity
 - External Connection Points (described via CP Descriptors, CPD).
 - Internal Virtual Links (described via VL Descriptors, VLD)
 - Internal Connection Points (described via CP Descriptors, CPD)
- Lifecycle management behavior (e.g. scaling, instantiation)
- Supported lifecycle management operations, and their configuration
- Supported VNF specific parameters
- Affinity / anti-affinity rules
- Oefines deployment flavours (size-bounded deployment configurations, e.g. related to capacity)

Managing the VNF lifecycle VNF Runtime Information

- Based on the definitions in the VNFD, <u>VNF instances</u> can be created in the NFVI (aka cloud).
- The runtime information of each VNF instance, <u>VnfInfo</u>, is managed by the VNFM.
- This VnfInfo element includes information such as
 - VNF instance identifier, VNF instance state
 - Scale status (current "size" of VNF)
 - Metadata (version info, pointer to VNFD and VNF package, vendor-specific metadata)
 - Virtualised resources used (Virtualised Compute, Storage, Network)
 - List of VNFCs
 - Configurable parameters
 - External connectivity (external VLs, external CPs)
 - VIM(s) used to manage the resources of the VNF

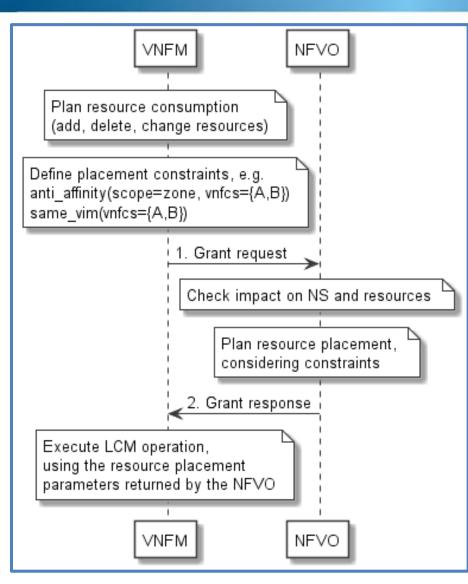
ET

Managing the VNF lifecycle VNF lifecycle management (LCM) overview

- VNF lifecycle management operations manage the allocation of virtualized resources to a VNF instance, and/or modify the state of the VNF instance.
- The following VNF LCM operations are defined by ETSI NFV (IFA007/IFA008). Support of certain
 operations by a concrete VNF may depend on the capabilities of the VNF itself (e.g., whether a
 VNF is "scalable").

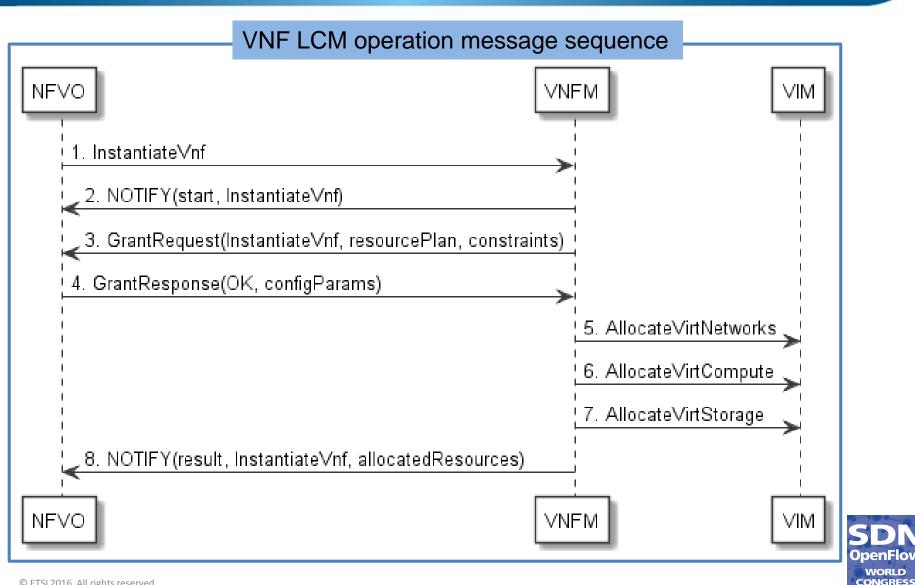
Operation	Support by VNF	Explanation
Instantiate VNF	Mandatory	Allocate virtualised resources, configure them, start the application, trigger configuration of the application.
Scale VNF	Optional	Change the amount of virtualised resources allocated to a VNF.
Query VNF	Mandatory	Obtain runtime information about the VNF instance (VnfInfo).
Terminate VNF	Mandatory	Terminate the VNF, and release the virtualised resources.
Change VNF flavour	Optional	Change the deployment flavor of the VNF, which typically includes changing the amount of virtualised resources, and the topology.
Heal VNF	Optional	Virtualisation-related corrective actions to repair a faulty VNF, and/or its VNFC instances and internal VNF Virtual Link(s).
Operate VNF	Optional	Start or stop the VNF software.
Modify VNF Info	Mandatory	Change certain items of the VNF runtime information (VnfInfo).
Auto-Scale and Auto-Heal	Optional	Variants of Scale VNF and Heal VNF, triggered automatically in the VNFM, by monitoring the VNF

ET

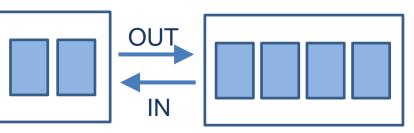

Managing the VNF lifecycle How VNF LCM operations work

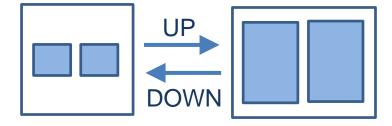
Typically, LCM operations are long-running operations (minutes, hours)
 → tracking is essential

- Solution occurrence Therefore, each individual VNF LCM operation occurrence
 - can be identified (for correlation)
 - has a status (e.g. ongoing, error, success) that can be queried
- VNFM will notify start and completion of each operation
 - notification sent to subscribed functional blocks (e.g. NFVO, EM)
 - each notification identifies the affected VNF and applied operation occurrence
 - "completion " notification contains information about the changes to the VNF's consumption of virtualised resources (success case)
 - "completion " notification communicates error information (error case)


Managing the VNF lifecycle **ETSI** Lifecycle Operation Granting: Ask the Orchestrator!

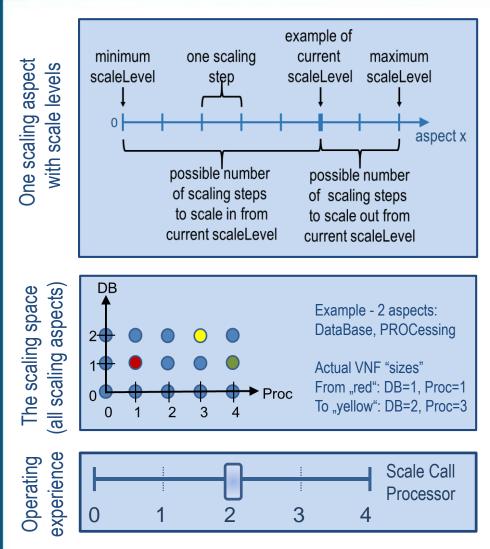
- NFVO is responsible for Network Service Orchestration and Resource Orchestration
 - VNFM has therefore to **obtain permission for LCM operations**
 - NFVO needs to tell the VNFM in which part of the NFVI (data center, zone) the resources can be allocated
- Solution: Granting exchange



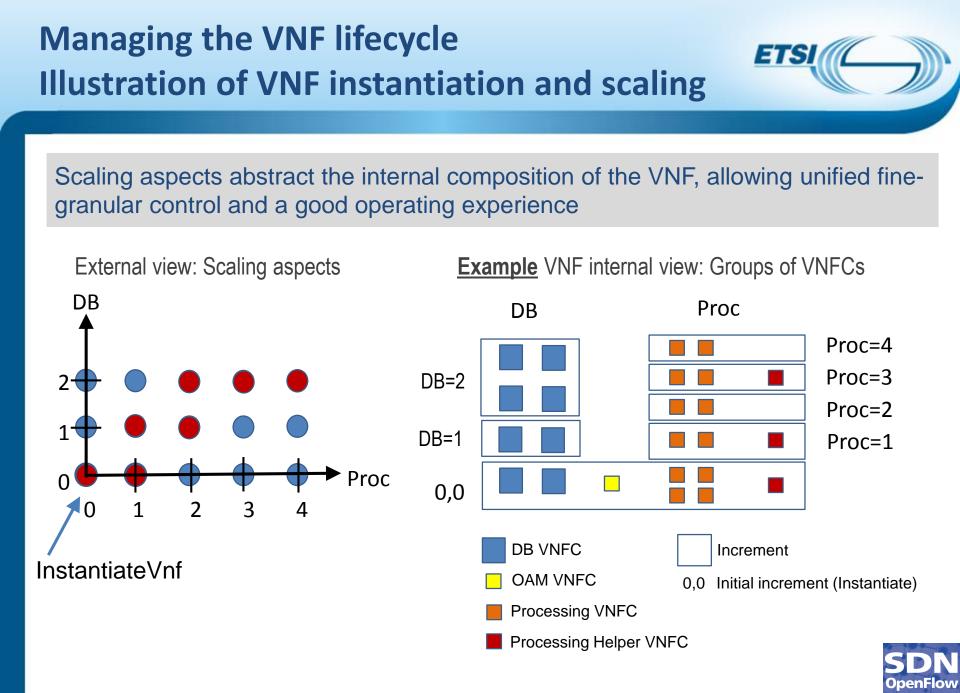

Managing the VNF lifecycle **Putting it together**

Managing the VNF lifecycle Scaling a VNF

- Basic idea: Elasticity A VNF's resource consumption (e.g. number of VNFCs) changes with load
- VNF scaling shall be non service disruptive
- Modes:
 - Horizontal scaling (scale in/out) \rightarrow Add/remove virtualised resources (e.g. VNFCs)
 - Vertical scaling (scale up/down) → Reconfigure the capacity / size of existing virtualised resources (e.g., VM flavor, storage size)
 - In the ETSI NFV current release only horizontal scaling of the VNFs is supported

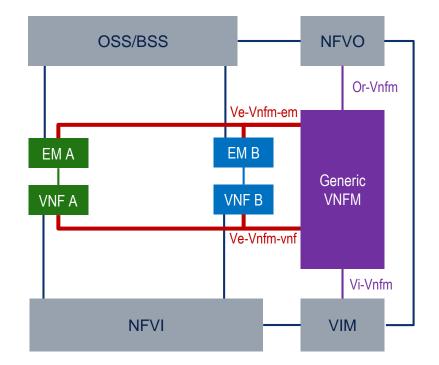


- Scaling triggers
 - on demand (Scale VNF LCM operations)
 - automatically by the VNFM when certain performance figures cross a threshold



Managing the VNF lifecycle VNF scaling model

- Requirement from VNF designs:
 A VNF may be scaled in multiple independent aspects (e.g. scale database storage capacity independent from call processing capacity)
- Scaling aspect
 - Also known as "scaling dimension".
 Describes in an abstracted manner what "property" of the VNF to scale.
 - Each scale level of a scaling aspect defines a valid size of the VNF w.r.t that aspect
 - Scaling takes place in discrete steps, changing the size from one level to another one
 - Operating experience: E.g. slider model

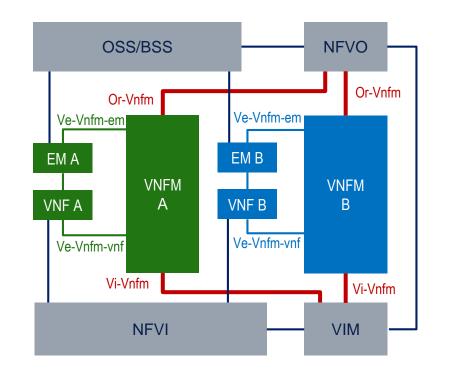


WORI D

CONGRESS

Managing the VNF lifecycle Generic VNFM

- One VNFM for all VNFs (from multiple vendors)
- VNF-related Multivendor integration interface: Ve-Vnfm (IFA008)
- Provides standard basic management capabilities to all VNFs
- Additionally, if required, VNF-specific management functionality is covered "lifecycle management scripts" that are defined by the VNF vendor and included with the VNF package
 - Standardization of a universal scripting language for such scripts is future work.
 - Near-term Generic VNFM implementations may support a few existing scripting languages selected by the VNFM vendor, and VNF vendors have to adapt their VNFs to use one of the available languages.


ET

WORI D

CONGRESS

Managing the VNF lifecycle VNFM specific to a set of VNFs

- A VNFM that can manage a particular set of VNFs
- Typically, delivered by the VNF vendor together with the VNF
- VNF-related Multivendor integration interfaces: Vi-Vnfm (IFA006) towards VIM, Or-Vnfm (IFA007) towards NFVO. Interface towards VNF and EM may be proprietary or based on IFA008.
- Allows the VNF vendor to encapsulate in a VNFM particular VNF-specific, complex or advanced lifecycle management procedures

CONCLUSION

Conclusion

This tutorial has ...

- ... provided an overview of the main NFV concepts, MANO architecture, interfaces and functional blocks, and the work items of the ETSI NFV IFA working group
- ... outlined what a VNF is, how a VNF is structured and packaged, what the role and composition of the VNF descriptor is and how the descriptions in it relate to the management of the lifecycle of a VNF
- ... introduced how the lifecycle of a VNF is managed by its VNF Manager, which are the main lifecycle management operations, and what the typical call flow of a lifecycle management operation looks like
- ... briefly touched the different deployment options of the VNF Manager

World Class Standards

More information:

NFV Technology Page (information) http://www.etsi.org/nfv

> NFV Portal (working area) http://portal.etsi.org/nfv

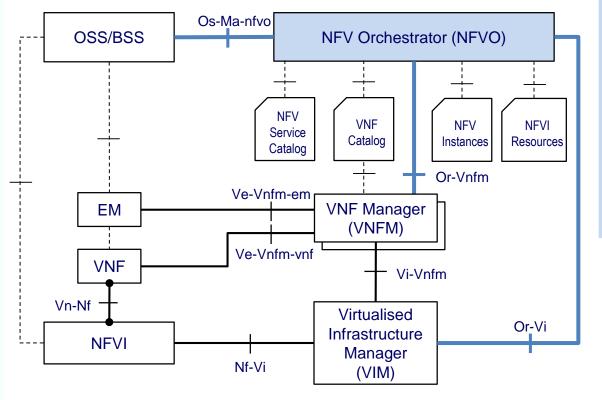
NFV Proofs of Concept (information) http://www.etsi.org/nfv-poc

NFV Plugtest (information & registration) http://www.etsi.org/nfvplugtest

Open Area:

Drafts http://docbox.etsi.org/ISG/NFV/Open/Drafts/

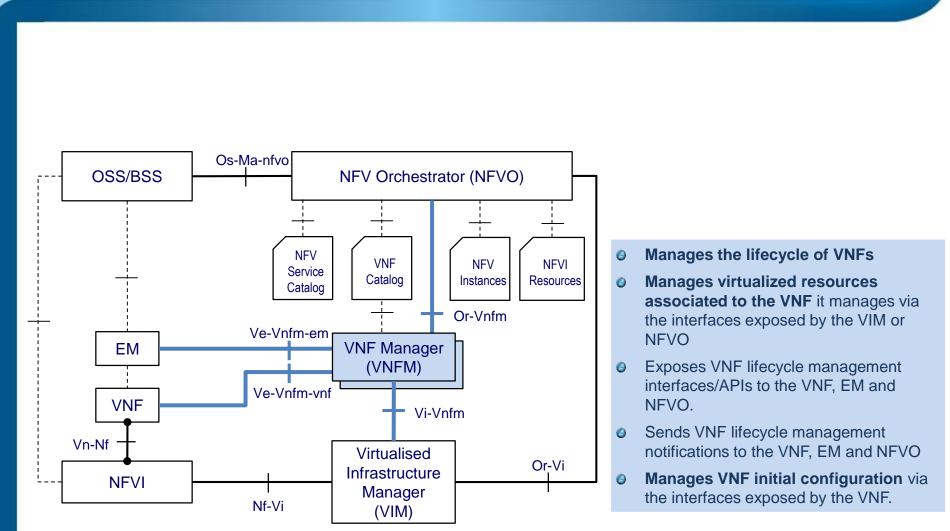
Issue tracker http://nfvwiki.etsi.org/index.php?title=NFV_lssue_Tracker



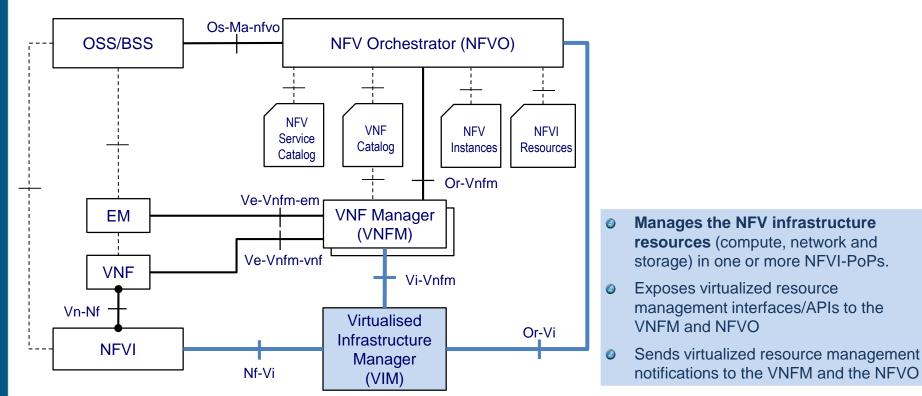
BACKUP

NFVO – NFV Orchestrator

- Manages the lifecycle of NS
- Exposes NS lifecycle management interfaces to the OSS/BSS


ETS

- Sends NS lifecycle management notifications to the OSS/BSS
- Exposes virtualized resource management interfaces to the VNFM
- Sends virtualized resource management notifications to the VNFM
- Manages the VNF lifecycle via the interfaces exposed by the VNFM
- Manages virtualized resources via the interfaces exposed by the VIM.


© ETSI 2016. All rights reserved

VNFM – VNF Manager

VIM – Virtualised Infrastructure Manager

IFA WG Acceleration Work Items

- IFA001 Acceleration Overview & use Cases
- IFA002 –VNF acceleration interface specifications
- IFA003 –vSwitch Requirements
- IFA004 Acceleration Management Aspects
- IFA018 Resource Management Acceleration
- IFA019 Acceleration Interface

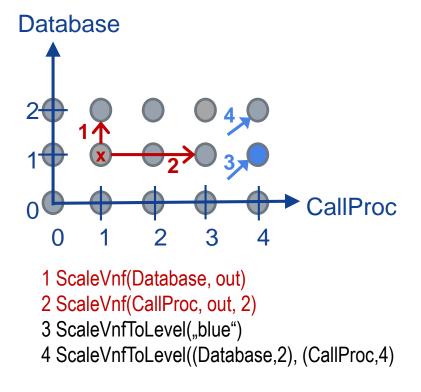
E

IFA WG Reports

- IFA009 Architectural Options
- IFA015 NFV Information Model
- IFA016 Papyrus Guidelines
- IFA017 UML Modeling Guidelines
- IFA020 NFVO Decomposition Options (Release 3)
- IFA021 MANO and Automated Deployment (Release 3)
- IFA022 Multi Site Services (Release 3)
- IFA023 Policy Management in MANO (Release 3)
- IFA024 External Touchpoints related to NFV Information Model

http://docbox.etsi.org/ISG/NFV/Open/Drafts/

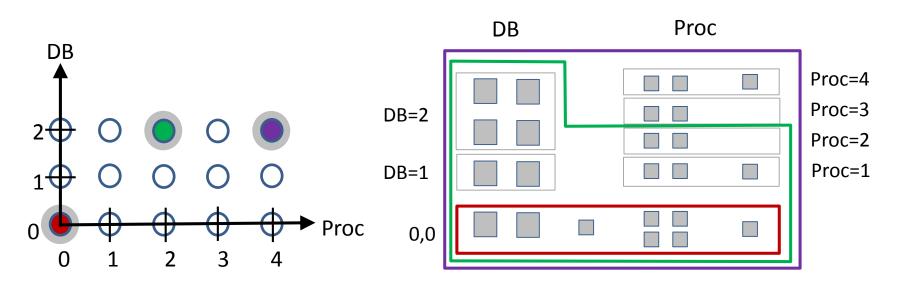
CONGRESS


http://www.etsi.org/nfv SL http://nfvwiki.etsi.org/index.php?title=NFV Issue_Tracker Open

How is a VNF managed? Two operations to scale a VNF

ETSI

- ScaleVnf: Incremental scaling
 - Changes one aspect only at a time
 - Semantics: apply a delta (how many steps) based on current level of aspect to scale
 - Two options: Scale from the current position by one scaling step (1) or by multiple scaling steps (2)
- ScaleVnfToLevel: Go to target
 - Typically changes multiple aspects at once
 - Semantics: Specify a new target in scaling space (where do you want to go)
 - The target may be a pre-defined instantiation level (3) or any arbitrary target in scaling space (4)


Support for the different scaling modes can be defined by the VNF provider in the VNFD.

Most VNFs only support a subset of these.

How is a VNF managed? Different VNF instantiation sizes

Use case: Operator does not want to always instantiate the VNF at minimum size, but rather, e.g.

- At minimum size
- At some intermediate size(s)
- At maximum size

Solution: Instantiation level is a tool that allows the VNFM to instantiate different sizes, using the defined scaling space.

ET