ETSI GR PDL 009 V0.0.3 (2021-04)
11
Release #
[bookmark: doctype][bookmark: pages12]Disclaimer
The present document has been produced and approved by the <long ISGname> (<short ISGname>) ETSI Industry Specification Group (ISG) and represents the views of those members who participated in this ISG.
It does not necessarily represent the views of the entire ETSI membership.
[bookmark: docnumber][bookmark: docversion][bookmark: docdate]ETSI GR PDL 009 V0.0.3 (2021-04)

GROUP REPORT
[bookmark: doctitle]PDL for Federated Data Management

Release #

[image: cid:image001.png@01D6B10A.512A6310]
[bookmark: docdiskette]<
[image: ETSI_BG_final_new]

[bookmark: page2]Reference
DGR/PDL-009_PDL_Federated_Data_Management
Keywords
Authentication, Data Preservation, Data Sharing, Privacy, Security

[bookmark: ETSIinfo]ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-préfecture de Grasse (06) N° 7803/88

Important notice
The present document can be downloaded from:
http://www.etsi.org/standards-search
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the prevailing version of an ETSI deliverable is the one made publicly available in PDF format at www.etsi.org/deliver.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at https://portal.etsi.org/TB/ETSIDeliverableStatus.aspx
[bookmark: mailto]If you find errors in the present document, please send your comment to one of the following services:
https://portal.etsi.org/People/CommiteeSupportStaff.aspx
Copyright Notification
No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© ETSI yyyy.
[bookmark: tbcopyright]All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are trademarks of ETSI registered for the benefit of its Members.
3GPPTM and LTETM are trademarks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
oneM2M™ logo is a trademark of ETSI registered for the benefit of its Members and
of the oneM2M Partners.
GSM® and the GSM logo are trademarks registered and owned by the GSM Association.

Contents
Intellectual Property Rights	4
Foreword	4
Modal verbs terminology	4
Executive summary	4
Introduction	4
1	Scope	5
2	References	5
2.1	Normative references	5
2.2	Informative references	5
3	Definition of terms, symbols and abbreviations	6
3.1	Terms	6
3.2	Symbols	6
3.3	Abbreviations	6
4	Use Cases for Federated Data Management	7
4.1	Introduction of Use Cases	7
4.2	Federated Data Collection	8
4.3	Federated Learning	8
4.4	Multi-Party Computation Use Case	9
4.5	Possible Actors in FDM Systems	10
5	Key Issues	11
5.1	Introduction	11
5.2	Key Issues with Federated Data Collection	11
5.2.1	How to efficiently and concurrently collect data and store data collection records in PDL?	11
5.3	Key Issues with Federated Learning	12
5.3.1	How to efficiently store FL-related data in PDL?	12
6	Architecture for PDL-based Federated Data Management	13
6.1	Introduction	13
6.2	Architecture	13
6.3	Functional Elements	15
7	Key Solutions	15
7.1	 Solutions for PDL-based Federated Learning	15
7.2	Solutions for PDL-based Federated Data Collection	18
7.3	…	18
8	Conclusions	18
Annex A: Title of annex	19
Annex B: Title of annex	20
B.1	First clause of the annex	20
B.1.1	First subdivided clause of the annex	20
History	23

[bookmark: _Toc455504134][bookmark: _Toc481503672][bookmark: _Toc527985136][bookmark: _Toc19024829][bookmark: _Toc56256548][bookmark: _Toc68765672]Intellectual Property Rights
Essential patents
IPRs essential or potentially essential to normative deliverables may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (https://ipr.etsi.org).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
Trademarks
The present document may include trademarks and/or tradenames which are asserted and/or registered by their owners. ETSI claims no ownership of these except for any which are indicated as being the property of ETSI, and conveys no right to use or reproduce any trademark and/or tradename. Mention of those trademarks in the present document does not constitute an endorsement by ETSI of products, services or organizations associated with those trademarks.
[bookmark: _Toc455504135][bookmark: _Toc481503673][bookmark: _Toc527985137][bookmark: _Toc19024830][bookmark: _Toc56256549][bookmark: _Toc68765673]Foreword
This Group Report (GR) has been produced by ETSI Industry Specification Group Permissioned Distributed Ledger (PDL).
[bookmark: _Toc455504136][bookmark: _Toc481503674][bookmark: _Toc527985138][bookmark: _Toc19024831][bookmark: _Toc56256550][bookmark: _Toc68765674]Modal verbs terminology
In the present document "should", "should not", "may", "need not", "will", "will not", "can" and "cannot" are to be interpreted as described in clause 3.2 of the ETSI Drafting Rules (Verbal forms for the expression of provisions).
"must" and "must not" are NOT allowed in ETSI deliverables except when used in direct citation.
[bookmark: _Toc455504137][bookmark: _Toc481503675][bookmark: _Toc527985139][bookmark: _Toc19024832][bookmark: _Toc56256551][bookmark: _Toc68765675]Executive summary
One paragraph each on:
· General definition of federated data management.
· Why PDL technology is needed to supporting federated data management.
· Major scope and technical contents in this spec (e.g. key issues and corresponding proposed solutions)
· Summary on high level findings and recommendation

[bookmark: _Toc455504138][bookmark: _Toc481503676][bookmark: _Toc527985140][bookmark: _Toc19024833][bookmark: _Toc56256552][bookmark: _Toc68765676]Introduction
Several paragraphs each on:
· Brief intro of federated data management.
· General role/importance of ledgers / PDL for federated data management.
· What are the key issues to be addressed
· The organization and the structure of this document

1 [bookmark: _Toc455504139][bookmark: _Toc481503677][bookmark: _Toc527985141][bookmark: _Toc19024834][bookmark: _Toc56256553][bookmark: _Toc68765677]Scope
This document will describe use case scenarios, functional architecture, key functional components mechanisms of leveraging PDL for federated data management (e.g., PDL for federated learning, the integration of PDL and the whole data pipeline).
2 [bookmark: _Toc455504140][bookmark: _Toc481503678][bookmark: _Toc527985142][bookmark: _Toc19024835][bookmark: _Toc56256554][bookmark: _Toc68765678]	References
[bookmark: _Toc455504141][bookmark: _Toc481503679][bookmark: _Toc527985143][bookmark: _Toc19024836][bookmark: _Toc56256555][bookmark: _Toc68765679]2.1	Normative references
Normative references are not applicable in the present document.
[bookmark: _Toc455504142][bookmark: _Toc481503680][bookmark: _Toc527985144][bookmark: _Toc19024837][bookmark: _Toc56256556][bookmark: _Toc68765680]2.2	Informative references
References are either specific (identified by date of publication and/or edition number or version number) or nonspecific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: _Toc451532925][bookmark: _Toc527985145][bookmark: _Toc19024838][i.1]	ETSI GR PDL001 V1.1.1/(2020-03): "Permissioned Distributed Ledger (PDL); Landscape of Standards and Technologies".
[i.2]	ETSI GR PDL002 V1.1.1/(2020-11): “Permissioned Distributed Ledger (PDL); Applicability and Compliance to Data Processing Requirements”
[i.3]	European Commission CORDIS: "CORDIS: Projects and Results".
NOTE 1:	Available at https://cordis.europa.eu/projects/en
[i.4]	ETSI Research and Standards Website /(2020-06-15): "Research and Standards".
NOTE 1:	Available at https://www.etsi.org/research
[i.5]	Industrial Internet Consortium (https://www.iiconsortium.org/)
[i.6]	A. C. Yao, “Protocols for Secure Computations,” 23rd Annual Symposium on Foundations of Computer Science (sfcs 1982), Chicago, IL, USA, 1982, Pages 160-164.
[i.7]	D. W. Archer, D. Bogdanov, Y. Lindell, L. Kamm, K. Nielsen, J. I. Pagter, N. P. Smart and R. N. Wright, “From Keys to Databases—Real-World Applications of Secure Multi-Party Computation,” The Computer Journal, Volume 61, Issue 12, December 2018, Pages 1749–1771.
[i.8]	C. Zhao, S. Zhao, M. Zhao, Z. Chen, C.-Z. Gao, H. Li and Y. Tan, “Secure Multi-Party Computation: Theory, practice and applications,” Information Sciences, Volume 476, 2019, Pages 357-372.

3 [bookmark: _Toc56256557][bookmark: _Toc68765681]	Definition of terms, symbols and abbreviations
[bookmark: _Toc527985146][bookmark: _Toc19024839][bookmark: _Toc56256558][bookmark: _Toc68765682]3.1	Terms
For the purposes of the present document, the following terms apply:
federated data management: A data management scenario where multiple organizations and/or multiple data types may get involved in each stage of the entire data pipeline or lifecycle and form data federation.
Note: Examples of federated data management are federated data collection, federated data storing, federated data computing such as federated learning and multi-party computation, federated data sharing, etc.
federated data collection: A data collection scenario where multiple data types are involved and/or multiple organizations jointly collect data of their interest, for instance, to improve data collection efficiency.
federated data storing: A data storing scenario where multiple organizations participate in storing data, likely, in distributed places.
federated data computing: A data computing scenario where multiple organizations work together to solve a data computation task.
Note: Examples of federated data computing include, but not limited to, federated learning, multi-party computation, and even decentralized artificial intelligence/machine learning (AI/ML).
federated data sharing: A data sharing scenario where federated data is shared among multiple organizations.
federated learning: A distributed machine learning approach where multiple clients and a federated learning server jointly learn an AI model and provide data privacy protection.
Note: A federated learning process generally works with a few steps: 1) training data are distributed and kept at federated learning clients; 2) a federated learning server coordinates all federated learning clients for them to perform local training and generate local and temporary model updates for each learning round; 3) the federated learning server receives model updates from federated learning clients and aggregate them together to generate a global model; 4) the global model will be sent to federated learning clients for them to perform next round of local training until the goal model converges to the one meeting the expected accuracy.
multi-party computation: A secure computation protocol where multiple parties jointly compute a function and guarantees their data privacy.
Note: In a multi-party computation: 1) multiple parties jointly compute a function over their individual data inputs to get a computation result; 2) each party knows the computation result; and 3) none of parties can learn other parties’ data inputs but only knows the computation result.
[bookmark: _Toc455504145][bookmark: _Toc481503683][bookmark: _Toc527985147][bookmark: _Toc19024840][bookmark: _Toc56256559][bookmark: _Toc68765683]3.2	Symbols
For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

[bookmark: _Toc455504146][bookmark: _Toc481503684][bookmark: _Toc527985148][bookmark: _Toc19024841][bookmark: _Toc56256560][bookmark: _Toc68765684]3.3	Abbreviations
For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:
AI	Artificial Intelligence
DLT	Distributed Ledger Technology
ETSI	European Telecommunications Standards Institute
EU	European Union
FDM		Federated Data Management
FL		Federated Learning
FPP	FDM-PDL Proxy
GDPR	General Data Protection Regulation
H2020	Horizon 2020
ICT	Information and Communication Technology
IIC	Industrial Internet Consortium (IIC)
IIoT	Industrial Internet of Things
IoT	Internet of Things
IP	Intellectual Property
IT		Information Technology
LMS	Ledger Messaging Service
LSS	Ledger Storage Service
ML		Machine Learning
MPC		Multi-Party Computation
MSG	Message
PDL	Permissioned Distributed Ledger
TXN	Transaction

4 [bookmark: _Toc56256561][bookmark: _Toc68765685]Use Cases for Federated Data Management
[bookmark: _Toc68765686][bookmark: _Toc56256562][bookmark: _Toc455504148][bookmark: _Toc481503686][bookmark: _Toc527985150][bookmark: _Toc19024843]4.1	Introduction of Use Cases
This clause describes some selected federated data management use cases or scenarios, which may be benefited from the use of Permissioned Distributed Ledger (PDL) technology and/or introduce new requirements to PDL technology. As illustrated in Figure 4.1-1, a general data pipeline in federated data management may consist of a set of relatively sequential stages such as data collection, data storing, data computing, data sharing, and data visualization. For each stage, multiple organizations may participate and work together. Each organization may have their own data, for example, generated from ubiquitous devices deployed for different applications such as connected vehicles. In general, a data pipeline (e.g., data pipeline A and data pipeline B) starts with data collection from devices, but it may complete in different places in the networking system. For example, data pipeline B in Figure 4.1-1 stops in edge networks leveraging edge servers for data storing, data computing and data visualization, while data pipeline A ends in the cloud. This clause will not cover the entire data pipeline but focus more on the stages and corresponding scenarios, which are more relevant to PDL technology.

[bookmark: _Ref63010241]Figure 4.1-1: General Data Pipeline in Federated Data Management

[bookmark: _Toc68765687]4.2	Federated Data Collection
Our daily lives are surrounded by a variety of sensors and devices. Internet of Things (IoT) technology enables us to leverage these sensors/devices to monitor and measure the physical world in a real-time manner. In many data-driven IoT applications, the first and most important stage is data collection. During data collection, the system can collect data from different devices such as consumer equipment, personal devices, cameras, and wearable health devices; data can also be collected from commercial equipment including security monitoring systems, traffic monitoring equipment, production lines, logistics and supply chain systems, etc. These devices generate different types of data and may belong to and be owned by multiple organizations; the resulted data collection that contains multiple data types and/or relies on multiple organizations is referred to as federated data collection.

Figure 4.2-1 shows an Industrial Internet of Things (IIoT) use case, which includes a few processes such as smart manufacturing, smart logistics, and customer experience monitoring. Multiple scenarios may be involved in each process. For example, the smart manufacturing process may cover product quality control, storage management, onsite energy management, equipment maintenance, etc. All those processes and scenarios need to be monitored in real-time to ensure overall product delivery and product quality. As a result, a large amount of production, logistics and customer experience data are generated at all times and need to be collected. However, in a real-world production environment, manufacturing equipment and Information Technology (IT) systems usually involve multiple manufacturers; in the meantime, a complete manufacturing process may involve different departments or even different companies/organizations. Similarly, during the smart logistics process, products will be transported from factories to customers through multiple intermediate transit places, where multiple organizations are involved as well. All of these facts demonstrate that data collection in IIoT is a complex system and needs multi-party collaboration, which is referred to as federated data collection. Please note that Industrial Internet Consortium (IIC) [i.5] defines more IIoT use cases, which are not limited to Figure 4.2-1.

Figure 4.2-1: Federated Data Collection for Industrial Internet of Things (IIoT)

[bookmark: _Toc68765688]4.3	Federated Learning
Traditional Machine Learning (ML) technology is usually centralized, in the sense that: 1) training data is usually collected to be stored at a centralized location such as a centralized database; and 2) learning process is performed at a centralized location such as clouds as well. However, traditional ML may cause data leakage issues, since training data is maintained at a location, different than its original place and likely losing data privacy protection.

As a distributed ML technology and a type of federated data computing, Federated Learning (FL) was first proposed by Google in 2016 for a mobile keyboard prediction. The goal of FL is to implement a distributed ML model training process by multiple FL participants while still ensuring data privacy, security and legal compliance. Using Google’s FL-based mobile keyboard prediction as an example, FL usually consists the following steps:
· Step 1: Mobile phones as FL participants participating in an FL task first download initial training model (i.e. the initial global model) from an FL Server;
· Step 2: Each mobile phone conducts the local training over its local data to train the model and generate its local model (or model update);
· Step 3: After the local model is trained, the mobile phone uploads the encrypted local model update (i.e. gradients) to the FL sever;
· Step 4: The FL server aggregates all local model updates collected from multiple mobile phones to obtain a new/updated global model. The updated global model will be then further sent to each mobile phone for the next round of training (Similar to Step 1). Overall, steps 1-4 will be executed for multiple rounds to improve the global model with expected quality and/or other requirements.

From the above process, it can be seen that FL can make full use of the data and computing power of the FL participants. Multiple parties (i.e. participants) can collaborate to build a more robust ML model without sharing/moving their data. This is very important for ML tasks when a strict data law/supervision is enforced. For example, the General Data Protection Regulation (GDPR) in Europe puts forward strict requirements on the storage, use, and transfer of users’ private data. Therefore, FL can be used to solve key issues such as data ownership, data privacy, and data access rights in this environment.

Consider a general use case of smart city and smart transportation as shown in Figure 4.3-1.
· In smart city applications, many cameras will be deployed on streets and generate continuous data or data streams. These urban camera data can be used to train an ML model for urban environmental monitoring and predicting. However, uploading all camera data to cloud could be cumbersome or unrealistic. Accordingly, FL is a more feasible and efficient method.
· Similarly, in smart transportation applications, there will be a large number of vehicles driving on the road, and each vehicle will generate massive real-time driving data. These data can be trained to generate many ML models (e.g. to predict which road sections or during which time periods vehicles are most likely to have poor driving behavior/performance). However, these data are not only large in quantity, but also contain personal privacy information; as a result, it is unwise or inefficient to upload these data to a cloud for centralized processing/training as in traditional ML. FL can be applied in this use case such that a global ML model can be jointly trained by vehicles without uploading driving data from vehicles to cloud.

Figure 4.3-1: Federated Learning in Smart City and Smart Transportation

[bookmark: _Toc68765689]4.4	Multi-Party Computation Use Case
Secure Multi-Party Computation (MPC) was originally introduced in [i.6] in the form of “The Millionaire’s Problem”. Since then, many advances have been made in both MPC theories and practical MPC deployments [i.7] [i.8].

In a general setting of MPC, there are n parties. Each party Pi hosts its own input data xi. They want to jointly compute a function to get a result: result=f(x1, x2, …, xn) with the requirement that no party can know or deduce input data hosted by other parties. In other words, all parties only know the function and the computed result. Figure 4.4-1 shows such a general MPC structure as an example of MPC use cases, which consists of the following procedures:
· Step 1: Parties encrypt their input data.
· Step 2: Parties exchange their encrypted input data.
· Step 3: One (or multiple) party computes the function over received encrypted input data from other parties to generate a temporary result.
· Step 4: The temporary result is sent to other parties.
· Step 5: One (or multiple) party computes the function over the temporary result to generate the final result.
· Step 6: The final result is sent to other parties.

[bookmark: _Ref63013745]Figure 4.4-1: General Multi-Party Computation

[bookmark: _Toc68765690]4.5	Possible Actors in FDM Systems
Dependent on the support applications (e.g., federated data collection, federated learning), FDM systems may have various types of data and different kinds of actors such as data source, data host, data consumer, etc.
· Data Source: The entity such as end devices that generates original data.
· Data Host: The entity that stores and hosts the data. A Data Source may send the original data to a Data Host; if the Data Source maintains the original data locally, it acts as the Data Host as well.
· Data Consumer: The entity that requests to access the data. A Data Consumer requests data from a Data Host and/or a Data Source.

Table 4.5-1: Possible Actors in FDM Systems
	Actors
	Federated Data Collection
	Federated Learning (FL)
	Multi-Party Computation
(MPC)

	
	
	Training Data
	Local Model
	Global Model
	

	Data Source
	Entities (e.g., devices) generating data
	FL participants (or other entities that send training data to FL participants)
	FL Participants
	FL Server
	MPC Parties

	Data Host
	Entities (e.g., servers) collecting data
	FL Participants
	FL Server and FL Participants
	FL Server and FL Participants
	MPC Parties

	Data Consumer
	Entities (e.g., users) using the data
	FL Participants
	FL Server
	FL Participants and Users
	MPC Parties

5 [bookmark: _Toc56256566][bookmark: _Toc68765691]Key Issues
[bookmark: _Toc68765692]5.1	Introduction
This clause describes some key issues, which are related to federated data management use cases as discussed in the clause 4 and can be potentially solved by leveraging PDL technologies.
[bookmark: _Toc56256567][bookmark: _Toc68765693]5.2	Key Issues with Federated Data Collection
As illustrated in Figure 4.2-1, federated data collection is essentially a distributed system and involves multi-party collaboration, which leads to the following issues:
· [bookmark: _Hlk65679422]The first issue is related to trust. These multiple parties or multiple organizations involved in federated data collection need to build a certain level of trust in order to jointly collect data in a trustworthy manner.
· The second issue is how to guarantee the integrity of the data collected by multiple organizations. For example, in the IIoT use case, logistics data as collected from a shipping truck should not be tampered.
· The third issue is how to incentivize multiple organizations to participate federated data collection. For example, customer experience data in the IIoT use case can be very useful for enhancing the manufacturing process. A proper incentive mechanism is needed to encourage customers to contribute their experience data.
· The fourth issue is related to network security. For example, the IIoT use case relies on distributed IoT networks to enable federated data collection. To secure distributed IoT network is crucial.
The above issues could be solved by leveraging PDL technologies. For example, PDL technologies can be used to form a unified ledger infrastructure, which allows various companies, various equipment manufacturers and various logistic companies to achieve more trustful collaboration relationships, which will ultimately ensure the credibility, accountability and transparency of federated data collection in the IIoT use case, and in turn improve the efficiency and reliability of next-generation smart manufacturing. More detailed solutions for PDL-enabled federated data collection will be developed in the clause 6 and clause 7. In the remaining of this section, a few specific key issues are elaborated.
[bookmark: _Toc68765694]5.2.1	How to efficiently and concurrently collect data and store data collection records in PDL?
As described in federate data collection use cases, IIoT data will be transmitted and collected from various IIoT devices (e.g., factory devices, shipping vehicles) to data collection service in the cloud. This is usually done without using or interacting with PDL system. In other words, many applications currently use regular communications (i.e., off-chain communications without leveraging PDL) for normal data transmission and collection, and only leverage distributed ledgers for recording selected data collection histories (i.e., on-chain communications using PDL). This approach has two problems:
· It involves two separate processes (i.e., off-chain and on-chain communications) and is inefficient in terms of overall overhead. However, in some cases, it may be more desired to leverage PDL to support both on-chain and off-chain communication; and
· Applications need to directly deal with PDL, which might not be affordable especially when applications are hosted on resource-constrained IIoT devices. As a result, new functionalities such as intermediary entities can be designed to help applications to interact with the designated PDL on behalf of applications; such intermediary entities are logical entities, which could be co-located with servers, gateways, and/or other type of network nodes.
When considering leveraging PDL systems to transmit/convey and record original application messages (or data) simultaneously, a few issues need to be considered to improve the efficiency of such concurrent data transmission and recording.
· For example, when a sender application sends an application message to a receiver application through a selected PDL chain, the selected PDL chain needs to be able to route the application message through appropriate PDL nodes and eventually arriving at the receiver application. Given the massive number of applications (e.g., hosted by IIoT devices), it is inefficient and impractical to let PDL nodes to identify application messages and their routing for these applications. In addition, an application may continuously send many application messages through a PDL chain, while another application may only send sporadic application messages through the PDL chain; different approaches should be designed for such applications, which have different message generation and transmission needs.
· Another consideration is how to enable that these applications can flexibly and efficiently use various PDL chains. An application may need to use different type of PDL chains but do not have adequate capability to discover any available PDL chains and maintain their information. Plus, an application may even not directly interact with any PDL nodes in order to reduce its complexity.
· In addition, how to efficiently transform and adapt application messages to the format of PDL transactions needs to be considered for several reasons: 1) It may be required that the application message content cannot be seen by every other entities but entities involved in the same application; 2) The message content also should be transparent to PDL nodes, but PDL nodes need to know some metadata (e.g., which messages are from which applications so that messages from different applications could be handled by PDL nodes differently based on their needs); and 3) The size of a single application message may be too small and to contain it in a PDL transaction could cause high overhead.
[bookmark: _Toc56256568][bookmark: _Toc68765695]5.3	Key Issues with Federated Learning
In smart city and smart transportation use case as illustrated in Figure 4.3-1, FL is used to learn AI models from distributed camera data, mobile phone data and vehicle data. Although the use of FL does not need to move local data away from FL participants (e.g., cameras, mobile phones, vehicles), traditional FL still introduces a few issues:
· First, many FL participants are not from the same organization and do not trust each other, which makes effective collaboration and coordination between them difficult especially in a fully distributed scenario.
· Second, a FL participant may have useless and even malicious local data, which can not help train a good local model.
· Third, a FL participant may inject a bad local model, which will impact the aggregated global model. The integrity of local model and global mode also shall be guaranteed and accountable.
· Fourth, a sufficient number of FL participants are required to guarantee the quality of the global model. The issue to how to incentivize FL participants with good local data to participate FL.
· Fifth, local models generated in each FL round could provide insights on the whole FL and enable explainable AI. But it relies on how the integrity and accountability of local models can be guaranteed.
· Last but not the least, the FL aggregation server is still a single-point-of-failure. If the FL aggregation server fails, the global model will never be appropriately generated.
PDL technologies help to solve and/or mitigate the above issues. For example, local models can be stored in the ledger for future traceability and explanation purposes. Also, smart contracts can be leveraged to encourage FL participants to actively cooperate and contribute their local data and learning capabilities. More detailed solutions for PDL-enabled federated learning will be developed in the clause 6 and clause 7. In the remaining of this section, a few specific key issues are elaborated.

[bookmark: _Toc68765696]5.3.1	How to efficiently store FL-related data in PDL?
In reality, various FL tasks can be initiated and multiple FL participants in a given FL task may not be affiliated with the same organization. In other words, those FL participants may not trust or know each other, and they may join a specific FL task randomly. Those FL participants usually do not have formal business collaboration relationships with the FL task initiator and therefore the FL participants do not have obligations for contributing themselves to an FL training process. Given that, all the data related to FL training can be recorded using PDL since it can enable the traceability and accountability of the FL training process among those untrusted FL participants. For instance, when certain FL participants are malicious nodes and uploaded many bad local model updates, the FL records in the PDL can be used to identify those malicious behaviors.
In the meantime, massive data such as training data and FL models can be generated by the FL participants and the FL server during the whole FL training process.
· For example, during the FL training process, local model updates are produced by FL participants. Once the FL training process is completed, the final global model is generated by the FL server.
· Other types of data may include training progress and performance-related data/statistics (e.g., how long did an FL participant take for completing a local training during each training round? how much computing resources were allocated for the local training?).
All types of these data can be recorded in PDL chains in order to support accountability and traceability (e.g., to support rollback operations if an FL training process needs to be restarted from a certain point in order to eliminate a bad effect made by a malicious FL participant). As such, how to effectively store them in PDL remains a major design challenge, for example, based on the following design considerations
· The type of FL-related data to be stored to PDL systems should be determined, for instance, based on the availability and capability of PDL systems. For a specific FL training process, it might be determined that only the final global model and/or the list of FL participants will be stored to a PDL chain to reduce overhead to PDL system.
· FL participants should be appropriately instructed or notified of the type of FL-related data that they need to store to PDL chains. Note that the entity that creates/initiates a specific FL training process may now know or trust involved FL participants. Note that the size of FL models (either local models or the global model) could be in tens of megabytes and even larger. An FL model could be stored with a full version or with smaller tailored versions. As such, a critical issue is how to prepare the FL model in an appropriate version based on PDL capabilities and/or constraints before storing it onto a designated PDL chain.
· An intermediary service or function can be designed to help the interaction between the FL entities and PDL systems. Otherwise, all the FL tasks/applications have to implement their own solutions for interacting with each PDL system, which increases additional development complexity and burden for FL application developers.

6 [bookmark: _Toc68765697][bookmark: _Toc56256569]Architecture for PDL-based Federated Data Management
[bookmark: _Toc68765698]6.1	Introduction
This clause describes PDL-based Federated Data Management architecture including primary functional components.
[bookmark: _Toc68765699]6.2	Architecture
In the context of PDL-based Federated Data Management (FDM), there are two separate systems, namely PDL system and FDM applications. To leverage PDL to solve key issues as described in previous clause and eventually enable PDL-based FDM, these two systems need to interact and interwork with each other.
Figure 6.2-1 illustrates a general proxy-based solution to interwork FDM system and PDL system, where FDM-PDL Proxy (FPP) is included as a logical entity to connect both systems. Via FPP, FDM applications (e.g., federated data collection, federated learning) can access PDL systems, for instance, to store FDM-related data (e.g., operation records) to a PDL chain. FPP can provide the following functions:
· Find appropriate PDL chains from PDL system for an FDM application based on its requirements;
· Interact with PDL system on behalf of an FDM application;
· Buffer and send requests (e.g., to create a transaction) from an FDM application to PDL system; and
· Buffer and forward notifications and/or responses from PDL system to an FDM application.

Figure 6.2-1: PDL-based Federated Data Management via an FDM-PDL Proxy

There could be multiple FPPs between FDM system and PDL system. As an example, Figure 6.2-2 shows an extended solution, where FDM Entity-1 and FDM Entity-2 interact with PDL system through multiple and different FPP (i.e., via FPP-1 and FPP-2, respectively). The following scenarios and operations can be supported via FPP-1 and FPP-2.
Scenario 1: FDM Entity-1 (e.g., an FL participant) needs to record an FDM message (e.g., a local model update) to PDL system. After it is done, FDM-Entity-2 (e.g., the FL server) expects to receive a notification from PDL system.
· FDM Entity-1 creates an FDM message MSG1 and sends it to FPP-1,
· FPP-1 transforms the FDM message MSG1 to a PDL transaction TXN1. FPP-1 sends the PDL transaction TXN1 to PDL system.
· The PDL transaction TXN1 will be propagated through the PDL system, so that all PDL nodes will receive it and eventually the PDL transaction TXN1 will be included and stored in the ledger.
· After the PDL transaction TXN1 is stored in the ledger, PDL system may send a notification to FPP-2 to indicate the successful inclusion of TXN1; FPP-2 may forward the notification to FDM Entity-2.
Scenario 2: FDM Entity-1 (e.g., an IIoT device) leverages PDL system to transmit an FDM message (e.g., IIoT sensory reading) to FDM Entity-2 (e.g., IIoT data collection server), while storing this transmission record to ledgers.
· FDM Entity-1 creates an FDM message MSG1 and sends it to FPP-1,
· FPP-1 transforms the FDM message MSG1 to a PDL transaction TXN1. FPP-1 sends the PDL transaction TXN1 to PDL system.
· The PDL transaction TXN1 will be propagated through the PDL system, so that all PDL nodes will receive it.
· A PDL node forwards the PDL transaction TXN1 to FPP-2 and stores a record of this event to ledgers.
· FPP-2 receives the PDL transaction TXN1 and recovers the contained message MSG1.
· FPP-2 forwards the message MSG1 to FDM Entity-2.

Figure 6.2-2: PDL-based Federated Data Management with Multiple FDM-PDL Proxies

[bookmark: _Toc68765700]6.3	Functional Elements

7 [bookmark: _Toc68765701]Key Solutions
[bookmark: _Toc68765702]7.1		Solutions for PDL-based Federated Learning
To solve PDL-based federated learning issues as described in clause 5.3, FL entities (i.e., FL task initiators, FL participants and FL servers) generally need to interact with PDL systems, for example, to store FL-related data onto PDL chains. To make this process more efficient and alleviate extra burden to FL entities, a logical entity, referred to as Ledger Storage Service (LSS), is proposed as a part of FDM-PDL Proxy (FPP). In fact, LSS is a value-added service to assist FL entities in leveraging PDL with minimum effort.
Basically, an FL entity acting as a LSS client just needs to specify high-layer requirements to LSS regarding how an FL task intends to leverage PDL systems such as: 1) What kinds of information will be stored onto PDL chains; and 2) Whether the full version and/or tailored versions of FL model updates should be stored onto PDL chains.
Once those high-level requirements are conveyed to LSS, LSS shall handle all the low-layer details in order to interact with PDL systems such as: 1) To decide which data is to be stored in which specific PDL chain; and 2) To determine whether a new PDL chain needs to be created. In other words, the application developers of FL applications shall focus on their business logic and all the interactions with PDL systems will be offloaded to and assisted by LSS.
In addition, LSS shall figure out which FL participants are involved, and then contact each of FL participants on behalf of LSS clients, in order to convey corresponding instructions to those FL participants (e.g., what information needs to be put inside a PDL transaction, in what PDL transaction format, and stored in which specific PDL chain, etc).
Also, LSS shall make sure those FL participants have the appropriate privileges to manipulate the desired PDL chain (e.g., adding new blocks to a specific PDL chain). Accordingly, FL participants only need minimum effort to leverage PDL. In addition, in the case where a tailored version of FL model needs to be produced and stored in PDL, LSS shall advise FL participants about what type of desired tailored operations should be conducted by the FL participants or if the tailoring operation shall be done by LSS on behalf of FL participants.

Figure 7.1-1: Procedure of PDL-based Federated Learning

A detailed procedure for leveraging LSS to enable PDL-based federated learning is illustrated in Figure 7.1-1, which has the following steps.
Precondition: LSS Client-1 such as the FL task initiator of FL Task-1 has the management privilege for a specific FL Task-1. There is a PDL system in which PDL Node-1 is one of the PDL nodes such that LSS and/or FL participants can interact with PDL Node-1 for conducting PDL-related operations. In addition, there are multiple FL participants such as FL Participant-A involved in FL Task-1, and FL Participant-A is just one of them.
Step 1: LSS Client-1 sends a message to LSS for requesting to store certain information about FL Task-1 onto PDL chains. In this request, LSS Client-1 shall specify its requirements regarding what kinds of information about FL Task-1 should be stored in PDL and other high-level storage needs. For example, the parameters carried in this request could include: 1) The identifier of FL Task-1; 2) The list of involved FL participants; 3) The type of FL-related information (e.g., local/global model update) to be stored onto PDL chains; 4) Whether the full version or tailored version of FL models need to be stored onto PDL chains; and 5) the frequency or rate to store FL-related information to PDL chains.
Step 2: LSS shall verify whether FL Task-1 is a valid FL task, e.g. by checking with some other entities such as an FL task repository. In the meantime, LSS shall make sure LSS Client-1 has the corresponding privileges for managing FL Task-1. LSS then analyses the storage requirements received in Step 1; it shall decide the detailed PDL storage organization and structure solution. As an example, a PDL storage organization and structure solution for FL Task-1 shall specify the following details:
· One PDL chain is needed for storing a full version of the global model updates during each FL training round.
· One PDL chain is needed for storing a tailored version of global model updates during each FL training round.
· One PDL chain is needed for storing the full version of local model updates. However, a given FL participant only needs to store a full version of the local model update for every 5 training rounds.
· One PDL chain is needed for storing the tailored version of local model updates. A given FL participant can store a tailored version of the local model update for every FL training round.

Step 3: LSS shall identify whether there are available PDL chains for use, based on the decided storage solution in Step 2. Once identifying those PDL chains, LSS shall obtain the corresponding PDL chain identifiers (e.g., chain_ID) of those PDL chains. In addition, LSS shall collect other useful information from PDL system. For example, if LSS Client-1 did not indicate the involved FL participants of FL Task-1, LSS shall check whether such information can be obtained from PDL system; for example, a management chain for FL Task-1 may exist , which can provide the basic information of FL Task-1. LSS shall also convey certain information to the PDL nodes. For example, LSS shall indicate to PDL nodes a list of the permitted FL participants of FL Task-1 and make sure those FL participants have the access privileges to operate PDL, e.g. to generate and store PDL transactions on the desired PDL chains.
Step 4: LSS shall send PDL-related instructions to each of FL participants (e.g., the FL Participant-A) for enforcing the decided storage solution. A PDL-related instruction may include: 1) PDL node access information such as node address; 2) PDL transaction format or template; 3) the speed of transactions that FL Participant-A can generate and send to the desired PDL chain; and 4) the type of FL-information that FL Participant-A shall contain in PDL transaction;
Step 5: FL Participant-A just generate a local model update for the current FL training round #i. Based on the configuration, FL Participant-A knows that the full version of the local model update will be stored in PDL chain-1. Accordingly, it shall create a PDL transaction (e.g., Transaction-1) for storing a full version of this local model update based on the transaction format of PDL chain-1.
Step 6: FL Participant-A shall submit Transaction-1 to PDL chain-1 via PDL Node-1. Accordingly, after a certain consensus process, Transaction-1 shall be recorded in PDL chain-1.
Step 7: LSS is notified by the FL Participant-A or by PDL nodes of PDL chain-1that a new local model update generated by FL Participant-A is available.
Step 8: LSS shall obtain the new local model update. According to the configuration, LSS knows that it shall conduct a model tailoring operation. Accordingly, LSS creates a tailored version of the local model update included in Transaction-1. Also, BSS knows that the tailored version of the local model update shall be stored in PDL chain-2. Accordingly, it shall create a another PDL transaction (e.g., Transaction-2) for storing a tailored version of the local model update for this FL training round #i.
Step 9: LSS shall submit Transaction-2 to PDL chain-2. As a result, Transaction-2 will be recorded in PDL chain-2 after a consensus process.

[bookmark: _Toc68765703]7.2	Solutions for PDL-based Federated Data Collection

Figure 7.2-1: Procedure of PDL-based Federated Data Collection

[bookmark: _Toc68765704]7.3	…

8 [bookmark: _Toc56256579][bookmark: _Toc68765705][bookmark: _Toc56256580]Conclusions

[bookmark: _Toc455504149][bookmark: _Toc481503687][bookmark: _Toc527985151][bookmark: _Toc19024844][bookmark: _Toc56256581][bookmark: _Toc68765706]Annex A: Title of annex

[bookmark: _Toc455504150][bookmark: _Toc481503688][bookmark: _Toc527985152][bookmark: _Toc19024845][bookmark: _Toc56256582][bookmark: _Toc68765707]Annex B: Title of annex
[bookmark: _Toc481503689][bookmark: _Toc527985153][bookmark: _Toc19024846][bookmark: _Toc56256583][bookmark: _Toc68765708][bookmark: _Toc455504151]B.1	First clause of the annex
[bookmark: _Toc455504152][bookmark: _Toc481503690][bookmark: _Toc527985154][bookmark: _Toc19024847][bookmark: _Toc56256584][bookmark: _Toc68765709]B.1.1	First subdivided clause of the annex

[bookmark: _Toc455504154][bookmark: _Toc481503692][bookmark: _Toc527985156][bookmark: _Toc19024848][bookmark: _Toc56256585]Annex:
Bibliography

[bookmark: _Toc455504155][bookmark: _Toc481503693][bookmark: _Toc527985157][bookmark: _Toc19024849][bookmark: _Toc56256586]Annex :
Change History
	Date
	Version
	Information about changes

	December 2020
	V0.0.1
	Creation of document, with the table of content

	February 2021
	V0.0.2
	Added use cases 4.1-4.4 and some key issues 5.1-5.3

	
	
	

	
	
	

[bookmark: _Toc455504156][bookmark: _Toc481503694][bookmark: _Toc527985158][bookmark: _Toc19024850][bookmark: _Toc56256587][bookmark: _Toc68765710]History
	Document history

	v0.0.1
	17 Dec 2020
	Creation of document, TOC and high-level content

	[bookmark: H_Pub]
	
	

	[bookmark: H_MAP]
	
	

	[bookmark: H_UAP]
	
	

	[bookmark: H_PE]
	
	

Latest changes made on 2020-02-03
ETSI
image3.emf
Various Organizations with Ubiquitous DevicesNetwork Functions(Storage, Computing & Intelligence)Global Data Repositories and Global Intelligence (AI/ML)Edge Server (Local Data Repositories & Local Intelligence)Smart FactorySmart CitySmart eHealthConnected VehiclesData Pipeline: Security, Privacy, IntelligenceAccess NetworksEdge NetworksCore NetworksCloud InfrastructureLegendData CollectionData StoringData ComputingData SharingComputing ServerFederated Data RepositoryData Pipeline AData Pipeline BData Visualization

Microsoft_Visio_Drawing.vsdx

Various Organizations with Ubiquitous Devices
Network Functions
(Storage, Computing & Intelligence)
Global Data Repositories and Global Intelligence (AI/ML)
Edge Server (Local Data Repositories & Local Intelligence)

Smart Factory
Smart City
Smart eHealth
Connected Vehicles

Data Pipeline: Security, Privacy, Intelligence

Access Networks
Edge  Networks
Core  Networks
Cloud  Infrastructure

Legend
Data Collection
Data
Storing
Data Computing
Data
Sharing
Computing Server
Federated Data Repository

Data Pipeline A
Data Pipeline B
Data
Visualization

image4.emf
...Industrial Internet of Things (IIoT)Smart Logistics ProcessSmart ManufacturingProcessSmart Customer Experience Monitoring...ManufacturingData CollectionLogisticData CollectionCustomer Experience Data Collection

Microsoft_Visio_Drawing1.vsdx
...
Industrial Internet of Things (IIoT)
Smart  Logistics
Process
Smart Manufacturing
Process
Smart Customer Experience Monitoring
...
Manufacturing
Data Collection
Logistic
Data Collection
Customer Experience  Data Collection

image5.emf
...Federated Learning (FL) ServerGlobal Model AggregationLocal Model UpdateLocal Model UpdateLocal Training/Learning at FL ParticipantsGlobal Model Update ...City CamerasCarsMobile PhonesGlobal Model Update Local Model UpdateLocal ModelTraining

Microsoft_Visio_Drawing2.vsdx
...
Federated Learning (FL) Server
Global Model Aggregation
Local Model
Update
Local Model
Update
Local Training/Learning at FL Participants
Global Model
Update
...
City Cameras
Cars
Mobile Phones

Global Model
Update
Local Model
Update
Local Model
Training

image6.emf
Party P1Party P2Party P3Party PnSend encrypted input data to other partiesReceive encrypted input data from other partiesCompute the function over the received encrypted input data to generate the temporary resultSend the temporary result to other partiesReceive the temporary result to other partiesGenerate the final resultMPC Protocol forComputing the Functionf(x1, ͙͕�xn)Input data (xi) at each party Pi

Microsoft_Visio_Drawing3.vsdx
Party P1
Party P2
Party P3
Party Pn
Send encrypted input data to other parties
Receive encrypted input data from other parties
Compute the function over the received encrypted input data to generate the temporary result
Send the temporary result to other parties
Receive the temporary result to other parties
Generate the final result
MPC Protocol for
Computing the Function
f(x1, …, xn)

Input data (xi) at each party Pi

image7.emf
Federated Data Management (FDM) ApplicationsPermissioned Distributed Ledger (PDL) SystemFDM-PDL Proxy(FPP)

Microsoft_Visio_Drawing4.vsdx
Federated Data Management (FDM) Applications
Permissioned Distributed Ledger (PDL)
System
FDM-PDL Proxy
(FPP)

image8.emf
FDM Entity-1PDL SystemFDM-PDL Proxy-1(FPP-1)FDM-PDL Proxy-2(FPP-2)FDM Entity-2

Microsoft_Visio_Drawing5.vsdx
FDM Entity-1
PDL System
FDM-PDL Proxy-1
(FPP-1)
FDM-PDL Proxy-2
(FPP-2)
FDM Entity-2

image9.emf
PDL-based Federated Learning- LSS ExecutionPDL-based Federated Learning - LSS ConfigurationLedgerStorage Service(LSS)5. FL Participant-A creates a PDL blockchain transaction (Transaction-1) for storing a FL local model update during FL training round #i.6. FL Participant-A submits Transaction-1 to PDL via PDL Node-1 and Transaction-1 is recorded in chain-1.FL Participant-A(Joined FL Task-1)PDL Node-17. LSS is notified (by FL Participant-A, PDL Node-1, or other PDL nodes) that Transaction-1 from FL Participant-A has been added to the designated PDL chain.8. LSS creates a tailored version of local model update included in Transaction-1 and creates another Transaction-2 for storing this tailored version to a different PDL chain.9. LSS submits Transaction-2 to PDL chain-2.LSS Client-1 (e.g., FL Task Initiator)1. LSS Client-1 requests to leverage PDL for storing FL-related information.2. LSS analyzes the storage requirements and decides the detailed PDL storage organization and structure solution.3. LSS identifies the PDL chains for LSS Client-1, based on the decided storage solution in Step 2.4. LSS sends PDL-related instructions to each of FL participants for enforcing the decided storage solution.

Microsoft_Visio_Drawing6.vsdx
PDL-based Federated Learning
- LSS Execution
PDL-based Federated Learning
- LSS Configuration

Ledger
Storage Service
(LSS)
5. FL Participant-A creates a PDL blockchain transaction (Transaction-1) for storing a FL local model update during FL training round #i.
6. FL Participant-A submits Transaction-1 to PDL via PDL Node-1 and Transaction-1 is recorded in chain-1.
FL Participant-A
(Joined FL Task-1)
PDL Node-1
7. LSS is notified (by FL Participant-A, PDL Node-1, or other PDL nodes) that Transaction-1 from FL Participant-A has been added to the designated PDL chain.
8. LSS creates a tailored version of local model update included in Transaction-1 and creates another Transaction-2 for storing this tailored version to a different PDL chain.
9. LSS submits Transaction-2 to PDL chain-2.
LSS Client-1  (e.g., FL Task Initiator)
1. LSS Client-1 requests to leverage PDL for storing FL-related information.
2. LSS analyzes the storage requirements and decides the detailed PDL storage organization and structure solution.
3. LSS identifies the PDL chains for LSS Client-1, based on the decided storage solution in Step 2.
4. LSS sends PDL-related instructions to each of FL participants for enforcing the decided storage solution.

image10.emf
LMS-1 sends the original message Msg1 (or multiple messages) in one or more transactions to LMS-2 via the target PDL systemLedger Messaging Service (LMS-1)Federated Data Collection Client(e.g., IIoT Device)PDL Node-1PDL Node-2Federated Data Collection Server(e.g., IIoT Server)1. Request to send an original message Msg18. Propagate the transaction9. Receive the transaction10. Forward the transaction to LMS-212. Forward the message Msg113. Response14. Response15. Response2. Process the request3. Identify LMS-211. Process the transaction(s) with transaction-to-message adaptation4. Send a notification to LMS-26. Generate new transaction(s) with message-to-transaction adaptation7. Forward the transaction to PDL Node-1 5. Subscribe to PDL Node-2Ledger Messaging Service (LMS-2)

Microsoft_Visio_Drawing7.vsdx
LMS-1 sends the original message Msg1  (or multiple messages) in one or more transactions to
LMS-2 via the target PDL system
Ledger Messaging Service (LMS-1)
Federated Data Collection Client
(e.g., IIoT Device)
PDL Node-1
PDL Node-2
Federated Data Collection Server
(e.g., IIoT Server)
1. Request to send an original message Msg1
8. Propagate the transaction
9. Receive the transaction
10. Forward the transaction to LMS-2
12. Forward the message Msg1
13. Response
14. Response
15. Response
2. Process the request
3. Identify LMS-2
11. Process the transaction(s) with transaction-to-message adaptation
4. Send a notification to LMS-2
6. Generate new transaction(s) with message-to-transaction adaptation
7. Forward the transaction to PDL Node-1
5. Subscribe to PDL Node-2
Ledger Messaging Service (LMS-2)

image1.png

image2.jpeg

