19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

Information technology - Open Systems Interconnection -
Conformance testing methodology and framework - Part 3: The
Tree and Tabular Combined Notation (TTCN)

1 Scope

This part of ISO/IEC 9646 defines an informal test notation, called the Tree and Tabular Combined Notation (TTCN), folo@&iroamnf
test suites, which is independent of test methods, layers and protocols, and which reflects the abstract testing metimetbiog$ @l EC
9646-1 and ISO/IEC 9646-2.

It also specifies requirements and provides guidance for using TTCN in the specification of system-independent conforaudtesefoest
one or more OSI standards. It specifies two forms of the notation: one, a human-readable form, applicable to the produébionasfce
test suite standards for OSI protocols; and the other, a machine-processable form, applicable to processing within acahimiteseys-
tems.

This part of ISO/IEC 9646 applies to the specification of conformance test cases which can be expressed abstractly éorteoharaf
observation of protocol data units and abstract service primitives. Nevertheless, for some protocols, test cases mawhiemeadedt be
expressed in these terms. The specification of such test cases is outside the scope of this part of ISO/IEC 9646, athesigtagessmay
need to be included in a conformance test suite standard.

For example, some static conformance requirements related to an application service may require testing techniques edificht@tbap
particular application.

The specification of test cases in which more than one behaviour description is to be run in parallel is dealt with bgitres¢xtd TCN
regarding concurrency.

This part of ISO/IEC 9646 specifies requirements on what a test suite standard may specify about a conforming realieaéeh safittb,
including the operational semantics of TTCN test suites.

This part of ISO/IEC 9646 applies to the specification of conformance test suites for OSI protocols in OSI layers 2 fioallysipetiding
Abstract Syntax Notation One (ASN.1) based protocols. The following are outside the scope of this part of ISO/IEC 9646:

a) the specification of conformance test suites for Physical layer protocols;
b) the relationship between TTCN and formal description techniques;
c¢) the means of realization of executable test suites (ETS) from abstract test suites.

This part of ISO/IEC 9646 defines mechanisms for using concurrency in the specification of abstract test cases. Contliedhisydppli-
cable to the specification of test cases:

a) in a multi-party testing context;
b) which handle multiplexing and demultiplexing in either a single-party or multi-party testing context;
c¢) which handle splitting and recombining in either a single-party or multi-party testing context;

d) in a single-party testing context when the complexity of the protocol or set of protocols handled by the IUT is such
concurrency can simplify the specification of the test case.

TTCN modules are defined to allow sharing of common TTCN specifications between test suites.

2 Normative references

The following standards contain provisions which, through reference in this text, constitute provisions of this part of 36@BIEE the
time of publication, the editions indicated were valid. All standards are subject to revision, and parties to agreementthisager of ISO/
IEC 9646 are encouraged to investigate the possibility of applying the most recent editions of the standards listed bedesvoM8@tand
IEC maintain registers of currently valid International Standards.

ISO 646 : 199lInformation technology - ISO 7-bit coded character set for information interchange.

ISO/IEC 7498-1 : 1999nformation technology - Open Systems Interconnection - Basic Reference Model - Part 1: The Bas
Model.

(See also ITU-T Recommendation X.200 : 1994.)

Delivery 9.4, 17 December 1996 1

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

ISO/IEC 8824-1 : 1994nformation technology - Abstract Syntax Notation One (ASN.1) - Part 1: Specification of Basic Nota-
tion.

(See also ITU-T Recommendation X.680 : 1994.)

ISO/IEC 8824-1/Amd. 1 : 199Mnformation Technology - Abstract Syntax Notation One (ASN.1) - Part 1: Specification of Basic
Notation - Amendment 1: Rules for Extensibility.

(See also ITU-T Recommendation X.680 Amendment 1 : 1995.)

ISO/IEC 8824-2 : 1994nformation Technology - Abstract Syntax Notation One (ASN.1) - Part 2: Information Object Specifi-
cation.

(See also ITU-T Recommendation X.681 : 1994.)

ISO/IEC 8824-2/Amd. 1 : 1993nformation Technology - Abstract Syntax Notation One (ASN.1) - Part 2: Information Object
Specification - Amendment 1: Rules for Extensibility.

(See also ITU-T Recommendation X.681 Amendment 1 : 1995.)
ISO/IEC 8824-3 : 1994nformation Technology - Abstract Syntax Notation One (ASN.1) - Part 3: Constraint Specification.
(See also ITU-T Recommendation X.682 : 1994.)

ISO/IEC 8824-4 : 1994nformation Technology - Abstract Syntax Notation One (ASN.1) - Part 4: Parameterization of ASN.1
Specifications.

(See also ITU-T Recommendation X.683 : 1994.)

ISO/IEC 8825-1 : 1994nformation technology - Encoding Rules for Abstract Syntax Notation One (ASN.1) - Part 1: Specifica-
tion of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and Distinguished Encoding Rules (DER).

(See also ITU-T Recommendation X.690 : 1994.)

ISO/IEC 8825-2 : 1999nformation technology - Encoding Rules for Abstract Syntax Notation One (ASN.1) - Part 2: Packed
Encoding Rules (PER).

(See also ITU-T Recommendation X.690 : 1995.)

ISO/IEC 9646-1 : 1994nformation technology - Open Systems Interconnection - Conformance testing methodology and frame-
work - Part 1: General concepts.

(See also ITU-T Recommendation X.290 : 1995)

ISO/IEC 9646-2 : 1994nformation technology - Open Systems Interconnection - Conformance testing methodology and frame-
work - Part 2: Abstract test suite specification.

(See also ITU-T Recommendation X.291 : 1995)

ISO/IEC 9646-4 : 1994nformation technology - Open Systems Interconnection - Conformance testing methodology and frame-
work - Part 4: Test realization.

(See also ITU-T Recommendation X.293 : 1995)

ISO/IEC 9646-5 : 1994nformation technology - Open Systems Interconnection - Conformance testing methodology and frame-
work - Part 5: Requirements on test laboratories and clients for the conformance assessment process.

(See also ITU-T Recommendation X.294 : 1995)

ISO/IEC 10646-1 : 1993nformation technology - Multiple-Octet Coded Character Set (UCS) - Part 1: Architecture and Basic
Multilingual Plane.

ISO/IEC 10731: 1994nformation technology - Open Systems Interconnection -Basic Reference Model: Conventions for the def-
inition of OSE Services.

(See also ITU-T Recommendation X.210 : 1993.)

1) To be published .
Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

3 Definitions

3.1 Basic terms from ISO/IEC 9646-1
The following terms defined in ISO/IEC 9646-1 apply:

a) abstract service primitive

b) abstract testing methodology

c) abstract test case

d) abstract test method

e) abstract test suite

f) conformance log

g) conformance test suite

h) coordinated test method

i) distributed test method

j) executable test case

k) executable test case error

[) executable test suite

m) fail verdict

n) idle testing state

0) implementation under test

p) inconclusive verdict

q) invalid test event

r) local test method

s) lower tester

t) means of testing

u) pass verdict

v) PICS proforma

w) PIXIT proforma

x) protocol implementation conformance statement

y) protocol implementation extra information for testing

z) point of control and observation

aa) remote test method

ab) stable testing state

ac) standardized abstract test suite

ad) static conformance requirements

ae) syntactically invalid test event

af) system under test

ag) test body

ah) test case

ai) test case error

aj) test coordination procedures

ak) test event

Delivery 9.4, 17 December 1996

Second Edition Mock-Up for ETSI TC/MTS

Second Edition Mock-Lp for ETSI TC/MTS

al) test group

am) test group objective
an) test laboratory

ao) test management protocol
ap) test outcome

aq) (test) postamble

ar) (test) preamble

as) test purpose

at) test realization

au) test realizer

av) test step

aw) test suite

ax) test system

ay) upper tester

az) (test) verdict

ba) testing state

3.2 Terms from ISO/IEC 7498-1
The following terms defined in ISO/IEC 7498-1: 1995 apply:
a) (N)-layer (particularly for application, session and transport layers)
b) (N)-protocol-data-unit
¢) (N)-service-access-point
d) subnetwork
e) transfer syntax

3.3 Terms from ISO/IEC 10731
The following terms defined in ISO/IEC 10731: 1995 apply:
a) OSl-service-provider

3.4 Terms from ISO/IEC 8824-1
The following terms defined in ISO/IEC 8824-1: 1994 apply:

a) bitstring type

b) characterstring type

c) enumerated type

d) external type

e) object identifier

f) octetstring type

g) real type

h) selection type

i) sequence type

i) sequence-of type

k) set type

) set-of type

19 December 1996, Delivgr9.4

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

m) subtype
NOTE - Where there may be ambiguity with TTCN terms these terms are prefixed with the term ASN.1.

3.5 Terms from ISO/IEC 8825-1
The following term defined in ISO/IEC 8825-1: 1994 applies:
encoding

3.6 TTCN specific terms
For the purposes of this part of ISO/IEC 9646 the following definitions apply:

3.6.1 applicable encoding rulesthe actual encoding rules that are to be used when sending or receiving a PDU, after all r
evant encoding defaults and overrides, if any, have been combined.

3.6.2 attach construct A TTCN statement which attaches a Test Step to a calling tree.
3.6.3 base constraintSpecifies a set of default values for each and every field in an ASP or PDU type definition.
3.6.4 base typeThe type from which a type defined in a test suite is derived.

3.6.5 behaviour line An entry in a dynamic behaviour table representing a test event or other TTCN statement together v
associated label, verdict, constraints reference and comment information as applicable.

3.6.6 behaviour tree A specification of a set of sequences of test events, and other TTCN statements.

3.6.7 blank entry. In a modified compact constraint table a blank entry in a constraint parameter or field denotes that a constt
value is to be inherited.

3.6.8 calling tree The behaviour tree to which a Test Step is attached.

3.6.9 compact constraint tableDeclaration of a set of constraints for an ASP, PDU or Structured Type arranged in a sing
table

3.6.10 compact test case tablB®eclaration of a set of Test Cases for a given Test Group arranged in a single table
3.6.11 concurrent test caseA test case which is specified using concurrent TTCN.

3.6.12 concurrent TTCN TTCN which uses test components and test component configurations in order to express conc
rency in the dynamic behaviour of test cases.

3.6.13 constraints part That part of a TTCN test suite concerned with the specification of the values of ASP parameters ¢
PDU fields being sent to the IUT, and conditions on ASP parameters and PDU fields received from the IUT.

3.6.14 constraints referenceA reference to a constraint, given in a behaviour line.

3.6.15 coordination message [CMJAn item of structured information which may be transfered from one Test Component t
another at a Coordination Point.

3.6.16 coordination point [CP]:A point within a testing environment, assigned to two Test Components in a Test Compone
Configuration, where CMs may be exchanged asynchronoulsy between these Test Components.

3.6.17 declarations part That part of a TTCN test suite concerned with the definition and/or declaration of all non-predefine
objects that are used in the test suite.

3.6.18 default behaviour The events, and other TTCN statements, which may occur at any level of the associated tree,
which are indicated in the Default behaviour proforma.

3.6.19 default group A named set of default behaviours.

3.6.20 default group referenceA path specifying the logical location of a Default in the Default Library.
3.6.21 default identifier A unique name for a Default.

3.6.22 default library: The set of the Default behaviours in a test suite.

3.6.23 default referenceA reference to a Default in the Default Library from a Test Case or Test Step table.

3.6.24 derivation path An identifier, consisting of a base constraint identifier concatenated with one or more modified co!
straint identifiers, separated by dots and finishing with a dot.

3.6.25 dynamic chaining:The linking from constraint declarations of an ASP parameter or PDU field to the constraint decl:

Delivery 9.4, 17 December 1996 5

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

ration of another PDU by means of parameterization. Which PDUs are chained is specified in the constraints reference of a be-
haviour line.

3.6.26 dynamic part That part of a TTCN test suite concerned with the specification of Test Case, Test Step and Default dy-
namic behaviour descriptions.

3.6.27 Expanded test suiteA test suite with all imported objects expanded. This will be a result of converting of a modularized
test suite according to the algorithm in annex B.

3.6.28 Explicit external The named object in the External table. An explicitly external declared object in a module shall be
explicitly defined or exported as an external object.

|3 .6.29 Explicitly Defined Object Object for which a definition or declaration exists in the module or test-$hiteeis-no
explicitly defined object ina source package.

3.6.30 Explicitly Exported Object The named object in the Exports tables being available for use. If the object is an imported
object, the name of the source object shall be given.

|3 .6.31 Epr|C|tIy Imported Object The named object in the Import tables being available for explicit referdiemebject

3.6.32 Exported Object Explicitly defined object or explicitly imported object in a source object, made available for use in any
| other moduleor test suit@rseurce-package. An exported object is either an explicitly exported object or an implicitly exported
object.

3.6.33 External Object Object being referred to by its name in a module, but neither imported nor explicitly defined. An ex-
ternal object shall be declared in the External table. An external object is either explicit external or implicitly external.

3.6.34 global result variable A predefined test case variable maintained by a Main Test Component in the MPyT context or by
the test case in the SPyT context to record the accumulated effect of all the preliminary results of the test casedeterder to
mine the test verdict.

3.6.35 Implicit external An external declared objectfirean export tablér-a-sourcepackage which is omittechima corre-
sponding Import table.

3.6.36 Implicitly Exported Object: Explicitly defined object or explicitly imported object, that is not explicitly exported but
that is referred to by an explicitly exported object.

3.6.37 Implicitly Imported Object: Object referred to by some explicitly imported object. The use of an implicitly imported
object is restricted to the explicitly imported objects (from the same source object) referring to it.

3.6.38 implicit send eventA mechanism used in Remote Test Methods for specifying that the IUT should be made to initiate
a particular PDU or ASP.

3.6.39 Imported Object Object copied from some other source object, being available for use. An imported object is either an
explicitly imported object or an implicitly imported object.

3.6.40 level of indentationIndicates the tree structure of a behaviour description. It is reflected in the behaviour description by
indentation of text.

3.6.41 local result variableA predefined variable maintained by a Test Component to record the accumulated effect of its pre-
liminary results.

3.6.42 local tree A behaviour tree defined in the same proforma as its calling tree.

3.6.43 main test component [MTC]The single Test Component in a Test Configuration responsible for creating and control-
ling Parallel Test Components and computing and assigning the test verdict.

3.6.44 modified constraint A constraint defined for an ASP or a PDU that already has a base constraint, and which makes mod-
ifications on that base constraint.

3.6.45 Modularized test suiteA test suite containing Import tables.

3.6.46 Module:A self-contained collection of TTCN objects. All referenced objects are either explicitly defined in the Module,
are imported from other sources or are defined as external objects in the module.

3.6.47 non-concurrent test caseA test case which is specified in TTCN but without using concurrent TTCN.
3.6.48 Object:Element of one of the object categories listed in ISO/IEC 9646-3, A.4.2.2 (for TTCN objects with a globally

6 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

unigue identifier) and A.4.2.6 (for ASN.1 identifiers which are globally unique throughout the test suite).
3.6.49 operational semanticsSemantics explaining the execution of a TTCN behaviour tree.

3.6.50 Original Source objectThe module or test suite where an object is explicitly defined.

3.6.51 otherwise evenfThe TTCN mechanism for dealing with unforeseen test events in a controlled way.

3.6.52 overview part That part of a TTCN test suite concerned with presenting an overview of the structure of the test su
the structure (if any) of the Test Step Library, the structure (if any) of the Default Library and the association of sglection
pressions (if any) with Test Cases and/or Test Groups. This part also provides indexes to Test Cases, Test Steps and De!

3.6.53 parallel test component [PTC]A test component created by the main test component.

3.6.54 preliminary result A result recorded before the end of a test case indicating whether the associated part of the test
passed, failed or was inconclusive.

3.6.55 pseudo-even® pseudo-event is a TTCN expression or Timer operation appearing on a statement line in the behav
description without any associated event.

3.6.56 qualified eventAn event that has an associated Boolean expression.
3.6.57 receive eventThe receipt of an ASP or PDU at a named or implied PCO.

3.6.58 result variable A predefined test case variable for storing preliminary results. In non-concurrent TTCN there is one |
sult variable called R. In concurrent TTCN, there is one global result variable called R, each PTC has a local resatNediable
R, and the MTC has a local result variable called MTC_R.

3.6.59 root tree The main behaviour tree of a Test Case, occurring at the level of entry into the Test Case.
3.6.60 send evenfThe sending of an ASP or PDU to a named or implied PCO.

3.6.61 set of alternativesTTCN statements coded at the same level of indentation and belonging to the same predecessor r
They represent the possible events, pseudo-events and constructs which are to be considered at the relevant poinidn the e»
of the Test Case.

3.6.62 single constraint tableDeclaration of a constraint for a single ASP or PDU of a given type arranged in a single table

3.6.63 snapshot semanticé semantic model to eliminate the effect of timing on the execution of a Test Case, defined in terr
of snapshots of the test environment, during which the environment is effectively frozen for a prescribed period.

3.6.64 Source objectA moduleor test suiterseurcepackage which is imported and has a corresponding Import table.

LHeS—aha-o oH-CePackades- HeRale-ClasShe eSORAHAG drena

3.6.66 specific value: A value in TTCN which does not contain any matching mechanism or unbound variable.

3.6.67 static chainingThe linking from constraint declarations of an ASP parameter or PDU field to the constraint declaratit
of another PDU by explicitly referencing a constraint as its value.

3.6.68 static semanticsSemantic rules that restrict the usage of the TTCN syntax.

3.6.69 structured type A collection of one or more ASP parameters or PDU fields which may exist in one or more ASP «
PDU type definition which is defined in a separate declaration and which may be used to specify a portion of a flat structu
a substructure within the ASP or PDU.

3.6.70 SubmoduleModules which are included in other modules.
3.6.71 test case identifierA unique name for a Test Case.

3.6.72 test case variabléOne of a set of variables declared globally to the test suite, but whose value is retained only for !
execution of a single Test Case.

3.6.73 test componentA named subdivision of a concurrent test case capable of being executed in parallel with other test c
ponents, and declared as having a fixed number of PCOs and a fixed or maximal number of CPs.

3.6.74 test component configurationA fixed arrangement of Test Components, PCOs and CPs that is declared for use in cc
current test cases.

3.6.75 test group referenceA path specifying the logical location of a Test Case in the ATS structure.

Delivery 9.4, 17 December 1996 7

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

3.6.76 test step groupA named set of test steps.

3.6.77 test step group referenceé path specifying the logical location of a Test Step in the Test Step Library.

3.6.78 test step identifierA unique name for a Test Step.

3.6.79 test step library The set of the Test Step dynamic behaviour descriptions in the test suite, that are not local Test Steps.
3.6.80 test step objectiveAn informal statement of what the Test Step is meant to accomplish.

3.6.81 test suite constanOne of a set of constantmtderived from the PICS or PIXIT, which will remain constant throughout
the test suite.

3.6.82 test suite parameterOne of a set of constants derived from the PICS or PIXIT which globally parameterize a test suite.

3.6.83 test suite variableOne of a set of variables declared globally to the test suite, and which retain their values between Test
Cases.

3.6.84 timeout eventAn event which is used within a behaviour tree to check for expiration of a specified timer.

3.6.85 tree attachmentThe method of indicating that a behaviour tree specified elsewhere (either at a different point in the
current proforma, or as a Test Step in the Test Step Library) is to be included in the current behaviour tree.

3.6.86 tree headerAn identifier for a local tree followed by an optional list of formal parameters for the tree.

3.6.87 tree identifier A name identifying a local tree.

3.6.88 tree leafA TTCN statement in a behaviour tree or Test Step which has no specified subsequent behaviour.
3.6.89 tree nodeA single TTCN statement.

3.6.90 tree notation The notation used in TTCN to represent Test Cases as trees.

3.6.91 TTCN statementAn event, a pseudo-event or construct which is specified in a behaviour description.

3.6.92 unforeseen test everd test event which has not been identified as a test event within a foreseen test outcome in the test
suite. It is normally handled using the OTHERWISE event.

3.6.93 unqualified eventAn event that does not have an associated Boolean expression.

4 Abbreviations

4.1 Abbreviations defined in ISO/IEC 9646-1.
For the purposes of this part of ISO/IEC 9646, the following abbreviations defined in ISO/IEC 9646-1:1991, clause 4 apply:

ATS : abstract test suite

ASP : abstract service primitive

ETS : executable test suite

IUT : implementation under test

LT : lower tester

MOT : means of testing

PCO : point of control and observation

PICS : protocol implementation conformance statement
PIXIT : protocol implementation extra information for testing
SUT : system under test

TMP : test management protocol

UT : upper tester

LTCF : lower tester control function

4.2 Abbreviations defined in ISO/IEC 9646-2

For the purposes of this part of ISO/IEC 9646, the following abbreviations defined in ISO/IEC 9646-2:1991, clause 4 apply:

DS : distributed single-layer (test method)
LS : local single-layer (test method)

RS : remote single-layer (test method)
TTCN : tree and tabular combined notation

8 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

4.3 Other abbreviations
For the purposes of this part of ISO/IEC 9646, the following abbreviations also apply:

ASN.1 : abstract syntax notation one

BNF : the extended Backus-Naur form used in TTCN

CM : coordination message

CP : coordination point

FDT : formal description technique

FIFO : first in first out

MTC : main test component

OSI : open systems interconnection

PDU : protocol data unit

PTC : parallel test component

SAP : service access point

TCP : test coordination procedures

TTCN.GR : tree and tabular combined notation, graphical form
TTCN.MP : tree and tabular combined notation, machine processable form

5 The syntax forms of TTCN

TTCN is provided in two forms
a) a graphical form (TTCN.GR) suitable for human readability;

b) a machine processable form (TTCN.MP) suitable for transmission of TTCN descriptions between machines and pos
suitable for other automated processing.
TTCN.GR is defined using tabular proformas. TTCN.MP is defined using syntax productions which have special
TTCN.MP keywords as terminal symbols instead of the fixed parts of the tabular profergnéisg box lines and headers). The entries within
the TTCN.GR tables are defined by syntax productions which do not include any TTCN.MP keywords; these productions are bothmon tc
TTCN.GR and TTCN.MP.
The syntax productions of TTCN.MP are specified in annex A. As an aid to clarifying the TTCN.GR description, many of tipecsutax
tions that are common to both TTCN.MP and TTCN.GR are embedded in the text of the body of this part of ISO/IEC 9646nidwtseiare
SYNTAX DEFINITION. To aid readability some productions will appear in several places in the text.
The syntax productions embedded within the text are intended to be identical copies of the corresponding productions #otudifnex
there is any conflict annex A shall take precedence.
The text description of TTCN.GR is intended to be consistent with the underlying syntax as defined in the TTCN.MP synt@ongroduc

except for the differences identified in A.5 and the static semantic restrictions specified in Annex A (which are comrhoRTtGKdIP
and TTCN.GR).

If there is any conflict between the TTCN.GR syntax and static semantics as described by the text and as described lifieknnex A,

a) except for the differences specified in A.5, the TTCN.MP syntax productions shall have precedence over the text and s
productions in the body of this part of ISO/IEC 9646;

b) the static semantics restrictions specified in A.4 and in the static semantics comments (marked STATIC SEMANTICS
the syntax productions in A.3 specify restrictions on what is valid TTCN, restricting what is allowed according to the syn
productions;
c) the static semantics restrictions specified in annex A shall have precedence over the text in the body of this pa@ of ISC
9646.

If an ATS is specified in TTCN.GR in compliance with this part of ISO/IEC 9646, then there is a unique corresponding TT@N34R-re

tation of that ATS sharing the same underlying syntax. These two representations have identical operational semantieseffwemtgf
sentations of an ATS are equivalent if and only if they have identical operational semantics.

NOTE - If there is a standardized ATS specified in TTCN.GR and an apparently equivalent TTCN.MP representation, buttrélietis a
in interpretation of the operational semantics of the two, then the operational semantics of the TTCN.GR takes precedsadeistibea
TTCN.GR version that is the standardized ATS.

Delivery 9.4, 17 December 1996 9

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

6 Compliance
6.1 ATSs that comply with this part of ISO/IEC 9646 shall satisfy the requirements for either TTCN.GR or TTCN.MP.
NOTE - See ISO/IEC 9646-1:1991, clause 10, for an explanation of the use of the term “compliance” in ISO/IEC 9646.

6.2 ATSs that comply with the requirements of TTCN.GR shall satisfy the TTCN.GR syntax requirements stated in clauses 9
through 16 and A.4.

6.3 ATSs that comply with the requirements of TTCN.MP shall satisfy the TTCN.MP syntax requirements stated in A.3.

6.4 ATSs that comply with this part of ISO/IEC 9646 shall satisfy the static semantic requirements specified in clauses 7 through
16 and have operational semantics in accordance with the definition of the operational semantics in annex B, such that they are
semantically valid.

6.5 A standardized ATS that complies with this part of ISO/IEC 9646 shall require that any realization of that test suite that
claims to conform to that standardized ATS shall

a) have operational semantics equivalent to the operational semantics of the test suite as defined by annex B;
b) comply with ISO/IEC 9646-4.

NOTE - If, during execution of the executable test case that conforms to the TTCN specification of the correspondingsilustsactt static
semantic or operational semantic error is detected, then a test laboratory complying with ISO/IEC 9646-5 will recordtan eketratable
test case error, depending on where the error is located.

6.6 Any standardized ATS that reached Draft International Standard status during or before 1991 or that is approved as a CCITT
Recommendation during the 1989-1992 Study Period may be stated to comply with ISO/IEC 9646-3 but use some or all of the
Draft International Standard (DIS) TTCN features which have changed between DIS and International Standard (IS), as outlined
in annex F. Such a test suite shall reference ISO/IEC 9646-3 and contain a description of the differences between tifie features
TTCN that it uses and those specified in this IS specification of TTCN.

7 Conventions

7.1 Introduction

The following conventions have been used when defining the TTCN.GR table proformas and the TTCN.MP grammar.

7.2 Syntactic metanotation
Table 1 defines the metanotation used to specify the extended BNF grammar for TTCN (henceforth called BNF):

Table 1 - The TTCN.MP Syntactic Metanotation

n= is defined to be

| alternative

[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(...) textual grouping

abc the non-terminal symbol abc
abc a terminal symbol abc

"abc" a terminal symbol abc

EXAMPLE 1 - Use of the BNF metanotation:
FormalParList ::= "(" FormalPar&Type {SemiColon FormalPar&Type} ")"
The following conventions will be used for text used in table proformas:
a) Bold text like this) shall appear verbatim in each actual table in a TTCN test suite;

b) Text in italics [ike thig shall not appear verbatim in a TTCN test suite. This font is used to indicate that actual text shall be
substituted for the italicized symbol. Syntax requirements for the actual text can be found in the corresponding TTCN.MP BNF
production.

10 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

EXAMPLE 2 - Suiteldentifiercorresponds to production 3 in Annex A

7.3 TTCN.GR table proformas
7.3.1 Introduction
The TTCN.GR is defined using two types of tables:
a) single TTCN object tables (see 7.3.2),
which are used to define, declare or describe a single TTCN object such as a PDU declaration or a Test Case dynamic |
iour;
b) multiple TTCN object tables (see 7.3.3);

are used to define a number of TTCN object of the same type in a single table, such as simple type definitions or Test
Variables.

7.3.2 Single TTCN object tables
The general lay-out of a table for a single TTCN object is shown below

Title of Table Title
Object Name A
Group : (Optional way of grouping together related objects) Header
Comments : This entire comment line is optional. v
Object Name ... Other Columns ... Comment A

This column is Body

optional
Detailed Comments:This footer is optional.

Footer

Figure 1 - Generalized layout of a single declaration table

The header of the table contains general information on the object defined in the table. The first item in the hea@drjetaNachecon-

tains an identifier for the objed\ second item, name@roup, may be used to provide an identifier to group together related objects in the
same category. This item is optional. The last item, nabe@dmentsontains an informal description of the object. This iteay-be-omitted

is optional.

The body of the table consists of one or more columns. Each column has a title. The rightmost colu@antitiedtscontains informal
descriptions of the components of the object specified in the body. It does not exist in all proformas. In proformas eootamrents col-
umn this column can be omitted.

The footer of the table contains one item, naDethiled Commentd his footer can be used for the same purposes as the comments colum
in the body of the table. The test suite specifier can use the detailed comments footer in combination with the commermsteaidroha
comments column, or not at all, in which case the footer can be omitted.

Delivery 9.4, 17 December 1996 11

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

7.3.3 Multiple TTCN object tables
The general lay-out of a table for multiple TTCN objects is shown below:

Title of Table

| Group: (Optional way of grouping together related sets of objects)

Collective Comment:

A comment valid for the below defined/declared objects. This comment has a scope reaching to next
Collective Comment or until the end of this table.

Object Name ... Other Columns ... Comments

Collective Comment:

A comment valid for the below defined/declared objects. This comment has a scope reaching to next
Collective Comment or until the end of this table.

Object Name ... Other Columns ... Comments

Detailed Comments:

Figure 2 - Generalized layout of a multiple declaration table

| The optionalCollective Commentsiay be used preceding a group of related objects declared in a multiple object table, both to
indicate the grouping and to give a comment that applies to each member of the group or the group as a whole.

| This type of table hase only a minimal optional header sectjawhich may contain &roupidentifier and &ollective Commenthe body
of the table consists of one or more columns. Each column has a title. The leftmost colur@bjgdeNlamecontains identifiers of the objects
defined or declared in the table. The rightmost column, tifl@hmentscontains informal descriptions of the objects defined or declared in
the table. It does not exist in all proformas. When it exists its use is optional for the test suite specifier. The liedtlefis identical to the
footer of the single table type.

7.3.4 Alternative compact tables

In some cases it is allowed to display a number of single TTCN object tables in an alternative space-saving compacafaspshurhber
of single TTCN object tables may be displayed in a single compact table. The only tables that may be presented in thés format a

- ASP constraints (tabular and ASN.1);
- PDU constraints (tabular and ASN.1);
- Structured Type constraints;

- ASN.1 Type constraints
- Test Case dynamic behaviours.
The formats of these alternative compact proformas are defined in Annex C.

12 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

7.3.5 Specification of proformas

This part of ISO/IEC 9646 specifies numerous types of TTCN.GR tables and provides a graphic view of the corresponding prefsemas
proformas conform to the generalised layout of 7.3.2 and 7.3.3. When a column is shaded in a proforma, this is a rethendehutmat is
optional.

7.4 Free Text and Bounded Free Text

Some table entries allow the use of free teat, characters from any of the character sets defined in ISO 10646. The following restriction:
apply:
a) Free Text shall not contain the combination of characters “*/”, unless preceded by backslash (\), as this is used i
TTCN.MP to indicate the end of a Free Text string. This means that double backslash (\\) means backslash.

b) The combinations of characters “/*” and “*/” which open and close BoundedFreeText strings in the TTCN.MP shall 1
appear in the TTCN.GRg.,wherever a Bounded FreeText string appears in a table section, as in a Full Identifier, these cc
binations of characters shall not be printed.

8 Concurrency in TTCN

8.1 Test Components

TTCN allows the specification of test components which may be executed concurrently. This clause gives an overview wirthiepaodit
formas and mechanisms available in concurrent TTCN. These proformas and mechanisms shall not be used in ATSs that douret use
rency (i.e. the use of concurrency is optional).

A tester consists of a Main Test Component (MTC) and zero or more Parallel Test Components (PTCs). In non-concurrent AGtCN it i
necessary to declare the Main Test Component since there is only one test component and the default is that it is th€ dvgioTerst

Test components are declared in the Test Component Declarations table. A test component may communicate with the [UTwgia one ol
Points of Control and Observation (PCOs). Test components may communicate with each other by exchanging CoordinatiolfCMs$sages
through Coordination Points (CPs). PTCs may also communicate with the MTC implicitly, by means of assignments to theiljledidd res
able and by the MTC being able to check whether or not one or more PTCs have terminated execution. The Test ComponeiarConfigL
Declarations tables are used to specify (abstract) configurations of test components. These declarations (one for eatbnyastfimgur
which PCOs and CPs are used, if any, by the test components. CMs are specified in a manner very similar to the metpedifysA&Rss
ASN.1 may be used for CM specification. CM constraints are also very similar to ASP constraints. Special proformas aréoprinded
definition of CM Types and the declaration of CM constraints. CMs are sent and received using the normal TTCN SEND and$&€EIVE
ments.

In summary, if concurrent TTCN is used the following proformas shall be used:
a) Test Component Declarations;
b) Test Component Configuration Declarations.
In addition, if concurrent TTCN is used the following proformas may be used:
c) CP Declarations;
d) CM Type Definitions and/or ASN.1 CM Type Definitions, provided that CP declarations are used;
e) CM Constraints Declarations, provided that CM Type Definitions are used;
f) ASN.1 CM Constraint Declarations, provided that ASN.1 CM Type Definitions are used.

8.2 Test Component Configurations

Some possible configurations of test components are shown in Figures 2A and 2B. In a realization of these abstract esnfeginetio-
ponents may reside in a single machine or be distributed over several machines.

It is possible to use different PTC configurations in different test cases of an Abstract Test Suite. Each Abstract TieishCesss woncur-
rency shall use one of the declared Test Component Configurations.

Note the following valid but unusal cases:
a) a PTC need not have any PCOs;

b) a PTC need not have a CP to an MTC. In such cases the only interaction between the PTC and the MTC will be the cr
of the PTC and the implicit result reports from the PTC, i.e., the MTC has no explicit control over the PTC after creation;

Delivery 9.4, 17 December 1996 13

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

¢) two PTCs may be connected by more than one CP;
d) a test case whose test component configuration refers to a PTC need not contain any CREATE statement to start this PTC

e) a test case whose test component configuration refers to a CP need not contain any SEND or RECEIVE statements using
this CP.

Items a), b) and c) are illustrated in Figure 3 and Figure 4.

MTC1
MCP1 MCP2 MCP3
CP1 CP2
TC1 TC2 -« »| TC3
PCO_A PCO_B PCO_C

Figure 3 - Example Test Component Configuration CONFIG1

MTC2
A
MCP2 MCP3
CP1
TC2 TC4 TC5
g
CP2
PCO_B PCO D PCO_E
\J

Figure 4 - Example Test Component Configuration CONFIG2

14 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

9 TTCN test suite structure

9.1 Introduction
TTCN allows a test suite to be hierarchically structured in accordance with ISO/IEC 9646-1:1991, 8.1. The componentaaitithisus
a) Test Groups;
b) Test Cases;
c) Test Steps;
A TTCN test suite may be completely flag(, have no structure) in which case there are no Test Groups.
TTCN allows the use of Test Step Groups and Default Groups, similar to the concept of Test Groups, in order to strudepe &edt S
Defaults hierarchically. This hierarchical structure is optional.
9.2 Test Group References

TTCN supports a haming structure that shows a conceptual grouping of Test Cases. Test Groups can be nested. Test Qaseasarah also
alone (see ISO/IEC 9646-1:1991, clause 8, figure 9). The Test Group References define the structure of the test suitp. Refsr&rees
shall have the following syntax:

SYNTAX DEFINITION:

602 TestGroupReference ::= [Suiteldentifier /"] {TestGroupldentifier "/"}
EXAMPLE 3 - A Transport group reference: TRANSPORT/CLASSO/CONN_ESTAB/

9.3 Test Step Group References

9.3.1Test steps may be explicitly identified in TTCN and used to structure Test Cases and other Test Steps. Alternatively
Steps may be implicit within the behaviour description of a Test Case. Explicit Test Steps may be specified either

- locally within a Test Case or Test Step behaviour description; or
- globally within a Test Step Library, which may be hierarchically structured into Test Step Groups.

NOTE - For example, a preamble may consist of just a few statement lines within a behaviour description of the Test Chsease Wis
implicit.Alternatively, a preamble may be explicitly specified with its own behaviour description. If such an explicit prisaonbjeof use
within one Test Case, then it may be specified locally within that Test Case, but if it is of use in several Test Cashsultehéetspecified
in the Test Step Library.

9.3.2 Local Test Steps are identified simply by a tree identifier. Global Test Steps are identified by a Test Step identifier. Gl
Test Steps also have a Test Step Group Reference, which shows the position of a Test Step in the Test Step LibraryeThe st
of the Test Step Library is independent of the structure of the test suite. Test Step Group References shall have the follc
syntax:

SYNTAX DEFINITION:

617 TestStepGroupReference ::= [Suiteldentifier "/"] {TestStepGroupldentifier "/"}
EXAMPLE 4 - Transport Test Step Group Reference: TRANSPORT/STEP_LIBRARY/CLASSO/CONN_ESTAB/

9.4 Default Group References
Default behaviours (if any) are located in a Default Library.

A Default Group Reference specifies the location of the Default in the Default Library, which may be hierarchically stitetubedault
Library has no influence on the test suite structure itself. Default Group References shall have the following syntax:

SYNTAX DEFINITION:

627 DefaultGroupReference ::= [Suiteldentifier "/"] {DefaultGroupldentifier "/"}
EXAMPLE 5 - Transport Default Group Reference: TRANSPORT/DEFAULT_LIBRAR/CLASSO/

9.5 Parts of a TTCN test suite
An ATS written in TTCN shall have the following four sections in the order indicated:

a) Suite Overview (see clause 10),

Delivery 9.4, 17 December 1996 15

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

which contains the information needed for the general presentation and understanding of the test suite, such as test reference
and a description of its overall purpose;

b) Import Part (see 10.7),
which contains the declarations of the objects used in the test suite or module that are imported from a source object.
c) Declarations Part (see clause 11),

which contains the definitions or declarations of all the components that comprise the testgsUREQs, Timers, ASPs,
PDUs, and their parameters or fields);

d) Constraints Part (see clause 12, 13, 14),

which contains the declarations of values for the ASPs, PDUs, and their parameters used in the Dynamic Part. The constraints
shall be specified using

1) TTCN tables; or

2) the ASN.1 value notation; or

3) both TTCN tables and the ASN.1 value notation.
e) Dynamic Part (see clause 15),

which comprises three sections that contain tables specifying test behaviour expressed mainly in terms of the occurrence of
ASPs or PDUs at PCOs. These sections are

1) the Test Case dynamic behaviour descriptions;
2) a library containing Test Step dynamic behaviour descriptions (if any);
3) a library containing Default dynamic behaviour descriptions (if any).

10 Test Suite Overview

10.1 Introduction

The purpose of the Test Suite Overview part of the ATS is to provide information needed for general presentation andingdé thizbest
suite. This includes:

a) Test Suite Structure (see 10.2);
b) Test Case Index (see 10.3);

c) Test Step Index (see 10.4);

d) Default Index (see 10.5);

e) Test Suite Exports (see 10.6).

10.2 Test Suite Structure

The Test Suite Structure contains identification of the pertinent reference documents, specification of the structust séithe aebrief
description of its overall purpose, and references to the Test Group selection criteria.

The Test Suite Structure shall include at least the following information:
a) the name of the test suite;
b) references to the relevant base standards;
c) a reference to the PICS proforma;
d) a reference to the partial PIXIT proforma (see ISO/IEC 9646-2:1991, clause 15);

e) an indication of the test method or methods to which the test suite applies, plus for the Coordinated Test Methods a referenc
to where the TMP is specified;

f) other information which may aid understanding of the test suite, such as how it has been derived; this should be included as
a comment;

g) a list of Test Groups in the test suite (if any),

16 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

where the following information shall be supplied for each group:
1) the Test Group Reference,

where the first identifier may be the suite name, and each successive identifier represents further conceptual ordering
test suite. Test Groups shall be listed in the order that their corresponding Test Cases appear in the ATS. Furthermore
shall be ordered such that every group within a single group immediately follows that group. All Test Groups in the test <
shall be listed,;

imported test cases may be included under any group, independently under which group they are defined in the ori
source object. A new group may be listed that does not occur in the Dynamic Part. This group shall only contain impc
test cases;

the groups of the Dynamic Part shall occur in the same order as they appear there, but the list may be preceded, inter
or followed by new groups of imported test cases. For these new groups the page number shall not be supplied;

the Selection Ref column may contain the identifier of a selection expression applicable to the new test groups. The
selection expression shall override the specified selection expression in the original test group (if there is any). €he ab:
of the selection expression identifier in this column indicates that the specified selection expression in the origingd test g
is omitted (if there is any);

the Test Group Objective column may contain a new informal statement of the objective of the new test group. This
objective shall override the objective in the imported test group (if any). The absence of the test group objective-in this
umn indicates that the specified test group objective is omitted;

2) an optional selection expression identifier,

which references an entry in the Test Case Selection Expression Definitions table used to determine if the Test Cases
group apply to specific IUTs. This column may contain the identifier of a selection expression applicable to the Test Gre
If a selection expression identifier is provided for a group, and the referenced selection expression evaluates to FALSE
no Test Case in that group shall be selected for execution. If the selection expression evaluates to TRUE then Test Cc
that group shall be selected for execution depending on the evaluation of the selection expressions relevant to subgro
that group and/or individual Test Cases. Omission of a selection expression identifier is equivalent to the Boolean v
TRUE;

3) the Test Group Objective,
which is an informal statement of the objective of the Test Group;
4) a page number,

providing the location of the first Test Case of the group in the ATS. The page number listed with each Test Group Refer
in the Test Suite Structure table shall be the page number of the first Test Case behaviour description in the group.

This information shall be provided in the format shown in the folloing proforma:

Delivery 9.4, 17 December 1996 17

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Test Suite Structure
Suite Name : Suiteldentifier
Standards Ref : Free Text
PICS Ref : Free Text
PIXIT Ref : Free Text
Test Method(s) . FreeText
Comments . [FreeText]
Test Group Reference Selection Ref Test Group Objective Page N
TestGrou.pReference [Selet.:tExpr- FreéText Nurﬁber
Identifier]
Detailed Comments: [FreeText]

Proforma 1 - Test Suite Structure
SYNTAX DEFINITION:

34 Suiteldentifier ::= Identifier
602 TestGroupReference ::= [Suiteldentifier "/"] {TestGroupldentifier "/"}
190 SelectExpridentifier ::= Identifier

10.3 Test Case Index
The Test Case Index contains a complete list of all Test Cases in the ATS. The following information shall be providetidst Eash:
a) an optional Test Group Reference (if the ATS is structured into Test Groups),

which defines where in the test suite group structure the Test Case resides. If the group reference for a Test Case is missing
then the Test Case is assumed to reside in the same Test Group as the previous Test Case in the index. Test Groups shall
listed in the order in which they exist in the ATS. An explicit Test Group Reference shall be provided for the first Test Case
of each group. An explicit Test Group Reference shall also be provided for each Test Case that immediately follows the last
Test Case of the Test Group; this is necessary if a Test Group contains both Test Groups and Test Cases;

b) the Test Case name,

¢) which shall be the identifier provided in the Test Case dynamic behaviour table. Test Cases shall be listed in the order in
which they exist in the ATS;

d) an optional selection expression identifier,

which references an entry in the Test Case Selection Expression Definitions table used to determine if the Test Case should b
selected for execution. This column may contain the identifier of a selection expression applicable to the Test Case. If a sele
tion expression identifier is provided, and the referenced selection expression evaluates to FALSE, then the Test Qase shall no
be selected for execution. If the selection expression evaluates to TRUE then the Test Case shall be selected for executior
depending on the evaluation of the selection expressions for the Test Groups containing the Test Case. A Test Case is selecte
if the selection expression for the Test Case, and all groups containing the Test Case, evaluate to TRUE. Omissioarof a selecti
expression identifier is equivalent to the Boolean value TRUE;

e) a description of the Test Case,

18 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

which is possibly a shortened form of the test purpose;
f) a page number,

providing the location of the Test Case in the ATS. The page number listed with each Test Case Identifier in the Test
Index table shall be the page number of the corresponding Test Case behaviour description.

This information shall be provided in the format shown in the folloing proforma:

Test Case Index

Test Group Reference Test Case Id Selection Ref Description Page Nr
TestGroupReference TestCase- [SelectExpr- FreeText Number
Identifier Identifier]

Detailed Comments: [FreeText]

Proforma 2 - Test Case Index
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

602 TestGroupReference ::= [Suiteldentifier "/"] {TestGroupldentifier "/"}
600 TestCaseldentifier ::= Identifier
190 SelectExpridentifier ::= Identifier

The complete list of test cases shall include the imported test cases. Explicitly defined Test Cases shall be listest in thieicndhey exist
in the ATS. Page numbers shall not be supplied for imported test cases.

The Selection Ref column has similar semantic as the one given in the previous section (10.2).

The Description column may contain a new shortended form of the Test Purpose. This new description shall override tbe getueipti
imported test case (if any). The absence of the description in this column indicates that the specified description is omitted.

10.4 Test Step Index
The Test Step Index contains a complete list of all Test Steps in the ATS. The following information shall be provided &t &tep:
a) an optional Test Step Group Reference, (if the ATS is structured into Test Step Groups),

which defines where in the Test Step Library structure the Test Step resides. If the group reference for a Test Step is mi
then the Test Step is assumed to reside in the same group as the previous Test Step in the index. Test Step Groups
listed in the order in which they exist in the ATS. An explicit Test Step Group Reference shall be provided for the first T
Step of each group. An explicit Test Step Group Reference shall also be provided for each Test Step that immediately fo
the last Test Step of the group; this is necessary if a Test Step Group contains both Test Step Groups and Test Steps;

b) the Test Step name,

which shall be the identifier provided in the Test Step dynamic behaviour table. Test Steps shall be listed in the czHer in w
they exist in the ATS;

c) a description of the Test Step,
which is possibly a shortened form of the Test Step Objective;
d) a page number,

providing the location of the Test Step in the ATS. The page number listed with each Test Step Identifier in the Test Step |
table shall be the page number of the corresponding Test Step behaviour description;

Delivery 9.4, 17 December 1996 19

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

This information shall be provided in the format shown in the folloing proforma:

Test Step Index

Test Step Group Reference Test Step Id Description Page N
TestStepGroupReference TestStep- FreeText Number
Identifier

Detailed Comments: [FreeText]

Proforma 3 - Test Step Index
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

617 TestStepGroupReference ::= [Suiteldentifier "/"] {TestStepGroupldentifier "/"}
615 TestStepldentifier ::= Identifier

The complete list of test steps shall include the imported test steps. Explicitly defined Test Steps shall be liste@iinirthéharid they exist
in the ATS. Page numbers shall not be supplied for imported test steps.

The Description column may contain a new shortended form of the Test Step Objective. This new description shall ovescdpttbe e
the imported test step (if any). The absence of the description in this column indicates that the specified descriptézh is omit

10.5 Default Index
The Default Index contains a complete list of all Defaults in the ATS. The following information shall be provided for eatth Def
a) an optional Default Group Reference, (if the ATS is structured into Default Groups),

which defines where in the Default Library structure the Default resides. If the group reference for a Default is missing, then
the Default is assumed to reside in the same group as the previous Default in the index. Defaults shall be listed in the order
which they exist in the ATS. An explicit Default Group Reference shall be provided for the first Default of each group. An
explicit Default Group Reference shall also be provided for each Default that immediately follows the last Default ofthe group

b) the Default name,

which shall be the identifier provided in the Default dynamic behaviour table. Defaults shall be listed in the order lrewhich t
exist in the ATS;

¢) a description of the Default,
which is possibly a shortened form of the Default Objective;
d) a page number,

providing the location of the Default in the ATS. The page number listed with each Default Identifier in the Default Iedex tabl
shall be the page number of the corresponding Default behaviour description.

20 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

This information shall be provided in the format shown in the following proforma:

Default Index

Default Group Reference Default Id Description Page Nr
DefaultGroupReference Default- FreeText Number
Identifier

Detailed Comments: [FreeText]

Proforma 4 - Default Index
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

627 DefaultGroupReference ::= [Suiteldentifier "/"] {DefaultGroupldentifier "/"}
626 Defaultldentifier ::= Identifier

The complete list of defaults shall include the imported defaults. Explicitly defined Defaults shall be listed in thevdnidr tiney exist in
the ATS. Page numbers shall not be supplied for imported defaults.

The Description column may contain a new shortended form of the Default Objective. This new description shall overridethun desc
the imported default (if any). The absence of the description in this column indicates that the specified descriptiod.is omitte

10.6 Test Suite Exports

The Test Suite Exports table may be used to specify explicitly which objects in the test suite are designed to be re-usabl
hence may be imported into other test suites or TTCN modules.

The Test Suite Exports proforma is used to identify the objects which may be exported.
If a PCO type is given as an exported object in the Export table, it shall be defined in the optional PCO Type table.
The name of the original source object shall be given if the object is itself imported.

If the object is declared as an external object (explicit external) or is an object which is omitted in the imported satirce ol
(implicit external), the keyword EXTERNAL is given instead of the source object name.

Exporting an object of type Enumeration or Named Number requires that the corresponding type is given. The other ok
which are defined in the corresponding type are not exported as well. They are however implicitly exported and can be ref
in other exported objects. The type name is given as a suffix to the object name embedded in brackets.

The following information shall be supplied in the Test Suite Exports table for each of the exported objects:

a) the name of the object
If the object is of type NamedNumber or Enumeration the corresponding type shall be given as a suffix to the object n
embedded in brackets.

b) the object type
c¢) the name of the original source object if the object is imported, or the object directive EXTERNAL

d) a page number
providing the location of the object in the test suite (no page humber shall be given for imported objects)

e) an optional comment

Delivery 9.4, 17 December 1996 21

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

This information shall be provided in the format shown in the following proforma:

Test Suite Exports

Object Name Object Type Source Name Page Nr Comments

[FreeText]

[Sourceldentifier | Number

ObjectDirective]

Obijectldentifier TTCN_ObjectType

Detailed Comments: [FreeText]

Proforma 5 - Test Suite Exports
SYNTAX DEFINITION:

12 Objectldentifier ::= Identifier | ObjectTypeReference

13 ObjectTypeReference ::= Identifier "[" Identifier "]"

15 TTCN_ObjectType ::-SimpleType_Obiject| StructType_Object| ASN1_Type_Object] TS_Op_Object| TS_Proc_Object|
TS_Par_Object| SelectExpr_Object] TS_Const_Objeci TS_Var_Object| TC_Var_Object | PCO_Type_Object| PCO_Object
| CP_Obiject| Timer_Object | TComp_Object| TCompConfig_Object| TTCN_ASP_Type_Object| ASN1_ASP_Type_Object
| TTCN_PDU_Type_Object| ASN1_PDU_Type_Objec{ TTCN_CM_Type_Object | ASN1_CM_Type_Obiject|
EncodingRule_Object| EncodingVariation_Obiject | InvalidFieldEncoding_Object | Alias_Object |
StructTypeConstraint_Object | ASN1_TypeConstraint_Object| TTCN_ASP_Constraint_Object|
ASN1_ASP_Constraint_Objecti TTCN_PDU_constraint_Object| ASN1_PDU-Constraint_Object|
TTCN_CM_Constraint_Object | ASN1_CM_Constraint_Object| TestCase_Object TestStep Default_Object

17 Sourceldentifier ::= Suiteldentifier | TTCN_Moduleldentifier

18 ObjectDirective ::= OmitEXTERNAL

543 Omit ::= DashQMIT

EXAMPLE 6 - Test Suite Exports

Test Suite Exports

Object Name Object Type Source Name Page Nr Comments
String5 SimpleTypeDef 3
wait TimerDcl Module B
INTC TTCN_PDU_Type 13
DEF1 Default TestSuite_1
TC_2 TestCase TestSuite_2
TC 3 TestCase 33
Preamble TestStep EXTERNAL

Detailed Comments:

10.7 The Import Part

10.7.1 Introduction

The purpose of the Import Part is to declare the objects used in the test suite that are imported from a source obgettofTtne @fiports
is equivalent to having a copy of the imported objects within the test suite.

22 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

An object may be imported only if it is exported by a source object. A testdthiteit an export table exports all objects which have a global
name. A module andsmurce-packagest suite with at least one export table export the objects contained in the export tables. An object whi
is not itself explicitly imported is implicitly imported if it is referenced by an imported object.

10.7.2 Imports

The Imports table identifies the source object and provides information on the overall objective of the source objeotvifigdrifdirmation
shall be supplied in the Imports table:

a) the name of the source object;
b) a description of the objective of the source object;
c) afull reference to the source objgathich should contain a document identifier and other information, such as version and dat
d) other information which may aid understanding of the source object, this should be iasladethment;
e) a list of the objects from the imported source object; for each object the following information shall be provided:
1) the name of the object as used in the source object;
2) the type of the object; which shall be the same as the type given in the source object;

3) the name of the original source object if the object is imported from another sourcelubjemtne-of the-source package
ifthe object is-importedfroma-source packdbe,object directive OMIT or “-” if the object is to be omitted from the set

of objects imported from the source object, or the object directive EXTERMN#&.object is declared as external inithported
source object

This information shall be provided in the format shown in the following proforma:

Imports
Source Name . Sourceldentifier
Source Ref . [FreeText]
Standards Ref . [FreeText]
Comments . [FreeText]
Object Name Object Type Source Name Comments
[FreeText]
Objectlaentifier TTCN_dbjectType [Sourcel.dentifier |
ObjectDirective]
Detailed Comments: [FreeText]

Proforma 6 - Imports
SYNTAX DEFINITION:

17 Sourceldentifier ::= Suiteldentifier | TTCN_Moduleldentifier

12 Objectldentifier ::= Identifier | ObjectTypeReference

13 ObjectTypeReference ::= Identifier "[* Identifier "]"

15 TTCN_ObjectType ::SimpleType_Object| StructType_Object| ASN1_Type_Object| TS_Op_Object| TS_Proc_Obiject|
TS_Par_Object| SelectExpr_Object| TS_Const_Object| TS_Var_Object| TC_Var_Object | PCO_Type_Object|
PCO_Object| CP_Object| Timer_Object | TComp_Object| TCompConfig_Object| TTCN_ASP_Type_Object|
ASN1_ASP_Type_Object TTCN_PDU_Type_Object| ASN1_PDU_Type_Objec{ TTCN_CM_Type_Object |
ASN1_CM_Type_Object| EncodingRule_Object| EncodingVariation_Object | InvalidFieldEncoding_Object | Alias_Object|
StructTypeConstraint_Object | ASN1_TypeConstraint_Object| TTCN_ASP_Constraint_Object|
ASN1_ASP_Constraint_Objeci TTCN_PDU_constraint_Object| ASN1_PDU-Constraint_Object|

Delivery 9.4, 17 December 1996 23

Second Edition Mock-Lp for ETSI TC/MTS

543 Omit ::= DashQMIT

EXAMPLE 7 - An Imports table

19 December 1996, Delivgr9.4

TTCN_CM_Constraint_Object | ASN1_CM_Constraint_Object| TestCase_Object TestSteg Default_Object
18 ObjectDirective ::= OmitEXTERNAL

Imports

Source Name : ModuleA

Source Ref . {iso standard 1234}

Standards Ref 1 1SO 300 313

Comments : Layer 2 Test Suite

Object Name Object Type Source Name Comments

String5 SimpleTypeDef

Wait TimerDcl ModuleB 1)

R1_POSTAMBLE TestStep EXTERNAL 2)

TSAP PCO_TypeDcl 3)

blue[ColorEnum] Enumeration

a[NN_type1l] NamedNumber OoMIT 4)

Detailed Comments:

1) The original source of this timer is ModuleB

2) This test step is declared as external in ModuleA and must be explicitly defined or imported where this module fis used.
3) TSAP must be defined in the PCO Type Dcl table.
4) This Named Number is omitted from the imports and hence should be redefined explicitly in the test suite.

11 Declarations Part

11.1 Introduction

The purpose of the declarations part of the ATS is to define and declare all the objects used in the test suite. Theljiwioigan ATS
referenced from the overview part, the constraints part and the dynamic part shall have been declared in the declaTatésesqigetcts are

a) definitions:
1) Test Suite Types (see 11.2.3);
2) Test Suite operations (see 11.3.4);
b) parameterization and selection of Test Cases:
1) Test Suite Parameters (see 11.4);
2) Test Case Selection Expressions (see 11.5);
¢) declarations/definitions:
1) Test Suite Constants (see 11.6 and 11.7);
2) Test Suite Variables (see 11.8.1);
3) Test Case Variables (see 11.8.3);
4) PCO types (see 11.9);
5) PCO s (see 11.10);
6) CPs (see 11.11);
7) Timers (see 11.12);

24 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

8) Test Components (see 11.13.1);

9) Test Component Configurations (see 11.13.2);
10) ASP types (see 11.14);

11) PDU types (see 11.15);

12) Encoding Rules (see 206);

13) Encoding Variations (see 11.16.2);

14) Invalid Field Encodings (see 11.16.3);

15) CM types (see 11.17);

16) Aliases (see 11.21).

11.2 TTCN types
11.2.1 Introduction

TTCN supports a number of predefined types and mechanisms that allow the definition of specific Test Suite Types. Thagetypesan
throughout the test suite and may be referenced when Test Suite Parameters, Test Suite Constants, Test Suite Variaduiestehs i° péat
fieldsetc.are declared.

11.2.2 Predefined TTCN types

A number of commonly used types are predefined for use in TTCN. All types defined in ASN.1 and in this clause may be mferenced
though they do not appear in a type definition in a test suite. All other types used in a test suite shall be declas=d 8uiteeTlype defini-
tions, ASP definitions or PDU definitions and referenced by name.

The following TTCN predefined types are considered to be the same as their counterparts in ASN.1:

a) INTEGER predefined type: a type with distinguished values which are the positive and negative whole number
including zero.

Values of type INTEGER shall be denoted by one or more digits; the first digit shall not be zero unless the value ig®; the \
zero shall be represented by a single zero;

b) BOOLEAN predefined type: a type consisting of two distinguished values.
Values of the BOOLEAN type are TRUE and FALSE;
¢) BITSTRING predefined type: a type whose distinguished values are the ordered sequences of zero, one, or more bits

Values of type BITSTRING shall be denoted by an arbitrary number (possibly zero) of zeros and ones, preceded by a si
and followed by the pair of characters 'B;

EXAMPLE 8 - '01101'B

d) HEXSTRING predefined type: a type whose distinguished values are the ordered sequences of zero, one, or more H
digits, each corresponding to an ordered sequence of four bits.

Values of type HEXSTRING shall be denoted by an arbitrary number (possibly zero) of the HEX digits:
0123456789ABCDEF
preceded by a single ' and followed by the pair of characters 'H; each HEX digit is used to denote the value of a semi-
using a hexadecimal representation;
EXAMPLE 9 - '"ABO1D’H

e) OCTETSTRING predefined type: a type whose distinguished values are the ordered sequences of zero or a positive e
number of HEX digits (every pair of digits corresponding to an ordered sequence of eight bits).

Values of type OCTETSTRING shall be denoted by an arbitrary, but even, number (possibly zero) of the HEX digits:
0123456789ABCDEF
preceded by a single ' and followed by the pair of characters 'O; each HEX digit is used to denote the value of a semi-
using a hexadecimal representation;
EXAMPLE 10 - '"FF96°'0O

Delivery 9.4, 17 December 1996 25

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

f) OBJECTIDENTIFIER predefined type: a type whose distinguished values are the set of all object identifiers allocated in
accordance with the rules of ISO/IEC 8824: 1990.

g) R_TYPE predefined type:a type consisting of the following distinguished values:
pass, fail, inconc and none

These values are predefined identifiers and as such, are case sensitive. This predefined type is for use with verditts, see 15.

h) CharacterString predefined types types whose distinguished values are zero, one, or more characters from some character
set; the CharacterString types listed in table 2 may be used; they are defined in clause 31 of ISO/IEC 8824:1990.

Table 2 - Predefined CharacterString Types

NumericString
PrintableString
TeletexString
T61String
VideotexString
VisibleString
ISO646String
IA5String
GraphicString
GeneralString

Values of CharacterString types shall be denoted by an arbitrary number (possibly zero) of characters from the character set
referenced by the CharacterString type, preceded and followed by double quote (*); if the CharacterString type includes the
character double quote, this character shall be represented by a pair of double quote in the denotation of any value.

SYNTAX DEFINITION:

711 PredefinedType ::= INTEGER | BOOLEAN | BITSTRING | HEXSTRING | OCTETSTRING | OBJECTIDENTIFIER | R_Type |
CharacterString

712 CharacterString ::= NumericString | PrintableString | TeletexString | VideotexString | VisibleString | IA5String | GiragphicSt
GeneralString | T61String | ISO646String

717 Number ::= (NonZeroNum {Num}) | O

718 NonZeroNum ::=1|2|3|4|5|6]|7|8]|9

719 Num ::= 0| NonZeroNum

720 BooleanValue ::= TRUE | FALSE

721 Bstring ::="" {Bin | Wildcard} """ B
722 Bin:=0]1

723 Hstring ::="" {Hex | Wildcard} " H
724 Hex:=Num|A|B|C|D|E|F
725 Ostring ::= " {Oct | Wildcard} ™ O
726 Oct ::= Hex Hex

727 Cstring ::= " {Char | Wildcard | "\"} ™"

728 Char ::= /* REFERENCE - A character defined by the relevant CharacterString type. */
729 Wildcard ::= AnyOne | AnyOrNone

730 AnyOne ::="?"

731 AnyOrNone :;:="*"

11.2.3 Test Suite Type Definitions
11.2.3.1 Introduction

Type definitions to be used as types for data objects and as subtypes for structured ASE&;.B&Use introduced using a tabular format
and/or ASN.1. Wherever types are referenced within Test Suite Type definitions those references shall not be recursile(tigithrandi-
rectly).

26 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

11.2.3.2 Simple Type Definitions using tables

To define a new Simple Type, the following information shall be provided:
a) a name for the type;
b) the base type,

where the base type shall be a Predefined Type or a Simple Type. The base type is followed by the type restriction that
take one of the following forms:

1) a list of distinguished values of the base type; these values comprise the new type;

2) a specification of a range of values of type INTEGER; the new type comprises the values including the lower bount
and the upper boundary specified in the range. In order to specify an infinite range, the keyword INFINITY may be u
instead of a value indicating that there is no upper boundary or lower boundary;

3) a specification of a particular length or length range of a predefined or test suite string type; the length valleys) she
interpreted according to Table 4; only non-negative INTEGER literals or the keyword INFINITY for the upper bound sh
be used,;

c) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to specify an exp
encoding for the simple type, which overrides the encoding rules and encoding variations applicable to any PDU in which
simple type is used; the encoding identifier, if any, shall identify either one of the Encoding Variations or an Invalid Fi
Encoding Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

This information shall be provided in the format shown in the following proforma:

Simple Type Definitions

Group . [SimpleTypeGroupReference]
Type Name Type Definition Type Encoding Comments
SimpleTypeldentifier Type&Restriction [PDU_FieldEncodingCall] [FreeText]

Detailed Comments: [FreeText]

Proforma 7 - Simple Type Definitions
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

72 SimpleTypeldentifier ::= Identifier

74 Type&Restriction ::= Type [Restriction]

710 Type ::= PredefinedType | ReferenceType

75 Restriction ::= LengthRestriction | IntegerRange | SimpleValueList

76 LengthRestriction ::= SingleTypeLength | RangeTypelLength

491 PDU_FieldEncodingCall ::= EncVariationCall | InvalidFieldEncodingCall

487 EncVariationCall ::= EncVariationldentifier [ActualParList]

492 InvalidFieldEncodingCall ::= InvalidFieldEncodingldentifier (ActualParList | "(" ")")

Where a range is used in a type definition either as a value range or as a length range (for strings) it shall be $iatedveitbftthe two
values on the left. An integer range shall be used only with a base type of INTEGER or a type derived from INTEGERefTése atteger
range shall be a subrange of the set of values defined by the base type.

Where a value list is used, the values shall be of the base type and shall be a true subset of the values definedyipe thetersest length
restriction is used, the set of values for a type defined by this restriction shall be a true subset of the values definasetype.

Delivery 9.4, 17 December 1996 27

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

EXAMPLE 11 - Simple Test Suite Type definitions

Simple Type Definitions
Type Name Type Definition Comments
Transport_classes INTEGER(O, 1, 2, 3, 4) classes that may be used for transport Igyer
connection
String5 IA5String[5] string of length 5
SeqNumbers INTEGER(0..127) all numbers from 0 to 127
PositiveNumbers INTEGER(1..INFINITY) all positive INTEGER numbers
String10to20 IA5String [10 .. 20] string, min. length 10 characters and mgx.
length 20 characters

11.2.3.3 Structured Type Definitions using tables

Structured Types can be defined in the tabular form to be used for declaring structured objects as subtypes within ASFefnid@i3dnd
other Structured Typestc.

The following information shall be supplied for each Structured Type:
a) its name,

where appropriate the full name, as given in the relevant protocol standard, shall be used; if an abbreviation is used, then th
full name shall follow in parentheses;

b) the Encoding Variations to be used for structures of this type within a PDU;

In order to specify explicit Encoding Variations for entire structured types, which override the Encoding Variations applicable
to any PDU in which this structured type is used, this optional entry shall reference an entry in the relevant Encoding Variati
table (e.g., to change from SD to LD(3)). If this entry is not used, then the applicable Encoding Variations are thode applicab
to each PDU within which this structured type is used. See 11.16.4.

¢) a list of the elements associated with the Structured Type,
where the following information shall be supplied for each element:
1) its name,

where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, them¢he full na
shall follow in parentheses;

2) its type and an optional attribute,

where elements may be of a type of arbitrarily complex structure; there shall be no recursive references (neither directly nor
indirectly);

the optional element length restriction can be used in order to give the minimum and maximum length of an element of a
string type (see 11.18);

3) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to specify an explicit
encoding for the structured type, which overrides the encoding rules and encoding variations applicable to any PDU in which

that structured type is used; the encoding identifier, if any, shall identify either one of the Encoding Variations ddan Inval
Field Encoding Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

The elements of Structured Type definitions are considered to be optienal,instances of these types whole elements may
not be present.

28 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

This information shall be provided in the format shown in the following proforma:

Structured Type Definition

Type Name : Structld&Fullld

Group . [StructTypeGroupReference]

Encoding Variation . [EncVariationCall]

Comments . [FreeText]
Element Name Type Definition Field Encoding Comments
EIemId.&FuIIId Type&Attributes [PDU_FieIdIéncodingCalI] [FreéText]

Detailed Comments: [FreeText]

Proforma 8 - Structured Type Definition
SYNTAX DEFINITION:

90 Structld&Fullld ::= Structldentifier [Fullldentifier]

487 EncVariationCall ::= EncVariationldentifier [ActualParList]

99 Elemld&Fullld ::= Elemldentifier [Fullldentifier]

373 Type&Attributes ::= (Type [LengthAttribute]) | PDU

374 LengthAttribute ::= SingleLength | RangeLength

491 PDU_FieldEncodingCall ::= EncVariationCall | InvalidFieldEncodingCall

492 InvalidFieldEncodingCall ::= InvalidFieldEncodingldentifier (ActualParList | "(" ")")

11.2.3.4 Test suite type definitions using ASN.1

Test Suite Types can be specified using ASN.1 This shall be achieved by an ASN.1 definition using the ASN.1 syntax ad Si€fited i
8824: 1990. The following information shall be supplied for each ASN.1type:

a) its name,

where appropriate the full name, as given in the relevant protocol standard, shall be used,; if an abbreviation is used, the
full name shall follow in parentheses;

b) the Encoding Variations to be used for structures of this type within a PDU;

In order to specify explicit Encoding Variations for entire ASN1_Types, which override the Encoding Variations applicat
to any PDU in which this ASN1_Type is used, this optional entry shall reference an entry in the relevant Encoding Variati
table (e.g., to change from SD to LD(3)). If this entry is not used, then the applicable Encoding Variations are thode applic
to each PDU within which this ASN1_Type is used. See 11.16.4.

c) the ASN.1 type definition,

which shall follow the syntax defined in ISO/IEC 8824: 1990, except that there is the additional option of specifying
Encoding Variation or Invalid Field Encoding associated with either the whole ASN1_Type or any ASN.1 Type within t
ASN1_Type. This is done by giving a specific encoding identifier followed by any necessary actual parameter list, in ot
to specify explicit encodings for individual fields or other subtypes of a PDU, which override the encoding rules and encoc
variations applicable to the PDU as a whole; the encoding identifier, if any, shall identify either one of the Encodingd/ariati
or an Invalid Field Encoding Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

For identifiers within that definition the dash symbol (-) shall not be used. The underscore symbol (_) may be used ins
The type identifier in the table header is the name of the first type defined in the table body.

Delivery 9.4, 17 December 1996 29

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Types referred to from the type definition shall be defined in other ASN.1 type definition tables, be defined by refdrence in t
ASN.1 type reference table or be defined locally in the same table, following the first type definition. Locally defined types
shall not be used in other parts of the test suite.

ASN.1 type definitions used within TTCN shall not use external type references as defined in ISO/IEC 8824: 1990. ASN.1
comments can be used within the table body. The comments column shall not be present in this table.

Comments in ASN.1 start with “--" and end with either the next occurrence of “--" or with “end of line”, whichever com&kiirptevents
a single ASN.1 comment from spanning several lines. “End of line” is not, however, a defined symbol in TTCN.MP. ATS speaiéiers
ommended to facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1 comments with “--".

This information shall be provided in the following proforma:

ASN.1 Type Definition

Type Name : ASN1_Typeld&Fullld

Group . [ASN1_TypeGroupReference]
Encoding Variation . [EncVariationCall]

Comments . [FreeText]

Type Definition

ASN1_Type&LocalTypes

Detailed Comments: [FreeText]

Proforma 9 - ASN.1 Type Definition
SYNTAX DEFINITION:

108 ASN1_Typeld&Fullld ::= ASN1_Typeldentifier [Fullldentifier]

487 EncVariationCall ::= EncVariationldentifier [ActualParList]

114 ASN1_Type&LocalTypes ::= ASN1_Type {ASN1_LocalType}

115 ASN1_Type ::= Type

/* REFERENCE -Where Type is a non-terminal defined in ISO/IEC 8824: 1990. For the purposes of TTCN, the production in 82@/IEC 8
1990 which states: Type ::= BuiltinType | DefinedType | Subtype is redefined to be Type ::= (BuiltinType | DefinedType) Subtyp
[ASN1_Encoding] This means that ASN1_Encoding can be applied to the whole of an ASN1_Type or any ASN.1 Type within the
ASN1_Type. */

116 ASN1_LocalType ::= Typeassignment

/* REFERENCE -Where Typeassignment is a non-terminal defined in ISO/IEC 8824: 1990. */

30 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

EXAMPLE 12 - An ASN.1 Test Suite Type definition:

ASN.1 Type Definition

Type Name :DATE_type
Comments :to illustrate the structure of ASN.1 type definitions

Type Definition

SEQUENCE {
day DAY_type,
month MONTH_type,
year YEAR_type
}

-- local DAY _type
DAY _type::= INTEGER {first(1), last(31)}

-- MONTH_type and YEAR_type are defined in other ASN.1 Type Definitions tables

11.2.3.5 ASN.1 Type Definitions by Reference

Types can be specified by a precise reference to an ASN.1 type defined in an OSI standard or by referencing an ASNddtypamefin
ASN.1 module attached to the test suite. The following information shall be supplied for each type:

a) its name,

where this name may be used throughout the entire test suite. This name shall be specified without a Fullldentifier;

b) the type reference,

which shall follow the identifier rules stated in ISO/IEC 8824: 1990;

¢) the module identifier,

which consists of a module reference that shall follow the identifier rules stated in ISO/IEC 8824: 1990, and an optienal O
tidentifier; the module shall be unique within the domain of interest;

d) the Encoding Variations to be used for such ASN1_Types within a PDU;

In order to specify explicit Encoding Variations for entire ASN1_Types, which override the Encoding Variations applical
to any PDU in which this ASN1_Type is used, this optional entry shall reference an entry in the relevant Encoding Variati
table (e.g., to change from SD to LD(3)). If this entry is not used, then the applicable Encoding Variations are thode applic
to each PDU within which this ASN1_Type is used. See 11.16.4.

Delivery 9.4, 17 December 1996 31

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

This information shall be provided in the following proforma:

ASN.1 Type Definitions By Reference

Group . [ASN1_TypeGroupReference]
Type Name Type Reference Module Identifier Encoding Variation Comments
ASN1_Typeld- TypeReference ASN1_Moduleldentifier| [EncVariationCall] [FreeText]
&Fullld

Detailed Comments: [FreeText]

Proforma 10 - ASN.1 Type Definitions By Reference
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

108 ASN1_Typeld&Fullld ::= ASN1_Typeldentifier [Fullldentifier]

125 TypeReference ::= typereference

/* REFERENCE -Where typereference is a non-terminal defined in ISO/IEC 8824:1990. */

127 ASN1_Moduleldentifier ::= Moduleldentifier

/* REFERENCE -Where Typeassignment is a non-terminal defined in ISO/IEC 8824: 1990. */

487 EncVariationCall ::= EncVariationldentifier [ActualParList]
Since the ASN.1 types imported from ASN.1 modules can contain identifiers, type references and value references thaidelitfiethe
rules in ISO/IEC 8824: 1990, they can contain hyphens. To be able to use the imported definitions in TTCN it is necestge\tie tlyphens
in imported identifiers to underscore. This is done in the import process.

32 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

EXAMPLE 13 - The following type definition in an ASN.1 module:

module-1 DEFINITIONS BEGIN
Type-1 ::= SEQUENCE { fieldl Sub-Type-1,
field2 BIT STRING {first-bit(0), second-bit(1) } }
END
can be imported to TTCN with:

ASN.1 Type Definitions By Reference

Type Name Type Reference Module Identifier Comments
Type_1 Type-1 module-1
Sub_Type_1 Sub-Type-1 module-1

The above reference definition of Type-1 is equivalent to the following definition:

ASN.1 Type Definition

Type Name :Type_ 1
Comments

Type Definition

SEQUENCE { fieldl Sub_Type 1,
field2 BIT STRING {first_bit(0), second_bit(1) } }

11.3 TTCN operators and TTCN operations
11.3.1 Introduction

TTCN supports a number of predefined operators, operations and mechanisms that allow the definition of Test Suite Opesatioper-T
ators and operations may be used throughout any dynamic behaviour descriptions and constraints.

11.3.2 TTCN operators

11.3.2.1 Introduction

The predefined operators fall into three categories:
a) arithmetic;
b) relational;
c) Boolean.

The precedence of these operators is shown in Table 3. Parentheses may be used to group operands in expressions theparessiesize
has the highest precedence for evaluation.

Within any row in table 3, the listed operators have equal precedence. If more than one operator of equal precedenes appesssion,
the operations are evaluated left to right.

Table 3 - Precedence of Operators

highest ()
Unary |+ - NOT
* /[MOD AND
Binary [+ - OR
lowest = < > <> o>= <=

Delivery 9.4, 17 December 1996 33

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

SYNTAX DEFINITION:

11.3.2.2 Predefined arithmetic operators
The predefined arithmetic operators are:

e MOD

They represent the operations of addition, subtraction, multiplication, division and modulo. Operands of these opeltzearktypalINTE-
GER (.e., TTCN or ASN.1 predefined) or derivations of INTEGHER.(subrange). ASN.1 Named Values shall not be used within arithmetic
expressions as operands of operations.

The result type of arithmetic operations is INTEGER.

In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply as well. Tremgshét ofinus operator
is the negative value of the operand if it was positive and vice versa.

The result of performing the division operation (/) on two INTEGER values gives the whole INTEGER value resulting frog thieifiist
INTEGER by the second.€., fractions are discarded).

The result of performing the MOD operation on two INTEGER values gives the remainder of dividing the first INTEGER by the secon
11.3.2.3 Predefined relational operators
The predefined relational operators are:
II:ll II<II | ll>ll | II<>II | II>:II | ll<:ll
They represent the relations of equality, less than, greater than, not equal to, greater than or equal to and less thanQpezguds of

equality (=) and not equal to (<>) may be of an arbitrary type. The two operands shall be compatible. All other retatidoid sipall have
operands only of type INTEGER or derivatives of INTEGER. The result type of these operations is BOOLEAN.

In string comparisons BITSTRING, HEXSTRING, OCTETSTRING and all kinds of CharacterStrings may contain the wildcard characters
AnyOrNone (*) and AnyOne (?). In this case the comparison is performed according to the pattern matching rules defriad in 1

11.3.2.4 Predefined Boolean operators
The predefined Boolean operators are
NOT AND OR
They represent the operations of negation, logical AND and logical OR. Their operands shall be of type BOOLEAN (TTCN aorgf8N.1 o
defined). The result type of the Boolean operators is BOOLEAN.

The logical AND returns the value TRUE if both its operands are TRUE; otherwise it returns the value FALSE. The logicah®Beetu
value TRUE if at least one of its operands is TRUE; it returns the value FALSE only if both operands are FALSE. The logschieN®@ry
operator that returns the value TRUE if its operand was of value FALSE and returns the value FALSE if the operand waRktfvalue

11.3.3 Predefined operations

11.3.3.1 Introduction

The predefined operations fall into two categories:
a) conversion;
b) others

Predefined operations may be used in every test suite. They do not require an explicit definition using a Test SuiteDefiritiiotable.
When a predefined operation is invoked

a) the number of the actual parameters shall be the same as the number of the formal parameters; and
b) each actual parameter shall evaluate to an element of its corresponding formal parameter’s type; and
c) all variables appearing in the parameter list shall be bound.

Each of the predefined operations is presented in the following format:

OPERATION_NAME (FORMAL_PARAMETER_LISTH] RESULT_TYPE

11.3.3.2 Predefined conversion operations

11.3.3.2.ITTCN supports the following predefined operations for type conversions:
a) HEX_TO_INT converts HEXSTRING to INTEGER;

34 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

b) BIT_TO_INT converts BITSTRING to INTEGER;
c) INT_TO_HEX converts INTEGER to HEXSTRING;
d) INT_TO_BIT converts INTEGER to BITSTRING.

These operations provide encoding rules within the context of the operations only. It is invalid to assume these encagiply ouesde
the domain of the operations in TTCN.

11.3.3.2.HEX_TO_INT(hexvalue:HEXSTRING) INTEGER
This operation converts a single HEXSTRING value to a single INTEGER value.

For the purposes of this conversion, a HEXSTRING shall be interpreted as a positive base 16 INTEGER value. The rightngisisHEX di
least significant, the leftmost HEX digit is the most significant. The HEX digits O .. F represent the decimal valuesspectisaly.

11.3.3.2.38BIT_TO_INT(bitvalue:BITSTRING)] INTEGER
This operation converts a single BITSTRING value to a single INTEGER value.

For the purposes of this conversion, a BITSTRING shall be interpreted as a positive base 2 INTEGER value. The rightnhesstBiig-is
nificant, the leftmost BIT is the most significant. The bits 0 and 1 represent the decimal values 0 and 1 respectively.

11.3.3.2.4NT_TO_HEX(intvalue, slength:INTEGER) HEXSTRING
This operation converts a single INTEGER value to a single HEXSTRING value. The resulting stengtisHEX digits long.

For the purposes of this conversion, a HEXSTRING shall be interpreted as a positive base 16 INTEGER value. The rightngisisHEX di
least significant, the leftmost HEX digit is the most significant. The HEX digits O .. F represent the decimal valuesspectisaly.

If the conversion yields a value with fewer HEX digits than specified in the second parameter, then the HEXSTRING shaldl lwa pheld
left with zeros.

A test case error shall occur if timitvalueis negative or if the resulting HEXSTRING contains more HEX digits than specified in the seconc
parameter.

11.3.3.2.9NT_TO_BIT(intvalue, slength:INTEGER) BITSTRING
This operation converts a single INTEGER value to a single BITSTRING value. The resulting stiengtisbits long.

For the purposes of this conversion, a BITSTRING shall be interpreted as a positive base 2 INTEGER value. The rightnhesstBig-is
nificant, the leftmost BIT is the most significant. The bits 0 and 1 represent the decimal values 0 and 1 respectively.

If the conversion yields a value with fewer bits than specified in the second parameter, then the BITSTRING shall be treedidétiveith
zeros.

A test case error shall occur if imévalueis negative or if the resulting BITSTRING contains more bits than specified in the second paramete
11.3.3.3 Other predefined operations
TTCN also defines the following predefined operations:
a) IS_PRESENT;
b) IS_CHOSEN,;
¢) NUMBER_OF_ELEMENTS;
d) LENGTH_OF;
e) SIZE_OF.
11.3.3.3.1S_PRESENT(DataObjectReferené&€)BOOLEAN

As an argument the operation shall take a reference to a field within a data object only if it is defined as being OPTIiONA&soa
DEFAULT value. The field may be of any type. The result of applying the operation is the BOOLEAN value TRUE if and onigfifetioé
the field is present in the actual instance of the data object. Otherwise the result is FALSE.

The argument of the operation shall have the format as defined in 15.10.2.
EXAMPLE 14 - Use of IS_PRESENT:
if received_PDU is of ASN.1 type
SEQUENCE { field_1 INTEGER OPTIONAL,
field_2 SEQUENCE OF INTEGER }
then, the operation call
IS_PRESENT(received_PDU.field_1)

Delivery 9.4, 17 December 1996 35

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

evaluates to TRUE if field_1 in the actual instance of received_PDU is present.
11.3.3.3.2S_CHOSEN(DataObjectReferende) BOOLEAN

The operation returns the BOOLEAN value TRUE if and only if the data object reference specifies the variant of the CHEH &S yotu-
ally selected for a given data object. Otherwise the result is FALSE. The operation shall not be applied to data oljiscts dafeeobjects
other than those of ASN.1 type CHOICE. The argument of the operation shall have the format as defined in 15.10.2.
EXAMPLE 15 - Use of IS_CHOSEN:
if received_PDU is of ASN.1 type
CHOICE { pl PDU_typel,
p2 PDU_type2,
p3 PDU_type }
then, the operation call
IS_CHOSEN(received_PDU.p2)
returns TRUE if the actual instance of received_PDU carries a PDU of the type PDU_type2.

11.3.3.3.NUMBER_OF_ELEMENTS(Valuell INTEGER

The operation returns the actual number of elements of a value that is of type ASN.1 SEQUENCE OF or SET OF. Its resolnigdtiliie
with that of the equivalent ASN.1 SIZE constraint applied to objects of these types. The operation shall not be appksctbematbhan of
ASN.1 type SEQUENCE OF or SET OF. The argument of the operation shall have the format as defined in 15.10.2.
EXAMPLE 16 - Use of NUMBER_OF ELEMENTS:
if received_PDU is of ASN.1 type
SEQUENCE { field_1 INTEGER OPTIONAL,
field_2 SEQUENCE OF INTEGER }
then, the operation call
NUMBER_OF ELEMENTS(received_PDU field_2)
returns the number of elements of the SEQUENCE OF INTEGER within the actual data object received_PDU.
Also, NUMBER_OF_ELEMENTS ({3, 0, 5}) returns 3.
11.3.3.3.4AENGTH_OF(Value)d INTEGER
The operation returns the actual length of a value that is of type BITSTRING, HEXSTRING, OCTETSTRING, or Character-
String or of ASN.1 type BIT STRING or OCTET STRING. The units of length for each string type are defined in Table 4 in
11.18.2.
NOTE - These units of length are compatible with those used in ASN.1 SIZE constraints for objects of ASN.1 types, birabtiiues

which in this context in TTCN are considered to be of the corresponding TTCN type. Thus, an hstring such as ‘F3'H whicA8buidhe
of type BIT STRING or OCTET STRING, will be interpretaed as the TTCN type HEXSTRING.

The argument of the operation shall have the format as defined in 15.10.2.

The operation shall not be applied to values other than of type BITSTRING, HEXSTRING, OCTETSTRING, or CharacterString,
or of ASN.1 type BIT STRING or OCTET STRING.

EXAMPLE 17 - Use of LENGTH_OF

If Sis of type BITSTRING or ASN.1 type BIT STRING and ='010'B then LENGTH_OF(S) returns 3
If S is of type HEXSTRING and ='F3'H then LENGTH_OF(S) returns 2

If S is of type OCTETSTRING and ='F2’'0O then LENGTH_OF(S) returns 1

If S is of a CharacterString type and ="EXAMPLE” then LENGTH_OF(S) returns 7

If S is of ASN.1 type BIT STRING and ='F3’'H then LENGTH_OF(S) returns 8

If S is of ASN.1 type OCTET STRING and ='F3'H then LENGTH_OF(S) returns 1

If Sis of ASN.1 type OCTET STRING and ='01010011'B then LENGTH_OF(S) returns 1
Also, LENGTH_OF (INT_TO_HEX (26, 4)) returns 4

LENGTH_OF (‘F3'H) returns 2

and, LENGTH_OF (“Length_of Example”) returns 17

36 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

11.3.4 Test Suite Operation definitions and descriptions

11.3.4.1 Introduction
Operations specific to a test suite may be defined by the ATS specifier. To define a new operation, the following shdiktée prov
a) a name for the operation;
b) a list of the input parameters and their types;
This is a list of the formal parameter names and types. Each parameter name shall be followed by a colon and then the
of the parameter’s type.

When more than one parameter of the same type is used, the parameters may be specified as a parameter sub-list.
parameter sub-list is used, the parameter names shall be separated from each other by a comma. The final parameter in
shall be followed by a colon and then the name of the type of the parameter.

When more than one parameter and type pair (or parameter list and type pair) is used, the pairs shall be separated froi
other by semicolons.
Only predefined types and data types as defined in the Test Suite Type definitions, ASP type definitions or PDU type de
tions may be used as types for formal parameters. PCO types shall not be used as formal parameter types. All paramete
be passed by value, meaning that in evaluating a call of a test suite operation, the actual parameters are assigned to th
sponding formal parameters, as if in an assignment statement.

EXAMPLE 18 - Parameter lists

The following are equivalent methods of specifying a parameter list using two INTEGER parameters and one BOOLEAN pa-
rameter:

(AZINTEGER; B:INTEGER; C:BOOLEAN)
(A, BIINTEGER; C:BOOLEAN)

c) the type of the result,

which shall follow the rules for the parameter types in b);
d) a definition of the operation,

which shall consist of one of the following:

1) a procedural definition, which when evaluated results in the evaluation of a RETURNVALUE statement to provide
result of the operation, including explanatory comments embedded within the procedural definition at appropriate place
text delimited by “/*” and “*/”, or

2) a description of the operation in text, possibly including a reference to a publicly available specification of thealgorit
to be applied when the operation is invoked, plus at least one example showing an invocation and corresponding resu
explanation should begin by stating the operation name, followed by a parenthesized list containing the parameter nan
the operation; this provides a “pattern” invocation for the operation;

e) optionally, further comment describing the operation, provided either in the Comments part of the table header or ir
Detailed Comments area of the table.

The use of procedural definitions is recommended in order to provide precision in the definition of the operations, ALézplextation is
allowed as an alternative for backwards compatibility.

Delivery 9.4, 17 December 1996 37

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

In the case of a procedural definition, this information shall be provided in the format shown in the following proforma:

Test Suite Operation Procedural Definition

Operation Name . TS_Procld&ParList

Group . [TS_ProcGroupReference]
Result Type : Type

Comments . [FreeText]

Definition

TS_OpProcDef

Detailed Comments: [FreeText]

Proforma 11 - Test Suite Operation Procedural Definition
SYNTAX DEFINITION:

In the case of a textual description, this information shall be provided in the following proforma:

Test Suite Operation Description

Operation Name : TS_Opld&ParList
Group : [TS_OpGroupReference]
Result Type . Type
Comments . [FreeText]
Description
FreeText

Detailed Comments: [FreeText]

Proforma 12 - Test Suite Operation Description
SYNTAX DEFINITION:

11.3.4.2 Parameters

A test suite operation may be compared to a function in an ordinary programming language. Values shall only be passeéiatothiey

formal parameters. Each formal parameter shall be declared to be a Predefined Type, a Test Suite Type Identifier, ASHidryFeDden

Type Identifier, CM Type Identifier or the meta-typ®U. Test suite variables, test case variables, test suite constants, test suite parameters
and constraints shall not directly be used within the procedural definition of a test suite operation, but if requirest suite dperation shall

be passed as actual parameters.

There shall be no side-effects, that is, the parameters to the operation shall not be altered as a result of any calhtdnhé mgrlefined
operations and other test suite operations may be used within the procedural definition of a test suite operation, wightoubdg@assed as
actual parameters.

38 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

When a Test Suite Operation is invoked
a) the number of the actual parameters shall be the same as the number of the formal parameters;
b) each actual parameter shall evaluate to an element of its corresponding formal parameter’s type;
c) all variables appearing in the actual parameter list shall be bound; and
d) the actual parameters shall be passed by value.

11.3.4.3 Variables and Identifiers

If a procedural definition is used, it may include the declaration of local variables, placed at the head of the prodeitiora| mitfveen the
keywordsVAR andENDVAR. These variables may be of any type allowed in TTCN. The scope of these local variables is the procedt
definition itself. These declarations declare lists of variable identifiers, each of a given type and each list may edlzeetd¢ch&ETATIC

or not. Variables, botBTATIC and those not declared @ATIC, may be given an optional initial value.

NOTE - It is recommended always to provlBIEATIC variables with an initial value.

The variables which are not declared t&SFATIC are initialized every time the operation is invoked, with the specified initial value,if any,
and thus they shall not convey a value from one evaluation of the test suite operation to another. Those which areliESTakddQoare
initialized with the specified initial value, if any, the first time the operation is invoked within a given test compométtince given test
case if test components are not used, and thereafter they retain their values from one invocation to the next witltontipairtest or test
case.

Variables which are not assigned an initial value are considered to be unbound and shall be explicitly bound to a vakigrbyemt & the
operation body before being used in an expression. If an unbound variable is used in an expression then it is a test case error

Each identifier used in the procedural definition of a test suite operation shall be one of the following:
a) locally declared variable name;
b) a type name, used in a variable declaration;
c¢) a formal parameter name declared in a formal parameter list of the operation;
d) a test suite operation name.

The scope of formal parameter names and locally declared variable names is the procedural definition of the test suiteTopesatie
values of all other types of identifier are not directly accessible within the procedural definition of a test suite operaticess such values
they shall be passed as actual parameters to the test suite operation.

11.3.4.4 Procedure Statements
In a procedural definition, following the declaration of local variables, if any, there shall be a procedure statemehttaf toilewing kinds:
a) a Return statement;
b) an Assignment statement;
c) an If statement;
d) a While loop;
e) a Case statement;

f) a block containing a sequence of procedure statements separated by semicolons and all enclosed by thRE@&{Mords
andEND.

Comments may be embedded as text within procedural statements, delimited by “/*” and “*/”. Comments shall not be embe:
within other comments.

11.3.4.5 ReturnValue statements

Each evaluation of a test suite operation shall end with the evaluation of a ReturnValue statement, consisting of thREKEWRbid
VALUE followed by an expression. This statement shall return the value of the given expression as the result of the testisuitd lopera
type of this result shall match the Result Type specified in the header of the test suite operation definition table.

11.3.4.6 Assignment statements

The form of Assignment is the same as in the TTCN behaviour descriptions (see 15.10.4), except that it is not enclogkdsaespdiee
DataObjectReference on the left hand side shall begin with a local variable. If the type of the local variable is a stpectiveedhe DataOb-
jectReference may access a component of that structure (using a record reference, array reference or bit referencai@ssap6D.2
and 15.10.3).

Delivery 9.4, 17 December 1996 39

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

11.3.4.7 If statements

There are two forms of If statement:
- IF expressioMHEN procedure-statemeBiSE procedure-statemeBENDIF
- IF expressioMHEN procedure-statemeBNDIF

The expression following the keywold shall be evaluated first and shall evaluate to a Boolean value. If this evaluBRIdEothen the
procedure statement following the keywdidEN shall be evaluated. If the expression evaluatE&\td$SE then the procedure statement fol-
lowing the keywordELSE, if any, is evaluated. The use of the keywBNDIF to end the If statement allows the procedure statements fol-
lowing THEN andELSE to be If statements without having to be enclosed in a block.

11.3.4.8 While loop
A While loop takes the form:
- WHILE expressiomO procedure-statemeBENDWHILE

The expression following the keywoWdHILE shall be evaluated first and shall evaluate to a Boolean value. If it evaludRdHEothen the
procedure statement following the keyw®® shall be evaluated and then, if no ReturnValue statement has been evaluated, the process shall
be repeated starting with the evaluation of the expression again. As soon as the expression eF&lL8tedtie evaluation of the While loop

is complete.

11.3.4.9 Case statement
A Case statement takes one of the two following forms:
- CASE expressiorOF
integer-label_1: procedure-statement_1;

integer-label_2: procedure-statement_2;

integer-label_n: procedure-statement_n;
ELSE

procedure-statement
ENDCASE

- CASE expressiorOF
integer-label_1: procedure-statement_1;

integer-label_2: procedure-statement_2;

integer-label_n: procedure-statement_n;
ENDCASE

The expression following the keywo@ASE shall be evaluated first and shall evaluate to a positive integer which shall match at most one of
the integer labels in the body of the Case statement. The procedure statement following the matched integer label, licsewalsiasdd and

this completes the evaluation of the Case statement. If, however, the result of evaluating the expression does not rttegdhtaggiofabels,

then the procedure statement following the keyvigir8E, if any, shall be evaluated and this completes the Case statement. If, however, there

is no match against an integer label noE&SE clause, then the result of the Case statement is a test case error. Thus, the Case statement is
equivalent to a nested sequence of If statements, each testing the expression “(expression) = integer-label_i", possibby fatiblhWSE

clause at the innermost level of nesting.

11.3.4.10 Use of Test Suite Operations
A test suite operation together with its actual parameter list may be used wherever an expression is allowed.

Each test suite operation should include appropriate error checking. If an error (e.g. division by zero, an invalid pargmeaet@smatch, or
evaluation of an unbound variable) is detected during evaluation of a test suite operation, it shall result in a test case erro

40 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

EXAMPLE 19 - Definition of the operation SUBSTR:

Test Suite Operation Definition
Operation Name : SUBSTR (source:IA5String; start_index, length:INTEGER)

Result Type . IA5String

Definition
SUBSTR(source, start_index, lengththe string of lengtten starting from indexstart_indexof the
source stringsource

For example: SUBSTR("abcde",3,2) = "cd"
SUBSTR("abcde",1,3) = "abc"

SUBSTR(source, start_index, lesmgll only be defined if

start_index>=1,
len>= 0, and
start_index+ len <= (ength of source+ 1.

Any attempt to evaluate SUBSTR applied to arguments on which it is not defined will result in a test cage error.

EXAMPLE 20 - Definition of the operation NUMBER_OF_INVOCATIONS:

Test Suite Operation Definition
Operation Name : NUMBER_OF_INVOCATIONS

Result Type . INTEGER
Definition
VAR STATIC COUNT : INTEGER : 0
ENDVAR
BEGIN

COUNT := COUNT + 1,
RETURNVALUE COUNT
END

Detailed Comments: Detailed Comment: NUMBER_OF_INVOCATIONS() gives an integer value which is equal to
the number of times this operation has been invoked in the current test component, or test case if test components are not
used.

11.4 Test Suite Parameter Declarations

The purpose of this part of the ATS is to declare constants derived from the PICS and/or PIXIT which are used to glole#yizmthm
test suite. These constants are referred to as Test Suite Parameters, and are used as a basis for Test Case seleetierzatidpafarest
Cases.

The following information relating to each Test Suite Parameter shall be provided:
a) its name;
b) its type,
where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;
c) PICS/PIXIT entry reference,

which is a reference to an individual PICS/PIXIT proforma entry that will clearly identify where the value to be used for tl
Test Suite Parameter will be found.

This information shall be provided in the format shown in the following proforma:

Delivery 9.4, 17 December 1996 41

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Test Suite Parameter Declarations

Group : [TS_ParGroupReference]
Parameter Name Type PICS/PIXIT Ref Comments
TS_Parldentifier Type FreeText [FreeText]

Detailed Comments: [FreeText]

Proforma 13 - Test Suite Parameter Declarations
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:
EXAMPLE 21 - Declaration of Test Suite Parameters:

Test Suite Parameter Declarations

Parameter Name Type PICS/PIXIT Ref Comments
PAR1 INTEGER PICS question xx
PAR2 INTEGER PICS question yy
PAR3 INTEGER PIXIT question zz

11.5 Test Case Selection Expression Definitions

The purpose of this part of the ATS is to define selection expressions to be used in the Test Case selection process$ tidiaarshall
meet the requirements of ISO/IEC 9646-2.

A selection expression is associated with one or more Test Groups and/or Test Cases by placing its identifier in th&@&lestiGastefer-
ence column of the Test Suite Structure and/or Test Case Index. An expression may be referenced by more than one Test Gestp and
Case.

Use of a selection expression shall be taken to mean that the Test Case is to be run if the selectionexpression evblHates to TR
The following information relating to each Test Case Selection Expression shall be provided:

a) its name;

b) a selection expression,

which shall evaluate to a BOOLEAN value, and which shall use only literal values, Test Suite Parameters, Test Suite Constants
and other selection expression identifiers in its terms;

42 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

| This information shall be provided in the format shown in the following proforma:

Test Case Selection Expression Definitions

| Group . [SelectionGroupReference]
Expression Name Selection Expression Comments
SelectExprldentifier SelectionExpression [FreeText]

Detailed Comments: [FreeText]

Proforma 14 - Test Case Selection Expression Definitions
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

11.6 Test Suite Constant Declarations

The purpose of this part of the ATS is to declare a set of names for natdesived from the PICS or PIXIT that will be constant throughout
the test suite.

The following information relating to each Test Suite Constant shall be provided:
a) its name,;
b) its type,
where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;
c) its value,

where the terms in the value expression shall not contain: Test Suite Variables or Test Case Variables; the value shall ev
to an element of the type indicated in the type column.

This information shall be provided in the format shown in the following proforma:

Test Suite Constant Declarations

| Group . [TS_ConstGroupReference]
Constant Name Type Value Comments
TS_Constldentifier Type DeclarationValue [FreeText]

Detailed Comments: [FreeText]

Proforma 15 - Test Suite Constant Declarations
Collective comments may be used in this table according to Figure 2.

Delivery 9.4, 17 December 1996 43

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

SYNTAX DEFINITION:
EXAMPLE 22 - Declaration of Test Suite Constants

Test Suite Constant Declarations

Constant Name Type Value Comments
TS_CONST1 BOOLEAN TRUE
TS_CONST2 IA5String "A string”

11.7 Test Suite Constant Declarations by Reference

The purpose of this part of the ATS is to declare a set of names for natalesived from the PICS or PIXIT that will be constant throughout
the test suite.

The following information relating to each Test Suite Constant shall be provided:
a) its name;
b) its type,
where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;
c) its value reference,

where the terms in the referenced value shall not contain: Test Suite Variables or Test Case Variables; the value shall evaluat
to an element of the type indicated in the type column;

d) the module identifier,

which consists of a module reference that shall follow the identifier rules stated in ISO/IEC 8824: 1990, and an optienal Objec
tidentifier; the module shall be unique within the domain of interest.

This information shall be provided in the format shown in the following proforma:

Test Suite Constant Declarations By Reference

Group . [TS_ConstGroupReference]
Constant Name Type Value Reference Module Identifier Comments
TS_Constldentifier Type ValueReference ASN1_Moduleldentifier [FreeText]

Detailed Comments: [FreeText]

Proforma 16 - Test Suite Constant Declarations By Reference
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

11.8 TTCN variables

11.8.1 Test Suite Variable Declarations

A test suite may make use of a set of variables which are defined globally for the test suite, and retain their valueg theotegtsuite.
These variables are referred to as Test Suite Variables.

A Test Suite Variable is used whenever it is necessary to pass information from one Test Case to another. In concurrest UGV ari-
ables shall only be used by the MTC.

44 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

The following information shall be provided for each variable declaration:

a) its name;
b) its type,

Second Edition Mock-Up for ETSI TC/MTS

where the type shall be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;

c) its initial value (if any),

where the initial value column is used when it is desired to assign an initial value to a Test Suite Variable at itsgmeint of
laration; the terms in the value expression shall not contain: Test Suite Variables or Test Case Variables; the vallie shall

uate to an element of the type indicated in the type column. Specifying an initial value is optional.

This information shall be provided in the format shown in the following proforma:

Test Suite Variable Declarations

Group [TS_VarGroupReference]
Variable Name Type Value Comments
TS_Varldentifier Type [DeclarationValue] [FreeText]

Detailed Comments: [FreeText]

Proforma 17 - Test Suite Variable Declarations

Collective comments may be used in this table according to Figure 2.

SYNTAX DEFINITION:

Since it is possible that any particular Test Case may be run independently of the others in the test suite, it is reedbssasg timade of
Test Suite Variables does not make assumptions about the ordering of the Test Case execution.

EXAMPLE 23 - Declaration of Test Suite Variables:

Test Suite Variable Declarations

Variable Name

Type

Value

Comments

state

IA5String

“idle"

Used to indicate the final std
ble state of the previous Teg
Case, if any, in order to help
determine which preamble t®
use.

—

11.8.2 Binding of Test Suite Variables

Initially Test Suite Variables are unbound. They may become bound (or be re-bound) in the following contexts:

a) at the point of declaration if an initial value is specified,;

b) when the Test Suite Variable appears on the left-hand side of an assignment statement (see 15.10.4);

Once a Test Suite Variable has been bound to a value, the Test Suite Variable will retain that value until either ibis lolifferent value,
or execution of the test suite terminates - whichever occurs first.

If an unbound Test Suite Variable is used in the right-hand side of an assignment, then it is a test case error.

Delivery 9.4, 17 December 1996

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

11.8.3 Test Case Variable Declarations
A test suite may make use of a set of variables which are declared globally to the test suite but whose scope is defink tihbd est Case.

In concurrent TTCN, each test component, including the MTC, receives a fresh copy of all Test Case Variables when itiheseatad-
ables are referred to as Test Case Variables.

The following informbdién shall be provided fdrTeach variable declaration:
a) its name;
b) its type,
where the type s?all be a predefined type, an ASN.1 type, a Test Suite Type or a PDU type;
c) its initial value {if any),

where the initial value column is used when it is desired to assign an initial value to a Test Case Variable at its gaint of de
ration; the terms in the value expression shall not contain: Test Suite Variables or Test Case Variables; the valuashall evalu
to an element of the type indicated in the type column. Specifying an initial value is optional.

This information shall be provided in the format shown in the following proforma:

Test Case Variable Declarations

Group : [TC_VarGroupReference]
Variable Name Type Value Comments
TC_Varldentifier Type [DeclarationValue] [FreeText]

Detailed Comments: [FreeText]

Proforma 18 - Test Case Variable Declarations
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

NOTE - Caution must be exercised when using Test Case Variables as local variables within a Test Step, in order to avaftiaisagth
other Test Steps or Test Case Variables. A test suite specifier may avoid such problems by adopting a naming conventibresuitdh w
all such variables being uniquely named within a test suite.

11.8.4 Binding of Test Case Variables

Initially Test Case Variables are unbound. They may become bound (or be re-bound) in the following contexts:
a) at the point of declaration if an initial value is specified;
b) when the Test Case appears on the left-hand side of an assignment statement (see 15.10.4).

Once a Test Case Variable has been bound to a value, the Test Case Variable will retain that value until either it sdiffarehtovalue,
or execution of the Test Case terminates - whichever occurs first. At termination of the Test Case, the Test Case Vareblethecmd to
its initial value, if one is specified, otherwise it becomes unbound.

If an unbound Test Case Variable is used in the right-hand side of an assignment, then it is a test case error.

11.9 PCO Type Declaration
This part of the ATS lists the set of service boundaries where the PCOs (Points of Control and Observation) are located.
The following information shall be provided for each PCO types used in the test suite:

a) its name,

46 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

which is the same name given in the PCO table;
b) its role,
which is the same as the role given in the PCO table.

This information shall be provided in the format shown in the following proforma:

PCO Type Declarations

| Group . [PCO_GroupReference]
PCO Type Role Comments
PCO_Typeldentifier PCO_Role [FreeText]

Detailed Comments: [FreeText]

Proforma 19 - PCO Type Declarations
SYNTAX DEFINITION:

PCO types are defined in the PCO table and therefore the PCO Type table is optional. If a PCO type is given as an esiiarted BRjmort
J table, itshall be defined in the PCO Type table.

11.10 PCO Declarations

This part of the ATS lists the set of points of control and observation (PCOs) to be used in the test suite and expliaitisertbstig envi-
ronment these PCOs exist.

The number of PCOs shall be as defined in ISO/IEC 9646-1: 1991, 7.5, and ISO/IEC 9646-2: 1991, 12.6, for the test neetifaxt{sh id
the Test Suite Structure table.

TTCN behaviour statements specified for execution at the UT PCO shall not place requirements beyond those specified Bg46QI/IEC
In TTCN the PCO model is based on two First In First Out (FIFO) queues:
- one output queue for sending ASPs and/or PDUs

- one input queue for receiving ASPs and/or PDUs
The output queue is assumed to be located within the underlying service-provider or in the case of the UT, within the IUT.
A SEND event is successful by being passed from the LT to the service-provider, or by being passed from the UT to the IUT.

For the purpose of receiving events the tester has an input queue. All incoming events are queued and processed byttbeéesteorder
they were received, and without loss of any events.

NOTE - The queue model is only an abstract model and is not intended to imply a specific implementation.
The following information shall be provided for each PCO used in the test suite:

a) its name,

which is used in the behaviour descriptions to specify where particular events occur;

b) its type,

which is used to identify the service boundary where the PCO is located, and which may if necessary be followed by infol
tion concerned with multiplexing requirements to be met immediately below this PCO but above the service boundary; if
activity at two or more PCOs is to be multiplexed together by the service provider (e.g. onto a single connection end-p
then, in the PCO declarations for these PCOs, the PCO type shall be followed by the same MuxValue (i.e. a test suite p
eter) given in parentheses; the precise meaning of this test suite parameter shall be specified in the relevant PIXIT;

Delivery 9.4, 17 December 1996 47

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

EXAMPLE 24 - Use of MuxValue

PCO_1 PCO_2
N-SAP (MuxA) N-SAP (MuxA)

N-SAP
N-Service plus Multiplexing Service Provider ?

c) its role,

which is an explanation of which type of tester is placed at the PCO. The predefined id¢htifidicates that the PCO is an
upper tester PCO and specifies a lower tester PCO. The Role column shall contain a Test Component Identifier, and a pre-
cise identification of the (N-1)-Service Provider to which the PCO is connected.

This information shall be provided in the format shown in the following proforma:

PCO Declarations

Group . [PCO_GroupReference]
PCO Name Type Role Comments
PCO_ldentifier PCO_Typeldentifier PCO_Role [FreeText]
.[(MuxValue)]

Detailed Comments: [FreeText]

Proforma 20 - PCO Declarations
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

EXAMPLE 25 - Declaration of PCOs

PCO Declarations

PCO Name PCO Type Role Comments
L TSAP LT Transport service access
point at the lower tester.
U SSAP uT Session service access poipt
at the upper tester.

48 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

Points of control and observation are usually just SAPs, but in general can be any appropriate points at which thecasteveotdrolled
and observed. However, it is possible to define a PCO to corresposettd SAPs, provided all the SAPs (Service Access Point) comprising
that PCO are

- at the same locationg., in the LT or in the UT);
- SAPs of the same service.

When a PCO corresponds to several SAPs the appropriate address is used to identify the individual SAP. PCOs are noateallyw#lssoci
one service access point of the (N-1) service-provider or the IUT.

NOTE - A PCO may not be related to a SAP at all. This could be the case when a layer is composed of suhlaytrs fpplication layer,
or in the lower layers, where a subnetwork point of attachment is not a SAP).
11.11 CP Declarations

CPs are used to facilitate the exchange of CMs between test components. CPs are modelled as two queues, one for eddodireation
nication. In this respect they are similar to PCOs (see figure 3). A difference between CPs and PCOs is that CPs costremnpoménts,
while PCOs connect a test component with the IUT, either directly or via a service provider.

=
—E&—

Figure 5 - Model of a CP

CPs can be realized either by local communication or by communication that spans physical boundaries.

Communication via CPs is asynchronous, that is, communication is achieved by one test component sending a CM to itd piapaenem
receiving the CM when ready. The test component that initiated the CM, however, proceeds with execution immediatelyraftineseivli

If it is required that the sending test component suspends its activity until the CM has been received, a test suishgplebifier a handshake
mechanism. An example of how such a handshake can be specified is shown in figure 4.

A_CP! READY A_CP? READY
A_CP? OK A_CP! OK

Figure 6 - Example of a simple handshake

All CPs shall be declared. The name of each CP shall be unique within the test suite.

Delivery 9.4, 17 December 1996 49

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

This information shall be provided in the format shown in the following proforma:

CP Declarations

rou : _GroupReference
Group CP_GroupRef
CP Name Comments
CP_ldentifier [FreeText]

Detailed Comments: [FreeText]

Proforma 21 - CP Declarations
Collective comments may be used in this table according to Figure 2.

11.12 Timer Declarations

A test suite may make use of timers. The following information shall be provided for each timer:
a) the timer name,
b) the optional timer duration,

where the default duration of the timer shall be an expression which may be omitted if the value cannot be established prior to
execution of the test suite; the terms in the value expression shall not contain: Test Suite Variables or Test Casd¢héariables;
timer duration shall evaluate to an unsigned positive INTEGER value;

¢) the time unit,
where the time unit shall be one of the following:
1) ps(i.e., picosecond);
2) ns(i.e., nanosecond);
3) us (i.e., microsecond);
4)ms (i.e., millisecond);
5) s (i.e., second);
6) min (i.e., minute).

Time units are determined by the test suite designer and are fixed at the time of specification. Different timers magntse diffe
units within the same test suite. If a PICS or PIXIT entry exists, the timer declaration shall specify the same unitsnincluded
the PICS/PIXIT entry.

50 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

This information shall be provided in the format shown in the following proforma:

Timer Declarations

Group : [TimerGroupReference]
Timer Name Duration Unit Comments
Timerldentifier [DeclarationValue] TimeUnit [FreeText]

Detailed Comments: [FreeText]

Proforma 22 - Timer Declarations
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

Each Test Component gets a fresh copy of all timers when it starts executing its behaviour.
EXAMPLE 26 - Declaration of timers

Timer Declarations

Timer Name Duration Unit Comments
wait 15 s General purpose wait.
no_response A min Used to wait for IUT to conneqt

or react to connection establigh-
ment, longer duration than gen-
eral purpose wait. Gets value
from PIXIT.

delay_time ms Duration to be established du
ing execution of the test suite

11.13 Test Components and Configuration Declarations
11.13.1 Test Components
11.13.1.1 Main Test Component

The Main Test Component is intended to fulfil the role of the Lower Tester Control Function (LTCF), as defined in ISO/IEC196E.6-
Its behaviour is described in the first tree of the test case behaviour description table and all trees attachedspdnsilider for:

a) creating all PTCs required within the current configuration and monitoring their termination;
b) managing CPs that exist between itself and PTCs;

¢) computation and assignment of the test verdict using its knowledge of the combined effect of the preliminary results f
the PTCs.

In addition a Main Test Component may manage PCO(s).
Only the Main Test Component shall use Test Suite Variables. Test Suite Variables shall not be passed to PTCs in the GREATE con

Delivery 9.4, 17 December 1996 51

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

11.13.1.2 Parallel Test Components

Parallel Test Components are intended to fulfil the role of the Lower Testers or Upper Testers . Their behaviour is délsertbeel which
is referenced in a CREATE statement in the MTC, and all trees attached to it. A PTC assigns preliminary results but dpetasvvesdicts.

A PTC shall not:

a) use Test Suite Variables;

b) create other test components.
11.13.1.3 Test Component Declarations

If concurrent TTCN is used, this section of the ATS shall declare all individual test components that are used. Thesertestcanegater
referenced from the Test Component Configurations declarations which define specific configurations.

The following information shall be provided for each test component:
a) its name,
which shall be unique throughout the test suite;
b) its role,

which shall indicate whether the test component is the Main Test Component or a Parallel Test Component, and where at leas
one test component shall be a Main Test Component, and at least one test component shall be a Parallel Test Component

¢) number of PCOs used,

where zero or more PCOs may be associated with the test component;

d) number of CPs used,

where zero or more CPs may be associated with the test component;
This information shall be provided in the format shown in the following proforma:

Test Component Declarations

Group : [TCompGroupReference]
Component Name Component Role Nr of PCOs Nr of CPs Comments
TCompldentifier TCompRole Num_PCOs Num_CPs [FreeText]

Detailed Comments: [FreeText]

Proforma 23 - Test Component Declarations
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

EXAMPLE 27 - Declaration of test components

52 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

This Test Component Declarations table can be used in conjunction with the Test Component Configurations CONFIG1 and D@NFIG2,
trated in Figure 3 and Figure 4, and declared in Example 28 and Example 29.

Test Component Declarations
Component Name Component Role Nr PCOs Nr CPs Comments

MTC1 MTC 0 3 Used in Config 1

MTC2 MTC 1 2 Used in Config 2,with a PCO
TC1 PTC 1 2 Used in Config 1

TC2 PTC 1 3 Used in Config 1 and Config 2
TC3 PTC 1 2 Used in Config 1

TC4 PTC 0 3 Used in Config 2

TC5 PTC 1 0 Used in Config 2, without a CP

11.13.2 Test Component Configuration Declarations

Test components are used to build a logical architecture, or configuration, that facilitates concurrent execution of TTICNelyaaour
trees. Each Test Component configuration that is used in an Abstract Test Case using concurrency shall be declared.

The following information shall be provided for each Test Component Configuration:
a) its name,
which shall be unique within the test suite, and shall be referenced from a test case dynamic behaviour table header;
b) a list of the test components belonging to the test configuration,
where the following information shall be provided for each test component:
1) its name,

which shall have been declared as a test component name. Exactly one of the test components in the configuration sl
declared as an MTC.

2) PCOs used,

where a list of zero or more declared PCOs is associated with each test component. The number of PCOs in the list
be the same as the number of PCOs declared in the relevant Test Components Declaration. No PCO shall be use
than once in a single configuration (i.e. test components in one configuration shall not share PCOs).

3) CPs used,

where a list of zero or more declared CPs is associated with each test component. The number of CPs in the list for ¢
shall be the same as the number of CPs declared in the relevant Test Components Declaration. The number of CPs
list of an MTC shall not exceed the number of CPs declared. No CP name shall appear more than once in each C
Each CP name in the list for one test component shall appear in the list for exactly one other test component ir
configuration. In other words, each CP name used in the configuration will appear exactly twice in the configuration ta
These CP pairs are used to specify the connectivity of test components in the configuration.

Delivery 9.4, 17 December 1996 53

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

This information shall be provided in the format shown in the following proforma:

Test Component Configuration Declaration

Configuration Name

TCompConfigldentifier

Group [TCompConfigGroupReference]
Comments [FreeText]
Components Used PCOs Used CPs Used Comments
TCompldentifier [PCO_List] [CP_List] [FreeText]

Detailed Comments: [FreeText]

Proforma 24 - Test Component Configuration Declaration
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

54

EXAMPLE 28 - Test Component Configuration declaration corresponding to Figure 3

Test Component Configuration Declaration

Configuration Name

CONFIG_1

Components Used

PCOs Used CPs Used

MTC1
TC1
TC2
TC3

MCP1, MCP2, MCP3

PCO_A MCP1, CP1
PCO_B MCP2, CP1, CP2
PCO_C MCP3, CP2

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

EXAMPLE 29 - Test Component Configuration declaration corresponding to Figure 4

Test Component Configuration Declaration
Configuration Name . CONFIG_2
Components Used PCOs Used CPs Used
MTC2 PCO_D MCP2, MCP3
TC2 PCO_B MCP2, CP1, CP2
TC4 MCP3, CP1, CP2
TC5 PCO_E

11.14 ASP Type Definitions
11.14.1 Introduction

The purpose of this part of the abstract TTCN test suite is to declare the types of ASPs that may be sent or receictted fR€Qs. ASP
type definitions may include ASN.1 type definitions, if appropriate.

11.14.2 ASP Type Definitions using tables

The following information shall be supplied for each ASP:

a) its name,

where the full name, as given in the appropriate protocol standard, shall be used,; if an abbreviation is used, them#he full
shall follow in parentheses;

b) the PCO type associated with the ASP,

where the PCO type shall be one of the PCO types used in the PCO declaration proforma. If only a single PCO is de
within a test suite, specifying the PCO type in an ASP type definition is optional.

c) a list of the parameters associated with the ASP,

where the following information shall be supplied for each parameter:
1) its name,
where either:

- the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, then the full 1
shall follow in parentheses; or

- the macro symbol (<-) indicating that the entry in the type column identifies a set of parameters that is to be inse
directly in the list of ASP parameters; the macro symbol shall be used only with Structured Types defined in the Struct
Types definitions;

2) its type and an optional attribute,

where parameters may be of a type of arbitrarily complex structure, including being specified as a Test Suite Type (e
predefined, Simple Type, Structured Type or ASN.1 type); if a parameter is to be structured as a PDU, then its type m:
stated either:

- as a PDU identifier to indicate that in the constraint for the ASP this parameter may be chained to a PDU constraint
specific PDU type; or

- asPDU to indicate that in the constraint for the ASP this parameter may be chained to a PDU constraint of any PDU t
and where the optional attribute is Length;

in which case the specification may restrict the parameter to a particular length or a range according to 11.18. The le
values shall be interpreted according to Table 4. The boundaries shall be specified in terms of non-negative INTEGEI
erals, Test Suite Parameters, Test Suite Constants or the keyword INFINITY.

Delivery 9.4, 17 December 1996 55

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

The length specifications defined for the ASP parameter type in the Test Suite Type definitions shall not conflict with the
length specifications in the ASP type definitiae,, the set of strings defined by a length restriction in an ASP definition
shall be a true subset of the set of strings defined by the Test Suite Type definition.

The keyword INFINITY can be used as a value for the upper boundary in order to indicate that there is no upper limit of
length.

NOTE - Itis usually unnecessary to restrict the length of ASP parameters, but in some cases this may be necessasffiectinddy testrict
the length of a corresponding PDU field in an underlying protocol.

The parameters of ASP type definitions are considered to be optienal,instances of these types whole parameters may
not be present.

This information shall be provided in the format shown in the following proforma:

ASP Type Definition

ASP Name : ASP_Id&Fullld
Group . [ASP_GroupReference]
PCO Type . [PCO_Typeldentifier [“(" MuxValue “)"]]
Comments . [FreeText]
Parameter Name Parameter Type Comments
ASP_ParIIdOrMacro Type&Attributes [FreéText]

Detailed Comments: [FreeText]

Proforma 25 - ASP Type Definition
The Parameter Name and Parameter Type columns shall either be both present or both omitted.
SYNTAX DEFINITION:

EXAMPLE 30 - T_CONNECTrequest Abstract Service Primitive

The figure below shows an example from the Transport Service [ISO 8072]. This could be part of the set of ASPs used to de-

scribe the behaviour of an abstract UT in a DS test suite for the Class 0 Transport. CDA,CGA and QOS are Test Suite Types
[ISO 8073].

ASP Type Definition

ASP Name : CONreq (T_CONNECTrequest)
PCO Type : TSAP

Comments
Parameter Name Parameter Type Comments
Cda (Called Address) CDA ... of upper tester
Cga (Calling Address) CGA ... of lower tester
QoS (Quality of Service) QOSs should ensure class 0 is used

Detailed Comments: ASP to be sent at Transport service access point

56 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

11.14.3 Use of Structured Types within ASP Type Definitions
There are two possible relationships between a Structured Type and ASP definitions which refer to it, as follows:

a) if a parameter name is given in the definition, then the Structured Type referenced is a substructure. This allows defir
of ASPs containing a multi-level substructure of parameters;

b) if the macro symbol (<-) is used instead of a parameter name then this is equivalent to a macro expansion; the entry
ASP type definition expands directly to a list of parameters without introducing an additional level of substructure.

The macro symbol shall not be used on the same line as references to types defined in ASN.1 or Simpée, dppeStructured Types
defined in tabular form can be expanded into other Structured Types as macro expansions.

11.14.4 ASP Type Definitions using ASN.1

Where more appropriate, ASPs can be specified in ASN.1. This shall be achieved by an ASN.1 definition using the ASN. Hsfnéak as
in ISO/IEC 8824: 1990. The following information shall be supplied for each ASN.1 ASP:

a) its name,

where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, theméhe full
shall follow in parentheses;

b) the PCO type associated with the ASP,

where the PCO type shall be one of the PCO types used in the PCO declaration proforma. If only a single PCO is de
within a test suite, specifying the PCO type in an ASP type definition is optional,
c) the ASN.1 ASP type definition,

which shall follow the syntax defined in ISO/IEC 8824: 1990. For identifiers within that definition the hyphen symbol (-
shall not be used. The underscore symbol (_) may be used instead. The ASP identifier in the table header is the name
first type defined in the table body.

Types referred to from the ASP definition shall be defined in other ASN.1 type definition tables, be defined by referenc
the ASN.1 type reference table or be defined locally in the same table, following the first type definition. Locally dedmed ty
shall not be used in other parts of the test suite.

ASN.1 comments can be used within the table body. The comments column shall not be present in this table.

Comments in ASN.1 start with “--" and end with either the next occurrence of “--" or with “end of line”, whichever com&kiirptevents
a single ASN.1 comment from spanning several lines. “End of line” is not, however, a defined symbol in TTCN.MP. ATS speaiéiers
ommended to facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1 comments with “--".

This information shall be provided in the following proforma:

ASN.1 ASP Type Definition

ASP Name : ASP_Id&Fullld

Group . [ASN1ASP_GroupReference]

PCO Type . [PCO_Typeldentifier [“(" MuxValue “)"]
Comments . [FreeText]

Type Definition

ASN1_Type&LocalTypes

Detailed Comments: [FreeText]

Proforma 26 - ASN.1 ASP Type Definition

Delivery 9.4, 17 December 1996 57

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

SYNTAX DEFINITION:

11.14.5 ASN.1 ASP Type Definitions by Reference

ASPs can be specified by a precise reference to an ASN.1 ASP defined in an OSI standard or by referencing an ASN.1 tgadefiNet]
module attached to the test suite. The following information shall be supplied for each ASP:

a) its name,
where this name may be used throughout the entire test suite;
b) the PCO type associated with the ASP;

where the PCO type shall be one of the PCO types used in the PCO declaration proforma. If only a single PCO is defined within
a test suite, specifying the PCO type in an ASP type definition is optional;

¢) the type reference,
which shall follow the identifier rules stated in ISO/IEC 8824: 1990;
d) the module identifier,

which consists of a module reference that shall follow the identifier rules stated in ISO/IEC 8824: 1990 and an optional Objec-
tidentifier.

This information shall be provided in the following proforma:

ASN.1 ASP Type Definitions By Reference

Group . [ASN1ASP_GroupReference]
ASP Name PCO Type Type Reference Module Identifier Comments
ASP_Id&Fullld [PCO_Typeldentifier TypeReference Moduleldentifier [FreeText]
[“(" MuxValue “)"].

Detailed Comments: [FreeText]

Proforma 27 - ASN.1 ASP Type Definitions By Reference
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

ASN.1 identifiers type references and value references may contain hyphens. In order to be able to use imported d&fliifiortssmec-
essary to change the hyphens to underscore (see A.4.2.1).

11.15 PDU Type Definitions

11.15.1 Introduction

The purpose of this part of the abstract TTCN test suite is to declare the types of the PDUs that may be sent or racginezdlgithembed-
ded in ASPs at the declared PCOs. PDU type definitions may include ASN.1 type definitions, if appropriate. PDU defirmgotie dsfi of
PDUs exchanged with the IUT which are syntactically valid with respect to the ATS but not necessarily valid with respactoztihepec-
ification.

It is required to declare all fields of the PDUs that are defined in the relevant protocol standard, either explicitlgitly inypieferring to
encoding rules (ASN.1 encoding rules, if applicable).

The encoding of PDU fields shall follow that as defined in the relevant protocol specification unless encoding informatiatet in the
test suite.

11.15.2 PDU Type Definitions using tables
The definition of PDUs is similar to that of ASPs. The following information shall be supplied for each PDU:

58 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

a) its name,

where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, theméhe full
shall follow in parentheses;

b) the PCO type associated with the PDU,

where the PCO type shall be one of the PCO types used in the PCO declarations; if a PDU is sent or received only emb
in ASPs within the whole test suite, specifying the PCO type is optional; if only a single PCO is defined within a test su
specifying the PCO type in a PDU type definition is optional;

c) the encoding rules to be used for PDUs of this type;

In order to specify explicit encodings for entire PDUs, which override the default global encoding rules for the test suite
whole, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g., to change from BEI
DER). If this entry is not used, then the default global encoding rules apply. See 11.16.4.

d) the Encoding Variations to be used for PDUs of this type;

In order to specify explicit Encoding Variations for entire PDUs, which override the default global Encoding Variations f
the test suite as a whole, this optional entry shall reference an entry in the relevant Encoding Variations table (egg., to cl
from SD to LD(3)). If this entry is not used, then the default global Encoding Variations apply. See 11.16.4.

e) a list of the fields associated with the PDU,

where the following information shall be supplied for each field:
1) its name,
where either:

- the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, then the full 1
shall follow in parentheses; or

- the macro symbol (<-) indicating that the entry in the type column identifies a set of fields that is to be insetied dire
in the list of PDU fields; the macro symbol shall be used only with Structured Types defined in the Structured Type d
nitions;

2) its type and an optional attribute;

where fields may be of a type of arbitrarily complex structure, including being specified as a Test Suite Type (either pr
fined, Simple Type, Structured Type or ASN.1 type); if a field is to be structured as a PDU, then its type may be stated ei

- as a PDU identifier to indicate that in the constraint for the PDU this field may be chained to a PDU constraint af a spe
PDU type; or

- asPDU to indicate that in the constraint for the PDU this field may be chained to a PDU constraint of any PDU type
and where the optional attribute is Length;

in which case the specification may restrict the field to a particular length or a range according to 11.18. The length ve
shall be interpreted according to Table 4. The boundaries shall be specified in terms of non-negative INTEGER literals,
Suite Parameters, Test Suite Constants or the keyword INFINITY.

The length specifications defined for the PDU field type in the Test Suite Type definitions shall not conflict with the lenc
specifications in the PDU type definitiore., the set of strings defined by a length restriction in a PDU definition shall be
a true subset of the set of strings defined by the Test Suite Type definition.

The keyword INFINITY can be used as a value for the upper boundary in order to indicate that there is no upper lim
length.

3) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to specify expl
encodings for individual fields of a PDU, which override the encoding rules and encoding variations applicable to the P
as a whole; the encoding identifier, if any, shall identify either one of the Encoding Variations or an Invalid Field Encodi
Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

The fields of PDU type definitions are considered to be optidealjn instances of these types whole fields may not be
present.

Delivery 9.4, 17 December 1996 59

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

This information shall be provided in the format shown in the following proforma:

PDU Type Definition

PDU Name PDU_Ild&Fullid
Group : [PDU_GroupReferenceGroupReference]
PCO Type [PCO_Typeldentifier [“(" MuxValue “)"]

Encoding Rule Name [EncodingRuleldentifier]

Encoding Variation [EncVariationCall]

Comments [FreeText]
Field Name Field Type Field Encoding Comments
PDU_FieldldOrMacro Type&Attributes [PDU_FieldEncodingCall] [FreeText]
Detailed Comments: [FreeText]
Proforma 28 - PDU Type Definition
The Field Name and Field Type columns shall either be both present or both omitted.
SYNTAX DEFINITION:
EXAMPLE 31 - A typical PDU Type Definition
PDU Type Definition
PDU Name : INTC (Interrupt Confirm)
PCO Type : NSAP
Field Name Field Type Comments
GFI BITSTRING General Format Identifier
LCGN BITSTRING Logical Channel Group Number
LCN BITSTRING Logical Channel Identifier
PTI OCTETSTRING Packet Type Identifier
EXTRA OCTETSTRING To create long INTC packets

11.15.3 Use of Structured Types within PDU definitions
There are two possible relationships between a Structured Type and PDU definitions which refer to it, as follows:

a) if a field name is given in the definition, then the Structured Type referenced is a substructure. This allows definition of
PDUs containing a multi-level substructure of fields;

b) if the macro symbol (<-) is used instead of a field name then this is equivalent to a macro expansion; the enty in the PD
type definition expands directly to a list of fields without introducing an additional level of substructure.

The macro symbol shall not be used on the same line as references to types defined in ASN.1 or Simpleohyp&sructured Types defined
in tabular form can be expanded into other Structured Types as macro expansions.

11.15.4 PDU Type Definitions using ASN.1

Where more appropriate, PDUs can be specified in ASN.1. This shall be achieved by an ASN.1 definition using the ASN.Hsfintak as
in ISO/IEC 8824: 1990. The following information shall be supplied for each ASN.1 PDU:

60 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

a) its name,

where the full name, as given in the appropriate protocol standard, shall be used; if an abbreviation is used, theméhe full
shall follow in parentheses;

b) the PCO type associated with the PDU,

where the PCO type shall be one of the PCO types used in the PCO declarations; if a PDU is always sent or received emt
in ASPs, then specification of the PCO type in the PDU type definition is optional; if only a single PCO is defined withir
test suite, then specification of the PCO type in the PDU type definition is optional;

c) the encoding rules to be used for PDUs of this type;

In order to specify explicit encodings for entire PDUs, which override the default global encoding rules for the test suite
whole, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g., to change from BEI
DER). If this entry is not used, then the default global encoding rules apply. See 11.16.4.

d) the Encoding Variations to be used for PDUs of this type;

In order to specify explicit Encoding Variations for entire PDUs, which override the default global Encoding Variations f
the test suite as a whole, this optional entry shall reference an entry in the relevant Encoding Variations table (egg., to cl
from SD to LD(3)). If this entry is not used, then the default global Encoding Variations apply. See 11.16.4.

e) the ASN.1 PDU type definition,

which shall follow the syntax defined in ISO/IEC 8824: 1990, except that there is the additional option of specifying
Encoding Variation or Invalid Field Encoding associated with either the whole ASN1_Type or any ASN.1 Type within t
ASN1_Type. This is done by giving a specific encoding identifier followed by any necessary actual parameter list, in ot
to specify explicit encodings for individual fields or other subtypes of a PDU, which override the encoding rules and encoc
variations applicable to the PDU as a whole; the encoding identifier, if any, shall identify either one of the Encodingd/ariati
or an Invalid Field Encoding Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

For identifiers within that definition the hyphen symbol (-) shall not be used. The underscore symbol (_) may beaded ins
The PDU identifier in the table header is the name of the first type defined in the table body.

Types referred to from the PDU definition shall be defined in other ASN.1 type definition tables, be defined by referenc
the ASN.1 type reference table or be defined locally in the same table, following the first type definition. Locally dedmed ty
shall not be used in other parts of the test suite.

ASN.1 comments may be used within the table body. The comments column shall not be present in this table.

Comments in ASN.1 start with “--” and end with either the next occurrence of “--” or with “end of line”, whichever com&kirptevents
a single ASN.1 comment from spanning several lines. “End of line” is not, however, a defined symbol in TTCN.MP. ATS speaifers
ommended to facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1 comments with “--".

Delivery 9.4, 17 December 1996 61

Second Edition Mock-Lp for ETSI TC/MTS

This information shall be provided in the following proforma:

19 December 1996, Delivgr9.4

ASN.1 PDU Type Definition

PDU Name PDU_Ild&Fullid
Group [ASN1PDU_GroupReference]
PCO Type [PCO_Typeldentifier [“(" MuxValue “)"]

Encoding Rule Name [EncodingRuleldentifier]

Encoding Variation [EncVariationCall]

Comments [FreeText]

Type Definition

ASN1_Type&LocalTypes

Detailed Comments: [FreeText]

Proforma 29 - ASN.1 PDU Type Definition
SYNTAX DEFINITION:

EXAMPLE 32 - An FTAM ASN.1 Definition

ASN.1 PDU Type Definition

PDU Name : F_INIT (F_INITIALIZE_response)
PCO Type
Comments
Type Definition
SEQUENCE {

state_result State_result DEFAULT success,
action_result Action_Result multiple success,
protocol_id Protocol_Version,

-- etc.

11.15.5 ASN.1 PDU Type Definitions by Reference

PDUs can be specified by a precise reference to an ASN.1 PDU defined in an OSI standard or by referencing an ASN.1 typardefined
ASN.1 module attached to the test suite. ASN.1 identifiers, type references and value references may contain hyphetasbénairideto
use imported definitions in TTCN it is necessary to change the hyphens to underscore (see A.4.2.1).

The following information shall be supplied for each PDU:
a) its name,
where this name may be used throughout the entire test suite;
b) the PCO type associated with the PDU,;

where the PCO type shall be one of the PCO types used in the PCO declarations; if a PDU is sent or received only embeddec
in ASPs within the whole test suite, specifying the PCO type is optional; if only a single PCO is defined within a test suite,

specifying the PCO type in a PDU type definition is optional;

62

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

c) the type reference,
which shall follow the identifier rules stated in ISO/IEC 8824: 1990;
d) the module identifier,

which consists of a module reference that shall follow the identifier rules stated in ISO/IEC 8824: 1990 and an optic
Objectldentifier;

e) the encoding rules to be used for PDUs of this type;

In order to specify explicit encodings for entire PDUs, which override the default global encoding rules for the test suite
whole, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g., to change from BEI
DER). If this entry is not used, then the default global encoding rules apply. See 11.16.4.

f) the Encoding Variations to be used for PDUs of this type;

In order to specify explicit Encoding Variations for entire PDUs, which override the default global Encoding Variations f
the test suite as a whole, this optional entry shall reference an entry in the relevant Encoding Variations table (egg., to cl
from SD to LD(3)). If this entry is not used, then the default global Encoding Variations apply. See 11.16.4.

This information shall be provided in the following proforma:

ASN.1 PDU Type Definitions By Reference

Group . [ASN1PDU_GroupReference]

PDU Name PCO Type Type Reference Module Identifier Enc Rule Enc Variation Comments

. [PCO_Type-lden-
PDU_Id&Fullid tifier [*("Mux- TypeReference Moduleldentifier [EncodingRule- [EncVariation- [FreeText]
Value®)"]] . . Identifier] Call]

Detailed Comments: [FreeText]

Proforma 30 - ASN.1 PDU Type Definitions By Reference
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

11.16 Test Suite Encoding Information
11.16.1 Encoding Definitions

To facilitate specification and testing of the encoding rules of an OSI protocol, if there is any allowed flexibility aothiegerules applicable
to the protocol, then an encoding definition should be provided. If an encoding definition is provided, a reference gbalirbthgiATS to

the specification in which the encoding rules are specified. The reference may be to the protocol specification itseéfparateancoding
rules specification. If such a reference cannot be provided, i.e., the encoding rules of the protocol are not standartiieesthabeing rules
shall not be tested.

The following information shall be provided for each set of encoding rules relevant to the protocol:
a) the Encoding Rule Name, which is a unique identifier to be used throughout the test suite to refer to an encoding defin
b) the reference to the relevant standard which defines the encoding rules;

c) a Default Expression, identifying the encoding rules to be used as the default; this Default Expression shall evaluate
Boolean value and shall use only Literal Values, Test Suite Parameters, and Test Suite Constants in its terms.

d) optionally, further comment, provided in the Comments column, or in the Detailed Comments area of the table.

If more than one set of encoding rules may be used for a protocol, the names of the encoding rules shall be listed inghe s déaime
column of the Encoding Definitions table. The Encoding Rule Name associated with the Default Expression which evaluateshalTRUE

Delivery 9.4, 17 December 1996 63

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

be chosen as the default set for the test suite. If more than one Default Expression or no Default Expression in the &initidirggtable
evaluates to TRUE, it shall be a test case error. If no Default Expression is specified, it is equivalent to the valueifrd\kp&chied.

The information shall be provided in the following proforma:

Encoding Definitions

Group . [EncodingGroupReference]
Encoding Rule Name Reference Default Comments
EncodingRuleldentifier EncodingReference [DefaultExpression] [FreeText]

Detailed Comments: [FreeText]

Proforma 31 - Encoding Definitions
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

The encoding rules specified in this proforma apply to PDUs only.

EXAMPLE 33 - Encoding Definitions

Encoding Definitions

Encoding Rule Name Reference Default Comments
BER ISO/IEC 8825-1: 1993 TRUE Basic Encoding Rules
PER ISO/IEC 8825-1: 1993 Packed Encoding Rules
DER ISO/IEC 8825-1: 1993 Distinguished Encoding Ruleg

Detailed Comments: [FreeText]

11.16.2 Encoding Variations
Admissable variations of each encoding definition that may be used in the test suite may be provided.
To define such Encoding Variations, the following information shall be provided:

a) an Encoding Rule Name, which is the name of the encoding rules identified in the Encoding Definition table to which this
variation applies;

b) an optional Type List, listing the types to which this Encoding Variation may be applied; an empty list means thatthe Encod
ing Variations may be applied to any PDU field. The types may be any PDU type or any type may occur within a PDU;

¢) a list of Encoding Variations,
where the following information shall be supplied for each Encoding Variation:

1) the Encoding Variation name, which is a unique identifier referring to an allowed encoding definition for a specific type,
as contained in the relevant encoding rules specification;

2) a Reference, which is used to identify the section in the encoding rules specification which describes this set of Encoding
Variations;

3) a Default Expression, identifying the Encoding Variation to be used as the default; this Default Expression shall evaluate
to a Boolean value and shall use only Literal Values, Test Suite Parameters, and Test Suite Constants in its terms;

d) optionally, further comment, provided in the Comments part of the table header, the Comments column, or in the Detailed
Comments area of the table.

64 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

The Encoding Variation associated with the expression which evaluates to TRUE shall be chosen as the default Encodinfgpithgation
given list of types, if any, or otherwise for all types within the test suite. If more than one Default Expression in timg Bfact@dions table
evaluates to TRUE, it shall be a test case error. If no Default Expression is specified for an Encoding Variation, iteistequtve value
FALSE being specified. If no Default Expressions are specified or if all evaluate to FALSE, the first Encoding Variatimntakeah as the
default.

Encoding variations shall be provided in the format shown in the following proforma:

Encoding Variations

Group . [EncVariationGroupReference]
Encoding Rule Name : EncodingRuleldentifier
Type List : [TypeList]
Comments . [FreeText]
Encoding Variation Reference Default Comments
Echariatic;nld&ParList Variation.Reference [DefauItE.xpression] [FreéText]

Detailed Comments: [FreeText]

Proforma 32 - Encoding Variations
SYNTAX DEFINITION:

EXAMPLE 34 - Encoding Variations

Encoding Variations

Encoding Rule Name : BER
Type List . Length
Comments . Length is defined to be an INTEGER type.

Encoding Variation Reference Default Comments
SD 6.3.3.1 TRUE
LD(len: INTEGER) 6.3.3.2
Detailed Comments:

11.16.3 Invalid Field Encoding Definitions

In order to test encoding rules thoroughly, it may be necessary to define illegal variations of the encoding definitignthegadtbcol.
Invalid field encoding definitions may be provided for any of the Types used in PDU fields in the test suite. Once defineli field
encoding definifion may be used to override the normal encoding of a specific PDU Constraint field value of the same I3k (see

The following information relative to an invalid field encoding definition shall be provided:

a) an Invalid Field Encoding Name, which is a unique identifier to be used throughout the test suite to refer to thislohvalid 1
encoding definition, followed by an optional formal parameter list;

Delivery 9.4, 17 December 1996 65

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

b) an optional Type List, to list the types to which this encoding may be applied; an empty list means that the encoding defini
tion may be applied to any field of a PDU;

¢) an Encoding Operation Definition which contains the definition of how the values are to be encoded,

which shall consist of a procedural definition, in the same form as a procedural definition of a Test Suite Operation (11.3.4),
which when evaluated results in the evaluation of a ReturnValue statement to provide the result of the operation, including
explanatory comments embedded within the procedural definition at appropriate places as text delimited by “/*” and “*/”;
explanatory comments shall include an example showing an invocation; the result of the Encoding Operation shall be a Bit-
string with a defined order of transmission, being the encoding of the relevant value;

d) optionally, further comment describing the operation, provided either in the Comments part of the table header or in the
Detailed Comments area of the table.

The use of procedural definitions is recommended in order to provide precision in the definition of the operations.

If a formal parameter list is specified, the values passed to the encoding operation are used to affect the encodingfigflth& e formal
parameter shall be declared to be a Predefined Type, a Test Suite Type Identifier or a PDU Type Identifier. For exapgee vafugmimay
be passed to an encoding operation that calculates the length of a PDU field. The way in which parameters passed tmtheeassdtshall
be explained in the encoding operation definition.

One proforma shall be used for each Invalid Field Encoding Definition.
Invalid Field Encoding Operation Definitions shall be provided in the following proforma:

Invalid Field Encoding Operation Definition

Group : [InvalidFieldEncodingGroupReference]
Operation Name . InvalidFieldEncodingld&ParList
Result Type . [TypeList]
Comments . [FreeText]
Definition

TS_OpProcDef

Detailed Comments: [FreeText]

Proforma 33 - Invalid Field Encoding Operation Definition
SYNTAX DEFINITION:

11.16.4 Application of encoding rules

Encoding rules specified in the test suite are applied to all PDUs sent or received in the Behaviour Part. Encoding rikgsenifigdofor
the whole test suite or for type declarations or constraint declarations, as noted in Table 1. The places in tabl€lideatigdhe allowed
scope of application of each of the kinds of encoding information.

66 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

Table 1 - Applicability of Encoding Definitions

Encoding Definitions
Encoding Rules Encoding Variations
Invalid Field
Precedence chpe_of Default Other Default Other Encodings
Application
Lowest Test Suite J J
Type
Declarations
PDUs J J J
Structured
Types or
ASN.1 Types ‘J ‘J
Simple types
or PDU fields/
elements ‘J ‘J ‘]
Constraint
Declarations
PDUs J J J
Structured
Types or
ASN.1 Types J ‘]
Highest PDU fields/ J J J
elements
Precedence within a row Lowest Highest

The encoding rules shall be applied according to the precedence values of the rows shown in the first column in talffg"lhavithg'the

highest priority, and "(1)" having the lowest. Within each row the precedence is from left to right, with the rightmosivardrihke highest
precedence. Thus, Constraint field encoding rules have precedence over all others, while default encoding rules appbeduatehevel

may be overriden by any of the other specification methods. The actual encoding rules to be used for a PDU after atleawechégesapplied
are referred to as the applicable encoding rules.

If no encoding information is specified on a structured or ASN.1 Type Constraint, it inherits the encoding rules appféalhtabel. Thus,
the encoding rules applied to a structured or ASN.1 Type Constraint will vary, based on the PDU in which it is used. Cdrerarsding
information is specified on a Structured or ASN.1 Type Constraint, it will override the encoding information of every Pzl inisvhsed.
If such a Structured or ASN.1 Type Constraint is used in an ASP, the encoding information is ignored.

On RECEIVE events, if no specific encoding rules apply to the incoming PDU, it can be encoded in any variation allowqaplgathie a
Encoding Definition (e.g., any form of length encoding allowed by BER).

Delivery 9.4, 17 December 1996 67

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

11.17 CM Type Definitions

11.17.1 Introduction

CM parameters may be of any type that may be specified in TTCN. Simple CMs may contain no associated parameters or justyar@ntain
parameter, e.g. a naural number, a preliminary result, or a character string like “suspend” or “continue”. More complex 2kt auhi-
tional information, e.g. a whole PDU, a PDU field, or the value read from a timer. There are no predefined CMs.

11.17.2 CM Type Definitions using tables
CM Types may be declared using TTCN tables. The following information shall be provided for each CM type:

a) its name,
where each name shall be unique within the test suite;

b) a list of parameters associated with the CM,
where the following information shall be provided for each parameter:

1) its name,

which shall be unique withinthe CM;
2) its type and an optional attribute,
in the same way as for PDU fields.

in which case the specification may restrict the field to a particular length or a range according to 11.18. The length values
shall be interpreted according to Table 4. The boundaries shall be specified in terms of non-negative INTEGER literals, Test
Suite Parameters, Test Suite Constants or the keyword INFINITY.

The length specifications defined for the PDU field type in the Test Suite Type definitions shall not conflict with the length
specifications in the PDU type definitiare., the set of strings defined by a length restriction in a PDU definition shall be a
true subset of the set of strings defined by the Test Suite Type definition.

The keyword INFINITY can be used as a value for the upper boundary in order to indicate that there is no upper limit of
length.

All parameters of CMs are optional, that is they may be omitted when the CM is used.

This information shall be provided in the format shown in the following proforma:

CM Type Definition

CM Name . CM_ldentifier
Group : [CM_GroupReference]
Comments . [FreeText]
Parameter Name Parameter Type Comments
CM_ParldOrMacro Type&Attributes [FreeText]

Detailed Comments: [FreeText]

Proforma 34 - CM Type Definition

The Parameter Name and Parameter Type columns shall either be both present or both omitted.

68

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

SYNTAX DEFINITION:

11.17.3 CM Type Definitions using ASN.1
CM Types may be declared using ASN.1. The following information shall be provided for each ASN.1 CM type:
a) its name,

where each name shall be unique within the testsuite;
b) the ASN.1 CM type definition,

which shall follow the syntax defined in ISO/IEC 8824: 1990. For identifiers within that definition the hyphen symbol (-
shall not be used. The underscore symbol (_) may be used instead. The PDU identifier in the table header is the name
first type defined in the table body.

Types referred to from the PDU definition shall be defined in other ASN.1 type definition tables, be defined by referenc
the ASN.1 type reference table or be defined locally in the same table, following the first type definition. Locally dedmed ty
shall not be used in other parts of the test suite.

ASN.1 comments can be used within the table body. The comments column shall not be present in this table.

Comments in ASN.1 start with “--” and end with either the next occurrence of “--” or with “end of line”, whichever com&kiirptevents
a single ASN.1 comment from spanning several lines. “End of line” is not, however, a defined symbol in TTCN.MP. ATS speaiéers
ommended to facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1 comments with “--".

This information shall be provided in the format shown in the following proforma:

ASN.1 CM Type Definition

CM Name : CM_lIdentifier
Group . [ASN1CM_GroupReference]
Comments . [FreeText]

Type Definition

ASN1_Type&LocalTypes

Detailed Comments: [FreeText]

Proforma 35 - ASN.1 CM Type Definition
SYNTAX DEFINITION:

11.18 String length specifications

11.18.1TTCN permits the specification of length restrictions on string tyipesRITSTRING, HEXSTRING, OCTETSTRING
and all CharacterString types, plus the ASN.1 types BIT STRING and OCTET STRING) in the following instances:

a) when declaring Test Suite Types as a type restriction;

b) when declaring simple ASP parameters, PDU fields and elements of Structured Types as an attribute of the parametel
or element type;

c¢) when defining ASP/PDU or Structured Type constraints as an attribute of the constraint value.
11.18.21 ength specifications can have the following formats:

a) [Length]

restricting the length of the possible string values of a type to exastiyth

b) [MinLengthTO MaxLength] or [MinLength .. MaxLength]

Delivery 9.4, 17 December 1996 69

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

specifying a minimum and a maximum length for the values of a particular string type.

The length boundariekength MinLengthandMaxLengthare of different complexity depending on where they are used. In all cases, these
boundaries shall evaluate to non-negative INTEGER values. For the upper bound the keyword INFINITY may also be used ttmaindicate
there is no upper limit for the length. Where a range length is specified, the lower of the two values shall be speeifieft. on th

In the context of constraints, length restrictions can also be specified on values of type SEQUENCE OF or SET OF, ththeelmoitimxpr
of their elements.

The following table specifies the units of length for different string types:

Table 4 - Units of length used in field length specifications

Type Units of Length
BITSTRING or BIT STRING Bits
HEXSTRING Hex digits

OCTETSTRING or OCTET STRING Octets

CharacterString Characters
SEQUENCE OF Elements of its base type
SET OF Elements of its base type

Length specifications shall not conflicg., a restriction on a type (set of values) that is already restricted shall specify a subrange of values of
its base type.

EXAMPLE 35 - Length specification
Assume the following ASN.1 type definitions:
typel ::= OCTETSTRING [0 .. 25]
type2 ::= typel [15 .. 24]
the length restriction on type2 is correct since type2 comprises all OCTETSTRING values having a minimum length of 15 and
a maximum length of 24, which is a true subset of all OCTETSTRINGs of a maximum length of 25. On the other hand:

type2 ::= typel[15 .. 30]
is invalid since it contains values not included in typel.
11.19 ASP, PDU and CM Definitions for SEND events

In ASPs and/or PDUs that are sent from the tester, values for ASP parameters and/or PDU fields that are defined in the Ramg$tee
clause 12, 13, 14) shall correspond to the parameter or field definition. This means

a) the value shall be of the type specified for that ASP parameter or PDU field; and
b) each value shall satisfy any relevant length restrictions associated with the type.
¢) PDU field values shall be encoded in accordance with applicable encoding rules.

The encoding operations defined in the test suite are performed implicitly as part of the SEND event. Defaults and evepjmesaas
necessary. Thus, the output of the SEND event is the encoded data to be passed to the relevant service provider.

11.20 ASP, PDU and CM Definitions for RECEIVE events

For ASPs and/or PDUs received by the tester the ASPs and/or PDUtype defines the class of incoming ASPs and/or PDUsdhatrcan mat
event specification of that type. An incoming ASP or PDU is considered to be of that class if and only if

a) the ASP parameter and/or PDU field values are of the type specified in the ASP and/or PDU definition; and
b) the value satisfies any relevant length restrictions associated with the type.
¢) PDU field values can be decoded in accordance with applicable encoding rules.

In all other cases an incoming ASP and/or PDU does not match an event specification of that type.

70 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

In the case of substructured ASPs and/or PDUs, either using Structured Types or ASN.1, the above rules apply to thnee feeldstoid-
ture(s) recursively.
11.21 Alias Definitions

11.21.1 Introduction

| In order to enhance the readability of TTCN behaviour descriptions, an Alias may be used to facilitate the renaming c/ASBUAitkin-
tifiers in behaviour descriptions. This renaming may be done to highlight the exchange of PDUs embedded in ASPs.

The following information shall be provided for each Alias:
a) an Alias identifier;
b) its expansion,
which is itself an identifier.
This information shall be provided in the format shown in the following proforma:

Alias Definitions

| Group . [AliasGroupReference]
Alias Name Expansion Comments
Aliasldentifier Expansion [FreeText]

Detailed Comments: [FreeText]

Proforma 36 - Alias Definitions
Collective comments may be used in this table according to Figure 2.
SYNTAX DEFINITION:

11.21.2 Expansion of Aliases
The following rules shall apply:

a) an Alias is an identifier that shall follow the syntax rules for identifier defined in the TTCN.MP. This means that an Ali
is delimited by any character (symbol) not allowed in a TTCN identifier;

b) Aliases are not transitive - if one Alias appears as the expansion of another Alias it shall not be eixpaitded (one
pass expansion);

c¢) an Alias shall be used only to replace an ASP identifier or a PDU identifier within a single TTCN statement in a behav
tree. It shall be used only in a behaviour description column;

d) the expansion of an Alias shall follow the syntax rules for identifier as defined in the TTCN.MP.

Delivery 9.4, 17 December 1996 71

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

EXAMPLE 36 - Alias definition from a Transport Test Suite:

Alias Definitions

Alias Name Expansion Comments
CR N_DATArequest Alias for the N_DATArequest ASP
used to carry a CR_TPDU
DR N_DATArequest Alias for the N_DATArequest ASP
used to carry a DR_TPDU
CcC N DATAindication Alias for the N_DATAindication
B ASP used to carry a CC_TPDU

NOTE - Because Aliases are treated as macro expansions, the term Aliasldentifier does not appear in the BNF for TTCH event line

12 Constraints Part

12.1 Introduction

An ATS shall specify the values of the ASP parameters and PDU fields that are to be sent or received by the test syststraiftsepant
fulfils that purpose in TTCN.

The dynamic behaviour descriptions (see clause 15) shall reference constraints to construct outgoing ASPs and/or PDUgint SEND e
to specify the expected contents of incoming ASPs and/or PDUs in RECEIVE events.

Constraints can be specified in either of the two forms:
a) tabular constraints (see clause 13);
b) ASN.1 constraints (see clause 14).
Actual values or constraints on the values of a CM shall be declared in the same way as PDU constraints are to be declared.

12.2 General principles

This subclause describes the general principles and defines the mechanisms of how to build constraints for SEND eventsraaithow
RECEIVE events. These principles are common to both the tabular and ASN.1 forms of constraints.

Constraints are detailed specifications of ASPs and/or PDUs. Normally, each constraint is defined specifically for usen\8iENEX events
or RECEIVE events. A constraint need not be specified if an ASP or CM has not parameters or if PDU has no fields. Angtgaiehran
be used in either context, provided the operational semantic restrictions defined in annex B are met.

The constraint specification of an ASP and/or PDU shall have the same structure as that of the type definition of th&@WSP or P

If an ASP and/or PDU is substructured, then the constraints for ASPs and/or PDUs of that type shall have the same tablar sttom-
patible ASN.1 structure.é., possibly with some groupings).

Structured Types expanded into an ASP or PDU definition by use of the macro symbol (<-) are not considered to be sul@insttaists
for such ASPs or PDUs shall either have a completely flat structwghle elements of an expanded structure are explicitly listed in the ASP
or PDU constraint) or shall reference a corresponding structure constraint for macro expansion.

Constraints specify ASP parameter and PDU field values using various combinations of literal values, data object refpressiessex
ASN.1 constructed values, special matching mechanisms and references to other constraints. Constraints applying to threpattaé af
PDU may also specify encoding rules to override the general encoding rules being applied in the test suite. Such encoalrersfescified
for the whole Constraint or for a single field of the Constraint.

Values of all TTCN or ASN.1 types can be used in constraints. Expressions used in constraints shall evaluate to a spetiéo Waducon-
straint is used for sending or receiving events.

Whichever way the values are obtained, they shall correspond to the parameter or field entries in the ASP or PDU type déimiti@ans
a) the value shall be of the type specified for that parameter or field; and
b) the length shall satisfy any restriction associated with the type.

An expression in a constraint shall contain only Values (including, for example, ConstraintValue&Attributes), Test SuiteBaTasiESuite
Constants, formal parameters, Component References and Test Suite Operations.

A constraint reference (possibly parameterized) is also allowed as a parameter or field value (static chaining).

72 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

Neither Test Suite Variables nor Test Case Variables shall be used in constraints, unless passed as actual parametterscasehbdy
shall be bound to a value and are not changed by the occurrence of a SEND or a RECEIVE event.

Matching mechanisms are defined in 12.6.2.

12.3 Parameterization of constraints

Constraints may be parameterized. In such cases the constraint name shall be followed by a formal parameter list enefdbeden. pehe
formal parameters shall be used to specify ASP parameter or PDU field values in the constraint.

Each formal parameter name shall be followed by a colon and the name of the parameter’s type. If more than one paraszseter ypene
is used, the parameter may be specified as a parameter sub-list. When a parameter sub-list is used, the parametereaepzsatedlldy
a comma. The final parameter in the sub-list shall be followed by a colon and the hame of the parameter sub-list's typee\Wizenome
parameter and type pair (or parameter sub-list and type pair) is used, the pairs shall be separated from each othenby semicolo

Literal values, Test Suite Parameters, Test Suite Constants, Test Suite Variables, Test Case Variables and PDU or pestistaifys
may be passed as actual parameters to a constraint in a constraints reference made from a behaviour description. Thehphmrohbiers
of PCO type or ASP type.

12.4 Chaining of constraints

Constraints may be chained by referencing a constraint as the value of a parameter or field in another constraint. Fiireexaluglef the
Data parameter of an N-DATAreq (Network Data Request) ASP could be a reference to a T-CRPDU (Transport Connect Request PDU)
constraintj.e.,the T-CRPDU is chained to the N-DATAreq ASP.

Constraints can be chained in one of two ways, either by

a) static chaining, where an ASP parameter value or PDU field value in a constraint is an explicit reference to anc
constraint; or

b) dynamic chaining, where an ASP parameter value or PDU field value in a constraint is a formal parameter of the const
When such a constraint is referenced from a dynamic behaviour, the corresponding actual parameter to the constraint is
erence to another constraint (see annex D for examples of static and dynamic chaining).

Wherever constraints are referenced within constraints declarations, those references shall not be recursive (neithrendirectly).

Chaining of constraints may only be used if the appropriate declarations have been set up to allow chaining. For exa8lgafameter

is to be chained to a PDU constraint, then the ASP parameter shall be declared to be of an appropriate PDU type or &eDbeta-typ
ASN.1 PDU declarations, the PDU type might well be one defined as a CHOICE of all valid individual PDU types, whereas RDidbula
declarations the meta-tyDU would need to be used to achieve a similar effect. Similarly, if a PDU field is to be chained to a Structu
constraint, then the PDU field shall be declared to be of an appropriate Structure type.

12.5 Constraints for SEND events

Constraints that are referenced for SEND events shall not include wildoardsnyValue (?) or AnyOrOmit (*)) unless these are explicitly
assigned specific values on the SEND event line in the behaviour description.

In tabular constraints, all ASP parameters and PDU fields are optional and therefore may be omitted using the Omit sicldd, tioait
the ASP parameter or PDU field is to be absent from the event sent.

In ASN.1 constraints, only ASP parameters and PDU fields declared as OPTIONAL may be omitted. These may be omitted iither by
the Omit symbol or by simply leaving out the relevant ASP parameter or PDU field.

None of the matching mechanisms defined in 12.6.2 except SpecificValue provides a value for an ASP parameter or PDISEBID on a
event.

In cases where ASN.1 values of type SET or SET OF are used in a constraint, the values of the elements of the set shéllieberdent
specified by the relevant constraint.

12.6 Constraints for RECEIVE events

12.6.1 Matching values

If a constraint is to be used to construct the values of ASP parameters or PDU fields that a received ASP or PDU shalhatiatontain
only specific values evaluated as explained in 12.6.3, or special matching mechanisms where it is not desirable, ar ppssifyiespecific
values. The matching mechanisms specify other ways of matching than “equal to a specific value”.

An incoming ASP and/or PDU matches a constraint used in a RECEIVE event if, and only if, all the following conditions are met:
a) all the ASP parameters and/or PDU fields are of the type specified in the ASP and/or PDU definitions;

Delivery 9.4, 17 December 1996 73

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

b) the value, alphabet and length satisfies any restriction associated with the type;
c¢) the ASP parameter and/or PDU field values correctly match those of the constraint;

d) for PDUs, the correct decoding of the PDU has taken place, taking into account applicable encoding rule defaults and over-
rides; if encoding rules other than those specified for the constraint have been used to encode the received PDU, then tha
received PDU will not match.

In the case of substructured ASPs and/or PDUs, either using Structured Types or ASN.1, the above rules shall applys tof tie féeid-
structure(s) recursively.

NOTE - If a RECEIVE event is qualified by a Boolean expression, then a successful match means that both the incoming A#ERJand/or
must match the constraint and that the qualifier must evaluate to TRUE.

12.6.2 Matching mechanisms

An overview of the supported matching mechanisms is shown in Table 5, including the special symbols and the scope mfatieir. el
left hand column of this table lists all the ASN.1 types and TTCN equivalent types to which these matching mechanisme apatishimg
mechanisms in the horizontal headings are arranged in four groups:

a) specific values;
b) special symbols that can be usesteadof values;
¢) special symbols that can be ustsidevalues;
d) special symbols which describttributesof values.
Some of the symbols may be used in combination, as detailed in the following clauses.
The shaded area in Table 5 indicates the mechanisms that apply to both predefined TTCN and ASN.1 types.

Table 5 - TTCN Matching Mechanisms

VALUE INSTEAD OF VALUE INSIDE VALUE | ATTRIBUTES
= - ~ T £
s | s T e g5

E E o ;_‘::s 5 g) % @ E CZ: g < %
o 2 2 >0 2% 939 O O E 5 2
s | EE2r3552 |22F |F&
TYPE) OO0 I I >0 h® < < a 4 =
BOOLEAN o e o o o o .
INTEGER e o o o o o .
ENUMERATED o e o o o o .
BITSTRING o e o o o o o o o o
OCTETSTRING ° e o o o o o o o o
HEXSTRING . e o o o o o o o o
CHARSTRINGS o o o o o o o o o o
SEQUENCE . e o o o .
SEQUENCE OF ° e o o o o e o o o o
SET ° ° ° ° ° ° °
SET OF ° ° ° . ° . .
ANY ° ° ° ° ° ° °
CHOICE . e o o o o .
OBJECT ID . e o o o o .

74 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

In a constraint specification, the matching mechanisms may replace values of single ASP parameters or PDU fields ottiee@otiterds
of an ASP or PDU.

NOTE - When these matching mechanisms are used singly or in combination, many protocol restrictions can be specifiestriairie con
thereby avoiding undesirable computation details in the behaviour part.
12.6.3 Specific Value

This is the basic matching mechanism. Specific values in constraints are expressions. Unless otherwise specified, ABr=rameter
or PDU field matches the corresponding incoming ASP parameter or PDU field if, and only if, the incoming ASP parameteiett R&B31 f
exactly the same value as the value to which the expression in the constraint evaluates.

Two values of a tabular ASP, PDU or Structured Type, or of ASN.1 SEQUENCE or SEQUENCE OF are considered the same ifirrach of
parameters fields or elements match and are in the same order. For ASN.1 SET and SET OF types two values are the saradlitthey t
same number of elements, and each element in one value matches exactly one element in the other value. The elementSET &OEET or
type value need not be in the same order to match.

12.6.4 Instead of Value
12.6.4.1 Complement

Complement is an operation for matching that can be used on all values of all types. Complement is denoted by the keywBidENOIMPL
followed by a list of constraint values. Each constraint value in the list shall be of the type declared for the ASP paraBietéield in
which the Complement mechanism is used.

SYNTAX DEFINITION:

A constraint ASP parameter or PDU field that uses Complement matches the corresponding ASP parameter or PDU field ffthed only
incoming ASP parameter or PDU field does not match any of the values listed in the ValueList.

EXAMPLE 37 - Constraints using Complement instead of a value, and with a value list:

Type Constraint

INTEGER COMPLEMENT(5)

INTEGER COMPLEMENT(1, 3, 5)
12.6.4.2 Omit

Omit is a special symbol for matching that can be used on values of all types, provided that the ASP parameter or Riptidied is
In ASN.1 constraints it is also possible to simply leave out an OPTIONAL ASP parameter or PDU field instead of using Oaitly. expli

NOTE - In tabular constraints, all parameters, fields and elements are considered to be implicitly optional, and hencaittey &g

Omit. In ASN.1 constraints, parameters, fields and elements which are not explicitly marked as OPTIONAL in the type dedinithowla-
tory and cannot be omitted without violating the type definition. If such a parameter, field or element needs to be amétgdrtioular

constraint, either another type needs to be defined in which that parameter, field or element is explicitly marked as OpEroapsLby
marking everything as OPTIONAL), or an Invalid Field Encoding needs to be applied to that parameter, field or elemengfleith tfie
omitting it from the encoding.

In tabular constraints Omit shall be denoted by dash (-). In ASN.1 constraints Omit is der@&id by
SYNTAX DEFINITION:

An Omit symbol in a constraint is used to indicate that an optional ASP parameter or PDU field shall be absent.
EXAMPLE 38 - Constraint using Omit instead of a value, at top level:

Type Constraint
INTEGER OPTIONAL OMIT

12.6.4.3 AnyValue

AnyValue is a special symbol for matching that can be used on values of all types. In both tabular and ASN.1 constrainésisdgWated
by "?".

SYNTAX DEFINITION:

A constraint ASP parameter or PDU field that uses AnyValue matches the corresponding incoming ASP parameter or PDU foglly if, an
if, the incoming ASP parameter or PDU field evaluates to a single element of the specified type.

Delivery 9.4, 17 December 1996 75

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

EXAMPLE 39 - Constraint using Value in combination with AnyValue:

Type Constraint
SEQUENCE OF SET OF INTEGER { {1, 2},

?,

{1,2,72 }

12.6.4.4 AnyOrOmit

AnyOrOmit is a special symbol for matching that can be used on values of all types, provided that the ASP parameter disPdsd|fetd
as optional. In both tabular and ASN.1 constraints AnyOrOmit is denoted by “*".

NOTE - The symbol “*" is used for both AnyOrOmit and AnyOrNone. Ambiguity in interpretation is resolved by the requirerh2rélid
and 12.6.5.2.

SYNTAX DEFINITION:

A constraint ASP parameter or PDU field that uses AnyOrOmit matches the corresponding incoming ASP parameter or PDdi faglly if, a
if, either the incoming ASP parameter or PDU field evaluates to any element of the specified type, or if the incoming AS& paRbiU
field is absent.

EXAMPLE 40 - Constraint using Value in combination with AnyOrOmit:

Type Constraint
SEQUENCE OF { idl SET OF INTEGER { id1{2, 5},
id2 SET OF INTEGER id2 * }

12.6.4.5 ValuelList

ValueList can be used on values of all types. In both tabular and ASN.1 constraints. ValueLists are denoted by a palishtifesitees
separated by commas.

SYNTAX DEFINITION:

A constraint ASP parameter or PDU field that uses a ValueList matches the corresponding incoming ASP parameter or Pand foeity if,
if, the incoming ASP parameter or PDU field value matches any one of the values in the ValueList. Each value in the Walletisf the
type declared for the ASP parameter or PDU field in which the ValueList mechanism is used.

EXAMPLE 41 - Constraint using ValueList instead of a specific value, for INTEGER type:

Type Constraint
INTEGER (2,4,6)

EXAMPLE 42 - Constraints using ValueList instead of a specific value, for CHOICE type:

Type Constraint
CHOICE { a INTEGER, (a2, b TRUE)
b BOOLEAN }

12.6.4.6 Range

Ranges shall be used only on values of INTEGER type. A range is denoted by two boundary values, separated by “..” oed Oy grecos
theses. A boundary value shall be either

a) INFINITY or -INFINITY;
b) a constraint expression that evaluates to a specific INTEGER value.

The lower boundary shall be put on the left side of the “..” or TO, the upper boundary at the right side. The lower balindatgshthan
the upper boundary.

SYNTAX DEFINITION:

76 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

A constraint ASP parameter or PDU field that uses a Range matches the corresponding incoming ASP parameter or PDUdieidiif, and
the incoming ASP parameter or PDU field value is equal to one of the values in the Range.

EXAMPLE 43 - Constraint using Range instead of a value:

Type Constraint
INTEGER (1..6)
(-INFINITY .. 8)

(12 .. INFINITY)
12.6.4.7 SuperSet

SuperSet is an operation for matching that shall be used only on values of SET OF type. SuperSet shall be used only mstAe®iNsL co
SuperSet is denoted BJPERSET.

SYNTAX DEFINITION:

A constraint ASP parameter or PDU field that uses SuperSet matches the corresponding incoming ASP parameter or PDdUdieidiff, an
the incoming ASP parameter or PDU field contains at least all of the elements defined within the SuperSet, and may cofitzénangore
ment of SuperSet shall be of the type declared for the ASP parameter or PDU field in which the SuperSet mechanism is used.

EXAMPLE 44 - Constraint using SuperSet instead of a specific value:

Type Constraint
SET OF INTEGER SUPERSET({1, 2, 3})

12.6.4.8 SubSet

SubSet is an operation for matching that can be used only on values of SET OF type. SubSet shall be used only in ASiis1 SobhSteai
is denoted bySUBSET.

SYNTAX DEFINITION:

A constraint ASP parameter or PDU field that uses SubSet matches the corresponding incoming ASP parameter or PDU dielgff, and
the incoming ASP parameter or PDU field contains only elements defined within the SubSet, and may contain less. The dBgb®ent of
shall be of the type declared for the ASP parameter or PDU field in which the SubSet mechanism is used.

EXAMPLE 45 - Constraint using SubSet instead of a specific value:

Type Constraint
SET OF INTEGER SUBSET({2, 4, 6, 8, 10})

12.6.5 Inside Values
12.6.5.1 AnyOne

AnyOne is a special symbol for matching that can be used within values of string types, SEQUENCE OF and SET OF. In battdtabula
ASN.1 constraints AnyOne is denoted by “?".

SYNTAX DEFINITION:

Inside a string, SEQUENCE OF or SET OF a “?” in place of a single element means that any single element will be acaptadbd th
“?" is needed within a CharacterString as a character, it shall be indicated by “\?”. If the symbol “\" is needed withactarSharg as a
character, it shall be indicated by “\\".

EXAMPLE 46 - Constraints using AnyOne:

Type Constraint
IA5String “a?cd”
SEQUENCE OF INTEGER {1,2,?}

NOTE - The “?” in the second example can be interpreted as an AnyValue replacing an INTEGER value, or AnyOne inside a SEGUENC!
INTEGER value. Since both interpretations lead to the same set of events that match the constraint, no problem arises.

12.6.5.2 AnyOrNone

AnyOrNone is a special symbol for matching that can be used within values of string types, SEQUENCE OF and SET OF. laratid tabu
ASN.1 constraints AnyOrNone is denoted by “*".

If a “*” appears at the highest level inside a value of string type, SEQUENCE OF or SET OF, it shall be interpreted as &nyOrNon

Delivery 9.4, 17 December 1996 77

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

NOTE - This rule prevents the otherwise possible interpretation of “*” as AnyOrOmit that replaces an element inside tBEQUIBHICE
OF or SET OF.

SYNTAX DEFINITION:

Inside a string, SEQUENCE OF or SET OF a “*" in place of a single element means that either none, or any humber of celeseents/e
will be accepted. The “*” symbol matches the longest sequence of elements possible, according to the pattern as spedyisthbls thur-
rounding the “*”. If the symbol “*” is needed within a CharacterString as a character, it shall be indicated by “*". ththa 9y is needed
within a CharacterString as a character, it shall be indicated by “\\".

EXAMPLE 47 - Constraints using AnyOne:

Type Constraint
IA5String “ab*z”
SEQUENCE OF INTEGER {1,2,* 10}
SEQUENCE OF IA5String { *“ab*z”,

*

uabcﬂ }

12.6.5.3 Permutation

Permutation an operation for matching that can be used only on values inside a value of SEQUENCE OF type. Permutatisedloalybe
in ASN.1 constraints. Permutation is denote®BRMUTATION .

SYNTAX DEFINITION:

Permutation in place of a single element means that any series of elements is acceptable provided it contains the saaseleteratrddist
in the Permutation, though possibly in a different order. If both Permutation and AnyOrNone are used inside a value, tloaé\sl@lie

evaluated first. Each element listed in Permutation shall be of the type declared inside the SEQUENCE OF type of the ASRPpRiabthe
field.

EXAMPLE 48 - Constraint using Permutation:

Type Constraint
SEQUENCE OF INTEGER {PERMUTATION (1, 2, 3), 5}

EXAMPLE 49 - Constraints using Permutation in combination with AnyOrNone:

Type Constraint
SEQUENCE OF INTEGER {PERMUTATION (1,2,3), *}

{PERMUTATION (1,2,3,%)}
Note that the first constraint matches with incoming ASPs and/or PDUs that consist of a sequence of INTEGER values, starting
with 1,2,3; 1,3,2; 2,1,3; 2,3,1; 3,1,2; or 3,2,1 and followed by any number of values of type INTEGER. The second constraint
matches any incoming ASP and/or PDU of type SEQUENCE OF INTEGER, that contains the elements 1, 2,3 in any order and
in any position. It matches, for example; {5,2,7,1,3} and {9,3,7,2,12,1,17}.

12.6.6 Attributes of values

12.6.6.1 Length

Length is an operation for matching that can be used only as an attribute of the following mechanisms: Complement, AnyUalmjtAn
AnyOne, AnyOrNone, Permutation, SuperSet and SubSet. It can be used in conjunction with the IfPresent attribute..

In both tabular and ASN.1 constraints, length may be specified as an exact value or range in string values and SEQUENEEWH- or S
values, according to 11.18. The units of length are to interpreted according to Table 4. The boundaries shall be dentieddy-spgative
INTEGER values. Alternatively, the keyword INFINITY can be used as a value for the upper boundary in order to indicate ighabthpper

limit of length.

The length specifications defined for the ASP parameter or PDU field type in the Test Suite Type definitions shall netitottiéctength
specifications in the ASP or PDU constrairg,, the set of strings defined by a length restriction in an ASP or PDU constraint shall be a true
subset of the set of strings defined by the ASP or PDU definition.

SYNTAX DEFINITION:

78 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

A constraint ASP parameter or PDU field that uses Length as an attribute of a symbol matches the corresponding incomamyeASpar
PDU field if, and only if, the incoming ASP parameter or PDU field matches both the symbol and its associated attribntghitrilmute
matches if the length of the incoming ASP parameter or PDU field is greater than or equal to the specified lower bounamdrlegsial
to the upper bound. In the case of a single length value the length attribute matches only if the length of the receivanhét8PgqpdPDU
field is exactly the specified value.

In the case of an omitted parameter, field or element, Length is always considered as matching. Hence, with Omit it tsarediuvittan
AnyOrOmit and IfPresent it places a restriction on the incoming value, if any.

EXAMPLE 50 - Constraints using Value in combination with Length:

Type Constraint
IA5String “ab*ab” [13]

12.6.6.2 IfPresent

IfPresent is a special symbol for matching that can be used as an attribute of all the matching mechanisms, provideddie aygd as
optional. In both tabular and ASN.1 constraints IfPresent is denotéd BRESENT.

A constraint ASP parameter or PDU field that uses an IfPresent symbol as an attribute of another symbol matches thencpimespandi
ASP parameter or PDU field if, and only if, the incoming ASP parameter or PDU field matches the symbol, or if the incomargAster
or PDU field is absent.

NOTE - The AnyOrOmit symbol (*) has exactly the same meaning as ? IF_PRESENT
EXAMPLE 51 - Constraints using Value in combination with IfPresent:

Type Constraint
IA5String OPTIONAL “abcdef’ IF_PRESENT

13 Specification of constraints using tables

13.1 Introduction

This clause describes the specification of tabular constraints on Structured Types, ASPs and PDUs. It describes howrainglaloiess
can be used to specify constraints on flat (unstructured) ASPs or PDUs and how structured constraints can be specified byrdstidints
on Structured Types, defined in the Test Suite Types.

In Annex C additional tables are defined which allow many single constraint declarations in a single table.

13.2 Structured Type Constraint Declarations

If an ASP or PDU is defined using Structured Types, either as macro expansions or substructures, constraints for th&2UsIPambbe
similarly substructured.The following information shall be supplied for each Strucutred Type Constraint:

a) the name of the constraint,

which may be followed by an optional formal parameter list;
b) the structured type name;

c¢) the derivation path (see 13.6);

d) the Encoding Variations to be used for the Constraint;

In order to specify explicit Encoding Variations for entire Structured Type Constraints, which override the encoding rules
Encoding Variations applicable to the PDU Constraint in which this Structured Type Constraint is used, this optional e
shall reference an entry in the relevant Encoding Variations table (e.g., to change from SD to LD(3)). If this entryds not u
then the encoding rules and Encoding Variations applicable to the PDU Constraint apply to this Structured Type Constrai
well. See 11.16.4.

e) a constraint value for each element,
where the following information shall be supplied for each element:
1) its name,

Each entry in the element name column shall have been declared in the relevant Structured Type definition. If any o
original elements is defined as having both a short name and full identifier, the constraint shall not repeat the &l identi

Delivery 9.4, 17 December 1996 79

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

If the Structured Type definition refers to another Structured Type by macro expaesjanitf “<-" in place of the ele-
ment name) then in a corresponding constraint either:

- the individual elements from the Structured Type shall be included directly within the constraints; or

- the macro symbol (<-) shall be placed in the corresponding position in the Element Name column of the constraint and
the value shall be a reference to a constraint for the Structured Type referenced from this Structured Type’s definition.

Use of Structured Constraints by macro expansion in a constraint shall not be used unless the corresponding Structured
Type definition also references the inner Structured Type by macro expansion.

2) its value and an optional attribute;

3) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to a specify explicit
encoding for the individual element of a Structured Type Constraint, which override the encoding rules and Encoding Vari-
ations applicable to the whole Structured Type Constraint, and which also override any encoding specified for this element
in the Structured Type declaration; the encoding identifier, if any, shall identify either one of the Encoding Variations or an
Invalid Field Encoding Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

The element values for structure constraints shall be provided in the format shown in the following proforma:

Structured Type Constraint Declaration
Constraint Name . Consld&ParList
Group : [StructTypeConstraintGroupReference]
Structured Type : Structldentifier
Derivation Path . [DerivationPath]
Encoding Variation : [EncVariationCall]
Comments . [FreeText]
Element Name Element Value Element Encoding Comments
EIemIdentifier Constra.intVaIue- [PDU_FieIdIéncodingCaII] [FreéText]
&Attributes
Detailed Comments: [FreeText]

Proforma 37 - Structured Type Constraint Declaration
This proforma is used in the same way that the PDU Constraint Declaration proforma is used for PDUs (see 13.4).
SYNTAX DEFINITION:

If an ASP or PDU definition refers to a Structured Type as a substructure of a parameterice.fieith(a parameter name or a field name
specified for it) then the corresponding constraint shall have the same parameter or field name in the correspondingtpegitoameter
name or field name column of the constraint and the value shall be a reference to a constraint for that paramdter, éoifidlat (Substructure
in accordance with the definition of the Structured Type). If the ASP or PDU definition refers to a parameter or field sgeloding of
metatype PDU then in a corresponding constraint the value for that parameter or field shall be specified as the nameoosadrm|Joc
formal parameter.

13.3 ASP Constraint Declarations

The parameter values for ASP constraints shall be provided in the format shown in the following proforma:

80 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

ASP Constraint Declaration
Constraint Name : Consld&ParList
Group . [ASP_ConstraintGroupReference]
ASP Type . ASP_ldentifier
Derivation Path . [DerivationPath]
Comments . [FreeText]
Parameter Name Parameter Value Comments

ASP_ParldOrMacro ConstraintValue&Attributes [FreeText]

Detailed Comments: [FreeText]

Proforma 38 - ASP Constraint Declaration
The Parameter Name and Parameter Value columns shall either be both present or both omitted.

This proforma is used for ASPs in the same way that the PDU Constraint Declaration proforma is used (see 13.4) excefimghat@nco
mation is not relevant and shall not be specified.

SYNTAX DEFINITION:

13.4 PDU Constraint Declarations

In the tabular format a constraint is defined by specifying a value and optional attributes for each PDU field. The foflmwiatian shall
be supplied for each PDU constraint:

a) the name of the constraint,

which may be followed by an optional formal parameter list;
b) the PDU type name;

c) the derivation path (see 13.6);

d) the encoding rules to be used for the Constraint;

In order to specify explicit encodings for entire PDU Constraints, which override the encoding rules applicable to the gi
PDU type, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g., to change from BE
DER). If this entry is not used, then the encoding rules applicable to the PDU type apply. See 11.16.4.

e) the Encoding Variations to be used for the Constraint;

In order to specify explicit Encoding Variations for entire PDU Constraints, which override the Encoding Variations applic
ble to the given PDU type, this optional entry shall reference an entry in the relevant Encoding Variations table (egg, to ch
from SD to LD(3)). If this entry is not used, then the Encoding Variations applicable to the PDU type apply. See 11.16.4.

f) a constraint value for each field,
where the following information shall be supplied for each field:
1) its name,

Each field entry in the field name column shall have been declared in the relevant PDU type definition. If any of the orig
PDU fields is defined as having both a short name and full identifier, the constraint shall not repeat the full identifier;

Delivery 9.4, 17 December 1996 81

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

If the PDU definition refers to a Structured Type by macro expanseniith “<-" in place of the PDU field name) then
in a corresponding constraint either:

- the individual elements from the Structured Type shall be included directly within the constraints; or

- the macro symbol (<-) shall be placed in the corresponding position in the PDU field name column of the constraint and
the value shall be a reference to a constraint for the Structured Type referenced from the PDU definition.

Use of structured constraints by macro expansion in a constraint shall not be used unless the corresponding PDU definition
also references the same Structured Type by macro expansion.

2) its value and an optional attribute.

3) optionally, a specific encoding identifier followed by any necessary actual parameter list, in order to specify explicit
encodings for individual fields of a PDU Constraint, which override the encoding rules and encoding variations applicable
to the PDU Constraint as a whole, and which override any specific field encoding applicable to this field for PDUs of this
PDU type; the encoding identifier, if any, shall identify either one of the Encoding Variations or an Invalid Field Encoding
Definition defined in the test suite (e.g., LD(10)); see 11.16.4.

The encoding mechanism shall not be used with ASP constraints.

This information shall be provided in the format shown in the following proforma:

PDU Constraint Declaration
Constraint Name . Consld&ParList
Group . [PDU_ConstraintGroupReference]
PDU Type . PDU_ldentifier
Derivation Path . [DerivationPath]
Encoding Rule Name : [EncodingRuleldentifier]
Encoding Variation : [EncVariationCall]
Comments . [FreeText]
Field Name Field Value Field Encoding Comments
PDU_FieIdIdOrMacro Constra.intVaIue- [PDU_FieIdIéncodingCaII] [FreéText]
&Attributes

Detailed Comments: [FreeText]

Proforma 39 - PDU Constraint Declaration

The Field Name and Field Value columns shall either be both present or both omitted The Field Encoding column shall not be
present as a single column on its own.

82

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

SYNTAX DEFINITION:

Second Edition Mock-Up for ETSI TC/MTS

EXAMPLE 52 - A constraint, called C1, on the PDU called PDU_A

PDU Constraint Declaration

Constraint Name : C1

Derivation Path
Comments

PDU Type : PDU_A

Field Name

Field Value

Comments

FIELD1
FIELD2
FIELD3

(4 .. INFINITY)
TRUE
"A STRING"

13.5 Parameterization of constraints

Constraints may be parameterized using a formal parameter list. The actual parameters are passed to a constraint fiois r@feveste

in a behaviour description.

EXAMPLE 53 - A parameterized constraint

PDU Constraint Declaration

Constraint Name : C2(P1:INTEGER; P2:BOOLEAN)

PDU Type : PDU_B
Derivation Path
Comments
Field Name Field Value Comments
FIELD1 P1
FIELD2 P2
FIELD3 "A STRING"

Detailed Comments: A possible reference to C2 from a Test Case or Test Step may be: C2 (0, TRUE)

13.6 Base constraints and modified constraints

For every ASP, PDU or CM type definition at least one base constraint may be specified. In the case in which an ASP orgzivaheters
or a PDU has no fields, constraints are irrelevant and hence base constraints are unnecessary. A base constraint spbeifiesa default,
values or matching symbols for each and every field defined in the appropriate definition. There may be any number dfrdiase foons
any particular PDU (see Annex G for examples).

When a constraint is specified as a modification of a base constraint, any fields not re-specified in the modified cdhdetdottvo the
values or matching symbols specified in the base constraint. The name of the modified constraint shall be a uniqud idenéfies.of the
base constraint which is to be modified shall be indicated in the derivation path entry in the constraint header. Tlail eateftiblank for
a base constraint. A modified constraint can itself be modified. In such a case the Derivation Path indicates the conédtenatiores of
the base and previously modified constraints, separated by dots (.) A dot shall follow the last modified constraint nalesefdrhmiilding
a modified constraint from a base constraint are:

a) if a parameter or field and its corresponding value or matching symbol is not specified in the modified constraint, ther
value or matching symbol in the parent constraint shall be usedhe value is inherited);

b) if a parameter or field and its corresponding value or matching symbol is specified in themodified constraint, then the s
ified value or matching symbol replaces the one specified in the parent constraint.

Delivery 9.4, 17 December 1996

83

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

13.7 Formal parameter lists in modified constraints

If a base constraint is defined to have a formal parameter list, the following rules apply to all modified constraintsalarthatl base con-
straint, whether or not they are derived in one or several modification steps:

a) the modified constraint shall have the same parameter list as the base constraint. In particular, there shall be 130 paramete
omitted from or added to this list;

b) the formal parameter list shall follow the constraint name for every modified constraint;
¢) parameterized ASP parameters or PDU in a base constraint fields shall not be modified or explicitly omitted in a modified
constraint.

13.8 CM Constraint Declarations

The field values for CM constraints shall be provided in the format shown in the following proforma:

CM Constraint Declaration

Constraint Name . Consld&ParList

Group : [CM_ConstraintGroupReference]
CM Type . CM_ldentifier

Derivation Path . [DerivationPath]

Comments . [FreeText]

Parameter Name Parameter Value Comments

CM_ParldOrMacro ConstraintValue&Attributes [FreeText]

Detailed Comments: [FreeText]

Proforma 40 - CM Constraint Declaration
The Parameter Name and Parameter Value columns shall either be both present or both omitted.
This proforma is used for CMs in the same way as the PDU Constraint Declaration proforma is used (see 13.4).
SYNTAX DEFINITION:

This proforma is used for CMs in the same way that the PDU Constraint Declaration proforma is used for PDUs.

14 Specification of constraints using ASN.1

14.1 Introduction

This clause describes a method of specifying Type, ASP and PDU constraints in ASN.1, in a way similar to the definitianaafrtstoaints.
The normal ASN.1 value declaration is extended to allow the use of the matching mechanisms. Mechanisms to replace arfoh@Noarts
constraints, to be used in modified constraints, are also defined.

In other respects, ASN.1 is used in constraints in the same way that it is used in types. In particular,

a) for identifiers within an ASN.1 constraint the dash symbol (“-") shall not be used; the undescore symbol (“_") may be used
instead;

b) ASN.1 constraints shall not use external value references as defined in ISO/IEC 8824: 1990;

84 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

c) ASN.1 comments can be used within the table body. The comments column shall not be present in this table. Comme
ASN.1 start with “--” and end with either the next occurrence of “--” or with “end of line”, whichever comes first. Thigpreven
a single ASN.1 comment from spanning several lines. “End of line” is not, however, a defined symbol in TTCN.MP. A’
specifiers are recommended to facilitate the exchange of ATSs in TTCN.MP by always closing ASN.1 comments with “-

14.2 ASN.1 Type Constraint Declarations

Both ASN.1 ASP constraints and ASN.1 PDU constraints can be structured by using references to ASN.1 Test Suite Typdaovatiamts
of complex fields. ASN.1 Test Suite Types are defined in the declarations part of the ATS.

The following information shall be supplied for each ASN.1 Type Constraint Declaration:
a) the name of the Constraint,
which may be followed by an optional formal parameter list;
b) the ASN.1 Type name;
c) the derivation path (see 13.6 and 14.6),

in order to specify explicit Encoding Variations for entire ASN.1 Type Constraints, which override both the Encoding Var
tions of the PDU Constraint that references this ASN.1 Type Constraint and the default global Encoding Variations for the
suite, this optional entry shall reference an entry in the relevant Encoding Variations table (e.g., to change from Sp to LD
if this entry is not used, then the default Encoding Variations apply to all ASN.1 Type Constraints of this type, unless spe
ically overridden within a particular Constraint;

d) the Encoding Variations to be used for the Constraint;

if an ASN.1 Constraint Declaration is a modification of an existing ASN.1 constraint, the name of the ASN.1 constraint t
is taken as the basis of this modification shall be referenced in the table in the derivation path entry.

e) the constraint value,

where the body of the ASN.1 Type Constraint table contains the ASN.1 Constraint Declaration with optional attributes
constraint values and attributes defined in 12.6 can be used in ASN.1 constraints.

In order to specify explicit encodings for individual values within an ASN.1 Type Constraint, which override all other Eviaddimans for

the specific ASN.1 Type Constraint encodings (see c) above), the kelyiNGris used after the relevant value, followed by a specific encod-

ing identifier and any necessary actual parameter list. The encoding identifier shall identify either one of the Encotimg aga Invalid
Field Encoding Definition defined in the test suite.

ASN.1 Type Constraint Declarations shall be specified in the format shown in the following proforma:

ASN.1 Type Constraint Declaration

Constraint Name : Consld&ParlList

Group . [ASN1_TypeConstraintGroupReference]
Structured Type : ASN1_Typeldentifier

Derivation Path . [DerivationPath]

Encoding Variation . [EncVariationCall]

Comments . [FreeText]

Constraint Value

ConstraintValue&AttributesOrReplace

Detailed Comments: [FreeText]

Delivery 9.4, 17 December 1996 85

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Proforma 41 - ASN.1 Type Constraint Declaration
SYNTAX DEFINITION:

This proforma is used for ASN.1 Types in the same way that the ASN.1 PDU Constraint Declaration proforma is used (see 14.4).

14.3 ASN.1 ASP Constraint Declarations
The following information shall be supplied for each ASN.1 ASP Constraint Declaration:
a) the name of the constraint,
which may be followed by an optional formal parameter list;
b) the ASP type name;
¢) the derivation path (see 13.6 and 14.6),

if an ASN.1 Constraint Declaration is a modification of an existing ASN.1 constraint, the name of the ASN.1 constraint that is
taken as the basis of this modification shall be referenced in the table in the derivation path entry.

d) the constraint value,

where the body of the ASP constraint table contains the ASN.1 Constraint Declaration with optional attributes. All constraint
values and attributes defined in 12.6 can be used in ASN.1 constraints.

ASN.1 ASP Constraint Declarations shall be specified in the format shown in the following proforma:

ASN.1 ASP Constraint Declaration

Constraint Name : Consld&ParList

Group : [ASN1ASP_ConstraintGroupReference]
ASP Type : ASP_ldentifier

Derivation Path . [DerivationPath]

Comments . [FreeText]

Constraint Value

ConstraintValue&AttributesOrReplace

Detailed Comments: [FreeText]

Proforma 42 - ASN.1 ASP Constraint Declaration

SYNTAX DEFINITION:

This proforma is used for ASN.1 Types in the same way that the ASN.1 PDU Constraint Declaration proforma is used (see 14.4).

14.4 ASN.1 PDU Constraint Declarations
The following information shall be supplied for each ASN.1 PDU Constraint Declaration:
a) the name of the Constraint,
which may be followed by an optional formal parameter list;
b) the PDU type name;
c) the derivation path (see 13.6 and 14.6),

86 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

d) the encoding rules to be used for the Constraint,

in order to specify explicit encodings for entire ASN.1 PDU Constraints, which override the default global encoding rules
the test suite, this optional entry shall reference an entry in the relevant Encoding Definitions table (e.g., to chamlgd® from
to DER); if this entry is not used, then the default encoding rules apply to all ASN.1 PDU Type Constraints of this tgpe, un
specifically overridden in a particular Constraint;

e) the Encoding Variations to be used for the Constraint,

in order to specify explicit Encoding Variations for entire ASN.1 PDU Constraints, which override the default global Encodi
Variations for the test suite, this optional entry shall reference an entry in the relevant Encoding Variations table (e.g
change from SD to LD(3)); if this entry is not used, then the default Encoding Variations apply to all ASN.1 PDU Type C
straints of this type, unless specifically overridden in a particular Constraint;

if an ASN.1 Constraint Declaration is a modification of an existing ASN.1 constraint, the name of the ASN.1 constraint t

is taken as the basis of this modification shall be referenced in the table in the derivation path entry.
f) the constraint value,

where the body of the PDU constraint table contains the ASN.1 Constraint Declaration with optional attributes; all constr
values and attributes defined in 12.6 can be used in ASN.1 constraints.

In order to specify explicit encodings for individual values within an ASN.1 PDU Constraint, which override the defautingiothalg rules

or the specific ASN.1 PDU Constraint encodings (see c) and d) above), the kEyjN@islused after the relevant value, followed by a specific

encoding identifier and any necessary actual parameter list. The encoding identifier shall identify either one of the\Eamdting or an
Invalid Field Encoding Definition defined in the test suite.

PDU Constraint Declarations shall be specified in the format shown in the following proforma:

ASN.1 PDU Constraint Declaration

Constraint Name . Consld&ParList

Group . [ASN1PDU_ConstraintGroupReference]
PDU Type . PDU_lIdentifier

Derivation Path . [DerivationPath]

Encoding Rule Name : [EncodingRuleldentifier]

Encoding Variation . [EncVariationCall]

Comments . [FreeText]

Constraint Value

ConstraintValue&AttributesOrReplace

Detailed Comments: [FreeText]

Proforma 43 - ASN.1 PDU Constraint Declaration
SYNTAX DEFINITION:

14.5 Parameterized ASN.1 constraints

ASN.1 constraints may be parameterized (see 13.5).

Delivery 9.4, 17 December 1996 87

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

14.6 Modified ASN.1 constraints

ASN.1 constraints can be specified by modifying an existing ASN.1 constraint. Portions of a constraint can be respezatie@ toesy con-
straint by using the REPLACE/OMIT mechanism.

Particular parameters or fields of a base or a modified constraint may be identified through a list of field selectots e platzr their defined
value by a new value, or to omit the defined value. A ReferenceList consists of the field selector identifiers (defimedrespunding type
definition) separated by dots which uniquely identify a particular (possibly structured) field within a PDU (or ASP). élifsltis/can be
identified by a single selector, whereas nested fields require the full path.

Replace values shall be used only when a derivation path is specified. Full ASN.1 values shall be used only when a drigatiotrspec-
ified. Values that are REPLACEd or OMITted may be structured.

SYNTAX DEFINITION:

If a field belongs to a SEQUENCE, SET or CHOICE structure, the position of the field in parentheses may be used as atrépidlcemen
field selector identifier. This technique shall be used where the identifier is not provided in the declaration of the field.

14.7 Formal parameter lists in modified ASN.1 constraints

The requirements of 13.7 also apply to modified ASN.1 constraints.

14.8 ASP Parameter and PDU field names within ASN.1 constraints

When specifying a constraint for an ASP or PDU in ASN.1, the parameter or field identifiers defined in the ASN.1 typendefinitio
SEQUENCE, SET and CHOICE types may be used in order to identify the particular ASP or PDU parameters or fields a vatwelstands f
the case of CHOICE types the identifiers identifying the variant shall be used. For SEQUENCE types, parameter or fietd sleitifie

used whenever the value definition becomes ambiguous because of omitted values for OPTIONAL parameters or fields. FQp&Entypes
eter or field identifiers shall be used in all cases.

EXAMPLE 54 - Field values in an ASN.1 PDU constraint
Assume the type definition::

ASN.1 PDU Type Definition

PDU Name : XY_PDU
PCO Type
Comment

Type Definition

SET { field_1 INTEGER OPTIONAL,
field 2 BOOLEAN,
field 3 INTEGER OPTIONAL,
field 4 INTEGER OPTIONAL }

88 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

Then a possible constraint is:

ASN.1 PDU Constraint Declaration

Constraint Name : CONS1

PDU Type : XY_PDU
Derivation Path
Comments
Constraint Value

{ field_1 5,

field_2 TRUE,

field_3 3
}

-- field_4 is not specified => omitted when sending
-- if identifier field_3 was not used it would be ambiguous whether 3 was the value of field_3 or
-- field_4, since both are OPTIONAL.

14.9 ASN.1 CM Constraint Declarations

The parameter values for CM constraints shall be provided in the format shown in the following proforma:

ASN.1 CM Constraint Declaration

Constraint Name : Consld&ParList

Group . [ASN1CM_ConstraintGroupReference]
CM Type . CM_lIdentifier

Derivation Path . [DerivationPath]

Comments . [FreeText]

Constraint Value

ConstraintValue&AttributesOrReplace

Detailed Comments: [FreeText]

Proforma 44 - ASN.1 CM Constraint Declaration
SYNTAX DEFINITION:

This proforma is used for CMs in the same way that the PDU Constraint Declaration proforma is used for PDUs.

15 The Dynamic Part

15.1 Introduction

The Dynamic Part contains the main body of the test suite: the Test Case, the Test Step and the Default behaviour descriptions.

Delivery 9.4, 17 December 1996 89

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

15.2 Test Case dynamic behaviour
15.2.1 Specification of the Test Case Dynamic Behaviour table
15.2.1.1The title of the table shall be “Test Case Dynamic Behaviour”
15.2.1.2The header shall contain the following information:
a) Test Case name,
giving a unique identifier for the Test Case described in the table;
b) Test Group Reference,

giving the full name of the lowest level to the group that contains the Test Case; that full name shall conform to the require-
ments of 9.2, and end with a slash (/);

¢) Test Purpose,

an informal statement of the purpose of the Test Case, as given in the relevant test suite structure and test purpoges standard
any) or equivalent part of the test suite standard (if any);

d) Default Reference,

an identifier (including an actual parameter list if necessary) of a Default behaviour description, if any, which applies to t
Test Case behaviour description (see 15.4);

15.2.1.3The body of the table shall display the following columns and corresponding information:
a) an (optional) line number column (see 15.2.5),
which, if present, shall be placed at the extreme left of the table.
b) a label column,
where labels can be placed to identify the TTCN statements to allow jumps using the GOTO construct (see 15.14);
¢) a behaviour description,

which describes the behaviour of the LT and/or UT in terms of TTCN statements and their parameters, using the tree notation
(see 15.6);

d) a constraints reference column,

where constraint references are placed to associate TTCN statements in a behaviour tree with a reference to specific ASP anc
or PDU values defined in the constraints part (see clause 12);

e) a verdict column,
where verdict or result information is placed in association with TTCN statements in the behaviour tree (see 15.17);
f) an (optional) comments column,

this column is used to place comments that ease understanding of TTCN statements by providing short remarks or reference:
to additional text in the optional detailed comments section;

The columns c), d), e) and f) shall be displayed in that order, from left to right. It is recommended that the mandatolyntatbké placed
at the left of the behaviour description. Alternately, the label column may be placed to the right of the behaviour description

15.2.1.4An (optional) footer can contain detailed comments.

90 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

15.2.2 The Test Case Dynamic Behaviour proforma

| The Test Case dynamic behaviour shall be provided in the format shown in the following proforma:

Test Case Dynamic Behaviour
Test Case Name . TestCaseldentifier
Group . TestGroupReference
Purpose . FreeText
Configuration . TCompConfigldentifier
Defaults . [DefaultRefList]
Comments . [FreeText]
Nr Label Behaviour Description Constraint Ref Verdict Comments
1
2
[Label] StatementLine [ConstraintReference] | [Verdict] [FreeText]
TreeHeader
StatementLine
n
Detailed Comments: [FreeText]

Proforma 45 - Test Case Dynamic Behaviour
The alternative position of the label column is shown in dotted lines.

Column headers of this proforma can be abbreviatdd tref, V andC. This enables the behaviour tree column to be as wide as possible in
cases of physical paper size limitations.

Delivery 9.4, 17 December 1996 91

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

SYNTAX DEFINITION:

15.2.3 Structure of the Test Case behaviour

Each Test Case contains a precise description of sequences of (anticipated) events and related verdicts. This desartptied &s <t tree,
with TTCN statements as nodes in that tree and verdict assignments at its leaves. In many cases it is more efficienStepsagasneans
of substructuring this tree:

Statement and Verdict
Statement

Statement and Verdict

Test Case Test Case

Statement and Verdict Statement and Verdict

Statement

Statement

Statement Statement

Statement and Verdict ‘
Statement and Verdict

1: Unstructured Test Case Behaviour 2: Structured Test Case Behaviour

Figure 7 - Test Case Behaviour Structure

In TTCN this explicit modularization is expressed using Test Steps and the ATTACH construct.
15.2.4 Concurrent Test Case Behaviour Description

If PTCs are used in a test case then the header shall contain the additional entry, Configuration, which shall ider@ifyrgpdresnt Con-
figuration declared in the Declaration Part.

The behaviour of the MTC is described by the first tree in the Test Case Behaviour table plus all attached trees. The iblirGrbeltagates
PTCs when required and associates each PTC with its own behaviour tree.

If a PTC behaviour is specified as a local tree in the test case behaviour then the Defaults Reference shall be empitstidrhijsressints a
PTC from inheriting the Default Behaviour of the MTC.

A test case shall only use the Test Components that are present in the referenced Test Component Configuration. Thegthiaten shafi
determine the set of PCOs and CPs that may be used in the test case. When used, the Configuration entry in the TestcCBsbd)jmami
Header shall be provided in the format shown in Proforma 45.

15.2.5 Line numbering and continuation

Since lines in the behaviour description, when printed, may be too long to fit on one line it is necessary to use addiicaabdydicate
the extent of a single behaviour line. There are two available techniques:

a) indicate the beginning of a new behaviour line; an extra line column is added as the leftmost column in the bodyepf the tabl
there shall only be an entry in this column on those lines where a new behaviour line starts; the line numbers used shall be 1,
2, 3, and the numbering shall not be restarted when local trees are defintiibre is a unique line number for each
behaviour line of the behaviour table;

NOTES
1 The line numbers can be used for logging purposes, to record unambiguously which behaviour line was executed.
2 The line numbers can be used as references in the detailed comments section.

92 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

b) indicate the continuation of lines; if a line is to be continued within the behaviour description column a hash (#) sy
shall be placed in the leftmost position of the behaviour column, on the line of the continued text; it is recommended tha
text of the continued part adopts the same level of indentation as the line it is continuing.

If a line is continued in any column other than the behaviour description column the hash symbol is not required.
EXAMPLE 55 - Printing long behaviour line

55.1Recommended style:

Nr | Label Behaviour Description Constraints Ref Verdict | Comments

1 This is a TTCN statement that is too long to print on a sipgle Refl
line because the column is too narrow

2 This is the next statement line This is a constraint refert
ence that is too long to
print on one line

3 An alternative statement line Ref2

55.2Alternative style:

Label Behaviour Description Constraints Ref Verdict | Comments

This is a TTCN statement that is too long to printon a | Refl
single line because the column is too narrow

This is the next statement line This is a constraint refert
ence that is too long to
print on one line

An alternative statement line Ref2

15.3 Test Step dynamic behaviour
15.3.1 Specification of the Test Step Dynamic Behaviour table

The dynamic behaviour of Test Steps is defined using the same mechanisms as for Test Cases, except that Test Stepet=aizbd (sgam
15.7). Test Step dynamic behaviour tables are identical to Test Case dynamic behaviour tables, except for the followasg differe

a) the table has the title "Test Step Dynamic Behaviour";
b) the first item in the header is the Test Step name,

which is a unique identifier for the Test Step followed by an optional list of formal parameters, and their associated ty
These parameters may be used to pass PCOs, constraints or other data objects into the root tree of the Test Step;

c) the second item in the header is the Test Step Group Reference,

which gives the full name to the lowest level of the Test Step Library group that contains the Test Step; that full name ¢
conform to the requirements of (see 9.3), and end with a slash (/);

Delivery 9.4, 17 December 1996 93

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

a) the third item in the header is the Test Step Objective,
which is an informal statement of the objective of the Test Step.
15.3.2 The Test Step Dynamic Behaviour proforma

The Test Step dynamic behaviour shall be provided in the format shown in the following proforma:

Test Step Dynamic Behaviour
Test Step Name . TestStepld&ParList
Group . TestStepGroupReference
Objective : FreeText
Defaults . [DefaultRefList]
Comments . [FreeText]
Nr Label Behaviour Description Constraint Ref Verdict Comments
1
2
[Label] StatementLine [ConstraintReference] | [Verdict] [FreeText]
Treel;|eader
StatementLine
n
Detailed Comments: [FreeText]

Proforma 46 - Test Step Dynamic Behaviour
The alternative position of the label column is shown in dotted lines.
Column headers of this proforma can be abbreviatdd tref, V andC.
SYNTAX DEFINITION:

15.4 Default dynamic behaviour
15.4.1 Default behaviour

A TTCN Test Case shall specify alternative behaviouef@rypossible event (including invalid ones). It often happens that in a behaviour
tree every sequence of alternatives ends in the same behaviour. This behaviour may be factored out as default behavewrirSachis
Default behaviour descriptions are located in the global Default Library.

The dynamic behaviour of Defaults is defined using the same mechanisms as for Test Steps, except for the following: restrictions
a) it is not permitted to specify Default behaviour for the Default behaviour;
b) a default behaviour description may attach local trees (see 15.7.1) but shall not attach Test Steps.
c) if local trees are used in a Default behaviour description, they shall not attach Test Steps.
d) the tree(s) in the behaviour description shall not use the ACTIVATE operation (see 15.18.4).

Both PCOs and other actual parameters may be passed to Default behaviour descriptions in the same way that they mayTestfBieged t
The same rules on scope and textual substitution of these parameters apply as described for tree attachment (see 15.13).

15.4.2 Specification of the Default Dynamic Behaviour table
Default dynamic behaviour tables are identical to Test Step dynamic behaviour tables, except for the following differences:

94 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

a) the table has the title "Default Dynamic Behaviour";
b) the first item in the header is the Default name,

which is a unique identifier for the Default followed by an optional list of formal parameters, and their associated types. Tt
parameters may be used to pass PCOSs, constraints or other data objects into the root tree of the Default;

c) the second item in the header is the Default Group Reference,

which gives the full name of the lowest level to the Default Group that contains the Default; that full name shall conforn
the requirements of (see 9.4), and end with a slash (/);

d) the third item in the header is the Default Objective,
which is an informal statement of the objective of the Default.
15.4.3 The Default Dynamic Behaviour proforma
The Default dynamic behaviour shall be provided in the format shown in the following proforma:

Default Dynamic Behaviour

Default Name . Defaultld&ParList
Group . DefaultGroupReference
Objective . FreeText
Comments . [FreeText]
Nr Label Behaviour Description Constraint Ref Verdict Comments
1
2
[Label] StatementLine [ConstraintReference] | [Verdict] [FreeText]
TreeHeader
StatementLine
n

Detailed Comments: [FreeText]

Proforma 47 - Default Dynamic Behaviour
The alternative position of the label column is shown in dotted lines.
Column headers of this proforma can be abbreviatdd @ref, V andC.
SYNTAX DEFINITION:

15.5 The behaviour description
The behaviour description column of a dynamic behaviour table contains the specification of the combinations of TTCN dtatearents
deemed possible by the test suite specifier. The set of these combinations is called the behaviour tree. Each TTCN atatefednttise
behaviour tree.
15.6 The tree notation
Each TTCN statement shall be shown on a separate statement line. The statements can be related to one another in two ways:

- as sequences of TTCN statements;

- as alternative TTCN statements.

Delivery 9.4, 17 December 1996 95

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Sequences of TTCN statements are represented one statement line after the other, each new TTCN statement being indemteft tmce fr
right, with respect to its predecessor.

EXAMPLE 56 - TTCN statements in sequence:

EVENT_A
CONSTRUCT_B
EVENT_C

Statements at the same level of indentation and belonging to the same predecessor node represent the possible aliegntivdtataay
occur at that time. Henceforth, this set of TTCN statements will be referred toses tia@lternativesor simplyalternatives

EXAMPLE 57 - Alternative TTCN statements:

CONSTRUCT_Al
STATEMENT_A2
EVENT_A3

EXAMPLE 58 - Combining sequences and alternatives to build a tree:

EVENT_A
CONSTRUCT B
EVENT_C
STATEMENT_D1
EVENT_D2

Whether a TTCN statement can be evaluated successfully or not depends on various conditions associated with the stdteesentdime.
ditions are not necessarily mutually exclusive, it is possible that for any given moment more than one statement line could be evaluated
successfully. Since statement lines are evaluated in the order of their appearance in the set of alternatives the flirstittadefulélled
condition will be successful. This might lead to unreachable behaviour; in particular if statements are encoded as dtibovdtigestate-

ments that are always successful.

REPEAT and GOTO are always successful. In addition, SEND, IMPLICIT SEND, assignments and timer operations are succeedful provid
that the accompanying qualifier, if any, evaluates to TRUE.

Graphical indentation of statement lines in the TTCN.GR form is mapped to indentation values in TTCN.MP. Statementg lavbledfirs
alternatives having no predecessor in the root or local tree they belong to, shall have the indentation value of zerts IS4ateqarmprede-
cessor shall have the indentation value of the predecessor plus one as their indentation value.

SYNTAX DEFINITION:
EXAMPLE 59 - $Line [6] +R1_POSTAMBLE

15.7 Tree names and parameter lists
15.7.1 Introduction

Each behaviour description shall contain at least one behaviour tree. In order that trees may be unambiguously refdrrad o &suc
ATTACH construct) each tree has a tree name.

The first tree appearing within a behaviour description is called the root tree. The name of a root tree is the idemtifiey impihe header
of its dynamic behaviour table. That is, the tree name of the root tree of a Test Step is the Test Step Identifier foBtiyat dred likewise
for root trees in Test Case dynamic behaviours and Default dynamic behaviours.

Trees other than the root tree which appear within dynamic behaviour tables are termed local trees. Local trees are predidtehger
which contains the tree name.

SYNTAX DEFINITION:

96 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

15.7.2 Trees with parameters

All trees, except Test Case root trees, may be parameterized. The parameters may provide PCOs, constraints, variables) tewthéor
use within the tree. Test Case root trees shall not be parameterized.

If a tree is parameterized, then a list of formal parameters and their types shall appear within parentheses directlyhioliceeimgme. For
example, the formal parameter list for a Test Step root tree shall appear within parentheses immediately following thddeesgifigtein
the header of the Test Step dynamic behaviour table. Similarly, the formal parameter list for a local tree shall appeiyrafterdize tree
name in the tree header.

In constructing the formal parameter list, each formal parameter shall be followed by a colon and the name of the typealfgheaimeter.
If more than one formal parameter of the same type is present, these may be combined into a sub-list. When such sedttietferonal
parameters within the sub-list shall be separated from each other by a comma. The final formal parameter in the sble-fisiahvalli by
a colon and the formal parameter’s type.

When there is more than one formal parameter and type pair (or more than one sub-list and type pair), the pairs shadtieose mareh
other by semi-colons.

Formal parameters may be of PCO type, ASP type, PDU type, structure type or one of the other predefined or Test Suite Types.

If a formal parameter of a tree is typBU then specific fields in the PDU shall not be referenced in the tree. If the formal parameter is a speci
PDU identifier, then specific fields in the PDU may be referenced in the tree.

EXAMPLE 60 - A Test Step using formal parameters: EXAMPLE_TREE (L:TSAP; X:INTEGER; Y:INTEGER)
EXAMPLE 61 - A Test Step using a formal parameters with a sub-list: EXAMPLE_TREE (L:TSAP; X, Y:INTEGER)

15.8 TTCN statements

The tree notation allows the specification of test events initiated by the Lower Tester(s) or Upper Tester(s) (SEND andl BHENICI
events), test events received by the Lower Tester(s) or Upper Tester(s) (RECEIVE, OTHERWISE, TIMEOUT and DONE), const@cts (GC
ATTACH, REPEAT, CREATE, RETURN and ACTIVATE) and pseudo-events comprising combinations of qualifiers, assignments and tin
operations. These are collectively known as TTCN statements.

Test events can be accompanied by qualifiers (Boolean expressions), assignments and timer operations. Qualifiers, as$itjneraopea
ations can also stand alone, in which case they are called pseudo-events.

15.9 TTCN test events

15.9.1 Sending and receiving events

TTCN supports the initiation (sending) of ASPs and PDUs to named PCOs and acceptance (receipt) of ASPs and PDUs at n@ihveed PC(
PCO model is defined in 11.10 and 15.9.5.3.Concurrent TTCN supports the sending and receiving of CMs to named CPs. This CP m
defined in 11.11.

SYNTAX DEFINITION:

In the simplest form, an ASP identifier or PDU identifier follows the SEND symbol (!) for events to be initiated by th&TTasra
RECEIVE symbol (?) for events which it is possible for the LT or UT to accept. The optional PCO name is not provideh Thisfil
when there is only one PCO in the test suite.

EXAMPLE 62 - ICONreq or ?CONind

If more than one PCO exists in a test suite, then a PCO name appearing in the declarations part, or in the formal pafineteedisshall
prefix the SEND symbol or the RECEIVE symbol. The PCO name is used to indicate the PCO at which the test event may occur.

EXAMPLE 63 - L! CONreq or L? CONind

In the case of CPs, the CP identifier shall be used and shall prefix the SEND symbol in the case of sending a CM andtkbhdRpGEIVE
symbol in the case of receiving a CM.

EXAMPLE 64 - A_CPIA CM or A_CP?A_CM

15.9.2 Receiving events

A RECEIVE event line evaluates successfully if an incoming ASP or PDU on the specified PCO matches the event line. A mat¢heoccu
following conditions are fulfilled:

a) the incoming PDU can be decoded in accordance with the applicable encoding rules;

b) the incoming ASP or PDU is valid according to the ASP or PDU type definition referred to by the event name on the e
line. In particular, all parameters and/or field values shall be of the type defined, and satisfy any length restricfieds speci

Delivery 9.4, 17 December 1996 97

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

c) the ASP or PDU matches the constraint reference on the event line;

d) in cases where a qualifier is specified on the event line, the qualifier shall evaluate to TRUE; the qualifier magfontain r
erences to ASP parameters and/or PDU fields.

The incoming event is removed from the PCO queue only when it successfully matches a RECEIVE event line.
In concurrent TTCN the receipt and matching of a CM at a CP is treated in the same manner as described above.
15.9.3 Sending events

A SEND event line with a qualifier is successful if the expression in the qualifier evaluates to TRUE. Unqualified SENBre\adwtsys
successful. The outgoing ASP or PDU that results from a SEND event shall be constructed as follows:

a) All ASP parameter and PDU field values shall be of the type specified in the corresponding definitions, and will satisfy any
length restrictions in the definitions;

b) the value of the ASP parameter and PDU fields shall be set as specified in the constraint referenced on the event line (se¢
clause 12, 13 and 14 for an explanation of constructing ASPs or PDUs with constraints);

¢) any direct assignments to ASP parameters or PDU fields on the event line will supersede the corresponding value specified
in the constraint, if any;

d) all parameters and/or fields in the outgoing ASP or PDU shall contain specific values or be explicitly omitted prior to com-
pletion of the SEND event;

e) the fully constructed PDU shall be encoded in accordance with the applicable encoding rules;

Generation of an ASP parameter or PDU field value by either the constraints or assignments that violates the declarkhgypeesidc-
tions shall cause a test case error.

In concurrent TTCN the sending of CMs at CPs is treated in the same manner as described above.
15.9.4 Lifetime of events

Identifiers of ASP parameters and PDU fields associated with SEND and RECEIVE shall be used only to reference ASP paf@bidter and
field values on the statement line itself.

In the case of SEND events, relevant ASP parameters and PDU fields can be set, if required, in appropriate assignmenb din¢he S
EXAMPLE 65 - IA_PDU (A_PDU.FIELD:=3)

The effects of such an assignment shall not persist after the event line in which they occurred.

In the case of RECEIVE events, if relevant ASP parameter and PDU field values need to be subsequently referenced, eithé&S3Reowh
PDU or a relevant part of it shall be assigned to variables on the RECEIVE line itself. These variables may then be irefarbsegdent
lines.

EXAMPLE 66 - ?A_PDU (VAR:=A_PDU.FIELD)

where VAR may be used on event lines subsequent to receipt of A_PDU.

The lifetime of CMs is also restricted to the relevant RECEIVE statement. Identifiers of CM fields may be accessed innaasingtaas
identifiers of PDU fields.

EXAMPLE 67 - A_CPIACM or A_CP?A_CM

15.9.5 Execution of the behaviour tree
15.9.5.1 Introduction

The test suite specifier shall organize the behaviour tree representing a Test Case or a Test Step according to thalésli@gengling test
execution:

a) starting from the root of the tree, the LT or UT remains on the first level of indentation until an event matchesntf an eve
is to be initiated the LT or UT initiates it; if an event is to be received, it is said to match only if a received reat@wsnt
and matches the event line;

b) once an event has matched, the LT or UT moves to the next level of indentation. No return to a previous level ohindentatio
can be made, except by using the GOTO construct;

c) event lines at the same level of indentation and following the same predecessor event line represent the possilele alternativ
which may match at that time. Alternatives shall be given in the order that the test suite specifier requires the LT or UT to
attempt either to initiate or receive them, if necessary, repeatedly, until one matches;

98 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

EXAMPLE 68 - lllustration of a TTCN behaviour tree

Suppose that the following sequence of events can occur during a test whose purpose is to establish a connection, exchange
some data, and close the connection. The events occur at the lower tester PCO L:

a) CONNECTrequest, CONNECTconfirm, DATArequest, DATAindication, DISCONNECTrequest;

Progress can be thwarted at any time by the IUT or the service-provider. This generates two more sequences:

b) CONNECTrequest, CONNECTconfirm, DATArequest, DISCONNECTindication;

c) CONNECTrequest, DISCONNECTIndication.

The three sequences of events can be expressed as a TTCN behaviour tree. There are five levels of alternatives, and only three
leaves (a to c), because the SEND events L! are always successful. Execution is to progress from left to right (sequence), and

from top to bottom (alternatives). The following figure illustrates this progression, and the principle of the TTCN behaviour
tree:

progression of time |

l"" EXAMPLE-TREE (L:NSAP)

t L! CONNECTrequest

r L

r —»L? CONNECTconfirm

n

ta |—> L! DATArequest

i L? DATAindication

v

e |—>L! DISCONNECTrequest a)
S L? DISCONNECTindication b)
* L L? DISCONNECTindication C)

There are no lines, arrows or leaf names in TTCN. The behaviour tree of the previous example would be represented as follows:

EXAMPLE 69 - A TTCN behaviour tree

Test Step Dynamic Behaviour
Test Step Name : TREE_EX_1(L:NSAP)
Group : TTCN_EXAMPLES/TREE_EXAMPLE_1/
Objective . Toillustrate the use of trees.
Default :
Comments : NOTE - This example can be simplified by using Defaults
Nr | Label Behaviour Description Constraints Ref Verdict | Comments
1 L! CONNECTrequest CR1 Request ...
2 L? CONNECTconfirm Ccci ... Confirm
3 L ! DATArequest DTR1 Send Data
4 L? DATAindication DTI1 Receive Data
5 L! DISCONNECTrequest DSCR1 PASS |Accept
6 L? DISCONNECTIndication DSCI1 INCONC | Premature
7 L? DISCONNECTIndication DSCR1 INCONC | Premature

15.9.5.2 The concept of snapshot semantics

The alternative statements at the current level of indentation are processed in their order of appearance. TTCN opeaaticsalseem
Annex B) assume that the status of any of the events cannot change during the process of trying to match one of aaditesf alésn
implies that snapshot semantics are used for received events and TIME@|£B£h time around a set of alternatives a snapshot is taken of
which events have been received and which TIMEOUTSs have fired. Only those identified in the snapshot can match on thehrexigtycl

the alter

natives.

Delivery 9.4, 17 December 1996 99

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

15.9.5.3 Restrictions on using events
In order to avoid test case errors the following restrictions apply:

a) a Test Case or Test Step should not contain behaviour where the relative processing speed of the MOT (Means of Testing
could impact the results. To prevent such problems, a RECEIVE, OTHERWISE or TIMEOUT event line shall only be
followed by other RECEIVE, OTHERWISE and TIMEOUT event lines in a set of alternatives. As a consequence, Default trees
shall contain only RECEIVE, OTHERWISE and TIMEOUT event lines on the first set of alternatives.

b) Once there is an event on a PCO or CP queue or a timeout in the timeout list, it can be removed from the queue or list only
by a successful match of the related TTCN statement. In the case of a set of alternatives that includes RECEIVE statements
the set of expected incoming events shall be fully specified. This means that it shall be a test case error if, duringrexecutio
match of any of the RECEIVE statements occurs and yet execution progresses to the next level of alternatives because of ¢
TIMEOUT which occurred after an ASP or PDU, that was not specified in the set of RECEIVE statements, was received on
any one of the relevant PCO or CP queues. IMPLICIT SEND shall not be used with CMs.

¢) Precautions should be taken when using concurrent TTCN to avoid unreliable results caused by situations in which the order
of receipt of envents at different PCOs or CPs is used to determine verdict assignment. The actual time at which PDU or CM
is received, relative to the receipt of other PDUs or CMs, may not be accurately reflected when executing parallel test compo-
nents.

EXAMPLE 70 - An incomplete set of RECEIVE events

PARTIAL_TREE

PARTIAL_TREE IASTART T
IASTART T ?B

?B ? OTHERWISE

?TIMEOUT T FAIL

IC ?TIMEOUT T
?D IC
?D
a) b)

In a) if D is received in response to !A the test case will assign an erroneous PASS verdict by virtue of the TIMEOUT. This
can be avoided by using the OTHERWISE statement:

d) In concurrent TTCN, the relative ordering of events at different PCOs or different CPs should not affect the verdit assigne
since this would lead to unrepeatability of results caused by differences in processing and transmission speeds.

15.9.5.4 Precautions when using concurrent TTCN

Precautions should be taken when using concurrent TTCN to avoid unrepeatable results caused by situations in which taeegptief of
events at different PCOs or at different CPs is used to determine verdict assignment. The actual time at which a PDEoaivell, isefative
to the receipt of other PDUs or CMs, may not be accurately reflected when executing parallel test components.

15.9.6 The IMPLICIT SEND event

In the Remote Test Methods, although there is no explicit PCO above the IUT, it is necessary to have a means of spegifyémgpaint
in the description of the behaviour of the LT, that the IUT should be made to initiate a particular PDU or ASP (but not B)ptrpose,
the implicit send event is defined, with the following syntax:

SYNTAX DEFINITION:

ThelUT in the syntax takes the place of the PCO identifier used with a normal SEND or RECEIVE, indicating that the specifiedASP or P
is to be sent by the IUT. The angle brackets signify that this is an implicit eeerihere is no specification of what is done to the IUT to
trigger this reaction, only a specification of the required reaction itself.

An IMPLICIT SEND event is always considered to be successful, in the sense that any alternatives coded after, and avitleo$ardert-
tation as the IMPLICIT SEND are unreachable.

An IMPLICIT SEND shall be used only where the relevant OSI standard(s) permit the IUT to send the specified ASP or PDhiratithat p
its communication with the LT.

100 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

For every IMPLICIT SEND in a test suite, the test suite specifier shall create and reference a question in the partiaf&tKéTtipat permits
indication of whether the IMPLICIT SEND can be invoked on demand.

An IMPLICIT SEND event shall not be used unless the test method being used is one of the Remote Test Methods. An IMPLISIESEND
shall not be used unless the same effect could have been achieved using the DS test method.

NOTE 1 - For example, when testing a connection-oriented Transport Protocol implementation, if this restriction did nwbabkdte per-
missible to use IMPLICIT SEND to get the IUT to initiate a CR TPDU because in the DS test method that effect could bebgdetiregl
the UT to send a T-CONreq ASP. On the other hand, it would not be permissible to use IMPLICIT SEND to get the IUT to MifRettRaq
ASP because that effect could not be controlled through the Transport Service boundary. The reason for this restriev@emisTespCases
from requiring greater external control over an IUT than is provided for in the relevant protocol standard.

When an IMPLICIT SEND event is specified, the associated internal events within the IUT necessary to meet the requiteerstatsiaf ¢l
for the protocol being tested are also perforneagl,set timer, initialize state variables.

The semantics of IMPLICIT SEND is that the SUT shall be controlled as necessary in order to cause the initiation ofébleA§rcifiPDU.
The way in which the SUT is to be controlled should be specified in the PIXIT (or documentation referenced by the PIXIT).

Neither a final verdict nor a preliminary result shall be associated with an IMPLICIT SEND event.

At an appropriate point following an IMPLICIT SEND, there should be a RECEIVE event to match the ASP or PDU that shoesdjtas a r
have been sent by the IUT.

EXAMPLE 71 - EXAMPLE use of IMPLICIT SEND

Test Case Dynamic Behaviour

Test Case Name :IMP1

Group : TTCN_EXAMPLES/IMPLICIT_SEND1/

Purpose . A partial tree to illustrate the use of IMPLICIT SEND.

Default :

Comments

Nr | Label Behaviour Description Constraints Ref Verdict | Comments
5 <IUT!CR> CR1
6 L? CR CR1
7 L!'CC CcC1
12 L? OTHERWISE

15.9.7 The OTHERWISE event

The predefined event OTHERWISE is the TTCN mechanism for dealing with unforeseen test events in a controlled way. OTHERWISE
the syntax:

SYNTAX DEFINITION:

OTHERWISE is used to denote that the LT or UT shall acagpihaoming event which has not previously matched one of the alternatives
to the OTHERWISE. The tester shall accept any incoming data that it has not been possible to decode or that has notrevaicoksexdtarp
native to this OTHERWISE event.

In non-concurrent TTCN, if more than one PCO exists in a test suite, then either a PCO name appearing in the declaatiarisrpzat,
parameter from the formal parameter list of the tree where that formal parameter is used to convey a PCO name, sh&ITHERWISE.

The PCO name is used to indicate the PCO at which the test event may occur. Incoming events, including OTHERWISE, adeotiysidere
in terms of the given PCO.

Delivery 9.4, 17 December 1996 101

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

EXAMPLE 72 - Use of OTHERWISE with PCO identifiers:

PARTIAL_TREE

PCO1? A

PCO2? B PASS
PCO1?C INCONC
PCO2? OTHERWISE FAIL

Assume no event is received at PCO1, then receipt of event B at PCO2 results in a PASS verdict. Receipt of any other event at
PCO2 results in a FAIL verdict.

Due to the significance of ordering of alternatives, incoming events which are alternatives following an unconditional OTH&RWES
same PCO will never match.

EXAMPLE 73 - Incoming events following an OTHERWISE:

PARTIAL_TREE

PCO1? A PASS
PCO1? OTHERWISE FAIL
PCO1? C INCONC

The OTHERWISE will match any incoming event other than A. The last alternative, ?C, can never be matched.
15.9.8 OTHERWISE and concurrent TTCN

In concurrent TTCN, OTHERWISE may be used with CPs as well as PCOs. OTHERWISE on CPs is allowed to provide an efficient way of
handling “all other CMs on thgis CP".

15.9.9 The TIMEOUT event

The TIMEOUT event allows expiration of a timer, or of all timers, to be checked in a Test Case. When a timer expires (oinceyetia
ately before a snapshot processing of a set of alternative events), a TIMEOUT event is placed into a timeout list. T¢wntiesentreediately
inactive. Only one entry for any particular timer may appear in the list at any one time. Since TIMEOUT is not assocafe@®ith single
timeout list is used.

When a TIMEOUT event is processed, if a timer name is indicated, the timeout list is searched, and if there is a timpmitlenenthe
timer name, that event is removed from the list, and the TIMEOUT event succeeds.

If no timer name is indicated, any TIMEOUT event in the timeout list matches. The TIMEOUT event succeeds if the list itynd{leanp
this occurs, the entire timeout list is immediately emptied.

TIMEOUT has the following syntax:
SYNTAX DEFINITION:

EXAMPLE 74 - Use of TIMEOUT:

?TIMEOUT T

Since TIMEOUT events are not RECEIVE events they are not rendered unreachable by previously listed OTHERWISE alternatives.
15.9.10 Concurrent TTCN events and constructs

The CREATE construct and the DONE event are used in concurrent TTCN.

15.9.10.1 The CREATE construct

The Main Test Component is started at the beginning of Test Case execution. The Main Test Component starts Parallel Tesgt Casnpon
needed, by means of the CREATE construct, which has the following syntax:

SYNTAX DEFINITION:

This construct invokes a set of Parallel Test Components. For each PTC, there are two arguments. The first is the itlerfifi€ tfat is
created, which shall match the identifier of a PTC in the Test Component Configuration referenced in the test case headerd Tha
reference to a behaviour tree (i.e. Test Step or local tree), possibly with a parameter list containing actual values éad RGP The effect
of the CREATE construct is that each PTC listed starts executing its behaviour description in parallel with the exeatMairoTgst Com-
ponent.

102 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

NOTE 2 - Passing PCO and CP identifiers to a behaviour tree as actual parameters allows the same behaviour tree toobe thsedanen
test component.

The PCOs and CPs used in the execution of the behaviour description associated with a PTC by the CREATE construct stasenly be
determined by the Test Component Configuration for that Test Case.

The execution of a CREATE construct on a PTC which has already been created shall result in a Test Case error. The ax@REAROf
by any Test Component other than the MTC shall result in a test case error.

In the CREATE construct, PCO identifiers and CP identifiers are passed to a PTC by textual substitution, as is usualACthmétof
Test Steps. All others parameters are passed by value. This is done to prevent side effects on variables which coujitafésstinigeof
other PTCs, causing unrepeatable results.

15.9.10.2 The DONE event

When the MTC terminates, the final verdict is assigned by the MTC, as calculated up to this moment (15.17.5). The DOMBbevgseda
in the MTC and the PTCs to find out whether PTCs have already terminated. Test Components can use this information tthdetemnine
preliminary results and further actions; in particular, the MTC can avoid terminating before all PTCs have terminated (15.17.5)

SYNTAX DEFINITION:

A missing argument list is interpreted as being a list of all PTCs stated in a CREATE constructs executed prior to tmecéxbeUDONE
event. A DONE event without an argument list shall only be used by the MTC.

EXAMPLE 75 - Use of the DONE event

PARTIAL_MTC_TREE

CREATE(PTC1: TREEA)
CREATE(PTC2: TREEB)
START T1
?DONE(PTC1,PTC2)
2TIMEOUT T1 FAIL

NOTE 1 - It is recommended to use ?TIMEOUT as an alternative to ?DONE.

NOTE 2 - If DONE is the only alternative, it amounts to an order to wait for the specified PTCs to terminate.

NOTE 3 - DONE is not a means for the MTC to coordinate termination of PTCs. Termination can only be achieved by provutiogritieap
exchange of CMs. TTCN does not offer any predefined CMs for this purpose.

15.10 TTCN expressions

15.10.1 Introduction

There are two kinds of expressions in TTCN: assignments and Boolean expressions. Both assignments and Boolean expresg&ns may
explicit values and the following forms of reference to data objects:

a) Test Suite Parameters;

b) Test Suite Constants;

c) Test suite and Test Case Variables;

d) Formal parameters of a Test Step, Default or local tree;
e) ASPs and PDUs (on event lines).

Any variables occurring in Boolean expressions and/or on the right hand side of an assignment shall be bound. If an isibieusdisad
this is a test case error.

Delivery 9.4, 17 December 1996 103

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

SYNTAX DEFINITION:

15.10.2 References for ASN.1 defined data objects
15.10.2.1 Introduction

In order to permit references to components of data objects defined using ASN.1, TTCN provides three access mechanisfiese rees,d
array references and bit references.

SYNTAX DEFINITION:

684 DataObjectReference ::= DataObjectldentifier {ComponentReference}
686 ComponentReference ::= RecordRef | ArrayRef | BitRef

15.10.2.2 Record references

Arecord reference may be used to reference to a component of a data object of the type SEQUENCE, SET or CHOICE. A record
reference is constructed using a dot notation, appending a dot and the name (component identifier) or number (component posi
tion) of the desired component to the data object identifier. The component identifier, if defined, should be used iregmeferenc

the component position. References to unnamed components are constructed by giving within parentheses the number which i
the position of the component within the type definition. By definition, the implicit numbering of components starts with zero;
hence the third component has position number 2.

ISO/IEC 8824: 1990 defines SET types having unordered components. This is relevant only if values of that type are eaentiedarite

underlying service-provider. TTCN therefore treats data objects of SET type in the same way as objects of SEQUENCEefgpeng to

the components with numbealways means a reference to itefield as declared in the type.

After an ASP or PDU or CM has been received, referring to the component with theé witleedways return the same value. There is no
change of order of the elements in a SET by any operation in TTCN.

SYNTAX DEFINITION:

687 RecordRef ::= Dot (Componentldentifier | ComponentPosition)
688 Componentldentifier ::= ASP_Parldentifier | PDU_Fieldldentifier | CM_Parldentifier | Elemldentifier | ASN1_Identifier
690 ComponentPosition ::="(" Number ")"ComponentPaosition ::= "("Number")"

EXAMPLE 76 - Component record references

Example_type ::= SEQUENCE {
field_1 INTEGER,
field_2 BOOLEAN,
OCTET STRING }

If varl is of ASN.1 type Example_type, then the following could be written:
varl.field_1 which refers to the first (INTEGER) field
varl.(3) which refers to the third (unnamed) field

EXAMPLE 77 - PDU field references

XY_PDUtype ::= SEQUENCE {

user_data OCTET STRING,
o}

On a statement line that contains XY_PDUtype, the following could be written:
L? XY_PDU (buffer := XY_PDUtype.user_data)
in order to load the variable buffer with the contents of the user_data field of the incoming PDU.

When a PDU or an ASN.1 type parameter, field or element is chained to an ASP, another PDU, or a CM, a record reference may
be used to identify a component of that PDU or ASN.1 type. The record reference shall identify the relevant complete sequence
of parameter, field or element names separated by dots, starting with a data object identifier which resolves to theSielevant A
identifier, CM identifier, or (if ASPs are not used in the test suite) PDU identifier. Beyond this initial data objeceidetifi
sequence shall not contain any PDU identifiers or ASN.1 type identifiers, but rather just the identifiers of the releveterparam

104 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

fields and elements. This mechanism shall not be used if there is any ambiguity about the identity of a PDU constraint or A
type constraint in the sequence. The following example illustrates the use of record references when chaining of constral
used (see 12.4).

EXAMPLE 78 - Record references with chaining

ASN.1 ASP Type Definition
ASP1_type ::= SEQUENCE {
parl OCTET STRING,
par2 OCTET STRING,
pdul PDU1_type

}

ASN.1 PDU Type Definition
PDU1_type ::= SEQUENCE ({
fieldl OCTET STRING,
field2 OCTET STRING,
f F_type
}

ASN.1 Structure Type Definition
F_type ::= SEQUENCE {
datal 1A5String,
data2 1A5String

}

When using constraints of type ASP1_type, PDU1_type and F_type, the values of datal and data2 may be referenced as
follows:
ASP1_Type.pdul.F.datal
ASP1_Type.pdul.F.data2
Similarly the whole PDU field F may be referenced as:
ASP1_Type.pdul.F
or the whole PDU may be referenced as:
ASP1_Type.pdul

It should be noted that the declarations used in this example could apply to both static chaining and dynamic chaining, as the
differences between the two types of chaining are only visible in the constraints. Thus, the record reference is independent of
the variety of chaining used.

15.10.2.3 Array references

An array reference may be used to reference a component of a data object of the type SEQUENCE OF or SET OF. An
reference shall be constructed using a dot notation, appending a dot and the index of the desired component to the data
identifier. The index, giving the position of the component within the data object (when the object is viewed as a lijear arr
is enclosed within square brackets. By definition within ASN.1, the indexing of components starts with zero. The index ma:
an expression, in which case it shall evaluate to a non-negative INTEGER.

ISO/IEC 8824: 1990 defines SET OF types having unordered components. This is relevant only if values of that type araceaentiedea
the underlying service-provider. TTCN therefore treats data objects of SET OF type in the same way as objects of SEQUENEE.OF ty
referring to the components with numbeaitways means a reference to ithefield as declared in the type.

After an ASP or PDU or CM has been received, referring to the component with the ileedways return the same value. There is no
change of order of the elements in a SET OF by any operation in TTCN.

SYNTAX DEFINITION:

691 ArrayRef ::= Dot "[" ComponentNumber "]
692 ComponentNumber ::= Expression

Delivery 9.4, 17 December 1996 105

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

EXAMPLE 79 - Component array references

Array_type ::= SEQUENCE OF {BOOLEAN}

If var2 is of ASN.1 type Array_type, then the following could be written in order to refer to the first BOOLEAN in the
sequence:
var2.[0]
varl.[1-1]
15.10.2.4 Bit references
A bit reference may be used to reference particular bits within a BITSTRING type. For this purpose, data objects of BITHIERANG t
assumed to be defined as SEQUENCE OF {BOOLEAN}. Thus, a bit reference may be constructed using the index notation esféor array

ences. The leftmost bit has the index zero. An expression used as an index in a bit reference shall evaluate to a NbT-EEgRvAlter-
natively, if cetain bits of a BITSTRING are associated with an identifier (named bits) then this identifier may be usetbtthecif.

SYNTAX DEFINITION:

693 BitRef ::= Dot (Bitldentifier | "[" BitNumber "]")
694 Bitldentifier ::= Identifier
695 BitNumber ::= Expression

EXAMPLE 80 - Bit references

B_type ::= BIT STRING { ack(0), poll(3) }

This defines a BITSTRING type B_type where bit zero is called “ack” and bit three is called “poll”.
If b_str is of ASN.1 type B_type, then the following could be written:
b_str.ack := TRUE
b_str.[2] := FALSE
Note that b_str.poll := TRUE and b_str.[3] := TRUE both assign the value TRUE to the “poll” bit.
15.10.3 References for data objects defined using tables

The same syntax as defined in 15.10.2.2 shall be used to construct record references to components of ASPs, PDUs, Gl#saig®isuc
defined in tabular form. Chaining of ASPs, PDUs, CMs and Structured Types in tabular form affects record referencedfire ssmctyway
as it does for those defined in ASN.1.

Where a parameter, field or element is defined to include an item which is a true substructure of a type defined in & Bipectatde, a
reference to the item in the substructure shall consist of the record reference to the parameter, field or element faltnteddyhe iden-
tifier of the item within that Structure.

Where a Structure is used as a macro expansion, the elements in the Structure shall be referenced to as if it was eXpaiiadinte
referring to it.

If a parameter, field or element is defined to be of metaf®ypld no reference shall be made to fields of that substructure.
15.10.4 Assignments
15.10.4.1 Introduction

Test events may be associated with a list of assignments and/or a qualifier. Assignments are separated by commassaeritcthsdisir
parentheses.

SYNTAX DEFINITION:

During execution of an assignment the right-hand side shall evaluate to an element of the type of the left-hand side.

The effect of an assignment is to bind the Test Case or Test Suite Variable (or ASP parameter or PDU field) to the \@ipeesktbe. The
expression shall contain no unbound variables.

All assignments occur in the order in which they appear, that is left to right processing.

106 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

EXAMPLE 81 - use of assignments with event lines:

(X:=1)
(Y:=2)
LIA (Y:=0, X:=Y, A field1:=Y)
L?B (Y:=B.field2, X:=X+1)

When PDU A is successfully transmitted the contents of the Test Case Variables X and Y will be zero, and field1 of PDU A
will also contain zero. Upon receipt of PDU B the Test Case Variable Y would be assigned the contents of field2 from PDU
B and the Test Case Variable X would be incremented.

15.10.4.2 Assignment rules for string types
If length-restricted string types are used within an assignment the following rules apply:

a) if the destination string type is defined to be shorter than the source string, the source string is truncated da the right
maximum length of the destination string type;

b) if the source string is shorter than that allowed by the destination string type, then the source string is left-afigddeé@nd
with fill characters up to the maximum size of the destination string type.

Fill characters are:

" " (blank) for all CharacterStrings;

"0" (zero) for BITSTRINGs, HEXSTRINGs and OCTETSTRINGS.

When an unbounded€., arbitrary length) string type variable is used on the left-hand side of an assignment it shall become bound to the v
of the right-hand side without padding. Padding is only necessary when the variable is of a fixed length string type.

15.10.5 Qualifiers

An event may be qualified by placing a Boolean expression enclosed in square brackets after the event. This qualifidagitakehatib
mean that the statement is executed only if both the event matches and the qualifier evaluates to TRUE.

If both a qualifier and an assignment are associated with the same event, then the qualifier shall appear first, ametegeimitiated with
the values holding before execution of the assignment.

SYNTAX DEFINITION:

15.10.6 Event lines with assignments and qualifiers

An event may be associated with an assignment, a qualifier or both. If an event is associated with an assignment, thieisesigounteth
only if the event matches. If an event is associated with a qualifier, the event may match only if the qualifier evaRBalies|fam event is
associated with both, the event may match only if the qualifier evaluates to TRUE, and the assignment is executed vehy iftteles.

If a RECEIVE event is qualified and the event that has occurred potentially matches the specified event, then the dubéfievalbated
in the context of the event that has occurred. If the qualifier contains a reference to ASP parameters and/or PDU fieldaltie=ndf those
parameters and/or fields are taken from the event that has occurred.

The rules for use of assignments within events are as follows:
a) on a SEND event all assignments are perfomftedthe qualifier is evaluated aheforethe ASP or PDU is transmitted;
b) on SEND events assignments are allowed for the fields of the ASP or PDU being transmitted;

c) on a RECEIVE event assignments are perforaftst the event occurs and cannot be made to fields of the ASP or PDU
just received.

An assignment to a constraint ASP parameter, PDU field or structure element in the behaviour part will overwrite conmssaimtaSEND
event line.

EXAMPLE 82 - Use of a qualified SEND event:

PARTIAL_TREE
IA[X=3]
B

Processing these alternative SEND events the tester will send A only if the value of the variable X is 3. Otherwisa&iBwill sen

Delivery 9.4, 17 December 1996 107

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

The OTHERWISE event may be used together with qualifiers and/or assignments. If a qualifier is used, this Boolean bedtitreshn ad
condition for accepting any incoming event. If an assignment statement is used, the assignment will take place onlijidrad| foomdatching
the OTHERWISE are satisfied.

EXAMPLE 83 - Using OTHERWISE, qualifiers and assignments:

PARTIAL_TREE (PCO1:XSAP; PCO2:YSAP)

PCO1? A PASS
PCO2? B [X=2] INCONC
PCO1? C PASS
PCO2? OTHERWISE [X<>2] (Reason:="X not equal 2") FAIL
PCO2? OTHERWISE (Reason:="X equals 2 but event not B") FAIL

Assume that no event is received at PCO1. Receipt of event B at PCO2 when X=2 gives an inconclusive verdict. Receipt of
any other event at PCO2 when X<>2 results in a FAIL verdict and assigns a value of “X not equal 2" to the CharacterString
variable: Reason. If an event is received at PCO2 that satisfies neither of these scenarios then the final OTHERWISE will

match.
Events involving CMs occuring at CPs may also be associated with an assignment, a qualifier or both, in the same mdribeisaador
described above.

EXAMPLE 84 - CMs associated with a qualifier
A CPIA CM [X=2]

15.11 Pseudo-events

It is permitted to use assignments, qualifiers and timer operations by themselves on a statement line in a behaviooutis®y associated
event. These stand-alone expressions are called pseudo-events.

The meaning of such a pseudo-event is as follows:

a) if only a qualifier is specified: the qualifier is evaluated and execution continues with subsequent behaviour, ffi¢he quali
evaluates to TRUE; if it evaluates to FALSE the next alternative is attempted. If no alternative exists, then this sea test ca

error.

b) if only assignments and/or timer operations are specified: the assignments shall be executed from left to right and/or the
timer operations shall be executed from left to right;

c) if assignments and/or timer operations are specified preceded by a qualifier: the qualifier shall be evaluated first and the
assignments and/or timer operations shall be evaluated only if the qualifier evaluates to TRUE.

15.12 Timer management

15.12.1 Introduction

A set of operations is used to model timer management. These operations can appear in combination with events or aspseundbalone
events.

Timer operations can be applied to:
- an individual timer, which is specified by following the timer operation by the timer name;
- all timers, which is specified by omitting the timer name.

It is assumed that the timers used in a test suite are either inactive or réddinimgning timers are automatically cancelled at the end of each
Test Case. There are three predefined timer operations: START, CANCEL and READTIMER. More than one timer operation nfadbe speci
on a event line if necessary. This is indicated by separating the operations by commas.

When a timer operation appears on the same statement line as an event and/or a qualifier, the timer operation shalliherdemiied,
the event matches and/or the qualifier evaluates to TRUE.

SYNTAX DEFINITION:

15.12.2 The START operation
The START operation is used to indicate that a timer should start running.

108 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

SYNTAX DEFINITION:

The optional timer value parameter shall be used if no default duration is given, or if it is desired to assign an efirydimation) for a
timer that overrides the default value specified in the timer declarations.

Timer values shall be of type INTEGER. The test case writer shall ensure that the optional timer value parameter shadl ayadsiaiee
non-zero INTEGER. A test case error shall result if a timer is started with a zero or negative value.

Any variables occurring in the expression specifying the optional timer value shall be bound. If an unbound variablésssiagdghcase
error.

When a timer duration is overridden, the new value applies only to the current instance of the timer: any later STARE dqettsisdimer
which do not specify a duration will use the duration stated in the timer declarations part.

EXAMPLE 85 - Uses of START timer:
the Ti are timer identifiers and the| re timer values:

START TO
START TO (VO)
START T1, START T2 (V2)

The START operation may be applied to a running timer, in which case the timer is cancelled, reset and started. Anyedimrgdnttlist
for this timer shall be removed from the timeout list.

15.12.3 The CANCEL operation
The CANCEL operation is used to stop a running timer.
SYNTAX DEFINITION:

A cancelled timer becomes inactive. If a TIMEOUT event for that timer is in the timeout list, that event is removed frosotitdisit. If the
timer name on the CANCEL operation is omitted, all running timers become inactive and the timeout list is emptied.

Cancelling an inactive timer is a valid operation, although it does not have any effect.

EXAMPLE 86 - Some uses of CANCEL timer:
where the ?’are timer identifiers:

CANCEL

CANCEL TO

CANCEL T1, CANCEL T2
CANCEL T1, START T3

15.12.4 The READTIMER operation

The READTIMER operation is used to retrieve the time that has passed since the specified timer was started and to stergpe éified
Test Suite or Test Case Variable. This variable shall be of type INTEGER. The time value assigned to the variable id agdraviig the
time unit specified for the timer in its declaration. By convention, applying the READTIMER operation on an inactive timetumilthe
value zero.

Delivery 9.4, 17 December 1996 109

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

SYNTAX DEFINITION:

EXAMPLE 87 - Using READTIMER:

START TimerName (TimerVal)
?EVENT_A
+Tree_A
?EVENT_B
+Tree_B
?EVENT_C
READTIMER TimerName (CurrTime)
+Tree_C
?TIMEOUT TimerName

If EVENT_C is received prior to expiration of the timer named by TimerName, the amount of time which has passed since
starting the timer will be stored in the Test Case or Test Suite Variable CurrTime. The behaviour contained in Tree_C may use
the value of this Test Suite or Test Case Variable.

EXAMPLE 88 - READTIMER used in combination with other timer operations:
READTIMER T1 (PASSED_TIME), CANCEL T1
READTIMER T1 (V1), START NEW_TIMER (V1)
15.13 The ATTACH construct
15.13.1 Introduction
Trees may be attached to other trees by using the ATTACH construct, which has the syntax:
SYNTAX DEFINITION:

Test suite and Test Case Variables are global to both the tree that does the attachment (the main tree) and the aacheddheamges
made to variables in an attached tree also apply to the main tree. Tree attachment constructs shall appear on a skaténeensdives.

15.13.2 Scope of tree attachment

Behaviour descriptions may contain more than one tree. However, ofitgtiiee in the behaviour description is accessible from outside the
behaviour description. Any subsequent trees are considered to be Test Steps local to the behaviour description, antg:thalyratess-
sible.

It should be noted that only Test Cases are directly executable, while Test Steps are executed only if attached to @Tesa Tase Step
whose point of attachment can be traced back to a Test Case (either directly or via other attached Test Steps). TeuttGaisehabde.

Tree reference may be Test Step Identifiers or tree identifiers, where

a) a Test Step Identifier denotes the attachment of a Test Step that resides in the Test Step Library; the Test Stgis referen
by its unique identifier;

b) a tree identifier shall be the name of one of the trees in the current behaviour description; this is attachmentreéa local
15.13.3 Tree attachment basics

Given a behaviour tree, it is possible to detach parts of this tree in the form of separate behavicel; TregtisSteps. The points where a Test
Step has been cut out of the original tree are indicated by the attach symbol (+) followed by the name assigned tiephe Test S

110 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

EXAMPLE 89 - Partitioning a large tree into two smaller trees:

Second Edition Mock-Up for ETSI TC/MTS

TOP_TREE TOP_TREE STEP
A A D1
Al Al D11
D1]] _ + STEP D12
D11 is equivalent to: C and
D12 C1
C +STEP
C1
D1
D11
D12

This operation can be performed not only on the main behaviour tree of the Test Case (the root tree) but also on thel@ash8tefrom
it. The attached tree will either be a local tree or a member of the Test Step Library.

Tree attachment can be defined in a more general way than the mere re-insertion of complete Test Steps:

- An attached tree need not contain full paths down to the leaves of the tree it is attachedltnditsed. Rather, some
subsequent behaviour common to all paths of the attached tree may be specified in the calling tree, namely as beh
subsequent to the attachment line.

- Some (even top level) lines of the attached Test Step may again have the form +SOME_SUBTREE, calling for the attach
of further Test Steps.

- Attached Test Steps may be parameterized.

15.13.4 The meaning of tree attachment

15.13.4.1The following list defines the tree attachment execution semantics:
a) The attachment lineg.,+STEP) in the behaviour tree.§., TOP_TREE) is formally onee(g.,Ai) in an ordered set of
alternatives:

(Ap e A A)

7
Attaching STEP in this position means expanding the TOP_TREE by inserting the Test Step STEP’s top almlgma(ﬁlfs,

ey Bm) into this sequence, yielding a new sequence:

(Ags -+ Ay By By Aliazy = A

of alternatives. Any subsequent behaviour to the Bs will be attached together with them.
EXAMPLE 90 - Expansion of a Test Step:

b) Any behaviour subsequent to the +STEP line in the tree will become behaviour subsequent to all the leaves of the att

STEP expanded into the tree;

Delivery 9.4, 17 December 1996

TOP_TREE STEP TOP_TREE
A B1 A
Al B11 Al
+ STEP B2 _ _ B1
A3 and is equivalent to: B11
B2
A3

111

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

EXAMPLE 91 - Subsequent behaviour to an ATTACH:

TOP_TREE STEP TOP_TREE
A D1 A
+ STEP D11 D1
B D2 D11
and is equivalent to: B
D2
B

¢) When an actual parameter list is used on an ATTACH construct, then the actual parameter shall be substituted for each cor-
responding formal parameter using simple textual substitution. This substitution shall take place according to the following
scoping rules:

1) Actual parameters on the ATTACH of a local tree shall be substituted for corresponding formals only directly within that
local tree;

2) Actual parameters on the ATTACH of a root tree of a Test Step are substituted for all occurrences of the corresponding
formals within the root tree and any local trees directly within the Test Step;

3) When a parameterized tree is attached:
A) the number of the actual parameters shall be the same as the number of formal parameters;
B) each actual parameter shall evaluate to an element of its corresponding formal parameter type; and

C) formal and actual parameters of test steps shall be used in such a way that only valid TTCN is created by textual substi-
tution.

EXAMPLE 92 - Substitution of parameters:

TOP_TREE (L:NSAP; UTSAP) | __ . |STEP (PCO:TSAP; X,Y:INTEGER)
LICONreq (M:=1) PCO?CONind (X: = Y)
+ STEP(U, M, 2)

TOP_TREE (L:NSAP; U:TSAP)
LICONreq (M:=1)
U?CONind (M: = 2)

is equivalent to:

112 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

EXAMPLE 93 - Scoping rules for parameter substitution:

Test Step Dynamic Behaviour

Test Step Name : TEST_STEP_1(X, Y:INTEGER)

Group . TTCN_EXAMPLES/PARAMS/STEPS/

Objective . Toillustrate scoping rules for parameter substitution.

Default

Comments

Nr | Label Behaviour Description Constraints Ref Verdict | Comments
1 ?A Al

2 +TEST_STEP_2(X)

3 +LOCAL(5)

LOCAL(F:INTEGER)
4 B B1
5 (TC_VAR:=F+Y) PASS

Detailed Comments:
When TEST_STEPL1 is attached by a calling tree, all occurrences of the formal parameters X and Y within the entire Telstd8tgm(ihin the
local tree LOCAL) will be replaced with the actuals provided. Note that formals X and Y are not automatically substituaetlialghwithin
TEST_STEP2. However, the actual parameter value for formal X is substituted in the ATTACH construct "+TEST_STEP2(X)"It§his treu
substitution of the actual parameter value X (in TEST_STEP1) for whatever formal parameter appears in the declarationTEFEFHnSly,
note that actual parameter (constant) 5 is substituted for formal "F" when the tree LOCAL is attached. This substityilanetakdyg within thg
local tree.

15.13.5 Passing parameterized constraints
Constraints may be passed as parameters to Test Steps. If the constraint has a formal parameter list then the cdrstraissethédigether
with an actual parameter list. The actual parameters of the constraint shall already be bound at the point of attachment.

EXAMPLE 94 - Passing a parameterized constraint:

Suppose that the constraint C1 has a single formal parameter of type INTEGER. TOP_TREE attaches STEP and passes C1 as
a parameter. Note that the constraints reference in STEP is not parameterized:

TOP_TREE STEP(PAR:A_PDU)

+ STEP(C1(3)) IA_PDU PAR

15.13.6 Recursive tree attachment

As tree attachment works recursively (STEP may contain a +SOME_OTHER_TREE line) the tree expansion semantics may naver lea
tree free of attachment lines.

EXAMPLE 95 - A legal recursive tree attachment:

TOP TREE STEP TOP_TREE
A C A
+ STEP + TOP_TREE one expansion C
B D is equivalent to: + TOP_TREE
and B
D
B

A tree shall not attach itself, either directly or indirectly, at its top level of indentation.

NOTE - It is unnecessary to expand either any Test Step that will not be executed, or any alternatives beyond the cuntirareaiédr-
native from the current level has been selected.

Delivery 9.4, 17 December 1996 113

Second Edition Mock-Lp for ETSI TC/MTS

EXAMPLE 96 - An illegal recursive tree attachment:

19 December 1996, Delivgr9.4

TOP TREE STEP TOP_TREE
A C A
+ STEP D one expansion c
B + TOP_TREE is equivalent to: D
and B
+ TOP_TREE
B

15.13.7 Tree attachment and Defaults
The expansion of Defaults in a tree shall be completed before this tree is attached anywhere (see 15.18.5).
NOTE - Special care has to be taken where both tree attachment and Defaults are used in a behaviour description.

15.14 Labels and the GOTO construct
A label may be placed in the labels column on any statement line in the behaviour tree.

NOTE 1 - Whenever an entry is executed in the behaviour tree for which a label is specified, that label should be rémotedomiance
log in such a way that it can be associated with the record of the execution of that entry.

A GOTO to a label may be specified within a behaviour tree provided that the label is associated with the first of arsettivbal/tone of
which is an ancestor node of the point from which the GOTO is to be made. A GOTO shall be used only for jumps withinaneitree,
a Test Case root tree, a Test Step tree a Default tree or a local tree. As a consequence, each label used in a GOhalldmn&ituad wvithin
the same tree in which the GOTO is used. No GOTO shall be made to the first level of alternatives of local trees, TeBe&tels. or

A GOTO shall not refer to a label prior to an ACTIVATE construct which is an ancestor node of the GOTO.

A GOTO shall be specified by placing an arrow (->) or the keyword GOTO, followed by the name of the label, on a stagevh@stdinan
in the behaviour tree.

SYNTAX DEFINITION:

A label shall be unique within a tree. If a GOTO is executed, the Test Case shall proceed with the set of alternatives bgféreddbel.

GOTOs shall always be unconditional and therefore always execute.

NOTE 2 - a Boolean expression may be placed as the immediate ancestor of a GOTO to gain the effect of a conditional jump.
EXAMPLE 97 - Use of GOTO

Test Case Dynamic Behaviour

Test Case Name :GOTO_EX1
Group TTCN_EXAMPLES/GOTO_EXAMPLE1/
Purpose . Toillustrate use of labels and GOTO.
Default
Comments

Nr | Label Behaviour Description Constraints Ref Verdict | Comments

1 LA 1A Al

2 LB ?B B1

3 LB2 + B-tree

4| LC ?C c1

5| LD [B=1]

> LA

° [E=1]

7 LE IE

8 | LF ' F1 FAIL
Detailed Comments:
This example shows a jump to LA. From the same position in that tree it would also be allowed to jump to LB or LD, bunibtmuadiowed t
jump to LB2 or LF (because the set of alternatives does not contain an ancestor node of the point from which the jumpoistma@edpr LE
(because these are not the first of a set of alternatives).

114 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

15.15 The REPEAT construct

This subclause describes a mechanism to be used in behaviour descriptions for iterating a Test Step a number of tineesof tiéssynt
REPEAT construct is:

SYNTAX DEFINITION:

The tree reference shall be a reference to either a local tree or a Test Step defined in the Test Step Library. Fof éittachiesrd see
15.13. The REPEAT construct has the following meaning: first the tree, referred to by the tree reference, is executedqialdiertise
evaluated. If the qualifier evaluates to TRUE, execution of the REPEAT construct is completed. If not, the tree is exieclitddagd by
evaluation of the qualifier. This process is repeated until the qualifier evaluates to TRUE.

The REPEAT construct can always be executed and should be the last alternative of a series of TTCN statements at thef sadeatavel
tion, as allowed by 15.9.5.3 a).

NOTE 3 - The REPEAT construct is recommended, if applicable, instead of use of GOTO.
EXAMPLE 98 - Use of REPEAT (see also annex D)

Test Case Dynamic Behaviour

Test Case Name RPT_EX1

Group . TTCN_EXAMPLES/REPEAT_EXAMPLE1/
Purpose . Toillustrate use of REPEAT.
Default :
Comments
Nr | Label Behaviour Description Constraints Ref Verdict | Comments
1 (FLAG:=FALSE)
2 A Al
3 REPEAT STEP1 (FLAG) UNTIL [FLAG]
4 'D D1 PASS
STEP1 (F:BOOLEAN)
?B (F:=TRUE)
5 ?C(F:=FALSE) Bl
6 C1

Detailed Comments:
This example describes a test that is capable of receiving an arbitrary number of C events at the lower tester PCQyaited thessage B
received.

[

15.16 The Constraints Reference
15.16.1 Purpose of the Constraints Reference column

This column allows references to be made to a specific constraint placed on an ASP, PDU or CM. Such constraints artheefomstt&ints

part (see clause 12, 13 and 14). The constraints reference shall be present in conjunction with SEND, IMPLICIT SEND and RECEIV
constraints reference is optional if an ASP or CM has no parameters or if a PDU has no fields. It shall not be presewtheéthayof
TTCN statement.

The entry Constraints Reference column may be an actual constraint reference, the AnyValue symbol (“?”), or a formalyzvaenattual
parameter shall be a constraint reference or the AnyValue symbol. If AnyValue is used in place of a constraint referaaee"donéacare”
constraint, equivalent to a constraint with AnyOrNone (“*") in every parameter, field or element.

An actual constraint reference has the syntax:
SYNTAX DEFINITION:

Delivery 9.4, 17 December 1996 115

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

EXAMPLE 99 - A constraint reference without a parameter list:

N_SAP? CR_PDU CR1

15.16.2 Passing parameters in Constraint References
A constraint reference may have an optional parameter list to allow the manipulation of specific constraint values frawvidhe toedb.
The actual parameter list shall fulfil the following:

a) the number of actual parameters shall be the same as the number of formal parameters; and

b) each actual parameter shall evaluate to either a value of its corresponding formal type or a matching symbol that can match
a value of that formal type.

If a constraint is passed as an actual parameter, and that constraint is declared with a formal parameter list, thamthehatirsdso have a
(possibly nested) actual parameter list. All variables appearing in the parameter list shall be bound when the constraihais wbound
variable is used then this is a test case error.

EXAMPLE 100 - A constraints reference with a parameter list:

N_SAP? N_DATAreq D1(P1, CR1(P2))

Where D1 is a constraint on N_DATAreq with two parameters (actual parameters P1 and CR1), and CR1 is a constraint with
one parameter (actual parameter P2).

15.16.3 Constraints and qualifiers and assignments

If an event is qualified and also has a constraints reference, this shall be interpreted as: the event matches if, laoith timdydfjalifieand
the constraint hold.

If an event is followed by an assignment and has a constraints reference and/or a qualifier, then this shall be intehgretesigasnent is
performed if, and only if, the event occurs according to the definition given above.
15.17 Verdicts
15.17.1 Introduction
Entries in the verdict column in Dynamic Behaviour tables shall be either
- a preliminary result, which shall be given in parentheses;
- or an explicit final verdict.
An entry, of either type, shall not occur on an empty line, or on the following TTCN statements:
a) an ATTACH construct;
b) a REPEAT construct;
¢) a GOTO;
d) an IMPLICIT SEND
SYNTAX DEFINITION:

NOTE - During Test Case execution, whenever an entry in a behaviour tree occurs for which there is a corresponding\erifictrctiiamn
of the abstract Test Case, that verdict column information is intended to be recorded in the conformance log in suchitasassticated
with the record of that entry in the behaviour tree.

15.17.2 Preliminary results

A predefined variable called R, of the predefined type R_TYPE, is available to each Test Case to store any intermedia¢seeslises are
predefined identifiers and as such are case sensitive.

R may be used wherever other Test Case Variables may be used, except that it shall not be used on the left-hand gidmenhastassinent.
Thus, it is a read-only variable, except for the changes to its value caused by entries in the verdict column (as spegified bel

If a preliminary result is to be specified in the verdict column it shall be one of the following:

a) (P) or (PASS) meaning that some aspect of the test purpose has been achieved;

116 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

b) (I) or INCONC), meaning that something has occurred which makes the Test Case inconclusive for some aspect o

test purpose;

c) (F) or(FAIL) , meaning that a protocol error has occurred or that some aspect of the test purpose has resulted in failu

NOTE 1 - PASS or P, FAIL or F and INCONC or | are keywords that are used in the verdicts column only. The predefined mestifier

fail, inconcandnoneare values that represent the possible contents of the predefined variable R. These predefined identifiers are to be

for testing the variable R in behaviour lines only.

Whenever a preliminary result is recorded, because the corresponding entry in the behaviour tree is executed, thentthe padefivfed
Test Case Variable R shall be changed according to the following table:

Table 6 - Calculation of the variable R

Current Entry in verdict column

value of R | (PASS) (INCONC) (FAIL)
none pass inconc fall
pass pass inconc fail
inconc inconc inconc fail
fail fail fail fail

NOTE 2 - Thus, the order of precedence (lowehigher) is: N, P, I, F. Even if R has valiad it can be useful to record a preliminary result
of P or | in order to record in the conformance log that a P or | is appropriate for some aspect of the test purposes fieshattthis will
not change the value of R.

15.17.3 Final verdict
If an explicit final verdict is to be specified in the verdict column, it shall be one of the following:
a) P or PASS meaning that a pass verdict is to be recorded;
b) I orINCONC, meaning that an inconclusive verdict is to be recorded;
c) F orFAIL , meaning that a fail verdict is to be recorded;
d) the predefined variable R, meaning that the value of R is to be taken as the final verdict, unless the valuenefrR is
which case a test case error is recorded instead of a final verdict.

Table 7 - Calculation of the final verdict R

Current Entry in verdict column

value of R | PASS INCONC FAIL R

none pass inconc fail *error*
pass pass inconc fall pass
inconc *error* inconc fall inconc
fail *error* *error* fail fall

Whenever, during execution of a Test Case, an explicit final verdict is specified, then this terminates the Test CasdiaRoe eaithd SO/
IEC 9646-2, an explicit final verdict should be specified only if the Test Case has returned to a suitable stable tegtipgtistaigie testing
state).

NOTE 1 - The termination of the Test Case caused by the specification of an explicit final verdict is necessary, for fetkengpéddyé state
is reached in an attached Test Step when subsequent behaviour is specified in the calling tree.

If the leaf of the behaviour tree is reached without an explicit final verdict being specified, then the final verdighisetts for case d)
above {.e.,as if R had been put in the verdict column).

If an explicit final verdict other than R is to be recorded, then that verdict shall be compared with the value in R tedetetnér or not
they are consistent. If R fail then a final verdict ocPASSor INCONC shall be regarded as inconsistent; if Rie@ncthen a final verdict of
PASSshall be regarded as inconsistent. If there is one of these inconsistencies, then it is a test case error.

NOTE 2 - In such a case, "Test Case Error" should be recorded in the conformance log.

Delivery 9.4, 17 December 1996 117

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

15.17.4 Verdicts and OTHERWISE

An OTHERWISE statement shall not lead to a PASS verdict. It should lead to a FAIL verdict, because the OTHERWISE coulthralidh an
test event.

15.17.5 Verdict assignment in concurrent TTCN

In concurrent TTCN, the final verdictis assigned by the MTC, either explicitly in the verdict column or implicitly as a enoeegfuMTC
termination. Preliminary test results are maintained in the global result variable, which is accessible to the MTC easthedeistble R. The
global result variable is updated whenever a preliminary result or verdict is recorded in the verdict column by a matclethWAlg kne.
If the MTC terminates without assigning an explicit verdict, then the verdict shall be determined as if R had been péacedliottbolumn
(15.17.3 d)).

In addition, each PTC shall record at least one preliminary result. This preliminary result is maintained in its localiedge]jtwhich is acces-
sible to the PTC as its test case variable R. When a preliminary result is assigned by a PTC, by any entry in the verdi€aoolatched

PTC behaviour line (whether or not the entry is in parentheses), both its local result variable and the global resu@terapdaked using the
algorithm specified in 15.17.2. In a PTC, an entry in the verdict column without parentheses around it is not a findduestadt,cause

termination of the PTC if that behaviour line matches.

Termination of the MTC before termination of all PTCs shall result in a test case error.

When the MTC uses the R variable in a Boolean expression or an assignment, it accesses the global result variable. W8emnthePRC u
variable in a Boolean expression or an assignment, it accesses its local result variable. The MTC may also accesstaduizdileestilts

own by using the predefined test case variable MTC_R rather than R. MTC_R is of predefined type R_TYPE. MTC_R is updatzciwhenev
preliminary result is recorded in the verdict column by a matched MTC behaviour line, but is unaffected by the prelimitzaoy RISDs.

The MTC_R variable shall not be used in the verdict column.

The value of a PTC's local result variable can be communicated to another Test Component only via CMs. The value of theaWdiC’s |
global result variables can be communicated to a PTC only via CMs.

15.18 The meaning of Defaults

15.18.1 Introduction

In many cases Default behaviour will be used to emphasize a set of interesting paths through a test by declaring tbstileg<anenon
alternatives (+ their subsequent behaviour) as Default behaviour.

The same effect, though less concisely, would be achieved by Test Step attaeigneBXFAULT) as an additional general last alternative.
As opposed to tree attachment, Default behaviour expands into many points of the tree it is associated with. This pdpeagaaful use
of Defaults.

EXAMPLE 101 - Identifying a Default tree:

TOP_TREE TOP_TREE TOP_TREE
A A Default: COMMON
Al Al A
All All Al
C + COMMON All
D A2 A2
A2 + COMMON B
C B B1
D B1
B + COMMON
B1 + COMMON COMMON
C C
D D
C COMMON
D C
D
1: the complete set of al- 2: explicit tree attach- 3: Default achieves the
ternatives. ment. same as 2.

No Default behaviour shall be specified to a Default behayi@ura Default may not have Default behaviour itself. Tree attachments shall not
be used in Default behaviour trees,, Default behaviour trees shall not attach Test Steps. Test Cases or Test Steps shall not be referred to as
Defaults.

118 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

For the execution of a Test Case it is not necessary to expand Defaults everywhere in all the trees referring to thebe $eéndaom an
operational description of the meaning of Defaults: in attempting to match a sequence of alternatives (which may neatteepgaiajedach
time they all failed to match, the first level of alternatives of the Default behaviour are attempted as well. If nonevadtiheseeither, the
sequence is retried with the new states of timers and queues at all PCOs concerned. If there is a match in the Defaulttptteaielr is
pursued at that point.

To ensure that no subsequent behaviour will occur following the execution of a Default behaviour, the execution of ®&atibfteee,
other than a RETURN statement, shall cause the termination of the test case. In order to accomplish this terminatiom ines Defary
leaf which has no verdict or preliminary result in the verdict column is implicitly provided with a verdict column entry ahdRsvery leaf
which has a preliminary result in the verdict column has that preliminary result implicitly transformed into a final verdict.

15.18.2 Default References
Test Case and Test Step behaviours reference a list of Default behaviours in the Default Library through the Defaliedatrieingader.
SYNTAX DEFINITION:
Each reference in this list locates a Default by its unique identifier. The Defaultldentifier shall be a reference todebeéaliih the Default
Library.
Defaults can be parameterized. The actual parameter list shall fulfil the following:

a) the number of actual parameters shall be the same as the number of formal parameters;

b) each actual parameter shall evaluate to an element of its corresponsding formal type; and

c) all variables appearing in the parameter list shall be bound when the constraint is invoked.

EXAMPLE 102 - Default reference:

102.1
Test Case Dynamic Behaviour
Test Case Name :DEF_EX1
Group : TTCN_EXAMPLES/DEFAULT_EXAMPLE1/
Purpose : Toillustrate the use of Defaults.
Default : DEF1 (L)
Comments . The tree of example ** can be split into this Test Case with the Default behaviour DEF1.
Nr | Label Behaviour Description Constraints Ref Verdict | Comments
1 L! CONNECTrequest CR1 Request ...
2 L? CONNECTconfirm cc1 ... Confirm
3 L! DATArequest DTR1 Send Data
4 L? DATAindication DTI1 Receive Data
5 L! DISCONNECTrequest DSC1 PASS | Accept
102.2
Default Dynamic Behaviour
Default Name . DEF1(X:XSAP)
Group : TTCN_EXAMPLES/DEFAULTS_LIB/DEFAULT_1/
Objective . lllustration of a simple Default.
Comments
Nr | Label Behaviour Description Constraints Ref Verdict | Comments
1 X?DISCONNECTindication DSC2 INCONC Premature

NOTE - Syntactically, the Default behaviour of the second of the two tables in the above example attaches X?DISCONNE@Eadinatio
alternative to each of the L! and L? statements in the first table. However, attachment of the Default tree as an altamitiseatement
that always succeeds is meaningless.

Delivery 9.4, 17 December 1996 119

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

15.18.3 The RETURN statement

The RETURN statement is an extension of the Default behaviour description capabilities. A RETURN statement shall onlyd®efadti
tree. It shall have the syntax:

When the Default expansion of a tree is performed, execution of a RETURN statement will cause processing to continsteattethative
in the set of alternatives that caused the Default behaviour to be attempted.

15.18.4 The ACTIVATE statement

The ACTIVATE statement allows the activation of one set of Default behaviours. Instead of being implicitly active for itve cfutta test
case, defaults may be activated selectively by the ACTIVATE statement. Default behaviour thus activated is attempteerimtivbiotdit

is specified by the ACTIVATE, e.g., ACTIVATE (Def_1, Def_2) will cause Def_1 to be executed before Def_2 when default bé&haviour
needed.

The default behaviour specified in an ACTIVATE statement overrides any active default behaviour, including default bekaifiedris@a
test case or test step header.

An ACTIVATE with an empty default reference list, i.e. ACTIVATE(), deactivates all default behaviour.
15.18.5 Defaults and tree attachment

Whenever tree attachment is used it is important to have a clear understanding of how Defaults apply both to the cadlitggthre@tiached
Test Step. In order to avoid hidden side-effects the Defaults that apply within an attached Test Step are defined focodittbsethe table

that defines that Test Step. Thus, if the Test Step is defined in the Test Step Library, then the Defaults that apgigdiia bpader of the

Test Step behaviour table. Alternatively, if the Test Step is defined locally in the same behaviour table as the cHibmgiresame Defaults
apply to both the calling tree and the attached Test Step.

In order to avoid multiple insertions of Defaults within a set of alternatives, the Default specified for a particulantrtegpghty to the top
level of alternatives of that tree unless the tree is the root tree of a Test Case.

In order to generate a correct expansion of a tree it is necessary to expand the Defaults both
a) before the tree is expanded as an attached tree; and
b) before any of the tree’s attached Test Steps are expanded.

The expansion of Defaults is thus local to a single tree and comprises the attachment of the Default tree to the boytsst of elternatives
within the tree (except the top set of alternatives for any tree other than the root tree of a Test Case).

Default expansion rules hold equally in the case where a set of alternatives contains an OTHERWISE event.
EXAMPLE 103 - Locality of a Default against a Test Step:

TOP_TREE STEP TOP_TREE
A B A
+ STEP C B
D E Cc
D
E
STEP D
Default: STEP_DEF
B
C
STEP_DEF
E
1: TOP_TREE attaches 2: STEP_DEF expanded 3: STEP expanded into
STEP, which has the De- into STEP TOP_TREE

fault STEP_DEF

120 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

EXAMPLE 104 - Locality of a Default against a calling tree:

TOP_TREE
Default: TOP_DEF
A

+ STEP

TOP_DEF
E

STEP
B
C

1: TOP_TREE attaches

TOP_TREE
A
+ STEP
E
E

2: TOP_DEF expanded into

TOP_TREE
A
B
C

3: STEP expanded into

STEP. TOP_TREE has the TOP_TREE TOP_TREE
Default TOP_DEF
EXAMPLE 105 - A case of cyclic tree attachment:
STEP_1 STEP_1 STEP_1 NOTE - such o
Default: DEF_1 A A are discouraged
A + STEP_2 C
+ STEP_2 B A
B E1 +STEP 2
B
DEF_1 STEP 2 E1
El C D
+STEP_1 E2
STEP_2 D B
Default: DEF_2 E2 El
C
+STEP_1
D
DEF 2
E2

1: STEP_1 and STEP_2 attach each oth- . DEF_1 expanded into
er. STEP_1 has Default DEF_1. STEP_2 STEP_1 and DEF_2 ex-

has Default DEF_2. panded into STEP_2

3: After one expansion of the Default-free
STEP_2 and one expansion of the De-
fault-free STEP_1

15.18.6 Tree Attachment, Defaults, Activate and Return

If the ACTIVATE operation is used within a test case, the semantics of defaults and tree attachment can only be desciitzdly dgtieemn
than statically. Indeed, the operational semantics of defaults in Annex B are specified in terms of dynamic tree expdas@mta@ntme.

In this dynamic semantic model, the specification of a list of defaults in the header is equivalent to prefixing the eteawitliian ACTI-
VATE of that list of default trees. In a test step, placing a default list in the header is equivalent to placing an ACTMATIESbof default
trees between each alternative in the first level of alternatives and its subsequent behaviour. If a test step is attabhechwihiefaults
specified in the header, then the implied ACTIVATE operations have no parameters and hence deactivate all defaults.

Since behaviour subsequent to a tree attachment takes its defaults from the context of the calling tree rather thastatagheddeattach-
ment implies the insertion of an ACTIVATE after every non-terminating leaf node (i.e., one which does not assign a vestioty tihe
defaults to those of the context in which the attachment was made. In the case of the leaf node being a RETURN, thisTIATES BS
to come before the RETURN to ensure that it takes effect before jumping back into the outer context.

The effect of a combination of defaults and tree attachment is illustrated by the example test case shown in Example 106.

Delivery 9.4, 17 December 1996 121

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

EXAMPLE 106 - Example test case X-Defl to illustrate the meaning of defaults

Test Case Dynamic Test Step Dynamic Test Step Dynamic
Behaviour Behaviour Behaviour
Test Step Name X-Defl Test Step Name T1 Test Step Name T2
Group : Group : Group :
Purpose : Objective : Objective
Default :D1, D2 Default :D3, D4 Default
L | Behaviour ooty L | Behaviour oty L | Behaviour ol
Description Description Description
X A D
+T1 B E
Y C F
z
+T2

This example test case is equivalent to the one shown in Example 107, in which the list of defaults in the test caseltessdeased by
an ACTIVATE of the same list of defaults as the first TTCN statement of the behaviour tree.

EXAMPLE 107 - Alternative specification of example test case X-Defl using ACTIVATE

Test Case Dynamic Behaviour

Test Step Name X-Defl
Group :
Purpose

Default

L Behaviour Cref |V
Description

ACTIVATE(D1,D2)
X
+T1
Y
A
+T2

The processing of an ACTIVATE sets the current default context. Progression to the next level of alternatives attacbésléfieulistrees
in the current default context to the next level of alternatives.

Thus, the evaluation of the example test case shown in Example 107 could progress as illustrated in Figure 8. Firstly ARE(@®QTD2)
statement is evaluated to set the default context to D1 and D2. Then, assuming that X matches, D1 and D2 are attacdhedetahefsa
alternatives as T1. When T1 is then expanded, ACTIVATE(D3,D4) is inserted after the first level of alternatives of tepf et SCTI-
VATE(D1,D2) is inserted after the two leaf nodes in order to restore the default context before the subsequent behargaahey, i8Bssum-
ing that A then matches, the defaults D1 and D2 are attached redundantly at the same level of alternatives as the AC3 ¢ AEEatisie
the current default context is always appended to the next level of alternatives, indiscriminately, even if the nexttéametigba consists
of a construct or pseudo-event which always matches. When the new ACTIVATE statement is evaluated, the default contedttestbladng

applicable to test step T1. Then if B matches, the evaluation progresses to the ACTIVATE which restores the default kdotivett zqpli-
cable to the root tree.

122 Delivery 9.4, 17 December 1996

19 December

1996 Delivery 9.4

Second Edition Mock-Up for ETSI TC/MTS

X +T1
+T1 Y
Y +D1
z D2
+T2 X matches
+D1
+D2
Default Context = D1, D2 Default Context = D1, D2
A ACTIVATE(D3,D4)
ACTIVATE(D3,D4) B
B ACTIVATE(D1,D2)
ACTIVATE(D1,D2) Y
Y C
L .
C ACTIVATE(D1,D2)
A matches
Expand +T1 ACTIVATE(D1,D2) Y
Y +D1
+D1 +D2
+D2
Default Context = D1, D2 Default Context = D1, D2
B ACTIVATE(D1,D2)
ACTIVATE(D1,D2) Y
P
Y +D3
c B matches +D4
ACgVATE(Dl‘Dz) Default Context = D3, D4
+D3
—®+D4 Evaluate
Evaluate ACTIVATE]
ACTIVATE
Default Context = D3, D4 Y
+D1
+D2

Delivery 9.4, 17

Figure 8 - Possible progression of evaluation of example test case X-Defl

December 1996

Default Context = D1, D2

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Example 108 gives another example test case, this one mixing defaults specified in headers with an explicit ACTIVATE atdtément
attachment.

EXAMPLE 108 - Example test case X-Def2 to illustrate the meaning of defaults and ACTIVATE

Test Case Dynamic Behaviour Test Step I_Dynamlc
Behaviour
Test Step Name X-Def2 Test Step Name T
Group ' Group :
Purpose : Objective :
Default :D1 Default :D3
L| o Behaviour oy |y || | Behaviowr gy
Description Description
X Y
ACTIVATE(D2) Z
+T
S
+T
S

The progression of the evaluation of this test case is illustrated in Figure 9. This shows the progression of the evaligititirettwo main
paths of the test case, showing that the default context applicable to the first S is determined by the ACTIVATE, whefaak tomixt
applicable to the second S is determined by the defaults specified in the test case header; neither of these defacittbentestattments
is affected by the preceding tree attachments.

Figure 9 begins by showing the effect of expanding the attachment of T at the first level of alternatives plus the apfeniiigiodefaults.

If X matches, the evaluation progresses via the ACTIVATE(D2) to the second occurrence of the attachment of T, with thentefault
changed to D2 and the attachment of D2 appended at the same level of alternatives as T. T is then expanded, rememtdhfieguminse
ACTIVATE statement to set the test step default context and then restore the root tree default context. These chanfsgtiodheedeare
then shown in the next two stages of the evaluation, assuming that first Y matches and then Z. The result is S witlivenohtieeraitach-
ment of D2 being evaluated in default context D2.

The alternative path shown in Figure 9 starts with Y matching instead of X. This causes the progression into default cohtneupadn if
Z matches the default context is restored to be D1. Thus, what is reached down this path of the progression is S vativarobttemttach-
ment of D1 being evaluated in default context D1.

124 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

X
ACTIVATE(D2)
+T
S +T
Y S
ACTIVATE(D3) .7
Z X matches
ACTIVATE(D1) and evaluate _
S ACTIVATE Default Context = D2
+D1
Expand T
Default Context = D1
Y matches Y
and evaluate ACTIVATE(D3)
ACTIVATE 4
ACTIVATE(D2)
S
+D2
Z
ACTIVATE(D1) Default Context = D2
S Y matches
and evaluate
Default Context = D3 ACTIVATE
Z
ACTIVATE(D2)
Z matches S
and evaluate —
ACTIVATE Default Context = D3
Z matches
and evaluate
ACTIVATE
Y
S S
+D1 +Db2
Default Context = D1 Default Context = D2

Figure 9 - Possible progression of evaluation of example test case X-Def2

The progression of evaluation of example test cases in Figure 8 and Figure 9 has not shown the expansion of the défathlerrées.
default tree is expanded, it is found that the default tree or any associated local tree contains a RETURN constrgaty#iénide a label
being placed at the head of the current set of alternatives with every RETURN construct being replaced by an ACTIVATE& he desftult
context of the calling tree, followed by a GOTO construct to go to that new label.

All leaf nodes, other than RETURN, of a default behaviour tree in which all local subtrees have been attached have n¢ Bebaeiquen
and so they shall either set a verdict or result in a test case error.

Delivery 9.4, 17 December 1996 125

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

To illustrate this, the example test case given in Example 109 will be used.

EXAMPLE 109 - Example test case X-Def3 to illustrate the meaning of defaults and RETURN

Test Case Dynamic Behaviour Default Dynamic Behaviour
Test Step Name X-Def3 Default Name D1
Group : Test Step Name
Purpose : Obijective
Default :D1
L Behaypur Cref | V L Behay|o_ur Cref | V
Description Description
X C
Y P D
RETURN
E
F

The progression of the evaluation of this example test case is illustrated in Figure 10. Firstly, the default tree Dedisitatit@ctirst level of alter-
natives of the root tree. D1 is then expanded. Since D1 contains a RETURN statement, this is a fairly complex expanpievemhatthe level
of alternatives at which the attachment occurs is labelled with a unique label, L. Since the attached tree is a defainteitsabaefault context is
empty because defaults do not have their own defaults, and therefore an ACTIVATE with no arguments is inserted aftevéheffatternatives
of the attached tree. In addition the RETURN statement is replaced by an ACTIVATE to restore the default context to Rilafahewext level
by GOTO L. Now, when this expanded tree is evaluated, if C matches, it progresses to the ACTIVATE() statement togethedwitddheattach-
ment of the default context, D1. The effect of evaluating the ACTIVATE() is to empty the default context. Then, if D nreech@3|VATE(D1)
is evaluated to restore the default context to D1. This leads to the GOTO statement together with another redundantéittiaettefntt context
D1. The evaluation of the GOTO then returns the processing to the state in which the label L was added. Evaluation witbayrdi@uwound this
loop until either X, followed by Y, matches for a pass, or C, followed by E, matches for a fail.

126 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

X
Y
+D1
Default Context = D1
Expand D1, inserting ACTIVATE()
and replacing RETURN with a
label, ACTIVATE(D1) and a GOTO
L: X
Y
C
ACTIVATE() GOTOL
D |t +D1
ACTIVATE(D1)] Execute GOTO B
GOTO L (i.e. Return to L) | Default Context = D1
E
Evaluate
Default Context = D1 ACTIVATE
ACTIVATE(D1)
GOTO L
C matches
Default Context = empty
ACTIVATE() T D matches
D
ACTIVATE(D1) D
GOTO L ACTIVATE(D1)
E | GOTO L
+D1 Evaluate E
Default Context = D1 ACTIVATE Default Context = empty

Figure 10 - Possible progression of evaluation of example test case X-Def3

15.18.7 Defaults and CREATE

Default behaviour is not inherited by test steps which are used in a CREATE operation, i.e. test steps which executédhenidstigption
in parallel with the MTC. Thus, the scope of Default behaviour in concurrent TTCN is always local to the MTC or a PTC.

In instances when a test step is used in a CREATE operation, the Default behaviour specified in the test step heaglishiadit bleesfirst
level of indentation. This use of Defaults is consistent with the application of Defaults in test cases.

15.18.8 Defaults and CMs

Default behaviour is applied to a set of alternatives which receive only CMs. This may cause PDUs which arrive priorabthecexatcuted
CM, or PDUs which are already in the PCO queue but not yet received, to be removed from the PCO queue. To prevent tfi€@dsval o
from the PCO queue, the NO_DEFAULTS construct (see ...) shall be specified as the eventimmediatelly preceding theattes altéch
receive only the CM(s).

Delivery 9.4, 17 December 1996 127

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

16 Page continuation

16.1 Page continuation of TTCN tables
When any TTCN table is too long to fit on a single page the following mechanism shall be used:
a) the words “Continued on next page” shall be priafégf the table line where the split occurs;
b) the words “Continued from previous page” shall be prib&fdrethe continued table on the next page.

Tables may be split at any locatiae,, in their header, body, or footer section. In all cases, the sections.titiedlumn headers), shall be repeated
on the next page. The complete header may or may not be repeated.

EXAMPLE 110 - A continued Test Suite Parameters table:

Test Suite Parameter Declarations
Parameter Name Type PICS/PIXIT Ref Comments
PAR1 INTEGER PICS question aa
PAR2 BOOLEAN PICS question bb
PAR3 IA5String PIXIT question cc
Continued on next page page n
Continued from previous page page n+1
Test Suite Parameter Declarations
Parameter Name Type PICS/PIXIT Ref Comments
PAR4 BOOLEAN PICS question dd
PARS5 HEXSTRING PICS question ee

16.2 Page continuation of dynamic behaviour tables
When it is necessary to continue a dynamic behaviour table, then either of the following two mechanisms can be used:

a) modularization,
where some part of the behaviour of the tree is specified as a library (non-local) Test Step, thereby modularizing thediiee and
ing the amount of behaviour for the current proforma to that which will fit on a single page, or

b) page continuation mechanism,
where, in the case of a dynamic behaviour table, in order to aid alignment of indentation levels, the following additimatibimfo
shall be presented:
1) the level of indentation (enclosed in square brackets) of the last TTCN statement before the page split occurs, shdll be
before the words "Continued on next page".
2) on the continued page, the level of indentation (enclosed in square brackets) of the first TTCN statement in the afaletinued
shall be printed after the words "Continued from previous page".

It may be necessary in the case of lengthy Test Cases to indent to a different level than the stated one. In suchteddes¢he sta
of indentation enclosed in square brackets will be aligned with the chosen indentation of the first statement line inubd cont
table. To further aid alignment of indentation levels, additional indications of indentation levels may also be given.

128 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

Annex A
(normative)

Syntax and static semantics of TTCN

A.1l Introduction

This annex defines the syntax and the static semantics of TTCN. There are two forms of TTCN, a graphical form (TTCN.G&)hanel a m
processable form (TTCN.MP). For the human user the graphical form of TTCN, the TTCN.GR, takes advantage of an easily visdatstood
interpretation. However, TTCN.GR does not readily lend itself to machine processing. The TTCN.MP addresses this probless tired ser

following purposes:

a) to provide a formal syntax for TTCN in BNF;

b) to act as a transfer syntax;

c) to ease automated derivation of ETSs from ATSs;

d) other machine processing.
NOTE - Automated derivation of ETSs is outside the scope of this part of ISO/IEC 9646.
This annex also defines the static semantics for both TTCN.GR and TTCN.MP.

A.2 Conventions for the syntax description

A.2.1 Syntactic metanotation

Table 1 defines the metanotation used to specify the extended form of BNF grammar for TTCN (henceforth called BNF):

Table A.1 - The TTCN.MP Syntactic Metanotation

= is defined to be

abc xyz abc followed by xyz

| alternative

[abc] 0 or 1 instances of abc
{abc} 0 or more instances of abc
{abc}+ 1 or more instances of abc
(..) textual grouping

abc the non-terminal symbol abc
abc a terminal symbol abc

"abc" a terminal symbol abc

In the metanotation, concatenation binds more tightly than the alternative operator. Hence “abc def | ghi jkI” is equifadderdef) | (ghi

ki),

A.2.2 TTCN.MP syntax definitions

A.2.2.1 Complete tables defined in TTCN.GR are represented in TTCN.MP by productions of the kind:
$Begin_KEYWORD..... $End_KEYWORD

EXAMPLE A.1 -TS_PARdcls ::=$Begin_TS_PARdcITS_PARdcl}+ $End_TS_ PARdcls
Normally, these productions contain at least one mandatory component.

A.2.2.2 Both sets of lines of a table and individual lines.(sets of fields in a table) are represented by productions of the kind:

SKEYWORD coes e e $End_KEYWORD

Begin does not appear in the opening keyword.

Delivery 9.4, 17 December 1996

129

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

EXAMPLE A.2 - TS_PARdcl ::=33TS_PARdcITS_PARIid TS_PARtype PICS_PIXIT [Commefignd_TS_PARdcl
A.2.2.3 Individual fields in a line are represented by:
SKEYWORDo covt e vt e

There is no closing keyword.
EXAMPLE A.3 - TS_Parlid ::=$TS_Parld TS_Parldentifier
EXAMPLE A.4 - TS_Parlidentifier ::= Identifier
A.2.2.4 Sets of tables, up to and including the test suite, are represented by productions of the kind:
$KEYWORD eee oo S$End_KEYWORD

EXAMPLE A5 - ASP_TypeDefs ::8ASP_TypeDefdTTCN_ASP_TypeDefs] [ASN1_ASP_TypeDefffnd_ASP_TypeDefs
A.2.2.5 All other productions defining non-terminal symbols have no keywords at the beginning or the end of the right-hand expres
EXAMPLE A.6 - Timerldentifier ::= Identifier

A.2.2.6 When parsing TTCN.MP, any symbol not allowed within an identifier may denote the end of an identifier. In those case
which it is necessary to insert a meaningless character at the end of an identifier in order to separate it from arfagher idstiord
(e.g. when an identifier is followed by a keyword sucB¥sr OR) then the recommended separators are space and tab characters

130 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

A.3 The TTCN.MP syntax productions in BNF

A.3.1 TTCN Specification
| 1 TTCN_Specification ::= TTCN_Module | Suite

A.3.2 TTCN Module

2 TTCN_Module ::=$TTCN_Module TTCN_Moduleld TTCN_ModuleOverviewPart [TTCN_ModulelmportPart] [DeclarationsPart]
[ConstraintsPart] [DynamicPa$End_TTCN_Module
3 TTCN_Moduleld ::$TTCN_Moduleld TTCN_Moduleldentifier

4 TTCN_Moduleldentifier ::= Identifier

A.3.2.1 TTCN Module Overview Part

5 TTCN_ModuleOverviewPart ::$TTCN_ModuleOverviewPart TTCN_ModuleExports [TTCN_ModuleStructure]
[TestCaselndex] [TestStepindex] [Defaultind&&nd_TTCN_ModuleOverviewPart

A.3.2.1.1 TTCN Module Exports

6 TTCN_ModuleExports ::$Begin_TTCN_ModuleExportsTTCN_Moduleld [TTCN_ModuleRef] [TTCN_ModuleObjective]
[StandardsRef] [PICSref] [PIXITref] [TestMethods] [Comment] ExportedObjects [Comi$Ent]_TTCN_ModuleExports
TTCN_ModuleRef ::=TTCN_ModuleRef BoundedFreeText
TTCN_ModuleObijective ::$TTCN_ModuleObjective BoundedFreeText
ExportedObijects ::8ExportedObjects{ExportedObject}$End_ExportedObjects

10 ExportedObject ::$ExportedObject Objectld ObjectType [Sourcelnfo] [Commefs&nd_ExportedObject

11 Objectld ::=$Objectld Objectldentifier

12 Objectldentifier ::= Identifier | ObjectTypeReference

13 ObjectTypeReference ::= Identifier "[* Identifier "]"

/* STATIC SEMANTICS - The first Identifier is a NamedNumber or an Enumeration and the Identifier contained in bracke@netbh&the
corresponding type. */

14 ObjectType ::$0bjectType TTCN_ObjectType

15 TTCN_ObjectType ::=8impleType_Object| StructType_Object| ASN1_Type_Object] TS_Op_Object| TS_Proc_Object|
TS_Par_Object| SelectExpr_Object| TS_Const_Objec] TS_Var_Object| TC_Var_Object |PCO_Type_Object| PCO_Object
| CP_Object| Timer_Object | TComp_Object| TCompConfig_Object| TTCN_ASP_Type_Object| ASN1_ASP_Type_Object
| TTCN_PDU_Type_Object| ASN1_PDU_Type_Objec{ TTCN_CM_Type_Object | ASN1_CM_Type_Obiject|
EncodingRule_Object| EncodingVariation_Object | InvalidFieldEncoding_Obiject | Alias_Obiject |
StructTypeConstraint_Object | ASN1_TypeConstraint_Object| TTCN_ASP_Constraint_Object]|
ASN1_ASP_Constraint_Objec) TTCN_PDU_constraint_Object| ASN1_PDU_Constraint_Object|

TTCN_CM_Constraint_Object | ASN1_CM_Constraint_Object| TestCase_Object TestStep Object | Default_Object |
NamedNumber_Object| Enumeration_Object

16 Sourcelnfo ::3$Sourcelnfo(Sourceldentifier | ObjectDirective)
/* STATIC SEMANTICS - The Sourceldentifier is the name of the original source asj¢iee-source-package. */
17 Sourceldentifier ::= Suiteldentifier | TTCN_Moduleldentifier
18 ObjectDirective ::= OmitEXTERNAL
A.3.2.1.2 TTCN Module Structure

19 TTCN_ModuleStructure ::$Begin_TTCN_ModuleStructure {Structure&Objective}+ [Comment]
$End_TTCN_ModuleStructure

A.3.2.2 TTCN Module Import Part

20 TTCN_ModulelmportPart ::$TTCN_ModulelmportPart [ExternalObjects] [ImportDeclarations]
$End_TTCN_ModulelmportPart

Delivery 9.4, 17 December 1996 131

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

A.3.2.2.1 External Objects
21 ExternalObjects ::$Begin_ExternalObjects[ExternalGroupld] {ExternalObject}+ [Commer§End_ExternalObjects
22 ExternalGroupld ::$ExternalGroupld ExternalGroupldentifier
23 ExternalObject ::$ExternalObject ExternalObjectld ObjectType [CommefEnd_ExternalObject
24 ExternalObjectld ::$ExternalObjectld ExternalObjectldentifier
25 ExternalObjectldentifier ::= Objectldentifier | TS_Opld&ParList | Consld&ParList | TestStepld&ParList

A.3.2.2.2 Import Declarations
26 ImportDeclarations ::8ImportDeclarations {Imports}+ $End_ImportDeclarations
27 Imports ::=$Begin_Imports Sourceld [SourceRef] [StandardsRef] [Comment] ImportedObjects [Comgtamd] Imports
28 Sourceld ::=$Sourceld Sourceldentifier
29 SourceRef ::$SourceRefBoundedFreeText
30 ImportedObjects ::8ImportedObjects {ImportedObject}+$End_ImportedObjects
31 ImportedObject ::$ImportedObject Objectld ObjectType [Sourcelnfo] [Commefgnd_ImportedObject

A.3.3 Test suite

32 Suite ::=$Suite Suiteld SuiteOverviewPart [ImportPart] DeclarationsPart ConstraintsPart Dynan$ERdrtSuite
/* STATIC SEMANTICS - Suiteld shall be the same as the Suiteld declared in TestSuiteStructure table (Suite Structure). */

33 Suiteld ::=$Suiteld Suiteldentifier
34 Suiteldentifier ::= Identifier

A.3.3.1 The Test Suite Overview
35 SuiteOverviewPart::$SuiteOverviewPart[TestSuitelndex] SuiteStructure TestCaselndex [TestStepindex] [Defaultindex]
| [TestSuiteExportspEnd_SuiteOverviewPart
A.3.3.2 Test Suite Index
36 TestSuitelndex ::$Begin_TestSuiteIndeXObjectinfo} [Comment]$End_TestSuitelndex

A.3.3.2.1 The Imported Object Info
37 Objectinfo ::=$Objectinfo Objectld ObjectType Sourceld OrigObjectld [PageNum] [Commatid_Objectinfo
38 PageNum ::$PageNumPageNumber
39 PageNumber ::= Number
40 OrigObjectld ::=$0rigObjectld Objectldentifier

A.3.3.3 Test Suite Structure

41 SuiteStructure ::$Begin_SuiteStructureSuiteld StandardsRef PICSref PIXITref TestMethods [Comment] Structure&Objectives
[Comment]$End_SuiteStructure

42 StandardsRef ::$StandardsRefBoundedFreeText

43 PICSref ::=$PICSref BoundedFreeText

44 PIXITref ::=$PIXITref BoundedFreeText

45 TestMethods ::$TestMethodsBoundedFreeText

46 Comment ::5$Comment[BoundedFreeText]

47 Structure&Objectives ::$Structure&Objectives {Structure&Objective}$End_Structure&Objectives

48 Structure&Obijective ::$Structure&Objective TestGroupRef SelExprld Objecti®&nd_Structure&Objective
49 SelExprld ::$SelectExprld [SelectExprldentifier]

A.3.3.4 Test Case Index

50 TestCaselndex :$Begin_TestCaselndeX[CollComment] Caselndex}+ [Commer$End_TestCaselndex
/* NOTE - Collective comments may be used in this table according to Figure 2. */

132 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

51 CollComment ::5$CollComment [BoundedFreeText]

52 Caselndex ::$CaselndexTestGroupRef TestCaseld SelExprld Descripfiend_Caselndex
/* STATIC SEMANTICS - Test Cases shall be listed in the order that they exist in the dynamic part. */
/* STATIC SEMANTICS - An explicit TestGroupReference shall be provided for the first TestCase of each TestGroup. */
/* STATIC SEMANTICS - An explicit TestGroupReference shall be provided for each TestCase that immediately follows a TeétGroup.

53 Description ::=$Description BoundedFreeText

A.3.3.5 Test Step Index

54 TestStepindex ::$Begin_TestSteplndeX[CollComment] Steplndex} [Commen$lEnd_TestStepIindex
/* NOTE - Collective comments may be used in this table according to Figure 2. */

55 Stepindex ::$StepindexTestStepRef TestStepld Descriptikiind_Steplndex
/* STATIC SEMANTICS - TestStepld shall not include a formal parameter list. */
/* STATIC SEMANTICS - Test Steps shall be listed in the order that they exist in the dynamic part. */
/* STATIC SEMANTICS - An explicit TestStepGroupReference shall be provided for the first TestStep of each TestStepGroup. */
/* STATIC SEMANTICS - An explicit TestStepGroupReference shall be provided for each TestStep that immediately follows gGrestSty

A.3.3.6 Default Index

56 Defaultindex ::=$Begin_Defaultindex{[CollComment] Deflndex} [CommentpEnd_Defaultindex
/* NOTE - Collective comments may be used in this table according to Figure 2. */

57 Deflndex ::=$Deflndex DefaultRef Defaultld DescriptiohEnd_Deflndex
/* STATIC SEMANTICS - Defaultld shall not include a formal parameter list. */
[* STATIC SEMANTICS - Defaults shall be listed in the order that they exist in the dynamic part. */
/* STATIC SEMANTICS - An explicit DefaultGroupReference shall be provided for the first Default of each DefaultGroup. */
[* STATIC SEMANTICS - An explicit DefaultGroupReference shall be provided for eachDefault that immediately follows a DefgultGro

A.3.3.7 Test Suite Exports
58 TestSuiteExports::$Begin_TestSuiteExportEExportedObjects [CommerSEnd_TestSuiteExports

A.3.3.8 The Import Part
59 ImportPart ::=$ImportPart ImportDeclaration$End_ImportPart

A.3.3.9 The Declarations Part
60 DeclarationsPart ::$DeclarationsPart Definitions Parameterization&Selection Declarations ComplexDefinitions
$End_DeclarationsPart

A.3.3.10 Definitions

A.3.3.10.1 General
61 Definitions ::= [TS_TypeDefs] [EncodingDefs] [TS_OpDefs] [TS_ProcDefs]

A.3.3.10.2 Test Suite Type Definitions

| 62 TS_TypeDefs ::$TS_TypeDefdSimpleTypeDefsOrGroup] [StructTypeDefs] [ASN1_TypeDefs] [ASN1_TypeRefsOrGroup]
$ENnd_TS_TypeDefs

A.3.3.10.3 Simple Type Definitions
63 SimpleTypeDefsOrGroup ::= SimpleTypeDefs | SimpleTypeGroup
64 SimpleTypeGroup ::$SimpleTypeGroup SimpleTypeGroupld {SimpleTypeDefsOrGroup$End_SimpleTypeGroup
65 SimpleTypeGroupld ::$SimpleTypeGroupld SimpleTypeGroupldentifier

66 SimpleTypeDefs ::$Begin_SimpleTypeDef§Simple TypeGroupRef] {{CollComment] SimpleTypeDef}+ [Comment]
$End_SimpleTypeDefs
/* NOTE - Collective comments may be used in this table according to Figure 2. */

67 SimpleTypeGroupRef ::$SimpleTypeGroupRefSimpleTypeGroupReference
68 SimpleTypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {SimpleTypeGroupldentifier “/"}

Delivery 9.4, 17 December 1996 133

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

69
70
71
72
73

74

75

76

7
78

79

80
81
82
83

SimpleTypeGroupldentifier ::= Identifier

SimpleTypeDef ::$SimpleTypeDefSimpleTypeld SimpleTypeDefinition [PDU_FieldEncoding] [Comm@&fihd_SimpleTypeDef
SimpleTypeld ::=$SimpleTypeld SimpleTypeldentifier

SimpleTypeldentifier ::= Identifier

SimpleTypeDefinition ::$SimpleTypeDefinition Type&Restriction

/* STATIC SEMANTICS - There shall be no recursive references (neither directly nor indirectly) in Type&Restriction. */

Type&Restriction ::= Type [Restriction]

[* STATIC SEMANTICS - Type shall be either PredefinedType or SimpleType. */

Restriction ::= LengthRestriction | IntegerRange | SimpleValueList

/* STATIC SEMANTICS - The set of values defined by Restriction shall be a true subset of the values of the base type. */

LengthRestriction ::= SingleTypeLength | RangeTypeLength

/* STATIC SEMANTICS - LengthRestriction shall be provided only when the base type is a string type (i.e., BITSTRING, HEXSORMNEI STRING
or CharacterString) or derived from a string type. */

SingleTypeLength ::= "[* Number "]"
RangeTypelLength ::="[" LowerTypeBound To UpperTypeBound "T"

[* STATIC SEMANTICS - LowerTypeBound shall be a non-negative number. */
[* STATIC SEMANTICS - LowerTypeBound shall be less than UpperTypeBound. */

IntegerRange ::= "(" LowerTypeBound To UpperTypeBound ")"
[* STATIC SEMANTICS - LowerTypeBound shall be less than UpperTypeBound. */

LowerTypeBound ::= [Minus] Number | MinUSFINITY

UpperTypeBound ::= [Minus] NumbeNFINITY

To:=TO|"."

SimpleValueList ::="(" [Minus] LiteralValue {Comma [Minus] LiteralValue} ")"

/* STATIC SEMANTICS - If Minus is used in SimpleValueList then LiteralValue shall be a number. */
[* STATIC SEMANTICS - The LiteralValues shall be of the base type and shall be a true subset of the values defined byplee Yase

A.3.3.10.4 Structured Type Definitions

84
85
86
87
88

89
90
91

92
93
94
95
96
97
98
99

StructTypeDefs ::$StructTypeDefs{StructTypeDefOrGroupH$End_StructTypeDefs
StructTypeDefOrGroup ::= StructTypeDef | StructTypeGroup

StructTypeGroup ::$StructTypeGroup StructTypeGroupld {StructTypeDefOrGroup$End_StructTypeGroup
StructTypeGroupld ::$StructTypeGroupld StructTypeGroupldentifier

StructTypeDef ::$Begin_StructTypeDefStructld [StructTypeGroupRef] [EncVariationld] [Comment] ElemDcls [Comment]
$End_StructTypeDef

Structld ::=$Structld Structld&Fullld
Structld&Fullld ::= Structldentifier [Fullldentifier]

Fullldentifier ::= "(" BoundedFreeText ")"

/* STATIC SEMANTICS - Some TTCN objects allow names, as given in the appropriate protocol standard to be abbreviatedelfiaioatbb used then
Fullldentifier shall be given in the declaration of the object. */

Structldentifier ::= Identifier

StructTypeGroupRef ::$StructTypeGroupRef StructTypeGroupReference

StructTypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/”] {StructTypeGroupldentifier “/"}
StructTypeGroupldentifier ::= Identifier

ElemDcls ::=$ElemDcls{ElemDcl}+ $End_ElemDcls

ElemDcl ::= $ElemDclElemid ElemType [PDU_FieldEncoding] [Comme$ignd_ElemDcl

Elemld ::=$Elemld ElemId&Fullld

Elemld&Fullld ::= Elemldentifier [Fullldentifier]

100 Elemldentifier ::= Identifier

134

Delivery 9.4, 17 December 1996

101

A.3.3.
102
103
104
105
106

107
108
109
110
111
112
113
114

115

116

A.3.3.
117
118

119

120

121
122
123

124

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

ElemType ::=$ElemType Type&Attributes
/* STATIC SEMANTICS - There shall be no recursive references (neither directly nor indirectly) in Type&Attributes. */
/* STATIC SEMANTICS - A structure element Type shall be a PredefinedType, TS_Typeldentifier, PDU_Identifier, or PDU. */

10.5 ASN.1 Type Definitions
ASN1_TypeDefs ::$ASN1_TypeDef{ASN1_TypeDefOrGroup}+$End_ASN1_TypeDefs
ASN1_TypeDefOrGroup ::= ASN1_TypeDef | ASN1_TypeGroup
ASN1_TypeGroup ::$ASN1_TypeGroupASN1_TypeGroupld {ASN1_TypeDefOrGroupBEnd_ASN1_TypeGroup
ASN1_TypeGroupld ::$3ASN1_TypeGroupld ASN1_TypeGroupldentifier

ASN1_TypeDef ::$Begin_ASN1_TypeDeASN1 Typeld [ASN1_TypeGroupRef] [EncVariationld] [Comment]
ASN1_TypeDefinition [Comment$End_ASN1_TypeDef

ASN1_Typeld ::3ASN1_Typeld ASN1_Typeld&Fullld

ASN1_Typeld&Fullld ::= ASN1_Typeldentifier [Fullldentifier]

ASN1_Typeldentifier ::= Identifier

ASN1_TypeGroupRef :$ASN1_TypeGroupRefASN1_TypeGroupReference

ASN1_TypeGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {ASN1_TypeGroupldentifier “/"}
ASN1_TypeGroupldentifier ::= Identifier

ASN1_TypeDefinition ::$ASN1_TypeDefinition ASN1_Type&LocalType$SEnd_ASN1_TypeDefinition

ASN1_Type&LocalTypes ::= ASN1_Type {ASN1_LocalType}

[* STATIC SEMANTICS - Types referred to from the ASN1_Type definition shall be defined in other ASN.1 type definition &bletnéd by
reference in the ASN.1 type reference table or be defined locallyASN1_LocalTypes) in the same table, following the first type definition. */

/* STATIC SEMANTICS - ASN1_LocalTypes shall not be used in other parts of the test suite. */
ASN1_Type ::Type

/* REFERENCE - Where Type is a non-terminal defined in ISO/IEC 8824: 1990.
For the purposes of TTCN, the production in ISO/IEC 8824: 1990 which states:
Type ::= BuiltinType | DefinedType | Subtype
is redefined to be
Type ::= (BuiltinType | DefinedType | Subtype) [ASN1_Encoding]
This means that ASN1_Encoding can be applied to the whole of an ASN1_Type or any ASN.1 Type within the ASN1_Type. */

/* STATIC SEMANTICS - Each terminal type reference used within the Type production shall be one of the following: ASN1_leocalTyp
typereference, TS_Typeldentifier or PDU_ldentifier. */

/* STATIC SEMANTICS - ASN.1 type definitions used within TTCN shall not use external type references as defined in ISO/IHG®B824
ASN1_LocalType ::Fypeassignment

/* REFERENCE - Where Typeassignment is a non-terminal defined in ISO/IEC 8824: 1990. */
/* STATIC SEMANTICS - ASN.1 type definitions used within TTCN shall not use external type references as defined in ISO/IEQX®B24

10.6 ASN.1 Type Definitions by Reference

ASN1_TypeRefsOrGroup ::= ASN1_TypeRefs | ASN1_TypeRefsGroup

ASN1_TypeRefsGroup :$3ASN1_TypeRefsGroupASN1_TypeRefsGroupld {ASN1_TypeRefsOrGroup}+
$End_ASN1_TypeRefsGroup

ASN1_TypeRefsGroupld :$3ASN1_TypeRefsGroupldASN1_TypeGroupldentifier

ASN1_TypeRefs ::$Begin_ASN1_TypeRef$ASN1_TypeRefsGroupRef] {{CollComment] ASN1_TypeRef}+ [Comment]
$ENd_ASN1_TypeRefs

/* NOTE - Collective comments may be used in this table according to Figure 2. */
ASN1_TypeRefsGroupRef :3ASN1_TypeRefsGroupRefASN1_TypeGroupReference
ASN1_TypeGroupldentifier ::= Identifier

ASN1_TypeRef ::$ASN1_TypeRefASN1_Typeld ASN1_TypeReference ASN1_Moduleld [EncVariationld] [Comment]
$End_ASN1_TypeRef

/* STATIC SEMANTICS - ASN1_Typeld shall not be specified with a Fullldentifier. */
ASN1_TypeReference :$3ASN1_TypeReferencdypeReference

Delivery 9.4, 17 December 1996 135

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

125

126
127

TypeReference=typereference

/* REFERENCE - Where typereference is a non-terminal defined in ISO/IEC 8824:1990. */
ASN1_Moduleld ::=$ASN1_Moduleld ASN1_Moduleldentifier
ASN1_Moduleldentifier = Moduleldentifier

/* REFERENCE - Where Moduleldentifier is a non-terminal defined in ISO/IEC 8824: 1990. */
/* STATIC SEMANTICS - Moduleldentifier shall be unique within the domain of interest. */

A.3.3.10.7 Test Suite Operation Definitions

128
129
130
131
132

133
134

135
136
137
138
139

140

TS _OpDefs ::$TS_OpDefs{TS_OpDefOrGroup+$End_TS_OpDefs

TS_OpDefOrGroup ::= TS_OpDef | TS_OpDefGroup

TS_OpDefGroup ::$TS_OpDefGroupTS_OpDefGroupld {TS_OpDefOrGroup$End_TS_OpDefGroup
TS_OpDefGroupld ::8TS_OpDefGroupld TS_OpDefGroupldentifier

TS_OpDef ::$Begin_TS_OpDefTS_Opld [TS_OpGroupRef] TS_OpResult [Comment] TS_OpDescription [Comment]
$End_TS_OpDef

TS_Opld ::=$TS_Opld TS_Opld&ParList

TS_Opld&ParList ::= TS_Opldentifier [FormalParList]

/* STATIC SEMANTICS - A Test Suite Operation formal parameter Type shall be a PredefinedType, TS_Typeldentifier, PDU_tateh8keridentifier,
or the meta-typ®DU*/

TS_Opldentifier ::= Identifier

TS_OpGroupRef ::$TS_OpGroupRefTS_OpGroupReference

TS_OpGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {TS_OpGroupldentifier “/"}
TS_OpGroupldentifier ::= Identifier

TS_OpResult ::$TS_OpResultTypeOrPDU

/* STATIC SEMANTICS - TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_ldentifier or ASP_ldentifier, or the mB@uyp/
TS_OpDescription ::$TS_OpDescriptionBoundedFreeText

A.3.3.10.8 Test Suite Operation Procedural Definitions

141
142
143
144
145

146
147

148
149
150
151
152

153
154

136

TS_ProcDefs ::$TS_ProcDef{TS_ProcDefOrGroup}+$End_TS_ProcDefs

TS_ProcDefOrGroup ::= TS_ProcDef | TS_ProcDefGroup

TS_ProcDefGroup ::$TS_ProcDefGroupTS_ProcDefGroupld {TS_ProcDefOrGroup$tnd_TS_ProcDefGroup
TS_ProcDefGroupld ::$TS_ProcDefGroupld TS_ProcDefGroupldentifier

TS_ProcDef ::$Begin_TS_ProcDefTS_Procld [TS_ProcGroupRef] TS_ProcResult [Comment] TS_ProcDescription [Comment]
$End_TS_ProcDef

/* LEXICAL REQUIREMENT - Comments may be embedded within TS_ProcDescription by enclosing them within "/*" and "*/" but rbeyasted. They
may be carried within TTCN.MP but shall be removed before parsing the TTCN.MP. */

TS_Procld ::3TS_ProcldTS_Procld&ParList

TS_Procld&ParList ::= TS_Procldentifier [FormalParList]

/* STATIC SEMANTICS - A procedural Test Suite Operation formal parameter Type shall be a PredefinedType, TS_Typeldentifiderfifis or
ASP_Identifier, or the meta-tygeDU*/

TS_Procldentifier ::= Identifier

TS_ProcGroupRef :$TS_ProcGroupRefTS_ProcGroupReference

TS_ProcGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {TS_ProcGroupldentifier “/"}
TS_ProcGroupldentifier ::= Identifier

TS_ProcResult ::$TS_ProcResultTypeOrPDU
/* STATIC SEMANTICS - TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_ldentifier or ASP_ldentifier, or the mB@uyp/

TS_ProcDescription :$TS_ProcDescriptionTS_OpProcDe$End_TS_ProcDescription

TS_OpProcDef ::= [VarBlock] ProcStatement
/* NOTE - Comments are allowed within TS_OpProcDef, starting with “/*” and ending with “*/", but it is assumed that thesntoamnremoved before

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

the syntax is parsed. Hence the BNF does not include the syntax of such embedded comments. */
155 VarBlock ::=VAR VarDcIsENDVAR
156 VarDcls ::={VarDcl SemiColon}
157 VarDcl ::= BTATIC] Varldentifiers Colon TypeOrPDU [Colon Value]
158 Varldentifiers ::= Varldentifier {Comma Varldentifier}
159 Varldentifier ::= Identifier
160 ProcStatement ::= ReturnValueStatement | Assignment | IfStatement | WhileLoop | CaseStatement | ProcBlock
161 ReturnValueStatement RETURNVALUE Expression
162 IfStatement ::# ExpressioTHEN {ProcStatement SemiColon}ELSE {ProcStatement SemiColon}§NDIF
163 WhileLoop ::2WHILE ExpressiorDO {ProcStatement SemiColon}ENDWHILE
164 CaseStatement :GASE ExpressiorOF {CaseClause SemiColon}ELSE {ProcStatement SemiColon}-§NDCASE
165 CaseClause ::= IntegerLabel Colon ProcStatement
166 IntegerLabel ::= Number | TS_Parldentifier | TS_Constldentifier
167 ProcBlock ::=BEGIN {ProcStatement SemiColonJEND

A.3.3.11 Parameterization and Selection

A.3.3.11.1 General
| 168 Parameterization&Selection ::= [TS_ParDclsOrGroup] [SelectExprDefsOrGroup]

A.3.3.11.2 Test Suite Parameter Declarations
169 TS_ParDclsOrGroup ::= TS_ParDcls | TS_ParDclsGroup
170 TS_ParDclsGroup :$TS_ParDclsGroupTS_ParDclsGroupld {TS_ParDclsOrGrougdEnd_TS_ParDclsGroup
171 TS_ParDclsGroupld :$TS_ParDclsGroupld TS_ParDclsGroupldentifier

172 TS_ParDcls ::$Begin_TS_ParDcldTS_ParGroupRef] {{CollComment] TS_ParDcl}+ [Comme$Bnd_TS_ParDcls
/* NOTE - Collective comments may be used in this table according to Figure 2. */

173 TS_ParGroupRef :$TS_ParGroupRefTS_ParGroupReference

174 TS_ParGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/”] {TS_ParGroupldentifier “/"}
175 TS_ParGroupldentifier ::= Identifier

176 TS_ParDcl ::3TS_ParDclTS_Parld TS_ParType PICS_PIXITref [Comme$Ehd_TS_ParDcl

177 TS_Parld ::3TS_Parld TS_Parldentifier

178 TS_Parldentifier ::= Identifier

179 TS_ParType ::$TS_ParTypeTypeOrPDU
/* STATIC SEMANTICS - TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_ldentifier or ASP_ldentifier, or the mB@uyp/

180 PICS_PIXITref ::=$PICS_PIXITref BoundedFreeText

A.3.3.11.3 Test Case Selection Expression Definitions
181 SelectExprDefsOrGroup ::= SelectExprDefs | SelectExprDefsGroup

182 SelectExprDefsGroup :$SelectExprDefsGroupSelectExprDefsGroupld {SelectExprDefsOrGroup}+
$End_SelectExprDefsGroup

183 SelectExprDefsGroupld :$SelectExprDefsGroupldSelectExprDefsGroupldentifier

184 SelectExprDefs ::$Begin_SelectExprDef§SelectExprGroupRef] {{CollComment] SelectExprDef}+ [Comment]
$ENnd_SelectExprDefs

/* NOTE - Collective comments may be used in this table according to Figure 2. */
185 SelectExprGroupRef :$SelectExprGroupRefSelectExprGroupReference
186 SelectExprGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/”] {SelectExprGroupldentifier “/"}
187 SelectExprGroupldentifier ::= Identifier

Delivery 9.4, 17 December 1996 137

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

188
189
190
191
192

SelectExprDef ::$SelectExprDefSelectExprid SelectExpr [CommeSnd_SelectExprDef
SelectExprld ::$SelectExprld SelectExpridentifier

SelectExprldentifier ::= Identifier

SelectExpr ::$SelectExprSelectionExpression

SelectionExpression ::= Expression

/* STATIC SEMANTICS - SelectionExpression shall only contain LiteralValues, TS_Parldentifiers, TS_Constldentifiers and (B&decitifiers*/

/* OPERATIONAL SEMANTICS - SelectionExpression shall evaluate to a specific BOOLEAN value. */

/* STATIC SEMANTICS - Expression shall not recursively refer (neither directly nor indirectly) to the SelExpridentifier &gl dby that Expression. */

A.3.3.12 Declarations

A.3.3.12.1 General

193

Declarations ::= [TS_ConstDclsOrGroup] [TS_ConstRefsOrGroup] [TS_VarDclsOrGroup] [TC_VarDclsOrGroup]
[PCO_TypeDclsOrGroup] [PCO_DclsOrGroup] [CP_DclsOrGroup] [TimerDclsOrGroup] [TCompDclsOrGroup TCompConfigDcls]

[* STATIC SEMANTICS - PCOs shall be optional */

A.3.3.12.2 Test Suite Constant Declarations

194
195
196
197

198
199
200
201
202
203
204

205
206

TS_ConstDclsOrGroup ::= TS_ConstDcls | TS_ConstDclsGroup
TS_ConstDclsGroup :$TS_ConstDclsGroupTS_ConstDclsGroupld {TS_ConstDclsOrGrougEnd_TS_ConstDclsGroup
TS_ConstDclsGroupld :$TS_ConstDclsGroupldTS_ConstDclsGroupldentifier

TS_ConstDcls ::8Begin_TS_ConstDcl§TS_ConstGroupRef] {{CollComment] TS_ConstDcl}+ [CommeBEnd_TS_ConstDcls
/* NOTE - Collective comments may be used in this table according to Figure 2. */

TS_ConstGroupRef :$TS_ConstGroupRefTS_ConstGroupReference

TS_ConstGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {TS_ConstGroupldentifier “/"}
TS_ConstGroupldentifier ::= Identifier

TS_ConstDcl ::3TS_ConstDcITS_Constld TS_ConstType TS_ConstValue [Comntifatld_TS_ConstDcl
TS_Constld ::$TS_Constld TS_Constldentifier

TS_Constldentifier ::= Identifier

TS_ConstType ::$TS_ConstTypeType
/* STATIC SEMANTICS - Type shall be a PredefinedType, TS_Typeldentifier, PDU_ldentifier or ASP_Identifier. */

TS_ConstValue ::$TS_ConstValueDeclarationValue

DeclarationValue ::= Expression

[* STATIC SEMANTICS - DeclarationValue shall only contain LiteralValues, TS_Parldentifiers and TS_Constldentifiers andsopedabdperations
applying to such constant values. */

/* OPERATIONAL SEMANTICS - DeclarationValue shall evaluate to an element of its declared type. */

A.3.3.12.3 Test Suite Constant Declarations by Reference

207
208
209
210

211
212
213
214

138

TS_ConstRefsOrGroup ::= TS_ConstRefs | TS_ConstRefsGroup

TS_ConstRefsGroup :$S_ConstRefsGroupTS_ConstRefsGroupld {TS_ConstRefsOrGrougEnd_TS_ConstRefsGroup
TS_ConstRefsGroupld :$TS_ConstRefsGroupldTS_ConstRefsGroupldentifier

TS_ConstRefs ::$Begin_TS_ConstRef§TS_ConstRefsGroupRef] {{CollComment] TS_ConstRef}+ [Comm8&ghd_TS_ConstRefs
/* NOTE - Collective comments may be used in this table according to Figure 2. */

TS_ConstRefsGroupRef $3S_ConstRefsGroupRefTS_ConstGroupReference

TS_ConstRef ::$TS_ConstRefTS_Constld TS_ConstType ASN1_ValueReference ASN1_Moduleld [Com#itemd] TS ConstRef
ASN1_ValueReference :$ASN1_ValueReferencd/alueReference

ValueReference :waluereference

/* REFERENCE +valuereference is a non-terminal defined in ISO/IEC 8824:1990. */

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

A.3.3.12.4 Test Suite Variable Declarations
215 TS_VarDclsOrGroup ::= TS_VarDcls | TS_VarDclsGroup
216 TS_VarDclsGroup ::8TS_VarDclsGroup TS_VarDclsGroupld {TS_VarDclsOrGroup$End_TS_VarDclsGroup
217 TS_VarDclsGroupld ::$TS_VarDclsGroupld TS_VarDclsGroupldentifier

218 TS_VarDcls ::%Begin_TS_VarDcls[TS_VarGroupRef] {{CollComment] TS_VarDcl}+ [Commer8End_TS_VarDcls
/* NOTE - Collective comments may be used in this table according to Figure 2. */

219 TS_VarGroupRef ::$TS_VarGroupRef TS_VarGroupReference

220 TS_VarGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {TS_VarGroupldentifier “/"}
221 TS_VarGroupldentifier ::= Identifier

222 TS_VarDcl ::=TS_VarDcl TS_Varld TS_VarType TS_VarValue [Comme$Bnd_TS_VarDcl

223 TS_Varld ::=$TS_Varld TS_Varldentifier

224 TS_Varldentifier ::= Identifier

225 TS_VarType ::$TS_VarType TypeOrPDU
[* STATIC SEMANTICS - TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_Identifier or ASP_ldentifier, or the mB@atygy

226 TS_VarValue ::$TS_VarValue [DeclarationValue]

A.3.3.12.5 Test Case Variable Declarations
227 TC_VarDclsOrGroup ::= TC_VarDcls | TC_VarDclsGroup
228 TC_VarDclsGroup ::$TC_VarDclsGroup TC_VarDclsGroupld {TC_VarDclsOrGroup}$End_TC_VarDclsGroup
229 TC_VarDclsGroupld ::$TC_VarDclsGroupld TC_VarDclsGroupldentifier

230 TC_VarDcls ::%Begin_TC_VarDcls[TC_VarGroupRef] {{CollComment] TC_VarDcl}+ [CommerEnd_TC_VarDcls
/* NOTE - Collective comments may be used in this table according to Figure 2. */

231 TC_VarGroupRef ::$TC_VarGroupRef TC_VarGroupReference

232 TC_VarGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {TC_VarGroupldentifier “/"}
233 TC_VarGroupldentifier ::= Identifier

234 TC_VarDcl ::=$TC_VarDcl TC_Varld TC_VarType TC_VarValue [Comme®tEnd_TC_VarDcl

235 TC_Varld ::=$TC_Varld TC_Varldentifier

236 TC_Varldentifier ::= Identifier

237 TC_VarType ::$TC_VarType TypeOrPDU
/* STATIC SEMANTICS - TypeOrPDU shall be a PredefinedType, TS_Typeldentifier, PDU_Identifier or ASP_ldentifier, or the mB@uyp/

238 TC_VarValue ::3TC_VarValue [DeclarationValue]

A.3.3.12.6 PCO Type Declaration
239 PCO_TypeDclsOrGroup ::= PCO_TypeDcls | PCO_TypeDclsGroup

240 PCO_TypeDclsGroup :3PCO_TypeDclsGroupPCO_TypeDclsGroupld {PCO_TypeDclsOrGroup}+
$End_PCO_TypeDclsGroup

241 PCO_TypeDclsGroupld :$PCO_TypeDclsGroupldPCO_TypeDclsGroupldentifier

242 PCO_TypeDcls ::$Begin_PCO_TypeDcl§PCO_TypeGroupRef] {PCO_TypeDcl}+ [CommefEnd_PCO_TypeDcls
243 PCO_TypeGroupRef :$PCO_TypeGroupRefPCO_GroupReference

244 PCO_TypeDcl ::$PCO_TypeDclPCO_Typeld P_Role [Comme#End_PCO_TypeDcl

245 PCO_Typeld ::$PCO_Typeld PCO_Typeldentifier

246 PCO_Typeldentifier ::= Identifier

A.3.3.12.7 PCO Declarations
247 PCO_DclsOrGroup ::= PCO_Dcls | PCO_DclsGroup
248 PCO_DclsGroup ::$PCO_DclsGroupPCO_DclsGroupld {PCO_DclsOrGrouplEnd_PCO_DclsGroup

Delivery 9.4, 17 December 1996 139

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

249 PCO_DclsGroupld ::$PCO_DclsGroupld PCO_DclsGroupldentifier

250 PCO_Dcls ::%Begin_PCO_DcldPCO_GroupRef] {{CollComment] PCO_Dcl}+ [CommeEnd_PCO_Dcls
/* NOTE - Collective comments may be used in this table according to Figure 2. */
/* STATIC SEMANTICS - In accordance with ISO/IEC 9646-1 the number of PCOs shall relate to the test method used. */

251 PCO_GroupRef ::3PCO_GroupRefPCO_GroupReference

252 PCO_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {PCO_Groupldentifier “/"}
253 PCO_Groupldentifier ::= Identifier

254 PCO_Dcl ::=$PCO_DcIPCO_ld PCO_Typeld&MuxValue P_Role [CommepiEnd_PCO_Dcl

255 PCO_ld ::%PCOQO_ld PCO_ldentifier

256 PCO_ldentifier ::= Identifier

257 PCO_Typeld&MuxValue ::$PCO_Typeld PCO_Typeldentifier ['(" MuxValue ")"]

258 MuxValue ::= TS_Parldentifier

259 P_Role ::%$PCO_RolePCO_Role

260 PCO_Role:=UT |LT

A.3.3.12.8 CP Declarations
261 CP_DclsOrGroup ::= CP_Dcls | CP_DclsGroup
262 CP_DclsGroup ::$CP_DclsGroupCP_DclsGroupld {CP_DclsOrGroup$End_CP_DclsGroup
263 CP_DclsGroupld ::$CP_DclsGroupld CP_DclsGroupldentifier

264 CP_Dcls ::%$Begin_CP_DclJCP_GroupRef] {{CollComment] CP_Dcl}+ [Commer8End_CP_Dcls
/* NOTE - Collective comments may be used in this table according to Figure 2. */

265 CP_GroupRef ::8CP_GroupRefCP_GroupReference

266 CP_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {CP_Groupldentifier “/"}
267 CP_Groupldentifier ::= Identifier

268 CP_Dcl ::=$CP_DcICP_Id [Comment$End_CP_Dcl

269 CP_Id ::=$CP_ld CP_lIdentifier

270 CP_lIdentifier ::= Identifier

A.3.3.12.9 Timer Declarations
271 TimerDclsOrGroup ::= TimerDcls | TimerDclsGroup
272 TimerDclsGroup ::$TimerDclsGroup TimerDclsGroupld {TimerDclsOrGroup}$End_TimerDclsGroup
273 TimerDclsGroupld ::$TimerDclsGroupld TimerDclsGroupldentifier

274 TimerDcls ::=$Begin_TimerDcls[TimerGroupRef] {{CollComment] TimerDcl}+ [Commen#End_TimerDcls
/* NOTE - Collective comments may be used in this table according to Figure 2. */

275 TimerGroupRef ::$TimerGroupRef TimerGroupReference

276 TimerGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {TimerGroupldentifier “/"}
277 TimerGroupldentifier ::= Identifier

278 TimerDcl ::=$TimerDcl Timerld Duration Unit [Commen§End_TimerDcl

279 Timerld ::=$Timerld Timerldentifier

280 Timerldentifier ::= Identifier

281 Duration ::=$Duration [DeclarationValue]
/* OPERATIONAL SEMANTICS - DeclarationValue shall evaluate to a non-zero positive INTEGER. */

282 Unit ::=$Unit TimeUnit

283 TimeUnit ::=ps|ns|us|ms|s|min
[* STATIC SEMANTICS - If a timer is derived from the PICS/PIXIT then the timer declaration shall specify the same uniRBIGSIREXIT entry. */

140 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

A.3.3.12.10 Test Component Declarations

284
285
286
287

288
289
290
201
292
293
294
295
296
297
298
299

TCompDclsOrGroup ::= TCompDcls | TCompDclsGroup
TCompDclsGroup ::$TCompDclsGroup TCompDclsGroupld {TCompDclsOrGroup$End_TCompDclsGroup
TCompDclsGroupld ::$TCompDclsGroupld TCompDclsGroupldentifier

TCompDcls ::=$Begin_TCompDcls[TCompGroupRef] {{CollComment] TCompDcl}+ [Commer8End_TCompDcls
/* NOTE - Collective comments may be used in this table according to Figure 2. */

TCompGroupRef ::$TCompGroupRef TCompGroupReference

TCompGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {TCompGroupldentifier “/"}
TCompGroupldentifier ::= Identifier

TCompDcl ::=3TCompDcl TCompld C_Role NumOf_PCOs NumOf_CPs [Commé&giid_TCompDcl
TCompld ::=$TCompld TCompldentifier

TCompldentifier::= Identifier

C_Role ::=$TCompRoleTCompRole

TCompRole:= MTC |PTC

NumOf_PCOs ::$NumOf_PCOsNum_PCOs

Num_PCOs ::= Number

NumOf_CPs ::$NumOf_CPsNum_CPs

Num_CPs ::= Number

A.3.3.12.11 Test Component Configuration Declarations

300
301
302

303
304

305
306
307
308
309
310

311
312
313
314

315
316

TCompConfigDcls ::$TCompConfigDcls{TCompConfigDclOrGroupH$End_TCompConfigDcls
TCompConfigDclOrGroup ::= TCompConfigDcl | TCompConfigDclGroup

TCompConfigDclGroup ::$TCompConfigDclGroup TCompConfigDclGroupld {TCompConfigDclOrGroup}+
$End_TCompConfigDclGroup

TCompConfigDclGroupld ::$TCompConfigDclGroupld TCompConfigDclGroupldentifier

TCompConfigDcl ::=$Begin_TCompConfigDclTCompConfigld [TCompConfigGroupRef] [Comment] TCompConfiginfos
[Comment] $End_TCompConfigDcl

TCompConfigld ::¥$TCompConfigld TCompConfigldentifier

TCompConfigldentifier ::= Identifier

TCompConfigGroupRef ::$TCompConfigGroupRef TCompConfigGroupReference
TCompConfigGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/”] {TCompConfigGroupldentifier “/"}
TCompConfigGroupldentifier ::= Identifier

TCompConfiginfos ::$TCompConfiginfos {TCompConfiginfo}+ $End_TCompConfiginfos
[* STATIC SEMANTICS - Exactly one of the TCompConfiginfos shall be for a Test Components which has a TCompRole MTi&h s

TCompConfiginfo ::$TCompConfiginfo TCompUsed PCOs_Used CPs_Used [Comn&trH_TCompConfiginfo
TCompUsed ::$TCompUsedTCompldentifier
PCOs_Used ::$PCOs_UsedPCO_List]

PCO_List ::= PCO_ldentifier {Comma PCO_ldentifier}

[* STATIC SEMANTICS - The number of PCOs in the PCO_List shall be the same as in the Test Component declaration. */

[* STATIC SEMANTICS - A given PCO_Identifier shall not be used more than once in the same Test Component Configuration. */
CPs_Used ::$CPs_UsedCP_List]

CP_List ::= CP_ldentifier {Comma CP_ldentifier}

[* STATIC SEMANTICS - For a PTC, the number of CPs in the CP_List shall be the same as in the Test Component declaration. */

[* STATIC SEMANTICS - For an MTC, the number of CPs in the CP_List shall be no more than the number in the Test Compaaéohdétcla
[* STATIC SEMANTICS - A given CP_ldentifier shall not appear more than once in a given CP_List. */

[* STATIC SEMANTICS - Each CP_ldentifier which is used in a Test Component Configuration shall appear in the CP_List lyf fovecisst

Delivery 9.4, 17 December 1996 141

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Components in that Configuration. */

A.3.3.13 ASP, PDU and CM Type Definitions

A.3.3.13.1 General

| 317 ComplexDefinitions ::= [ASP_TypeDefs] [PDU_TypeDefs] [CM_TypeDefs] [AliasDefsOrGroup]
/* STATIC SEMANTICS - PDUs shall be optional */

A.3.3.13.2 ASP Type Definitions

| 318 ASP_TypeDefs :$ASP_TypeDef{TTCN_ASP_TypeDefs] [ASN1_ASP_TypeDefs] [ASN1_ASP_TypeDefsByRefOrGroup]
$End_ASP_TypeDefs

A.3.3.13.3 Tabular ASP Type Definitions
319 TTCN_ASP_TypeDefs :$TTCN_ASP_TypeDef{TTCN_ASP_TypeDefOrGroup}$End_TTCN_ASP_TypeDefs
320 TTCN_ASP_TypeDefOrGroup ::= TTCN_ASP_TypeDef | TTCN_ASP_TypeDefGroup

321 TTCN_ASP_TypeDefGroup :$TTCN_ASP_TypeDefGroupTTCN_ASP_TypeDefGroupld {TTCN_ASP_TypeDefOrGroup}+
$End_TTCN_ASP_TypeDefGroup

322 TTCN_ASP_TypeDefGroupld :$TTCN_ASP_TypeDefGroupld ASP_Groupldentifier

323 TTCN_ASP_TypeDef ::8Begin_TTCN_ASP_TypeDefASP_Id [ASP_GroupRef] PCO_Type [Comment] [ASP_ParDcls] [Comment]
$End_TTCN_ASP_TypeDef

324 ASP_Id ::=3ASP_Id ASP_Id&Fullld
325 ASP_Id&Fullld ::= ASP_Identifier [Fullldentifier]

326 ASP_ldentifier ::= Identifier
/* STATIC SEMANTICS - Identifier may be Aliasldentifier provided that it is being used in the behaviour column of a befzl®(ire. in a Behaviour
Description). */

327 ASP_GroupRef ::$ASP_GroupRefASP_GroupReference
328 ASP_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {ASP_Groupldentifier “/"}
329 ASP_Groupldentifier ::= Identifier

330 PCO_Type ::3PCO_Type[PCO_Typeldentifier]
/* STATIC SEMANTICS - If there is no PCO_Type declaration table then, PCO_Typeldentifier shall be one of the PCO typabeifidndeclaration
table. */
/* STATIC SEMANTICS - If only a single PCO is defined within a test suite then PCO_Typeldentifier is optional. */

331 ASP_ParDcls ::$ASP_ParDcls{ASP_ParDcl}$End_ASP_ParDcls
332 ASP_ParDcl ::3ASP_ParDcl ASP_Parld ASP_ParType [CommepEnd_ASP_ParDcl
333 ASP_Parld ::$ASP_Parld ASP_ParldOrMacro

334 ASP_ParldOrMacro ::= ASP_Parld&Fullld | MacroSymbol
/* STATIC SEMANTICS - The MacroSymbol shall be used only in combination with a reference to a Structured Type. */

335 ASP_Parld&Fullld ::= ASP_Parldentifier [Fullldentifier]
336 ASP_Parldentifier ::= Identifier

337 ASP_ParType ::$ASP_ParTypeType&Attributes
/* STATIC SEMANTICS - Type shall be a PredefinedType or TS_Typeldentifier, PDU_ldentifieDOr */

A.3.3.13.4 ASN.1 ASP Type Definitions
338 ASN1_ASP_TypeDefs :$ASN1_ASP_TypeDef§ASN1_ASP_TypeDefOrGroup$End_ASN1_ASP_TypeDefs
339 ASN1_ASP_TypeDefOrGroup ::= ASN1_ASP_TypeDef | ASN1_ASP_TypeDefGroup

340 ASN1_ASP_TypeDefGroup :3ASN1_ASP_TypeDefGroupASN1_ASP_TypeDefGroupld {ASN1_ASP_TypeDefOrGroup}+
$End_ASN1_ASP_TypeDefGroup

341 ASN1_ASP_TypeDefGroupld :3ASN1_ASP_TypeDefGroupldASN1ASP_Groupldentifier

342 ASN1_ASP_TypeDef ::$Begin_ ASN1_ASP_TypeDeASP_Ild [ASN1ASP_GroupRef] PCO_Type [Comment] [ASN1_TypeDefinition]
[Comment]$End_ASN1_ASP_TypeDef

142 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

343 ASNI1ASP_GroupRef :3ASN1ASP_GroupRefASN1ASP_GroupReference
344 ASN1ASP_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {ASN1ASP_Groupldentifier “/"}
345 ASN1ASP_Groupldentifier ::= Identifier

A.3.3.13.5 ASN.1 ASP Type Definitions by Reference
346 ASN1_ASP_TypeRefOrGroup ::= ASN1_ASP_TypeRef | ASN1_ASP_TypeRefGroup

347 ASN1_ASP_TypeRefGroup :3ASN1_ASP_TypeRefGroupASN1_ASP_TypeRefGroupld {ASN1_ASP_TypeRefOrGroup}+
$End_ASN1_ASP_TypeRefGroup

348 ASN1_ASP_TypeRefGroupld :3ASN1_ASP_TypeRefGroupldASN1ASP_Groupldentifier

349 ASN1_ASP_TypeDefsByRef :$Begin_ ASN1_ASP_TypeDefsByREASN1ASP_RefGroupRef] {{CollComment]
ASN1_ASP_TypeDefByRef}+ [CommenfEnd_ASN1_ASP_TypeDefsByRef
/* NOTE - Collective comments may be used in this table according to Figure 2. */

| 350 ASNI1ASP_RefGroupRef :$ASN1ASP_RefGroupRefASN1ASP_GroupReference

351 ASN1_ASP_TypeDefByRef :$ASN1_ASP_TypeDefByReASP_ld PCO_Type ASN1_TypeReference ASN1_Moduleld
[Comment]$End_ASN1_ASP_TypeDefByRef
/* STATIC SEMANTICS - ASP_ld shall not be specified with a Fullldentifier. */

A.3.3.13.6 PDU Type Definitions
| 352 PDU_TypeDefs ::$PDU_TypeDefdTTCN_PDU_TypeDefs] [ASN1_PDU_TypeDefs] [ASN1_PDU_TypeDefsByRefOrGroup]
$End_PDU_TypeDefs
A.3.3.13.7 Tabular PDU Type Definitions
353 TTCN_PDU_TypeDefs ::$TTCN_PDU_TypeDefs{TTCN_PDU_TypeDefOrGroup}$End_TTCN_PDU_TypeDefs
354 TTCN_PDU_TypeRefOrGroup ::= TTCN_PDU_TypeRef | TTCN_PDU_TypeRefGroup

355 TTCN_PDU_TypeRefGroup :3TTCN_PDU_TypeRefGroupTTCN_PDU_TypeRefGroupld {TTCN_PDU_TypeRefOrGroup}+
$End_TTCN_PDU_TypeRefGroup

356 TTCN_PDU_TypeRefGroupld :$TTCN_PDU_TypeRefGroupld PDU_Groupldentifier

357 TTCN_PDU_TypeDef ::$Begin_TTCN_PDU_TypeDefPDU_Id [PDU_GroupRef] PCO_Type [PDU_Encodingid]
[EncVariationld] [Comment] [PDU_FieldDcls] [CommeiEnd_TTCN_PDU_TypeDef

/* STATIC SEMANTICS - If a PDU is sent or received only embedded in ASPs within the whole test suite, then PCO_TypeldteRtf@r Type)
is optional. */

358 PDU_lId ::=$PDU_I|d PDU_ld&Fullld
359 PDU_Id&Fullld ::= PDU_Identifier [Fullldentifier]

360 PDU_ldentifier ::= Identifier

[* STATIC SEMANTICS - Identifier may be Aliasldentifier provided that it is being used in the behaviour column of a belebl®(ire. in a
Behaviour Description). */

361 PDU_GroupRef ::$PDU_GroupRefPDU_GroupReference

362 PDU_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) /"] {PDU_Groupldentifier “/"}

363 PDU_Groupldentifier ::= Identifier

364 PDU_Encodingld ::$PDU_Encodingld[EncodingRuleldentifier]

365 PDU_FieldDcls ::=3PDU_FieldDcls{PDU_FieldDcl} $End_PDU_FieldDcls

366 PDU_FieldDcl ::=$PDU_FieldDcl PDU_Fieldld PDU_FieldType [PDU_FieldEncoding] [CommeiEhd_PDU_FieldDcl
367 PDU_Fieldld ::5PDU_Fieldld PDU_FieldldOrMacro

368 PDU_FieldldOrMacro ::= PDU_Fieldld&Fullld | MacroSymbol
/* STATIC SEMANTICS - The MacroSymbol shall be used only in combination with a reference to a Structured Type. */

369 MacroSymbol ::= "<-"
370 PDU_Fieldld&Fullld ::= PDU_Fieldldentifier [Fullldentifier]
371 PDU_Fieldldentifier ::= Identifier

Delivery 9.4, 17 December 1996 143

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

372 PDU_FieldType ::$PDU_FieldTypeType&Attributes
/* STATIC SEMANTICS - Type shall be a PredefinedType or TS_Typeldentifier, PDU_ldentifieD0r */

373 Type&Attributes ::= (Type [LengthAttribute])RDU
/* OPERATIONAL SEMANTICS - The set of values defined by LengthAttribute shall be a true subset of the values of the bidse type.

/* STATIC SEMANTICS - LengthAttribute shall be provided only when the base type is a string type (i.e., BITSTRING, HEXSORINE[STRING or
CharacterString) or derived from a string type. */

374 LengthAttribute ::= SingleLength | RangeLength
375 SingleLength ::="[" Bound "]"

376 Bound ::= Number | TS_Parldentifier | TS_Constldentifier
/* OPERATIONAL SEMANTICS - Bound shall evaluate to a non-negative INTEGER value or INFINITY. */

377 RangelLength ::="[" LowerBound To UpperBound "I"
/* OPERATIONAL SEMANTICS - LowerBound shall be less than UpperBound. */

378 LowerBound ::= Bound
379 UpperBound ::= BoundNFINITY

A.3.3.13.8 ASN.1 PDU Type Definitions
380 ASN1_PDU_TypeDefs :: $ASN1_PDU_TypeDef§ASN1_PDU_TypeDefOrGroup$End_ASN1_PDU_TypeDefs
381 ASN1_PDU_TypeDefOrGroup ::= ASN1_PDU_TypeDef | ASN1_PDU_TypeDefGroup

382 ASN1_PDU_TypeDefGroup :$ASN1_PDU_TypeDefGroupASN1_PDU_TypeDefGroupld {ASN1_PDU_TypeDefOrGroup}+
$End_ASN1_PDU_TypeDefGroup

383 ASN1_PDU_TypeDefGroupld :$ASN1_PDU_TypeDefGroupldASN1PDU_Groupldentifier

384 ASN1_PDU_TypeDef ::$Begin_ASN1_PDU_TypeDePDU_Id [ASN1PDU_GroupRef] PCO_Type [PDU_Encodingld]
[EncVariationld] [Comment] [ASN1_TypeDefinition] [Commei$fEnd_ASN1_PDU_TypeDef
/* STATIC SEMANTICS - If a PDU is sent or received only embedded in ASPs within the whole test suite, then PCO_TypeloeRtdier Type) is
optional. */

385 ASNI1PDU_GroupRef ::3ASN1PDU_GroupRefASN1PDU_GroupReference
386 ASN1PDU_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {ASN1PDU_Groupldentifier “/"}
387 ASN1PDU_Groupldentifier ::= Identifier

A.3.3.13.9 ASN.1 PDU Type Definitions by Reference
388 ASN1_PDU_TypeRefOrGroup ::= ASN1_PDU_TypeRef | ASN1_PDU_TypeRefGroup

389 ASN1 _PDU_TypeRefGroup :$ASN1_PDU_TypeRefGroupASN1_PDU_TypeRefGroupld {ASN1_PDU_TypeRefOrGroup}+
$End_ASN1_PDU_TypeRefGroup

390 ASN1_PDU_TypeRefGroupld :3ASN1_PDU_TypeRefGroupldASN1PDU_Groupldentifier

391 ASN1_PDU_TypeDefsByRef :$Begin_ASN1_PDU_TypeDefsByR4ASN1PDU_RefGroupRef] {{CollComment]
ASN1_PDU_TypeDefByRef}+ [CommenfEnd_ASN1_PDU_TypeDefsByRef

/* NOTE - Collective comments may be used in this table according to Figure 2. */
392 ASN1PDU_RefGroupRef : $ASN1PDU_RefGroupRefASN1PDU_GroupReference

393 ASN1_PDU_TypeDefByRef :$ASN1_PDU_TypeDefByRePDU_Id PCO_Type ASN1_TypeReference ASN1_Moduleld
[PDU_Encodingld] [EncVariationld] [CommerEnd_ASN1_PDU_TypeDefByRef
/* STATIC SEMANTICS - If a PDU is sent or received only embedded in ASPs within the whole test suite, then PCO_TypeloeRtdi@r Type) is
optional. */
/* STATIC SEMANTICS - PDU_lId shall not be specified with a Fullldentifier. */
A.3.3.13.10 CM Type Definitions

394 CM_TypeDefs ::$CM_TypeDefs[TTCN_CM_TypeDefs] [ASN1_CM_TypeDef§End_CM_TypeDefs

A.3.3.13.11 Tabular CM Type Definition
395 TTCN_CM_TypeDefs ::$TTCN_CM_TypeDefs{TTCN_CM_TypeDefOrGroup}+$End_TTCN_CM_TypeDefs
396 TTCN_CM_TypeDefOrGroup ::= TTCN_CM_TypeDef | TTCN_CM_TypeDefGroup

144 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

397 TTCN_CM_TypeDefGroup ::$TTCN_CM_TypeDefGroup TTCN_CM_TypeDefGroupld {TTCN_CM_TypeDefOrGroup}+
$End_TTCN_CM_TypeDefGroup

398 TTCN_CM_TypeDefGroupld ::$TTCN_CM_TypeDefGroupld CM_Groupldentifier

399 TTCN_CM_TypeDef ::$Begin_TTCN_CM_TypeDefCM_Id [CM_GroupRef] [Comment] [CM_ParDcls] [Comment]
$End_TTCN_CM_TypeDef

400 CM_lId ::=$CM_Id CM_lIdentifier

401 CM_Identifier ::= Identifier

402 CM_GroupRef ::$CM_GroupRef CM_GroupReference

403 CM_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/”] {CM_Groupldentifier “/"}
404 CM_Groupldentifier ::= Identifier

405 CM_ParDcls ::$CM_ParDcls{CM_ParDcl} $End_CM_ParDcls

406 CM_ParDcl ::=$CM_ParDcl CM_Parld CM_ParType [CommeEnd_CM_ParDcl

407 CM_Parld ::=$CM_Parld CM_ParldOrMacro

408 CM_ParldOrMacro ::= CM_Parldentifier | MacroSymbol
[* STATIC SEMANTICS - The MacroSymbol shall be used only in combination with a reference to a Structured Type. */

409 CM_Parldentifier ::= Identifier
410 CM_ParType ::$CM_ParType Type&Attributes

A.3.3.13.12 ASN.1 CM Type Definitions
411 ASN1_CM_TypeDefs ::3ASN1_CM_TypeDefs{ASN1_CM_TypeDefOrGroup}H$End_ASN1_CM_TypeDefs
412 ASN1_CM_TypeDefOrGroup ::= ASN1_CM_TypeDef | ASN1_CM_TypeDefGroup

413 ASN1_CM_TypeDefGroup :$ASN1_CM_TypeDefGroupASN1_CM_TypeDefGroupld {ASN1_CM_TypeDefOrGroup}+
$End_ASN1_CM_TypeDefGroup

414 ASN1_CM_TypeDefGroupld :$ASN1_CM_TypeDefGroupld ASN1CM_Groupldentifier

415 ASN1_CM_TypeDef ::$Begin_ASN1_CM_TypeDefCM_Id [ASN1CM_GroupRef] [Comment] [ASN1_TypeDefinition]
[Comment]$End_ASN1_CM_TypeDef

416 ASNI1CM_GroupRef ::$3ASN1CM_GroupRef ASN1CM_GroupReference
417 ASN1CM_GroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {ASN1CM_Groupldentifier “/"}
418 ASN1CM_Groupldentifier ::= Identifier

A.3.3.13.13 Varieties of Encoding Definition
| 419 EncodingDefs ::$EncodingDefsEncodingDefinitionsOrGroup] [EncodingVariations] [InvalidFieldEncodingDefs]
$End_EncodingDefs
A.3.3.13.13.1 Encoding Definitions
420 EncodingDefinitionsOrGroup ::= EncodingDefinitions | EncodingDefinitionsGroup

421 EncodingDefinitionsGroup ::$EncodingDefinitionsGroup EncodingDefinitionsGroupld {EncodingDefinitionsOrGroup}+
$End_EncodingDefinitionsGroup

422 EncodingDefinitionsGroupld : $EncodingDefinitionsGroupld EncodingGroupldentifier

423 EncodingDefinitions ::$Begin_EncodingDefinitions[EncodingGroupRef] {{CollComment] EncodingDefinition}+ [Comment]
$End_EncodingDefinitions

/* NOTE - Collective comments may be used in this table according to Figure 2. */
424 EncodingGroupRef ::$EncodingGroupRefEncodingGroupReference
425 EncodingGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {EncodingGroupldentifier “/"}
426 EncodingGroupldentifier ::= Identifier

427 EncodingDefinition ::$EncodingDefinition EncodingRuleld EncodingRef EncodingDefault [Comment]
$ENnd_EncodingDefinition

/* OPERATIONAL SEMANTICS - No more than one EncodingRuleldentifier shall have an EncodingDefault containing a DefaultExpteskion

Delivery 9.4, 17 December 1996

145

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

428
429
430
431
432
433

evaluates to TRUE*/

EncodingRuleld ::$EncodingRuleld EncodingRuleldentifier
EncodingRuleldentifier ::= |dentifier

EncodingRef ::$EncodingRefEncodingReference
EncodingReference ::= BoundedFreeText
EncodingDefault ::$EncodingDefault[DefaultExpression]

DefaultExpression ::= Expression
/* STATIC SEMANTICS - DefaultExpression shall only contain LiteralValues, TS_Parldentifiers and TS_Constldentifiers. */

A.3.3.13.13.2 Encoding Variations

434
435
436

437
438

439
440
441
442
443
444

445

446
447
448
449
450
451

EncodingVariations ::$EncodingVariations{EncodingVariationSetOrGroup}$End_EncodingVariations
EncodingVariationSetOrGroup ::= EncodingVariationSet | EncodingVariationSetGroup

EncodingVariationSetGroup :$&ncodingVariationSetGroup EncodingVariationSetGroupld {EncodingVariationSetOrGroup}+
$End_EncodingVariationSetGroup

EncodingVariationSetGroupld :$EncodingVariationSetGroupld EncVariationGroupldentifier

EncodingVariationSet : $Begin_EncodingVariationSetEncodingRuleld [EncVariationGroupRef] Encoding_TypeList [Comment]
EncodingVariationList [Commen§End_EncodingVariationSet

EncVariationGroupRef ::$EncVariationGroupRef EncVariationGroupReference

EncVariationGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {EncVariationGroupldentifier “/"}
EncVariationGroupldentifier ::= Identifier

EncodingVariationList ::$EncodingVariationList {EncodingVariation}+$End_EncodingVariationList
Encoding_TypelList ::3Encoding_TypeList[TypeList]

Typelist ::=Type {Comma Type}

/* STATIC SEMANTICS - Type shall not be an ASP_ldentifier, PDU_Identifier or Structldentifier, since such types may be bypeabediing rules but
not by field encodings. */

EncodingVariation ::$EncodingVariation EncodingVariationld VariationRef VariationDefault [Comme®End_EncodingVariation

/* OPERATIONAL SEMANTICS - No more than one Encodingldentifier shall have a VariationDefault containing a DefaultExpressioevatuiates to
TRUE. */

EncodingVariationld ::$EncodingVariationld EncVariationld&ParList
EncVariationld&ParList ::= EncVariationldentifier [FormalParList]
EncVariationldentifier ::= Identifier

VariationRef ::=$VariationRef VariationReference
VariationReference ::= BoundedFreeText

VariationDefault ::$VariationDefault [DefaultExpression]

A.3.3.13.13.3 Invalid Encoding Definitions

452
453
454

455
456

457
458
459
460

146

InvalidFieldEncodingDefs ::$InvalidFieldEncodingDefs{InvalidFieldEncodingDefOrGroup}$End_InvalidFieldEncodingDefs
InvalidFieldEncodingOrGroup ::= InvalidFieldEncoding | InvalidFieldEncodingGroup

InvalidFieldEncodingGroup :$invalidFieldEncodingGroup InvalidFieldEncodingGroupld {InvalidFieldEncodingOrGroup}+
$End_InvalidFieldEncodingGroup

InvalidFieldEncodingGroupld :$invalidFieldEncodingGroupld InvalidFieldEncodingGroupldentifier

InvalidFieldEncodingDef ::$Begin_InvalidFieldEncodingDeflnvalidFieldEncodingld [InvalidFieldEncodingGroupRef]
Encoding_TypeList [Comment] InvalidFieldEncodingDefinition [Comm&mhd_InvalidFieldEncodingDef

InvalidFieldEncodingld ::$InvalidFieldEncodingld InvalidFieldEncodingld&ParList
InvalidFieldEncodingld&ParList ::= InvalidFieldEncodingldentifier [FormalParList]
InvalidFieldEncodingldentifier ::= Identifier

InvalidFieldEncodingGroupRef :$tnvalidFieldEncodingGroupRef InvalidFieldEncodingGroupReference

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

461 InvalidFieldEncodingGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {InvalidFieldEncodingGroupldefitifier
"}
462 InvalidFieldEncodingGroupldentifier ::= Identifier

463 InvalidFieldEncodingDefinition ::$InvalidFieldEncodingDefinition TS_OpProcDe$End_InvalidFieldEncodingDefinition
/* OPERATIONAL SEMANTICS - TS_OpProcDef shall produce a BitString result, to be interpreted as the encoding to be trangimittddrtbit

first. */
A.3.3.13.14 Alias Definitions
464 AliasDefsOrGroup ::= AliasDefs | AliasDefsGroup
465 AliasDefsGroup ::$AliasDefsGroup AliasDefsGroupld {AliasDefsOrGroup}$End_AliasDefsGroup
466 AliasDefsGroupld ::$AliasDefsGroupld AliasDefsGroupldentifier

467 AliasDefs ::=$Begin_AliasDefgAliasGroupRef] {{CollComment] AliasDef}+ [CommenflEnd_AliasDefs
/* NOTE - Collective comments may be used in this table according to Figure 2. */

468 AliasGroupRef ::$AliasGroupRef AliasGroupReference

469 AliasGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {AliasGroupldentifier “/"}
470 AliasGroupldentifier ::= Identifier

471 AliasDef ::=$AliasDef Aliasld Expandedld [Commen$End_AliasDef

472 Aliasld ::=$Aliasld Aliasldentifier

473 Aliasldentifier ::= Identifier
[* STATIC SEMANTICS - An Aliasldentifier shall be used only in a statement line of a behaviour description. */
[* STATIC SEMANTICS - An Aliasldentifier shall be used only where an ASP_Identifier or PDU_ldentifier is valid. */

474 Expandedld ::$Expandedld Expansion
475 Expansion ::= ASP_ldentifier | PDU_Identifier

A.3.3.14 The Constraints Part

476 ConstraintsPart :$ConstraintsPart [TS_TypeConstraints] [ASP_Constraints] [PDU_Constraints] [CM_Constraints]
$End_ConstraintsPart

A.3.3.15 Test Suite Type Constraint Declarations
477 TS_TypeConstraints :$TS_TypeConstraints[StructTypeConstraints] [ASN1_TypeConstrairg#§nd_TS_TypeConstraints

A.3.3.16 Structured Type Constraint Declarations
478 StructTypeConstraints :$StructTypeConstraints {StructTypeConstraintOrGroup}$End_StructTypeConstraints
479 StructTypeConstraintOrGroup ::= StructTypeConstraint | StructTypeConstraintGroup

480 StructTypeConstraintGroup $StructTypeConstraintGroup StructTypeConstraintGroupld {StructTypeConstraintOrGroup}+
$End_StructTypeConstraintGroup

481 StructTypeConstraintGroupld $StructTypeConstraintGroupld StructTypeConstraintGroupldentifier

482 StructTypeConstraint :$Begin_StructTypeConstraintConsld [StructTypeConstraintGroupRef] Structld DerivPath
[EncVariationld] [Comment] ElemValues [Commeffnd_StructTypeConstraint
/* STATIC SEMANTICS - The Fullldentifier that is part of Struct_Id shall not be used. */
[* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular|ltheneosparameters
omitted from or added to this list. */

483 StructTypeConstraintGroupRef $StructTypeConstraintGroupRef StructTypeConstraintGroupReference

484 StructTypeConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {StructTypeConstraintGroupld&itifier
485 StructTypeConstraintGroupldentifier ::= Identifier

486 EncVariationld ::$EncVariationld [EncVariationCall]

487 EncVariationCall ::= EncVariationldentifier [ActualParList]

488 ElemValues ::$ElemValues{ElemValue}+ $End_ElemValues

489 ElemValue ::%$ElemValueElemld ConsValue [PDU_FieldEncoding] [CommeBiEnd_ElemValue

Delivery 9.4, 17 December 1996 147

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

[* STATIC SEMANTICS - The Fullldentifier that is part of Elemld shall not be used. */
[* STATIC SEMANTICS - Parameterized Element values in a base constraint shall not be modified or explicitly omitted ired owdifraint. */

490 PDU_FieldEncoding ::$PDU_FieldEncoding[PDU_FieldEncodingCall]
491 PDU_FieldEncodingCall ::= EncVariationCall | InvalidFieldEncodingCall
492 InvalidFieldEncodingCall ::= InvalidFieldEncodingldentifier (ActualParList | "(" ")")

A.3.3.17 ASN.1 Type Constraint Declarations
493 ASN1_TypeConstraints :3ASN1_TypeConstraints{ASN1_TypeConstraintOrGroup}$End_ASN1_TypeConstraints
494 ASN1_TypeConstraintOrGroup ::= ASN1_TypeConstraint | ASN1_TypeConstraintGroup
495 ASN1_TypeConstraintGroup :$ASN1_TypeConstraintGroupASN1_TypeConstraintGroupld {ASN1_TypeConstraintOrGroup}+
$End_ASN1_TypeConstraintGroup
496 ASN1_TypeConstraintGroupld :$3ASN1_TypeConstraintGroupld ASN1_TypeConstraintGroupldentifier
497 ASN1_TypeConstraint ::$Begin_ASN1_TypeConstraintConsld [ASN1_TypeConstraintGroupRef] ASN1_Typeld DerivPath

[EncVariationld] [Comment] ASN1_ConsValue [CommepEnd_ASN1_TypeConstraint

[* STATIC SEMANTICS - The Fullldentifier that is part of ASN1_Typeld shall not be used. */
/* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular|ltheneosparameters omitted
from or added to this list. */

498 ASN1_TypeConstraintGroupRef $ASN1_TypeConstraintGroupRefASN1_TypeConstraintGroupReference
499 ASN1_TypeConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {ASN1_TypeConstraintGrouplderi}ifier “/

500 ASN1_TypeConstraintGroupldentifier ::= Identifier

A.3.3.18 ASP Constraint Declarations
501 ASP_Constraints ::$ASP_Constraints[TTCN_ASP_Constraints] [ASN1_ASP_Constrair$&nhd_ASP_Constraints

A.3.3.19 Tabular ASP Constraint Declarations
502 TTCN_ASP_Constraints :3TTCN_ASP_Constraints{TTCN_ASP_ConstraintOrGroup}$End_TTCN_ASP_Constraints
503 TTCN_ASP_ConstraintOrGroup ::= TTCN_ASP_Constraint | TTCN_ASP_ConstraintGroup

504 TTCN_ASP_ConstraintGroup 33 TCN_ASP_ConstraintGroup TTCN_ASP_ConstraintGroupld {TTCN_ASP_ConstraintOrGroup}+
$End_TTCN_ASP_ConstraintGroup

505 TTCN_ASP_ConstraintGroupld :33TCN_ASP_ConstraintGroupld ASP_ConstraintGroupldentifier

506 TTCN_ASP_Constraint :$Begin_ TTCN_ASP_ConstraintConsld [ASP_ConstraintGroupRef] ASP_Id DerivPath [Comment]
[ASP_ParValues] [CommenBEnd_TTCN_ASP_Constraint
/* STATIC SEMANTICS - The Fullldentifier that is part of ASP_Id shall not be used. */
/* STATIC SEMANTICS - If an ASP is substructured, then the constraints for ASPs of that type shall have the same structure*/
/* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular|ltheneosparameters omitted
from or added to this list. */

507 ASP_ConstraintGroupRef :$3ASP_ConstraintGroupRefASP_ConstraintGroupReference

508 ASP_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {ASP_ConstraintGroupldentifier “/"}

509 ASP_ConstraintGroupldentifier ::= Identifier
510 ASP_ParValues :$ASP_ParValues{ASP_ParValue}+$End_ASP_ParValues

511 ASP_ParValue ::3ASP_ParValueASP_Parld ConsValue [Comme®nd_ASP_ParValue
[* STATIC SEMANTICS - The Fullldentifier that is part of ASP_Parld shall not be used. */
/* STATIC SEMANTICS - If an ASP definition refers to a Structured Type as a substructure of a paraeetéth(a parameter name) then the corresponding
constraint shall have the same parameter name in the corresponding position in the parameter name name column of thecdctrestraloe shall be a
reference to a constraint for that paramater, for that substructure in accordance with the definition of the Structured Type). */
/* STATIC SEMANTICS - If an ASP definition refers to a parameter specified as being of metatype PDU then in a correspastdiing,abie value for that
parameter shall be specified as the name of a PDU constraint, or formal parameter. */
/* STATIC SEMANTICS - Use of structured constraints by macro expansion in a constraint shall not be used unless the cgraSpoddfinition also
references the same Structured Type by macro expansion. */
[* STATIC SEMANTICS - Parameterized ASP parameter values in a base constraint shall not be modified or explicitly onmittetifiedaconstraint. */

148 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

A.3.3.20 ASN.1 ASP Constraint Declarations
512 ASN1_ASP_Constraints :3ASN1_ASP_ConstraintfASN1_ASP_ConstraintOrGroup}$End_ASN1_ASP_Constraints
513 ASN1_ASP_ConstraintOrGroup ::= ASN1_ASP_Constraint | ASN1_ASP_ConstraintGroup

514 ASN1_ASP_ConstraintGroup $ASN1_ASP_ConstraintGroupASN1_ASP_ConstraintGroupld
{ASN1_ASP_ConstraintOrGroup}$End_ASN1_ASP_ConstraintGroup

515 ASN1_ASP_ConstraintGroupld $ASN1_ASP_ConstraintGroupld ASN1ASP_ConstraintGroupldentifier

516 ASN1_ASP_Constraint :$Begin_ASN1_ASP_ConstrainConsld [ASN1ASP_ConstraintGroupRef] ASP_ld DerivPath
[Comment] [ASN1_ConsValue] [CommerEnd_ASN1_ASP_Constraint
/* STATIC SEMANTICS - The Fullldentifier that is part of ASP_Id shall not be used. */
/* STATIC SEMANTICS - If an ASP is substructured, then the constraints for ASPs of that type shall have a compatible ABNel{srpossibly
with some groupings). */
/* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular|ltheneosparameters
omitted from or added to this list. */

517 ASN1ASP_ConstraintGroupRef $ASN1ASP_ConstraintGroupRefASN1ASP_ConstraintGroupReference

518 ASN1ASP_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"]
{ASN1ASP_ConstraintGroupldentifier “/"}

519 ASN1ASP_ConstraintGroupldentifier ::= Identifier

A.3.3.21 PDU Constraint Declarations
520 PDU_Constraints ::$PDU_Constraints[TTCN_PDU_Constraints] [ASN1_PDU_Constrairs§§nd_PDU_Constraints

A.3.3.22 Tabular PDU Constraint Declarations
521 TTCN_PDU_Constraints :$TTCN_PDU_Constraints{TTCN_PDU_ConstraintOrGroup}$End_TTCN_PDU_Constraints
522 TTCN_PDU_ConstraintOrGroup ::= TTCN_PDU_Constraint | TTCN_PDU_ConstraintGroup

523 TTCN_PDU_ConstraintGroup : 33 TCN_PDU_ConstraintGroup TTCN_PDU_ConstraintGroupld
{TTCN_PDU_ConstraintOrGroup}$End_TTCN_PDU_ConstraintGroup

524 TTCN_PDU_ConstraintGroupld :$7TCN_PDU_ConstraintGroupld PDU_ConstraintGroupldentifier

525 TTCN_PDU_Constraint ::$Begin_TTCN_PDU_ConstraintConsld [PDU_ConstraintGroupRef] PDU_Id DerivPath [EncRuleld]
[EncVariationld] [Comment] [PDU_FieldValues] [Comme#fnd_TTCN_PDU_Constraint
/* STATIC SEMANTICS - The Fullldentifier that is part of PDU_Id shall not be used. */
/* STATIC SEMANTICS - If a PDU is substructured, then the constraints for PDUs of that type shall have the same structure*/
/* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular|ltheneosparameters
omitted from or added to this list. */

526 PDU_ConstraintGroupRef :$PDU_ConstraintGroupRef PDU_ConstraintGroupReference

527 PDU_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {PDU_ConstraintGroupldentifier “/"}
528 PDU_ConstraintGroupldentifier ::= Identifier

529 EncRuleld ::53EncRuleld [EncodingRuleldentifier]

530 Consld ::=$Consld Consld&ParList

531 Consld&ParList ::= Constraintldentifier [FormalParList]

532 Constraintldentifier ::= Identifier

533 DerivPath ::%$DerivPath [DerivationPath]

534 DerivationPath ::= {Constraintldentifier Dot}+
/* STATIC SEMANTICS - If a constraint definition is a modification of an existing constraint, the name of the constraitatke ias the basis of
this modification shall be referenced in the table in the derivation path entry. */
/* STATIC SEMANTICS - The first Constraintldentifier in DerivationPath shall be a base constraint identifier. */
[* STATIC SEMANTICS - The DerivationPath shall be the complete list of constraints in the order in which their modificatiertsatge constraint
are to be applied. */
/* STATIC SEMANTICS - There shall be no white space between Constraintldentifier and Dot. */

535 PDU_FieldValues ::$PDU_FieldValues{PDU_FieldValue}+$End_PDU_FieldValues

Delivery 9.4, 17 December 1996 149

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

536 PDU_FieldValue ::$PDU_FieldValuePDU_Fieldld ConsValue [PDU_FieldEncoding] [CommegEhd_PDU_FieldValue
/* STATIC SEMANTICS - The Fullidentifier that is part of PDU_Fieldld shall not be used. */

/* STATIC SEMANTICS - If a PDU definition refers to a Structured Type as a substructure of aéeldith a field name) then the corresponding constraint
shall have the same field name in the corresponding position in the field name name column of the constraint and thibeséueefdraince to a constraint
for that field {.e., for that substructure in accordance with the definition of the Structured Type). */

/* STATIC SEMANTICS - If a PDU definition refers to a field specified as being of metatype PDU then in a correspondinghtahstralue for that field
shall be specified as the name of a PDU constraint, or formal parameter. */

/* STATIC SEMANTICS - Use of structured constraints by macro expansion in a constraint shall not be used unless the cgyrieBhduefinition also
references the same Structured Type by macro expansion. */

I* STATIC SEMANTICS - Parameterized PDU field values in a base constraint shall not be modified or explicitly omitted ifieal cmustraint. */
537 ConsValue ::$ConsValueConstraintValue&Attributes
I* OPERATIONAL SEMANTICS - ConsValue shall evaluate to an element of the type specified for the ASP parameter, PDU fietder siement. This
may include matching symbols compatible with the specified type. */
538 ConstraintValue&Attributes ::= ConstraintValue ValueAttributes
/* NOTE - ConstraintValue&Attributes can be reached via DefinedValue in the ASN.1 syntax. See the reference on the prifltmtigalde. */

[* STATIC SEMANTICS - ConstraintValue shall fulfil all restrictions defined for the ASP parameter, PDU field or structuretelgraeincluding value
ranges, value lists, alphabet restrictions and/or length restrictions and shall fulfil the restrictions defined by VatesAttribu

/* OPERATIONAL SEMANTICS - Any length specifications defined for the ASP parameter or PDU field type in the Test Suite Tarpdiatecshall not
conflict with the length specifications in the ASP or PDU type definition. */

[* STATIC SEMANTICS - Neither Test Suite Variables nor Test Case Variables shall be used in constraints, unless pasdqhemzeters. In the latter
case they shall be bound to a value and shall not be changed. */

539 ConstraintValue ::= ConstraintExpression | Ma tchingSymbol | ConsRef
[* STATIC SEMANTICS - When a ConstraintExpression is used in a Constraint, its terms shall not contain TS_Varldentifieraold€@tifier. */
540 ConstraintExpression ::= Expression
/* OPERATIONAL SEMANTICS - ConstraintExpression shall evaluate to an element of the specified type. */
541 MatchingSymbol ::= Complement | Omit | AnyValue | AnyOrOmit | ValueList | ValueRange | SuperSet | SubSet | Permutation
/* NOTE - No matching symbol is considered to be a specific value. */
542 Complement ::€OMPLEMENT ValueList
543 Omit ::= DashQMIT
/* STATIC SEMANTICS - In ASN.1 constraints Omit shall be used only for ASP parameters or PDU fields that are declared ORFIDERAULT. */
544 AnyValue ::="?"
545 AnyOrOmit ::="*"
546 ValuelList ::= "(" ConstraintValue&Attributes {Comma ConstraintValue&Attributes} ")"

[* STATIC SEMANTICS - Each ConstraintValue&Attributes shall be of the type declared for the ASP parameter, PDU fielduoe seroent in which the
ValuelList is used. */

547 ValueRange ::="(" ValRange ")"
/* STATIC SEMANTICS - ValueRange shall be used only on ASP parameter, PDU field, or structure element of type INTEGER. */

/* STATIC SEMANTICS - The set of values defined by ValueRange shall be a true subset of the values allowed by the ASPy&Brudteld’s or
structure element’s declared type. */

548 ValRange:= (LowerRangeBound To UpperRangeBound)
/* OPERATIONAL SEMANTICS - LowerRangeBound shall be less than UpperRangeBound. */
549 LowerRangeBound ::= ConstraintExpression | MINFENITY
/* OPERATIONAL SEMANTICS - ConstraintExpression shall evaluate to a specific INTEGER value. */
550 UpperRangeBound ::= ConstraintExpressitF|NITY
/* OPERATIONAL SEMANTICS - ConstraintExpression shall evaluate to a specific INTEGER value. */
551 SuperSet ::SUPERSET"(" ConstraintValue&Attributes ")"
[* STATIC SEMANTICS - The argument to SuperSet,, ConstraintValue&Attributes, shall be of type SET OF. */
552 SubSet ::: SUBSET "(" ConstraintValue&Attributes ")"
/* STATIC SEMANTICS - The argument to SubSieg,, ConstraintValue&Attributes, shall be of type SET OF. */

553 Permutation ::PERMUTATION ValueList
[* STATIC SEMANTICS - The Permutation shall be used only inside a value of type SEQUENCE OF. */

150 Delivery 9.4, 17 December 1996

554

555
556

557
558

559

560
561

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

/* STATIC SEMANTICS - The ValueList shall be of the type specified in the SEQUENCE OF. */

ValueAttributes ::= [ValueLengthlH_PRESENT] [ASN1_Encoding]

[* STATIC SEMANTICS - In ASN.1 constraints IF_PRESENT shall be used only for ASP parameters or PDU fields that are declafdalO®T
DEFAULT. */

/* STATIC SEMANTICS - ASN1_Encoding shall only be used for ValueAttributes in ASN.1 Type Constraints and ASN.1 PDU Coriétraints.

ASN1_Encoding ::ENC PDU_FieldEncodingCall

ValuelLength ::= SingleValueLength | RangeValueLength

/* STATIC SEMANTICS - ValueLength shall be used only for ASP parameters, PDU fields or structure element that are dedESdiRENG,
HEXSTRING, OCTETSTRING, CharacterString, SEQUENCE OF or SET OF. */

/* STATIC SEMANTICS - ValueLength shall be used only in combination with the following mechanisms: Specificvalue, Complemitent, O
AnyValue, AnyOrOmit, AnyOrNone and Permutation. */

/* STATIC SEMANTICS - The set of values defined by ValueLength shall be a true subset of the values allowed by the ASP pdr@rodield’s
or structure element’s declared type. */

SingleValuelLength ::= "[" ValueBound "]"

ValueBound ::= Number | TS_Parldentifier | TS_Constldentifier | FormalParldentifier
/* OPERATIONAL SEMANTICS - ValueBound shall evaluate to a specific non-negative INTEGER value. */

RangeValuelLength ::="[" LowerValueBound To UpperValueBound "]"
/* OPERATIONAL SEMANTICS - LowerValueBound shall be less than UpperValueBound. */

LowerValueBound ::= ValueBound
UpperValueBound ::= ValueBountNIFINITY

A.3.3.23 ASN.1 PDU Constraint Declarations

562
563
564

565
566

567
568

569
570
571
572

573

A.3.3.
574

A.3.3.
| 575

ASN1_PDU_Constraints :3ASN1_PDU_Constraints{ASN1_PDU_ConstraintOrGroup}$End_ASN1_PDU_Constraints
ASN1_PDU_ConstraintOrGroup ::= ASN1_PDU_Constraint | ASN1_PDU_ConstraintGroup

ASN1_PDU_ConstraintGroup :$3ASN1_PDU_ConstraintGroupASN1_PDU_ConstraintGroupld
{ASN1_PDU_ConstraintOrGroup}$End_ASN1_PDU_ConstraintGroup

ASN1_PDU_ConstraintGroupld :$3ASN1_PDU_ConstraintGroupld ASN1PDU_ConstraintGroupldentifier

ASN1_PDU_Constraint :$Begin_ASN1_PDU_ConstraintConsld [ASN1PDU_ConstraintGroupRef] PDU_Id DerivPath
[EncRuleld] [EncVariationld] [Comment] [ASN1_ConsValue] [CommesEhd_ASN1_PDU_Constraint

/* STATIC SEMANTICS - The Fullidentifier that is part of PDU_Id shall not be used. */

/* STATIC SEMANTICS - If a PDU is substructured, then the constraints for PDUs of that type shall have a compatible ASINE {serupossibly
with some groupings). */

/* STATIC SEMANTICS - A modified constraint shall have the same parameter list as its base constraint. In particular|ltheneosparameters
omitted from or added to this list. */

ASN1PDU_ConstraintGroupRef $ASN1PDU_ConstraintGroupRefASN1PDU_ConstraintGroupReference

ASN1PDU_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"]
{ASN1PDU_ConstraintGroupldentifier “/"}

ASN1PDU_ConstraintGroupldentifier ::= Identifier
ASN1_ConsValue ::3ASN1_ConsValueConstraintValue&AttributesOrReplad&tnd_ASN1_ConsValue
ConstraintValue&AttributesOrReplace ::= ConstraintValue&Attributes | Replacement {Comma Replacement}

Replacement ::REPLACE ReferenceLisBY ConstraintValue&AttributesQMIT ReferencelList
/* STATIC SEMANTICS - Replacement shall be used only when DerivPath is specified. */
[* STATIC SEMANTICS - Parameterized replaced values in a base constraint shall not be modified or explicitly omitted iie@ coodifaint. */

Referencelist ::= (ArrayRef | Componentldentifier | ComponentPosition) {ComponentReference}

24 CM Constraint Declarations
CM_Constraints ::$CM_Constraints [TTCN_CM_Constraird] [ASN1_CM_Constraird] $End_CM_Constraints

25 Tabular CM Constraint Declaration
TTCN_CM_Constraints ::$TTCN_CM_Constraints {TTCN_CM_ConstraintOrGroup}$End_TTCN_CM_Constraints

Delivery 9.4, 17 December 1996 151

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

576 TTCN_CM_ConstraintOrGroup ::= TTCN_CM_Constraint | TTCN_CM_ConstraintGroup

577 TTCN_CM_ConstraintGroup :$TTCN_CM_ConstraintGroup TTCN_CM_ConstraintGroupld {TTCN_CM_ConstraintOrGroup}+
$End_TTCN_CM_ConstraintGroup

578 TTCN_CM_ConstraintGroupld :$TTCN_CM_ConstraintGroupld CM_ConstraintGroupldentifier

579 TTCN_CM_Constraint ::$Begin_TTCN_CM_Constraint Consld [CM_ConstraintGroupRef] CM_Id DerivPath [Comment]
[CM_ParValues] [Commen}End_TTCN_CM_Constraint

580 CM_ConstraintGroupRef :$3CM_ConstraintGroupRef CM_ConstraintGroupReference

581 CM_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {CM_ConstraintGroupldentifier “/"}
582 CM_ConstraintGroupldentifier ::= Identifier

583 CM_ParValues ::3CM_ParValues{CM_ParValue}$End_CM_ParValues

584 CM_ParValue ::$CM_ParValue CM_Parld ConsValue [Commer$End_CM_ParValue

A.3.3.26 ASN.1 CM Constraint Declaration
585 ASN1_CM_Constraints :$3ASN1_CM_Constraints{ASN1_CM_ConstraintOrGroup}$End_ASN1_CM_Constraints
586 ASN1_CM_ConstraintOrGroup ::= ASN1_CM_Constraint | ASN1_CM_ConstraintGroup

587 ASN1_CM_ConstraintGroup :$ASN1_CM_ConstraintGroup ASN1_CM_ConstraintGroupld {ASN1_CM_ConstraintOrGroup}+
$End_ASN1_CM_ConstraintGroup

588 ASN1_CM_ConstraintGroupld :$3ASN1_CM_ConstraintGroupld ASN1CM_ConstraintGroupldentifier

589 ASN1_CM_Constraint ::$Begin_ASN1_CM_ConstraintConsld [ASN1CM_ConstraintGroupRef] CM_ld DerivPath [Comment]
[ASN1_ConsValue] [Commen§iEnd_ASN1_CM_Constraint

590 ASNI1CM_ConstraintGroupRef :3ASN1CM_ConstraintGroupRef ASN1CM_ConstraintGroupReference
591 ASN1CM_ConstraintGroupReference ::= [(Suiteldentifier | TTCN_Moduleldentifier) “/"] {ASN1CM_ConstraintGroupldentifier “/}
592 ASN1CM_ConstraintGroupldentifier ::= Identifier

A.3.3.27 The Dynamic Part
593 DynamicPart ::$DynamicPart [TestCases] [TestStepLibrary] [DefaultsLibrai$fnd_DynamicPart

A.3.3.28 Test Cases
594 TestCases :$TestCases{TestGroup | TestCase}$End_TestCases
595 TestGroup ::$TestGroup TestGroupld {TestGroup | TestCase}End_TestGroup
596 TestGroupld ::$TestGroupld TestGroupldentifier
597 TestGroupldentifier ::= Identifier

598 TestCase ::$Begin_TestCasdestCaseld TestGroupRef TestPurpose [Configuration] DefaultsRef [Comment] BehaviourDescription
[Comment]$End_TestCase

599 TestCaseld ::$TestCaseldTestCaseldentifier
600 TestCaseldentifier ::= Identifier
601 TestGroupRef ::$TestGroupRefTestGroupReference

602 TestGroupReference ::= [Suiteldentifier "/"] {TestGroupldentifier "/"}
[* STATIC SEMANTICS - There shall be no white space on either side of the "/"s. */

603 TestPurpose :$TestPurposeBoundedFreeText

604 Configuration ::%$Configuration TCompConfigldentifier

605 DefaultsRef::$DefaultsRef[DefaultRefList]

606 DefaultRefList ::= DefaultReference {Comma DefaultReference}
607 DefaultReference ::= Defaultldentifier [ActualParList]

A.3.3.29 Test Step Library
608 TestStepLibrary ::$TestStepLibrary {TestStepGroup | TestStepEnd_TestStepLibrary

152 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

609 TestStepGroup :$TestStepGroupTestStepGroupld {TestStepGroup | TestStepEnd_TestStepGroup
610 TestStepGroupld :$TestStepGroupld TestStepGroupldentifier
611 TestStepGroupldentifier ::= Identifier

612 TestStep ::$Begin_TestSteplestStepld TestStepRef Objective DefaultsRef [Comment] BehaviourDescription [Comment]
$End_TestStep

613 TestStepld ::$TestStepldTestStepld&ParList

614 TestStepld&ParList ::= TestStepldentifier [FormalParList]
615 TestStepldentifier ::= Identifier

616 TestStepRef ::$TestStepRefTestStepGroupReference

617 TestStepGroupReference ::= [Suiteldentifier "/"] {TestStepGroupldentifier "/"}
/* STATIC SEMANTICS - There shall be no white space on either side of the "/"s. */

618 Obijective ::=$Objective BoundedFreeText

A.3.3.30 Default Library
619 DefaultsLibrary ::$DefaultsLibrary {DefaultGroup | Default}+$End_DefaultsLibrary
620 DefaultGroup ::$DefaultGroup DefaultGroupld {DefaultGroup | Default}$End_DefaultGroup
621 DefaultGroupld ::$DefaultGroupld DefaultGroupldentifier

622 Default ::=$Begin_DefaultDefaultld DefaultRef Objective [Comment] BehaviourDescription [Comm8&Etjd_Default
[* STATIC SEMANTICS - BehaviourDescription shall not use tree attachment except for attaching locaktrdasfgult behaviour trees shall not
attach Test Steps). */

623 DefaultRef ::=$DefaultRef DefaultGroupReference
624 Defaultld ::=$Defaultld Defaultld&ParList

625 Defaultld&ParList ::= Defaultldentifier [FormalParList]
626 Defaultldentifier ::= Identifier

627 DefaultGroupReference ::= [Suiteldentifier "/*] {DefaultGroupldentifier "/"}
/* STATIC SEMANTICS - There shall be no white space on either side of the "/"s. */

628 DefaultGroupldentifier ::= Identifier

A.3.3.31 Behaviour descriptions
629 BehaviourDescription ::$BehaviourDescription RootTree {LocalTree SEnd_BehaviourDescription
630 RootTree ::= {BehaviourLine}+
631 LocalTree ::= Header {BehaviourLine}+
632 Header ::$Header TreeHeader
633 TreeHeader ::= Treeldentifier [FormalParList]
634 Treeldentifier ::= Identifier
635 FormalParlList ::="(" FormalPar&Type {SemiColon FormalPar&Type} ")"
636 FormalPar&Type ::= FormalParldentifier {Comma FormalParldentifier} Colon FormalParType
637 FormalParldentifier ::= Identifier

638 FormalParType ::= Type | PCO_TypeldentifiebJ | CP | TIMER
/* STATIC SEMANTICS - In a test suite operation or an encoding operation FormalParType shall not be a PCO type or the Ré&yword C

[* STATIC SEMANTICS - If a formal parameter is of typ®U then that formal parameter shall not be used with a component reference (i.e. specific
fields of the PDU cannot be referenced). */

A.3.3.32 Behaviour lines
639 BehaviourLine ::%BehaviourLine Labelld Line Cref Verdictld [Commen$End_BehaviourLine
640 Line ::=$Line Indentation StatementLine
641 Indentation ::="[" Number "]"

Delivery 9.4, 17 December 1996 153

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

642
643
644
645

646
647

648

649
650

651
652
653
654

/* STATIC SEMANTICS - Statements in the first level of alternatives in a behaviour description shall have the indentatzervatie

/* STATIC SEMANTICS - Statements having a predecessor shall have the indentation value of the predecessor plus oneeatati@iniatlie. */
Labelld ::=$Labelld [Label]

Label ::= Identifier

Cref ::=$Cref [ConstraintReference]

ConstraintReference ::= ConsRef | FormalParldentifier | AnyValue

[* STATIC SEMANTICS - ConsRef shall be present in conjunction with SEND, IMPLICIT SEND and RECEIVE and shall have a type edriststent
with (i.e. the same as or a subset of) the type of ASP, PDU or CM specified in the SEND, IMPLICIT_SEND or RECEIVE stateoresttaiztReference
is not needed for ASPs and CMs that have no parameters or PDUs that have no fields. It shall not be present with ahgfoti€Nistatement. */

/* STATIC SEMANTICS - FormalParldentifier shall resolve to a ConsRef. */

[* STATIC SEMANTICS - ConstraintReferences on SEND events shall not include any MatchingSymbol except Omit unless the abriiisgSplicitly
assigned specific values on the SEND event line. */

ConsRef ::= Constraintldentifier [ActualCrefParList]
ActualCrefParList ::= "(" ActualCrefPar {Comma ActualCrefPar} ")"
/* STATIC SEMANTICS - See static semantics on production 675. */
ActualCrefPar ::= Value

/* NOTE - Through Value, it is possible to reach MatchingSymbol, TS_Parldentifier, TS_Constldentifier, TS_Varldentifier,|d€htNier,
FormalParldentifier or ConsRef. */

Verdictld ::=$Verdictld [Verdict]

Verdict ::= Pass | Fail | Inconclusive | Result

/* STATIC SEMANTICS - Verdict shall not occur corresponding to entries in the behaviour tree which are any of the follopingarewT TACH construct,
a REPEAT construct, a GOTO construct, an IMPLICIT SEND or a RETURN. */

Pass PASS|P | "(" PASS")" | "(" P")"
Fail ==FAIL |F|"("FAIL)" |"(" F")"
Inconclusive ::3NCONC |1 | "(" INCONC ")" | "(" 1)"

Result ::=R
[* STATIC SEMANTICS - R shall not be used on the LHS of an assignment. */

A.3.3.33 TTCN statements

655

656

657

658

659

660

661

662

154

StatementLine ::= (Event [Qualifier] [AssignmentList] [TimerOps]) | (Qualifier [AssignmentList] [TimerOps]) |
(AssignmentList [TimerOps]) | TimerOps | Construct | ImplicitSend
Event ::= Send | Receive | Otherwise | Timeout | Done

/* STATIC SEMANTICS - A Receive, Otherwise or Timeout event shall only be followed by other Receive, Otherwise and Timéotireugh the
remainder of the set of alternatives in a fully expanded tree. As a consequence, Default trees will contain only Recogige,aDth@imeout events on the
first level of alternatives. */

Qualifier ::= "[" Expression ""

/* OPERATIONAL SEMANTICS - Qualifier shall evaluate to a specific BOOLEAN value. */

Send ::= [PCO_ldentifier | CP_ldentifier | FormalParldentifier] "I" (ASP_ldentifier | PDU_Ildentifier | CM_ldentifier)

[* STATIC SEMANTICS - PCO_ldentifier, CP_ldentifier or FormalParldentifier shall be present unless the test suite usesR® and no CP. */
/* STATIC SEMANTICS - FormalParldentifier shall resolve to a PCO_Identifier or CP_Identifier.*/

[* STATIC SEMANTICS - Only CMs may be exchanged on CPs and only ASPs and PDUs may be exchanged on PCOs. */

ImplicitSend ::= "<'IUT "I" (ASP_ldentifier | PDU_Identifier) ">"

[* STATIC SEMANTICS - ImplicitSend shall not be used unless the test method being used is one of the Remote Test Methods. */
Receive ::= [PCO_ldentifier | CP_ldentifier | FormalParldentifier] "?" (ASP_Ildentifier | PDU_Identifier | CM_Identifier)

[* STATIC SEMANTICS - PCO_ldentifier, CP_ldentifier or FormalParldentifier shall be present unless the test suite usesR® and no CP. */
[* STATIC SEMANTICS - Only CMs may be exchanged on CPs and only ASPs and PDUs may be exchanged on PCOs. */

Otherwise ::= [PCO_ldentifier | CP_Identifier | FormalParldentifierDPHERWISE

/* STATIC SEMANTICS - PCO_ldentifier, CP_ldentifier or FormalParldentifier shall be present unless the test suite usesR2 and no CP. */
[* STATIC SEMANTICS - FormalParldentifier shall only be of PCO type. */

Timeout ::="?"TIMEOUT [Timerldentifier | FormalParldentifier]

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

/* STATIC SEMANTICS - FormalParldentifier shall only be of TIMER type. */
663 Done ::="?'DONE "(" [TCompldList] ")"
664 TCompldList ::= TCompldentifier {Comma TCompldentifier}
665 Construct ::= GoTo | Attach | Repeat | Return | Activate | Create

666 Activate ::=ACTIVATE "(" [DefaultRefList] ")"
/* STATIC SEMANTICS - The ACTIVATE construct shall not be used in Default behaviour tables. */

667 Return ::=RETURN
/* STATIC SEMANTICS - The RETURN construct shall not be used except in Default behaviour trees (including any local tre&e{autiti
behaviour tables). */

668 Create ::.REATE "(" CreateList ")"

669 Createlist ::= CreateTComp {Comma CreateTComp}

670 CreateTComp ::= TCompldentifier Colon TreeReference [ActualParList]
/* STATIC SEMANTICS - TCompldentifier shall not be of Role MTC */

671 GoTo ::= ("->"|GOTO) Label
/* STATIC SEMANTICS - The label column shall contain labels referenced from the GoTo. */

/* STATIC SEMANTICS - Label shall be associated with the first of a set of alternatives, one of which is an ancestor aquenifitbm which the
GoTo is to be made. */

[* STATIC SEMANTICS - GoTo shall be used only for jumps within one tree,within a Test Case root tree, a Test Step tree a Default tree and a
local tree; and thus, each label used in a GoTo construct shall be found within the tree in which the GoTo is used. */

/* STATIC SEMANTICS - There shall be no ACTIVATE operation as an ancestor node of the GoTo construct on the branch betiae&edhe
Label and the GoTo. */

/* STATIC SEMANTICS - No GoTo shall be made to the first level of alternatives of local trees, Test Steps or Defaults. */

672 Attach ::="+" TreeReference [ActualParList]
/* STATIC SEMANTICS - TreeReference shall not attach itself, either directly or indirectly, at its top level of indentation. */
/* STATIC SEMANTICS - The number of the actual parameters shall be the same as the number of the formal parameters. */

/* STATIC SEMANTICS - Formal and actual parameters of test steps shall be used in such a way that only valid TTCN is ¢eztiat by
substitution. */

[* STATIC SEMANTICS - LiteralValue, TS_Parldentifier, TS_Constldentifier, TS_Varldentifier, TC_Varldentifier, ConsRef, M&ghihgl,
FormalParldentifier, PCO_Identifier and CP_ldentifier may be passed as actual parameters to an attached tree. */
673 Repeat :REPEAT TreeReference [ActualParLisfINTIL Qualifier
/* STATIC SEMANTICS - TreeReference shall not attach itself, either directly or indirectly, at its top level of indentation. */
/* STATIC SEMANTICS - The number of the actual parameters shall be the same as the number of the formal parameters. */
/* STATIC SEMANTICS - LiteralValue, TS_Parldentifier, TS_Constldentifier, TS_Varldentifier, TC_Varldentifier, ConsRef, M&ghibgl,
FormalParldentifier, PCO_Identifier and CP_ldentifier may be passed as actual parameters to the tree in a REPEAT statement. */
674 TreeReference ::= TestStepldentifier | Treeldentifier
/* STATIC SEMANTICS - Treeldentifier shall be the name of one of the trees in the current behaviour desceptmeal trees are not accessible
outside the behaviour description in which they are specified. */
675 ActualParList ::="(" ActualPar {Comma ActualPar} ")"
/* STATIC SEMANTICS - The number of the actual parameters shall be the same as the number of the formal parameters. */

/* OPERATIONAL SEMANTICS - Each actual parameter shall resolve to a specific value compatible with the type of its corig fponalin
parameter, or in the case of predefined operations compatible with the types for which the operation is defined. */

[* STATIC SEMANTICS - If a parameter is a parameterized constraint then the constraint shall be passed together witipésaawtted list. */
/* STATIC SEMANTICS - The actual parameters shall be bound. */
/* STATIC SEMANTICS - If the type of the formal parameter is PDU, then the actual parameter’s type shall be declared as BBpezifieDU
type. */

676 ActualPar ::= Value | PCO_lIdentifier | CP_ldentifier | Timerldentifier

/* NOTE - Through Value, it is possible to reach MatchingSymbol, TS_Parldentifier, TS_Constldentifier, TS_Varldentifier,|d€htNier,
FormalParldentifier or ConsRef. */

A.3.3.34 Expressions
677 AssignmentList ::= "(" Assignment {Comma Assignment} ")"
678 Assignment ::= DataObjectReference ":=" Expression

Delivery 9.4, 17 December 1996 155

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

679

680

681

682

683

684

685

686

687

688
689

156

/* STATIC SEMANTICS - Except within a Procedural Definition or an Encoding Definition, the LHS of Assignment shall only tes@BeVarldentifier,
TC_Varldentifier, reference to the field of a variable or reference to an ASP parameter or PDU field that is to be sent. */

/* STATIC SEMANTICS - Within a procedure definition of a TSOp or EncodingOp, the DataObject Identifier on the left-handsidesiinment shall be
a Varldentifier. */

[* STATIC SEMANTICS - The expression shall contain no unbound variables. */

/* OPERATIONAL SEMANTICS - The Expression on the RHS of Assignment shall evaluate to an explicit value of the type of tile LHS.
Expression ::= SimpleExpression [RelOp SimpleExpression]

/* OPERATIONAL SEMANTICS - If both SimpleExpressions and the RelOp exist then the SimpleExpressions shall evaluate teedpesiitcompatible
types. */

/* OPERATIONAL SEMANTICS - If RelOp is "<" | ">"| ">="| "<="then each SimpleExpression shall evaluate to a specific INTEGER*/

/* STATIC SEMANTICS - ASN.1 Named Values shall not be used within arithmetic expressions as operands of operations. */

SimpleExpression ::= Term {AddOp Term}

/* OPERATIONAL SEMANTICS - Each Term shall resolve to a specific value. If more than one Term exists and if AddOp is "@H® Tleems shall resolve
to type BOOLEAN; if AddOp is "+" or "-" then the Terms shall resolve to type INTEGER. */

Term ::= Factor {MultiplyOp Factor}

/* OPERATIONAL SEMANTICS - Each Factor shall resolve to a specific value. If more than one Factor exists and if MultipA®p'isHen the Factors
shall resolve to type BOOLEAN; if MultiplyOp is "*" or "/" then the Factors shall resolve to type INTEGER. */

Factor ::= [UnaryOp] Primary

/* OPERATIONAL SEMANTICS - The Primary shall resolve to a specific value. If UnaryOp exists and is "NOT" then Primary shalltcetype
BOOLEAN; if the UnaryOp is "+" or "-" then Primary shall resolve to type INTEGER. */

Primary ::= Value | DataObjectReference | OpCall | SelectExprldentifier | "(" Expression ")"

/* STATIC SEMANTICS - SelectExprldentifier shall only be used within selection expressions. */

/* NOTE - Through Value, it is possible to reach MatchingSymbol, TS_Parldentifier, TS_Constldentifier, TS_Varldentifier,|d€htNier,
FormalParldentifier or ConsRef. */

DataObjectReference ::= DataObjectldentifier {ComponentReference}

[* STATIC SEMANTICS - Identifiers of ASP parameters and PDU fields associated with SEND and RECEIVE shall be used ordnte #e&#? parameter
and PDU field values on the statement line itself. */

[* STATIC SEMANTICS - Each ComponentReference shall only reference an ASP parameter, PDU field, structure element or A&Xplicidiudeclared
in the object that immediately precedes in the DataObjectReference. */

/* STATIC SEMANTICS - DataObjectldentifier shall not be a Varldentifier except within a procedure definition of a TestSaite®per
EncodingOperation. */

DataObjectldentifier ::=TS_Parldentifier |TS_Constldentifier |TS_Varldentifier [TC_Varldentifier |[FormalParldentifietdehBfrer |
PDU_Identifier | CM_Identifier | Varldentifier

ComponentReference ::= RecordRef | ArrayRef | BitRef

/* STATIC SEMANTICS - RecordRef shall be used to reference ASN.1 SEQUENCE, SET and CHOICE components. It shall not beferseddo r
components of any other ASN.1 type. */

/* STATIC SEMANTICS - RecordRef shall be used to reference ASP parameters, PDU fields and structure elements in thertabular for

/* STATIC SEMANTICS - ArrayRef shall be used to reference ASN.1 SEQUENCE OF and SET OF components. It shall not be usedécmfgponents
of any other ASN.1 type. */

RecordRef ::= Dot (Componentldentifier | ComponentPosition)

[* STATIC SEMANTICS - The Componentldentifier form of RecordRef shall always be used to reference ASN.1 SEQUENCE, SET a&tcGipdGents
when an identifier is declared for the component. */

[* STATIC SEMANTICS - The Componentldentifier form of RecordRef shall always be used to reference ASP parameters, PDU dtelesuaa elements
declared in the tabular form. */

/* STATIC SEMANTICS - The ComponentPosition form of RecordRef shall always be used to reference ASN.1 SEQUENCE, SET and¢ @hii@hts
when an identifier is not declared for the component. */

/* STATIC SEMANTICS - Structldentifier shall not be used if the relevant structure is used as a macro. Structldentifietd dderféflers shall not be
included in a RecordRef when a parameter, field or element is chained to a PDU or structure and the RecordRef is tcangttifgrat of that PDU or
structure. */

/* STATIC SEMANTICS - Where a structure is used as a macro expansion, the elements in the structure shall be refeirechtoeapdnded into the ASP
or PDU referring to it. */

[* STATIC SEMANTICS - If a parameter, field or element is defined to be of metatype PDU no reference shall be made tohig|dshsftructure. */
Componentldentifier ::= ASP_Parldentifier | PDU_Fieldldentifier | CM_Parldentifier | Elemldentifier | ASN1_Identifier
ASN1_Identifier ::= Identifier

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

/* NOTE - ASN1_Identifier identifies a field within ASN.1 SEQUENCE, SET or CHOICE type. */

/* STATIC SEMANTICS - An ASN1_ldentifier associated with a NamedValue shall not be used unless the value is within a SEBHEHNEZE,
CHOICE type. */

/* STATIC SEMANTICS - An ASN1_lIdentifier shall be provided to identify the variant in a CHOICE type. */

/* STATIC SEMANTICS - An ASN1_Identifier shall be provided whenever the value definition becomes ambiguous because of BR8N
values in a SEQUENCE type. */

690 ComponentPosition ::="(" Number ")"
691 ArrayRef ::= Dot "[" ComponentNumber "]"
692 ComponentNumber ::= Expression
/* OPERATIONAL SEMANTICS - ComponentNumber shall evaluate to a non-negative specific INTEGER value. */
693 BitRef ::= Dot (Bitldentifier | "[* BitNumber "]")
694 Bitldentifier ::= Identifier
/* NOTE - Bitldentifier identifies a particular bit within an ASN.1 BIT STRING. */
695 BitNumber ::= Expression
/* OPERATIONAL SEMANTICS - BitNumber shall evaluate to a non-negative specific INTEGER value. */
696 OpCall ::= Opldentifier (ActualParList | "(" ")")
/* STATIC SEMANTICS - See static semantics on production 675. */
697 Opldentifier ::= TS_Opldentifier | TS_Procldentifier | PredefinedOpldentifier

698 PredefinedOpldentifier :BIT_TO_INT |HEX_TO_INT |INT_TO_BIT |INT_TO_HEX |IS_CHOSEN |IS_PRESENT]|
LENGTH_OF |NUMBER_OF ELEMENTS

699 AddOp ;= "+"|"-"PR

/* OPERATIONAL SEMANTICS - Operands of the “+”, “-” operators shall be of type INTEGER TTCN or ASN.1 predefined) or derivations of
INTEGER ({.e., subrange). Operands of the OR operator shall be of type BOOLEAN (TTCN or ASN.1 predefined) or derivatives of BOOLEAN. */

700 MultiplyOp ::= ™" |"/* IMOD | AND
/* OPERATIONAL SEMANTICS - Operands of the “*”, “/” and MOD operators shall be of type INTEGERTTCN or ASN.1 predefined) or

derivations of INTEGERI ., subrange). Operands of the AND operator shall be of type BOOLEAN (TTCN or ASN.1 predefined) or derivatives of
BOOLEAN. */

701 UnaryOp;;: LU RURE |NOT

/* OPERATIONAL SEMANTICS - Operands of the “+”, “-” operators shall be of type INTEGER TTCN or ASN.1 predefined) or derivations of
INTEGER (.e., subrange). Operands of the NOT operator shall be of type BOOLEAN (TTCN or ASN.1 predefined) or derivatives of BOOLEAN. */

702 Relop = n_n | et I s I eS| s | ="

A.3.3.35 Timer operations
703 TimerOps ::= TimerOp {Comma TimerOp}
704 TimerOp ::= StartTimer | CancelTimer | ReadTimer

705 StartTimer ::=START (Timerldentifier | FormalParldentifier) ["(" TimerValue ")"]
/* STATIC SEMANTICS - FormalParldentifier shall only be of TIMER type. */

706 CancelTimer ::€£ANCEL [Timerldentifier | FormalParldentifier]
/* STATIC SEMANTICS - FormalParldentifier shall only be of TIMER type. */

707 TimerValue ::= Expression
/* OPERATIONAL SEMANTICS - Timervalue shall evaluate to a non-zero positive INTEGER. */

708 ReadTimer :: READTIMER (Timerldentifier | FormalParldentifier) "(" DataObjectReference ")"
/* STATIC SEMANTICS - FormalParldentifier shall only be of TIMER type. */
/* STATIC SEMANTICS - The DataObjectReference shall only resolve to TS_Varldentifier, TC_Varldentifier, or reference I tfie frariable. */
/* OPERATIONAL SEMANTICS - The DataObjectReference shall resolve to type INTEGER. */
A.3.3.36 Types
709 TypeOrPDU ::= TypeRDU
710 Type ::= PredefinedType | ReferenceType

Delivery 9.4, 17 December 1996 157

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

A.3.3.36.1 Predefined types

711

712

PredefinedType ::#NTEGER |BOOLEAN |BITSTRING |HEXSTRING |OCTETSTRING | OBJECTIDENTIFIER | R_Type|
CharacterString

CharacterString ::NumericString | PrintableString | TeletexString | VideotexString | VisibleString | IA5String | GraphicString |
GeneralString | T61String | 1ISO646String

A.3.3.36.2 Referenced types

713

714

ReferenceType ::= TS_Typeldentifier | ASP_ldentifier | PDU_ldentifier | CM_ldentifier

I* STATIC SEMANTICS - All types, other than the predefined types, used in a test suite shall be declared in the Test QUgfmiTigps, ASP type
definitions, PDU type definitions or CM type definitions, and referenced by name. */

TS_Typeldentifier ::= SimpleTypeldentifier | Structldentifier | ASN1_Typeldentifier

A.3.3.37 Values

715

716
717
718
719
720
721
722
723
724
725
726
727
728

729

730

731

732

733

734
735
736

158

Value ::= LiteralValue | ASN1_Value [ASN1_Encoding]

/* REFERENCE - Where ASN1_Value is the non-terminal Value as defined in ISO/IEC 8824: 1990. For the purposes of TTCMithiedmduction de-
fined in ISO/IEC 8824: 1990:

DefinedValue ::= Externalvaluereference | valuereference
is redefined to be:

DefinedValue ::= ConstraintValue&Attributes | valuereference
This means that ASN.1 external references are not allowed in TTCN, but the full possibilities of ConstraintValue&Attritefiesch production 538 are
allowed within ASN.1 values in TTCN. This means that expressions, matching symbols, constraint references, value lenG8&NF, BRJ ASN.1 field
encoding operations are all included . */

/* STATIC SEMANTICS - ASN.1 Named Values shall not be used within arithmetic expressions as operands of operations. */
LiteralValue ::= Number | BooleanValue | Bstring | Hstring | Ostring | Cstring | R_Value

Number ::= (NonZeroNum {Num})(

NonZeroNum ::4|2|3|4|5|6|7|8]9

Num ::=0 | NonZeroNum

BooleanValue ::=TRUE | FALSE

Bstring ::= """ {Bin | Wildcard} """ B
Bin:=0]1

Hstring ::= """ {Hex | Wildcard} """ H
Hex :=NumA |B|C|D|E|F
Ostring ::="" {Oct | Wildcard} ""O
Oct ::= Hex Hex

Cstring ::= """ {Char | Wildcard | "\"} "™

Char ::5* REFERENCE - A character defined by the relevant CharacterString type. */

/* LEXICAL REQUIREMENT - If the CharacterString type includes the character " (double quote), this character shall be eddrgsepair of " (double
quote) in the denotation of any value. */

Wildcard ::= AnyOne | AnyOrNone
AnyOne ::="?"
[* STATIC SEMANTICS - AnyOne shall be used only within values of string types, SEQUENCE OF and SET OF. */

AnyOrNone ::= "*"
[* STATIC SEMANTICS - AnyOrNone shall be used only within values of string types, SEQUENCE OF and SET OF. */

R_Value ::9pass|fail |inconc|none
Identifier ::= Alpha{AlphaNum | Underscore}

/* STATIC SEMANTICS - All Identifiers referenced in a TTCN test suite shall be explicitly declared in the test suite, gxjdiddred in an ASN.1 type
definition referenced by the test suite or be a TTCN predefined identifier. */

Alpha ::= UpperAlpha | LowerAlpha
AlphaNum ::= Alpha | Num
UpperAlpha ::A A |[B|C|D|E|F|G|H|[I|J|K|L|M|N|O|P|Q|R|S|T|U|V|W[X]Y|Z

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

737 LowerAlpha :=a|bj|c|d]|e|f|g|h|i|j|k[l|m|n]jo|plq|r|s|tlu|v|w]|x]|y]|z
738 ExtendedAlphaNum ::# REFERENCE - A character from any character set defined in ISO/IEC 10646. */
739 BoundedFreeText :"#" FreeText™/"

740 FreeText ::= {ExtendedAlphaNum}
/* LEXICAL REQUIREMENT - Free Text shall not contain the string "*/" unless preceded by backslash ("\"). */

A.3.3.38 Miscellaneous productions
741 Comma:=","
742 Dot :=""
743 Dash ::="-"
744 Minus :="-"
745 SemiColon ::=""
746 Colon :=""
747 Underscore ::= "_"

Delivery 9.4, 17 December 1996 159

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

A.4 General static semantics requirements

A.4.1 Introduction

Static semantics requirements that are related to specific BNF productions are specified as comments on the relevars, imatiectaiowing
format:

[* STATIC SEMANTICS - ... */

All other static semantic requirements that are common to both TTCN.GR and TTCN.MP are specified in the remainder ofiéndl st@dic se-
mantics in the TTCN.MP are specified in A.5.2.
A.4.2 Uniqueness of identifiers

A.4.2.1 In some cases test suites may make references to items defined in other OSI standards. In particular, references to ASN
definition modules according to ISO/IEC 8824: 1990 may be made in the type definitions. Names from those modules (sitich as i
fiers of subfields within structured ASN.1 type definitions) may be used throughout the test suite.

Since the rules for identifiers in ASN.1 and TTCN conflict, the following conventions apply:

a) type references, module identifiers and value references made within the various ASN.1 type definitions tables shaltltemply
requirements for identifiers defined in ISO/IEC 8824: 1990;

b) for identifiers used within the other parts of a test suite dash (-) characters shall be replaced with underscores (_).

Within some TTCN tables part of the ASN.1syntax can be used to define types.In that case, ASN.1 rules shall be followikfsr wi¢h the
exception that dash (-) characters shall not be used. Underscores (_) may be used instead. All other requiremeptsS@EREEB24: 1990
(e.g.,Type identifiers shall start with an upper case letter, and field identifiers within structured ASN.1 definitions shathsiddwer case letter)
apply to TTCN test suites wherever ASN.1 is used.

A.4.2.2 All identifiers of the following TTCN objects shall be unique throughout the test suite:
a) Test Suite Types;
b) Test Suite Operations;
c) Test Suite Parameters;
d) Test Case Selection Expressions;
e) Test Suite Constants;
f) Test Suite Variables;
g) Test Case Variables;
h) PCO types;

NOTE - Ifthereis no PCO type declaration table, then PCO types are implicitly declared in the PCO declaration tablegdsenhiehniqueness
refers to the meaning of the PCO type - the same PCO type may occur several times in the PCO declaration table with #mngame me

i) PCOs;

j) CPs;

k) Timers;

[) Test Components;

m) Test Component Configurations;
n) ASP types;

0) PDU types;

p) CM types;

q) Structured Types;

r) Encoding Rules;

s) Encoding Variations;

t) Invalid Field Encodings;

160 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

u) Aliases;

v) ASP constraints;

w) PDU constraints;

x) CM constraints;

y) Structure constraints;

z) Test Cases;

aa) Test Steps;

ab) Defaults;

ac) Encoding Rule Names;

ad) Encoding Variation Names;
ae) Invalid Field Encoding Names.

Second Edition Mock-Up for ETSI TC/MTS

A.4.2.3 All the following TTCN object references shall be unique throughout the test suite:

a) Test Group References;
b) Test Step Group References;
c¢) Default Group References.

Delivery 9.4, 17 December 1996

161

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

A.4.2.4 TTCN reserved words are listed in table A.2 These reserved words shall not be used as identifiers in a TTCN test suit
TTCN reserved words and TTCN identifiers are case sensitive.

Table A.2 - TTCN Reserved Words

A.4.2.5 The ASN.1 reserved words are listed in table A.3. These reserved words shall not be used as identifiers in a TTCN test

162

ACTIVATE IA5String pass

AND IF PDU

BEGIN IF_PRESENT PERMUTATION
BITSTRING INCONC PrintableString
BIT_TO_INT inconc ps

BOOLEAN INFINITY PTC

BY INTEGER R

CANCEL INT_TO_BIT READTIMER
CASE INT_TO_HEX REPEAT
COMPLEMENT IS_CHOSEN REPLACE

CP IS_PRESENT RETURN
CREATE IUT RETURNVALUE
DO LT R_Type
DONE min s

ELSE MOD START

ENC ms STATIC

END MTC SUPERSET
ENDCASE NOT SUBSET
ENDIF ns TeletexString
ENDVAR OF THEN
ENDWHILE OoMIT TIMEOUT

F OR TIMER

FAIL OTHERWISE TO

fail P TRUE

FALSE LENGTH_OF UNTIL
GeneralString none us

GOTO NUMBER_OF_ELEMENTS uT
GraphicString NumericString VAR
HEXSTRING OCTETSTRING VideotexString
HEX_TO_INT OBJECTIDENTIFIER VisibleString

| PASS WHILE

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

Table A.3 - - ASN.1 Reserved Words

Second Edition Mock-Up for ETSI TC/MTS

ABSENT FROM OPTIONAL
ANY GeneralString PRESENT
APPLICATION GeneralizedTime PRIVATE
BEGIN GraphicString PrintableString
BIT IA5String REAL
BOOLEAN IDENTIFIER SEQUENCE
CHOICE IMPLICIT SET
COMPONENT IMPORT SIZE
COMPONENTS INCLUDES STRING
DEFAULT INTEGER T61String
DEFINED 1ISO646String TRUE
DEFINITIONS MAX TeletexString
END MIN UNIVERSAL
ENUMERATED NULL UTCTime
EXPLICIT NumericString VideotexString
EXPORT OBJECT VisibleString
EXTERNAL OCTET WITH

FALSE OF

A.4.2.6 When ASN.1 is used in a TTCN test suite, ASN.1 identifiers from the following list shall be unique throughout the t
suite, regardless of whether the ASN.1 definition is explicit or implicit by reference:

a) Typeldentifierof an ASN.1 Type Definition;
b) identifiers occurring in an ASN.1 ENUMERATED type as distinguished values;
c) identifiers occurring in AlamedNumberLisif an ASN.1 INTEGER type.

A.4.2.7 The names of ASP parameters shall be unique within the ASP in which they are declared. The names of PDU f
shall be unique within the PDU in which they are declared. The names of CM parameters shall be unique within the CM in w
they are declared.

A.4.2.8 If a Structured Type is used as a macro expansion, then the names of the elements within the Structured Type st
unigue within each ASP, PDU or CM where it will be expanded.

A.4.2.9 Labels used within a tree shall be unique within a iteg Test Case root tree, Test Step tree, Default tree, local tree).

A.4.2.10 The tree header identifier used for local trees shall be unique within the dynamic behaviour description in which t
appear, and shall not be the same as any identifier having a uniqgue meaning throughout the test suite.

NOTE - This means that a local tree identifier may have the same name as a local tree identifier in another behaviarr, desaorgitihe
same as another Test Step in the Test Step Library.

A.4.2.11 The formal parameter names which may optionally appear as part of the following shall be unique within that forr
parameter list, and shall not be the same as any identifier having a uniqgue meaning throughout the test suite

a) Test suite operations definition;

b) Tree header of a local tree;

c) Test Step ldentifier;

d) Default Identifier;

e) Parameterized constraint declaration.

Delivery 9.4, 17 December 1996 163

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

A.4.2.12 A formal parameter name contained in the formal parameter list of a local tree header shall take precedence over a f
parameter name contained in the formal parameter list of the Test Step in which it is defined, within the scope ofdhatlqualdm-
eter list.

A.4.2.13In concurrent TTCN, PCOs and CPs used in a Test Case shall only be those determined by the Test Component configt
for that Test Case.

A.4.2.14 Each identifier used in the procedural definition of a test suite operation shall be on of the following:
a) locally declared variable name;
b) a type name, used in a variable declaration;
c¢) a formal parameter name declared in a formal parameter list of the operation;
d) a test suite operation name.

The scope of formal parameter names and locally declared variable names is the procedural definition of the test suniteTdpesate values of
all other types of identifier are not directly accessible within the procedural definition of a test suite operation. Tsuekoedses they shall be
passed as actual parameters to the test suite operation.

A.4.2.15 The constraints for TTCN Structured Types, TTCN ASPs, TTCN PDUs and TTCN CMs shall not be specified using AS|
tables (i.e., ASN.1 Type Constraints, ASN.1 ASP Constraints, ASN.1 PDU Constraints or ASN.1 CM Constraints). Conversely
constraints for ASN.1 Types, ASN.1 ASPs, ASN.1 PDUs and ASN.1 CMs shall not be specified using TTCN tables (i.e., Struct
Type Constraints, TTCN ASP Constraints, TTCN PDU Constraints or TTCN CM Constraints).

NOTE - However, when ASPs or PDUs are chained to other PDUs, the enclosing ASP or PDU may, for example, be specifiieflicCdbulzere-
as the enclosed PDU may be specified in ASN.1.

A.5 Differences between TTCN.GR and TTCN.MP

A.5.1 Differences in syntax
The following is a list of syntax differences between TTCN.MP and TTCN.GR:
a) TTCN.MP uses keywords as delimiters between entries, while TTCN.GR uses boxes;
b) TTCN.MP uses an explicit denotation of indentation levels for test events, while indentation is indicated visually inRETCN.G

¢) TTCN.MP contains an extra occurrence of the suite identifier, which is used to facilitate identification of the AT $amatedu
method,;

d) in TTCN.MP the Test Case behaviour descriptions are explicitly grouped by the inclusion of appropriate Test Grouys identifie
sequence before the Test Case behaviour descriptions belonging to each group; this information duplicates informatioimcontai
the Test Case Index and in the Test Group References of the Test Case behaviour descriptions;

e) the Test Suite Structure, Test Case Index, Test Step Index and Default Index tables require a page number for eaeh entr
page numbers are not relevant in the machine processable form they are not reflected in the TTCN.MP;

f) TTCN.GR supports both single and compact proformas for ASP and PDU constraints and Test Cases; the TTCN only suy
BNF for the single table format and the presentation of a number of single tables in TTCN.GR compact format is a display i
when mapping a compact constraints table to TTCN.IME gingle format), blank fields due to modification shall be omitted,;

g) the symbols “/*” and “*/” which open and close BoundedFreeText strings in the TTCN.MP shall not appear in the TTCN.GR

h) there are two alternative positions for the labels column in behaviour description tables in TTCN.GR, whereas tleat@asa fix
tion for the labels in TTCN.MP;

i) page and line continuation are TTCN.GR features which are not represented in the TTCN.MP;
j) page and line numbering are TTCN.GR features which are not represented in the TTCN.MP.

k) if in TTCN.GR group references are used with definitions, declarations or constraints to indicate an hierarchical droupin
objects, then in TTCN.MP each relevant group identifier is inserted before the syntax for the group of tables which gitwane that
identifier and the syntax for the group identifier and following group of tables are enclosed in the appropriate TTCN.MiEskeywc
relevant to the type of object.

164 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

A.5.2 Additional static semantics in the TTCN.MP
The following is a list of the additional static semantics in the TTCN.MP:

a) in the TTCN.MP, statements in the first level of alternatives having no predecessor in the root or local tree they belol
have the indentation value of zero; statements having a predecessor shall have the indentation value of the predecess
one as their indentation value;

b) in the TTCN.MP, the Test Suite Structure information is in the form of Test Group Identifiers preceding Test Case bel
iour descriptions shall be the same structure as defined by the part of the Test Suite Structure relevant to Test Gabups al
defined by the Test Case Index.

Delivery 9.4, 17 December 1996 165

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

List of BNF production numbers

A.6 Introduction

This section presents an alphabetical index of the BNF productions that appear in annex A. For each production the andefergines in terms
of the production number (not page number).

EDITOR’S NOTE 1 - This BNF production index needs updating - please ignore it in this version.

166 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

AR
NN
W B

R R = o

Delivery 9.4, 17 December 1996 167

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

168 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

E
=TT 4| T 60.....
Elembels e 59....

G

GoTO e 425...
H

Headef——rrrrrrrrr e 386
HeX e 477...
B LS 2 T —— S

Delivery 9.4, 17 December 1996 169

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

N

NUm- 472...
NUMDBEF e A70...

E T o . B 57

o

Objectld 29,
Objective = 372..

ObjectPredefinedType s 32..

170 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

PDL I_anldlnlﬁrl\/lnprn 217

ettH Ve O e

Delivery 9.4, 17 December 1996 171

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

172 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

TestGroupReferenee ——rrrrrrrrrrrrrrmrrrrrrrrrrerrrrrrrrrremrrrrreees 356

Delivery 9.4, 17 December 1996 173

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

TS Constbel 123

TS ParDgl 110

0 00 G0 o
DR OEAES

174 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

L s 72 9
UpperAlpha e 489..
UpperBount e e 228,
M

W
Wildeard e ————————— 482..

Delivery 9.4, 17 December 1996 175

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Annex B
(normative)

Operational Semantics of TTCN

B.1 Introduction

Annex A describes the syntax of TTCN by means of BNF production rules and restrictions on these productions the obsencnoeaygfhe ver-
ified either statically or dynamically.

This annex defines the semantics of TTCN by describing an abstract procedure that executes syntactically valid TTCNTieist groteiure starts,
for each Test Case, an abstract “TTCN machine” that evaluates this Test Cases by means of the creation, expansionadiath iofenpré&valua-

tionTree”, dealing with one level (ordered set of alternatives in a certain position in the tree) at a time. In the ekeontiarrent TTCN, additional
TTCN machines are started, one for each created PTC. These machines work in the same way as the principal TTCN machihenwhkatuting
the main test component.The necessary PCOs and CPs, connecting TTCN machines with their environment and with eaclsothed &rexist

already and to be initially empty.

The abstract procedure (EVALUATE_TEST_SUITE) and the TTCN machines (EVALUATE_TEST_CASE, EVALUATE_TEST_COMPONENT
are described in clause B.5. EvaluationTree has the form of a TTCN behaviour tree, but enriched by additional compdrnedis.naehine it is
initially set to be the indicated Test Case or Test Step root tree, or local tree. In the course of test case executionTEelaaexpanded, and
“control” generally moves down the EvaluationTree, except in the execution of GOTOs and RETURNS, where control moves up.

The additional tree components, introduced for technical reasons, are the following: each node (alternative) has, bersided StatémentLine, a
Boolean value IsDefault, telling whether the node stems from a Default Behaviour Table; each level has, besides the deBtaéehtisntLines, a
Boolean value IsExpanded, telling whether the level has already been expanded.

It is not required that a real TTCN machine be built in a way that it works internally exactly as the abstract one. TTiONabgeratintics define
only how a real TTCN machine should behave externally, i.e. with respect to PCO and CP queues, timers and the timestlsingmohient termi-
nation information. Implementation details are irrelevant.

B.2 Precedence

Operational semantics for TTCN are supplied in the following clauses in a mixture of pseudo-code and natural languages&\ierenttations
overlap they are meant to have identical meanings. If the pseudo-code and natural language conflict, this is an errta,tencepbaied back to
the standards organization via a defect report. In such a case, pending correction of the defect by the standards digapsmatidorcode will take
precedence over the natural language text.

B.3 Processing of test case errors

Within the main body of this part of ISO/IEC 9646, as well as within Annex A and this annex, conditions are describedt thaheedatection of
test case errors. The observation of a test case error shall be recorded in the conformance log and lead to the abicetbCas¢he

Without being explicitly mentioned in the following, a test case error is always detected dynamically if any part of aorexipessot evaluate to
a defined value. Expressions are evaluated, among other occasions, in the application of assignments, qualifiers, dad constrain

B.4 Converting a modularized test suite to an equivalent expanded test suite
This algorithm does not handle error cases. It requires that the objects are unique in the scope where they are defined and use

In the conversion from modularized test suite to a expanded test suite, there is a need for the renaming of some impotigetET@Norder to
| avoid name clashes). In this rename prodes®two options are allowed:

a) the original name is retained as defined in the declaration/definition of the object;

b) the new name is constructed by concatenation of the module identifier and the original name of the object. They atatitie sef
by two underscores, e.g. ModuleA___ConnectionRequest.

176 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

mport table.

The principle of this algorithm is, for each source object, make a temporary copy of it, expand the copy, then mark emcheoinjgcirted
and finally merge each marked object into the importing suite.

procedure expand(Entity) Make a temporary copy of the whole source

begin
for (every source Sin ImportPart}do)
begin Awe copy of the source (Recursion)
copy(Si); 4
expand(Si);
treat_explicit_imported(Entity, Si)ﬂ-\l\/lamamdremnwexplicitly imported objects
treat_references(Entity, St
for (every marked object Gk S)do
begin
merge(Ok, Entity); Mark and rename references
end
end
end

Lookup in the "import table" for S in Entity

procedure treat_explicit_imported(Entity, S)
begin /

for (every object Oiin “import table” for S)do
begin
mark_as_imported(Oi);
end
if is_package(Entitythen
begin Rename the explicitly imported objects
for (every object Qiin “import table” for S)do
begin
def_id := new_def_id(Oi);
if def_idthen
begin
rename_def(Oi, def_id);
end
if omitted(Oi)or is_external(Oithen
begin
remove_imported_mark(Oi);
end
end
end
end

|EDITOR’S NOTE 2 - The above procedure needs updating now that packages have been deleted. How?

Delivery 9.4, 17 December 1996 177

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

procedure treat_references(Entity, S) Loop over all explicitly imported objects
begin /

for (every object Qiin “import table” for S)do
begin
for (every reference Ojised byOi) do g———— L0op over all references in explicitly imported objects
begin
if is_marked(Ojand is_package(Entitythen -—— An implicitly imported object
begin
ref_id := new_ref_id(Oj);
if ref_idthen
begin
rename_ref(Oj, ref_id, Oi);
end
end
else if notis_marked(Ojthen
begin

rename_unique(Oj, Su
mark_as_imported(Oj)s

end
end Mark the implicitly imported objects

Both the definition and all references

end

end

EDITOR’S NOTE 3 - The above procedure needs updating now that packages have been deleted. How?

The procedureopy(S)makes a temporary copy of the source olethis copy includes all objects (and tables) in the source object, though not the
imported objects.

The functionnew_def_id(O)eturns the new identifier given for the definition®fif any, in the import table.
The procedureename_def(O, Idjives the identifietd to the definition of the obje@.

The procedurenark_as_imported(QOnarks objecO with a flag "imported".

The functionnew_ref_id(OYeturns the new identifier given for the referenc®poif any, in the import table.
The procedureename_ref(O, Idyives the identifield to the reference obje€t

The functionis_marked(OYeturns true if the referen€®is a reference to a marked object.

The procedureename_unique(O, Sjives a new unique identifier to obje&atof sourceS (both the definition and all references in the so@cso
that this identifier cannot conflict with any object identifier from the importing suite or from other sources.

The procedurenerge(O, TSincludes the objed into the test suit& Sor the ModuleM at a place compatible with the categoryof

B.5 TTCN operational semantics

B.5.1 Introduction

TTCN behaviour trees are evaluated one level of alternatives at a time. At each level, defaults are appended, attachuotsrareamgianded, and
REPEAT constructs are replaced. This produces a set of alternatives that can be evaluated to discover which one sud¢chesfalhyl ireereby
determines which set of alternatives to proceed to next. The requirements for what constitutes a match for a TTCN statetremtvdep is coded
on that behaviour line, and are described in this semantics text.

178 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

B.5.2 The pseudo-code notation

B.5.2.1 Introduction

TTCN semantics are defined using a simple functional approach that explains the execution of a TTCN Test Case behavionr iescrip
volving the step-wise expansion of an evaluation tree, and the execution of nodes of this tree. These functions are amtetid¢ol @sder-
standing TTCN semantics and are not intended to be associated with any particular execution model or high level progrguagng ey
are not meant to be direct methods for executing TTCN.

Keywords of pseudo-code are printed in bold font,gr@cedure, function, begin, end, if, then, else In the header of their definition, proce-
dure, process, and function names are highlighted by bold font to facilitate lookup. For the same reason, the datantyienaanfghlight-
ed. Apart from this, data types are not dealt with explicitly.

B.5.2.2 Procedures and functions

Many statements aprocedure calls.Function expressions may be used wherever a value of the associated type is needed. They obtain their
value (and are immediately terminated)rbfurn, followed by a value expression.

Procedure and function parameters are generally “throughput parameters”, i.e. formal parameters that may be both “ratd@haot! far
particular, functions may have “side effects” and are essentially “procedures with a value”. Variables in a procedurendoddyatiat are

neither formal parameters nor any of the global ones mentioned above are local variables of this body, without explicihdeclara

Care is taken that

— parameters are read only when they have a defined value;
— terms are used as actual parameters only where the procedure or function does not assign
a value to the respective formal parameter, i.e. the parameter is purely an input parameter.

B.5.2.3 Processes

Processedehave like procedures, except that they are each run on a separate TTCN machine. They are not executed in a nested fashion. |
process, global data objects may be declared, such that they are available in all procedures and functions called s whhqubbeing

explicitly passed along as parameters. Avoiding long parameter lists makes the pseudocode easier to read. Of courséglnbtratgects

exist independently in each process (TTCN machine). There is no relationship between global objects in different processes.

In this annex, the following objects are treated as global objects in each process:

— EvaluationTree, of the Test Case (or Main Test Component) or Parallel Test Component;
— CurrentLevel, to be expanded or matched;

— Defaults, the current default context, used in default expansion;

— Snapshot, the temporarily fixed view of the environment;

— ReturnLevel, to be considered after the execution of a RETURN statement;

— ReturnDefaults, the default context of the ReturnLevel;

— SendObject, the ASP, PDU, or CM to be sent next;

— ReceiveObiject, the ASP, PDU, or CM received last.

Thus, each TTCN machine will have its own EvaluationTree etc.

Other objects, however, are accessible from all processes. The relevant state of the “environment of EVALUATE_TEST_SthE Ednke.
tents of the relevant PCOs and CPs, as well as the lists of expired timers, the values of timers, and the list of teratliglete=i pamponents,
are assumed to be globally accessible from all test components and need not be passed explicitly as parameters. SBuiterpafaseters,
Test Suite Constants, and Test Suite Variables are assumed to be accessible from all test case or test component processes.

B.5.2.4 Natural language within pseudo-code

Some parts of pseudo-code are written in natural language, in order to limit the complexity of this annex. These partedreyecand #/
. Such parts represent statements, for-loop details, or expressions of pseudo-code and are assumed to be executedvreevtilaptacs
encountered.

Pure comments, intended for the human reader, not to be executed or evaluated by a TTCN machine, are enclosed by (* and *).

B.5.2.5 Levels and alternatives
A level visited in a tree denotes both a position in the tree and the ordered set of alternatives at this level.

An alternative visited in a tree determines a level position in the tree, cf. LEVEL_OF in B.5.25. The alternative dentdaesirsiyla posi-
tion in that level, a BehaviourLine, a StatementLine, etc.

Thus, levels and alternatives in a tree are pointers, but the unpacking of the data objects they point at is done implicitly.

Delivery 9.4, 17 December 1996 179

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

B.5.3 Execution of a Test Suite

B.5.3.1 Introduction

The Test Suite is executed in the main procedure, EVALUATE_TEST_SUITE. Every Main Test Component (Test Case in the non-caseurre
is executed on an abstract TTCN machine executing EVALUATE_TEST_CASE. Each Parallel Test Component is executed on art ii@d€penden
machine, performing EVALUATE_TEST_COMPONENT.

¢ procedure EVALUATE_TEST_SUITE (TestSuiteld)

(* This procedure introduces unique names for all TTCN trees, including local subtrees. It sets Test Suite specific datadabjaliiates each Test
Case whose selection expressions become TRUE. *)
begin
for /# every Test Case, Test Step or Default behaviour Tafllein TestSuiteld #fo
begin
/# Rename all local trees of Table such that they become unique throughout the test suite and different from any Test Case,
Test Step or Default behaviour table name in the Test Suite. #/;
/# Rename accordingly in Table all references to local trees in attachments. #/;
/# Every node in every behaviour tree gets a new Boolean component “IsDefault”.
This component is set to TRUE for all nodes in Default Dynamic Behaviour Tables
and FALSE for all nodes in all other tables. #/;
end;
for /# every Default behaviour tabl@blein TestSuiteld #flo
begin
/# For each leaf of the behaviour tree which does not have an entry in the verdict column assign tifre ¥érdict
/# or each leaf of the behaviour table which has a preliminary result assigned, change the preliminary result to a verdict by
removing the parentheses around it. #/
end;
Evaluated := /# empty list of Test Case Identifiers #/;
/# Set values of Test Suite Parameters, Test Suite Constants, and, where to be initialized, of Test Suite Variables #/;
for /# every Test Case Identifi€Cld of TestSuiteld that is not yet in Evaluatedl&/ (* in any order *)
begin
SelEx := /# conjunction of the selection expressions of all test groups containing Test Case TCId (directly or via lowé# ,groups
if EVALUATE_BOOLEAN(SelEx)then
start processSEVALUATE_TEST_CASE (TCld);
/# add TCId to the list Evaluated #/;
end
end

B.5.4 Execution of a Test Case
B.5.4.1 Execution of a Test Case - pseudo-code

e process EVALUATE_TEST_CASHTestCasel}

(* This process initializes the EvaluationTree by the Test Case root tree and the default context by the Defaults refedanttbstist&est Case
Behaviour Description. It moves control to the top level of alternatives and calls their evaluation. *)

global EvaluationTree, CurrentLevel, Defaults, Snapshot, ReturnLevel, ReturnDefaults, SendObject, ReceiveObject;
begin

[# Initialize Test Case Variables, global R and MTC_R, PCOs, CPs, Timers, and the Timeout List of TestCaseld. #/;

EvaluationTree := ROOT_TREEstCasel}f

(* EvaluationTree is a growing finite tree built up by pasting together and expanding copies of trees from the test casalbsbapt@mn

and from the test step and default libraries. A component IsExpanded is added to each level. *)

CurrentLevel := FIRST_LEVEL(EvaluationTree) ;

(* Alevel denotes both a position in a tree and the ordered set of alternatives at this position. *)

ReturnLevel := CurrentLevel;

Defaults := DEF_REF_LISTestCaselj

ReturnDefaults := Defaults;

EVALUATE_LEVELS ();

(* This includes, by nested calls, the evaluation of all relevant subsequent levels in the growing evaluation tree. *)
end

180 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

(*

begin

procedure EVALUATE_LEVELS ()

This procedure first expands and evaluates CurrentLevel, which is the currently active level of alternatives of Evatudliefaluis

gives the currently active default context. The alternatives contained in CurrentLevel are processed in their order otafipeaessary

in repeated round€urrentAlternatives the loop variable of the for-loop, denoting the currently considered alternative in CurrentLevel.
By the snapshot mechanism, in each round of matching attempts through CurrentLevel, the status of the environment cessid¢red do
change, giving each such round an instantaneous character.

Save for dynamically detected test case errors, the evaluation of CurrentLevel includes the successful evaluation ¢ifzanEtterisa
followed by the assignment of a verdict and the evaluation of the next level, and hence, by induction, of all levelstrathseguently
moves to. *)

if NOT IS_EXPANDED(then

(* By this condition we avoid expanding levels repeatedly which are targets of GOTOs. *)
EXPAND_CURRENT_LEVEL ();

(* Now the current level is free of REPEATSs and attachments, and includes the necessary defaults. *)
repeat

(* ... performing rounds through current level, trying to match an alternative.*)
TAKE_SNAPSHOT();
(* ... of the incoming PCO and CP queue(s), the relevant timeout list, and the termination status of any other
test components. *)
for /# everyCurrentAlternativen CurrentLevel, in the given order did
(* try to match the current alternative. Note that an alternative visited in a tree determines a level position in the tree and
denotes, depending on the context it is used in, a position in that level, a BehaviourLine, a StatementLine, etc. *)
begin
if EVALUATE_EVENT_LINE (CurrentAlternativejhen
(* Inthe absence of Test Case errors the Test Component or Test Case will terminate inside the
EVAL_VERDICT_ENTRY or GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT call
of the innermost recursive instance of EVALUATE_LEVELS, e.g.
if there is a final verdict or no next level. Then, the for-loop will be aborted, too. *)
begin
if /# Alternative has a verdict column entry VerdictEntryhgn
EVAL_VERDICT_ENTRY (VerdictEntry);
GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT(CurrentAlternative);
EVALUATE_LEVELS();
end
end

until SNAPSHOT_FIXED();

(*

SNAPSHOT_FIXED returns TRUE if Snapshot cannot change any more. *)

LOG(TEST_CASE_ERROR);
STOP_TEST_CASE();

end

B.5.4.2 Execution of a Test Case or Test Component - natural language description

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Evaluation begins at the numerically lowest (in TTCN.MP), i.e. the leftmost (in TTCN.GR), level of indentation of
the root tree.

Expand current level to include all defaults explicitly, and to replace all tree attachments, as long as necessary, as well
as all REPEATS, by their expansions.

Take a snapshot of the incoming PCO and CP queue(s) and the timeout list.
NOTE 1 - The act of taking a snapshot does not remove an event from any PCO or CP.

Consider the first behaviour line at the current level of alternatives.
Evaluate the TTCN statement on the current behaviour line

The evaluation of each type of TTCN statement is specified in the operational semantics for that TTCN statement
type.
If the TTCN statement evaluates to a successful match, then go to Step 6.

Delivery 9.4, 17 December 1996 181

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Otherwise, if there are more alternatives in the current set of alternatives, consider the next behaviour line in the s
alternatives and go to Step 4.

If there are no more alternatives, and yet all PCO and CP queues relevant to this set of alternatives contain at leiast one
and all timers relevant to Timeout statements in the set of alternatives are in the timeout list, then stop the Test Cas
indicatetest case errar

NOTE 2 - Under these conditions none of the set of alternatives can ever match.

In all other cases —i.e. there are no more alternatives and the next snapshot might show a different picture — go to St
Step 6 If a preliminary verdict is coded, process it as in B.5.23.2.
Step 7. If a leaf node in the tree or a node with a final verdict has been reached, then go to Step 8.

Otherwise, determine and consider the next level to be evaluated and go to Step 2.

Step 8. Use final verdict, or, if not specified, the current value of the preliminary result variable R, as the final verdict ef the T
Case as in B.5.23.2 and B.5.25.

B.5.5 Expanding a set of alternatives

B.5.5.1 Introduction
This subclause defines how to expand a set of alternatives in preparation for evaluating which alternative matches.
This is done in four steps:
d) saving the Default context, if labelled level,
e) attachment of the current set of Default behaviour trees;
f) expansion of attached trees, if necessary, recursively, until there are no more attachment alternatives in the set;

g) expansion of REPEAT constructs, replacing them by a subtree in which tree attachments and GOTO constructs occur in
levels only.

e procedure EXPAND_CURRENT_LEVEL ()

begin

if /# CurrentLevel has a label tien
SAVE_DEFAULTS ();

APPEND_DEFAULTS ();
EXPAND_ATTACHMENTS (EvaluationTree, CurrentLevel, Defaults);
(* CurrentLevel is now free of tree attachments. *)
EXPAND_REPEATS ();
/# Component IsExpanded of CurrentLevel #/ := TRUE;

end

B.5.5.2 Saving Defaults

e procedure SAVE_DEFAULTS ()
begin
Replace CurrentLevel and its subsequent behaviour in the EvaluationTree by ACTIVATE (Defaults), followed by CurrentLevel
and its subsequent behaviour, with the label of the former CurrentLevel moved to the ACTIVATE line. #/;
/# Consider new ACTIVATE line as the CurrentLevel #/;
end

182 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

B.5.5.3 Expansion of REPEAT constructs

If RepeatedTredenotes a particular TreeReference together with its ActualParLiscaditiondenotes a particular Boolean expression, and
label denotes a label not used anywhere else, then “REMedEatedTre&NTIL [Conditior]” can be replaced by:

[TRUE]
label + RepeatedTree
[NOT (Condition]
-> label
[Condition

Lines describing subsequent behaviour of the REPEAT construct follow@ftedifior] in this expansion, with an additional indentation of
one level.

e procedure EXPAND_REPEATS()
begin
for /# every alternativd in CurrentLevel, in the given order dd
begin
if /# A is of the form REPEAT RepeatedTree UNTIL [Conditionfhéh
begin
Subsequent := SUBSEQUENT_BEHAVIOUR_TO (EvaluationTree,A);
Label := NEW_LABEL ();
(* Create a label which has been used neither in the (relabelled) Test Suite nor in the EvaluationTree. *)
Expansion := MAKE_TREE (“[TRUE]",
MAKE_TREE (Label: “+" RepeatedTree,
MAKE_TREE (“[NOT(* Condition “)]",
“->" | abel,
MAKE_TREE (“[* Condition “]",
Subsequent,
)
),
);
REPLACE_ALT_TREE (EvaluationTree, CurrentLevel, A, Expansion);
end
end
end

B.5.5.4 Appending default behaviour

During evaluation of a test case, at each level of alternatives there is a current list of Default Tree Referencesombis digher from the
list in the appropriate Dynamic Behaviour Table, or from the most recently evaluated ACTIVATE construct. The appendinefadiltiseé<D
done by adding, for each entry in the current list of Defaults, the construct “+ DefaultReference” to the end of thersettiokalt

e procedure APPEND_DEFAULTS()
begin
for /# everyD in Defaults, in the given order &b
begin
APPEND_TO_LEVEL (EvaluationTree, CurrentLevel, “+” D);
(* EvaluationTree and CurrentLevel are updated by appending the attachment of D to CurrentLevel. *)

end
end

B.5.5.5 Expanding attached trees

Attached trees are expanded by replacing the attach constfestStepwith the tree or, where applicable, the root tre@esftSteand sub-
sequently, if there is behaviour specified following and indented from the Attach construct, to insert this behaviouiirdentaddrom each

Delivery 9.4, 17 December 1996 183

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

leaf in the attached tree. Since attached trees may have their own list of default tree references in the header e thentesicsbehaviour table,
the expansion of tree attachment has to ensure that if any event on the first level of alternatives of the attacheddréemtiterdefaults context
is changed, and if a leaf node of that attached tree is reached without a verdict being assigned then the defaultheara#ixtgofréee is restored
before the subsequent behaviour is evaluated. These changes in defaults context are most easily described in ternisootheppsmriate AC-

TIVATE constructs in the relevant places. If the attached tree is in fact a default tree, then there will be no defatdisraféeteheader, so the AC-
TIVATE constructs that are inserted on entering that tree will have no parameters and thereby will deactivate all défethiesseitpe of the default

tree.
The attached trees on Level are expanded using the following procedure:

e procedure EXPAND_ATTACHMENTS (Tree, Level, OuterDefaults)

begin
for /# every alternativé in Level in Tree, in the given order &
begin
if /# Ais an ATTACH construct, i.e. of the form “+” AttachedTreeld ActualParLighén
begin
Subsequent := SUBSEQUENT_BEHAVIOUR_TO (Tree,A);
AttachedTree := ROOT_TREE (AttachedTreeld);
REPLACE_PARAMETERS (AttachedTreeld, AttachedTree, ActualParList);
(* This replaces the formal parameters in AttachedTree by the actual parameters specified in ActualParList,
doing so by textual substitution *)
RELABEL(AttachedTree);
NewDefaults := DEF_REF_LIST(AttachedTreeld);
NewLevel := FIRST_LEVEL(AttachedTree);
EXPAND_ATTACHMENTS (AttachedTree, NewLevel, NewDefaults);
EXPAND_SUBTREE (AttachedTree, Subsequent, NewDefaults, OuterDefaults);
(* L.e.: Insert ACTIVATE(NewDefaults) below first level of AttachedTree &
Attach ACTIVATE(OuterDefaults) and Subsequent to each leaf node of AttachedTree *)
REPLACE_ALT_TREE(Tree, Level, A, AttachedTree);
end
end
end

e procedure EXPAND_SUBTREE(SubTree, Subsequent, InnerDefaults, OuterDefaults)
(* This procedure first inserts ACTIVATE(InnerDefaults) below the first level of SubTree
and then attaches ACTIVATE(OuterDefaults) and Subsequent to each leaf node of SubTree. *)

begin
Level := FIRST_LEVEL(SubTree);
for /# every alternativé of Level in SubTree #lo
begin
SubOfA := SUBSEQUENT_BEHAVIOUR_TO (SubTree, A);
ActTree := MAKE_TREE(A,
MAKE_TREE(*ACTIVATE(" InnerDefaults “)”,
SubOfA,),);
REPLACE_ALT_TREE(SubTree, Level, A, ActTree);
end
for /# every leaf in SubTree #o
begin
LeafTree := MAKE_TREE (A,
MAKE_TREE (“ACTIVATE(” OuterDefaults “)”,
Subsequent,),);
REPLACE_ALT_TREE(SubTree, LEVEL_OF(SubTree, A), A, LeafTree);
end
end

The expansion of attached trees is also explained in 15.13.

184 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

B.5.6 Evaluation of an Event Line
B.5.6.1 Pseudo-code

» function EVALUATE_EVENT_LINE (Alternative) :BOOLEAN

(* This function calls EVALUATE_EVENT, EVALUATE_PSEUDO_EVENT or EVALUATE_CONSTRUCT, depending on what type of
StatementLine the current alternative is *)

begin
case STATEMENT_LINE_TYPE_OF(Alternative)f
begin
EVENT: if EVALUATE_EVENT (Alternative) then return TRUE; else return FALSE;
PSEUDO_EVENT: if EVALUATE_PSEUDO_EVENT(Alternative) then return TRUE; else return FALSE;
CONSTRUCT: (* Construct can now only be GoTo, Return, Activate, Create. *)
if EVALUATE_CONSTRUCT (Alternative) then return TRUE; else returnFALSE;
end
end

B.5.6.2 Natural language description

Evaluate the TTCN statement on the current behaviour line, based on the statement type, i.e. whether it is an event, a pseudc
event, or a construct. The evaluation of each type of TTCN statement is specified in the operational semantics for that TTCN
statement type in the following subsections.

B.5.7 Functions for TTCN events

B.5.7.1 Functions for TTCN events - pseudo-code

e function EVALUATE_EVENT (Alternative) :BOOLEAN

(* This function calls SEND, RECEIVE, OTHERWISE, TIMEOUT , DONE, or IMPLICIT SEND, depending on what type of event the current
alternative is *)

begin
caseEVENT_TYPE_OF(Alternativepf
begin
SEND : if SEND (Alternative) then return TRUE; else return FALSE;
RECEIVE: if RECEIVE (Alternative) then return TRUE; else returnFALSE;
OTHERWISE: if OTHERWISE (Alternative) then return TRUE; else return FALSE;
TIMEOUT: if TIMEOUT (Alternative) then return TRUE; else return FALSE;
DONE: if DONE (Alternative) then return TRUE; else return FALSE;
IMPLICIT_SEND: if IMPLICIT_SEND (Alternative) then return TRUE; else returnFALSE;
end
end

B.5.7.2 Functions for TTCN events - natural language description

If the TTCN statement is an event, then it will be evaluated as specified in B.5.8 for a SEND event, B.5.9 for a RECEIBEK defur an
OTHERWISE event, B.5.11 for a TIMEOUT event, B.5.12 for a DONE event, or B.5.13 for an IMPLICIT SEND event.

B.5.8 Execution of the SEND event
B.5.8.1 Execution of the SEND event - pseudo-code

« function SEND (SendLine) BOOLEAN
begin
/# Read PCOorCPidentifier,

ASPorPDUorCMidentifier,
Qualifier,
Assignments,
TimerOperations,
ConstraintsReference from SendLine #/;

Delivery 9.4, 17 December 1996 185

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

if EVALUATE_BOOLEAN (Qualifier)then

begin

BUILD_SEND_OBJECT (ASPorPDUorCMidentifier, ConstraintsReference);
EXECUTE_ASSIGNMENTS (Assignment);

SEND_EVENT (PCOorCPidentifier, ConstraintReference);

TIMER_OPS (TimerOperations);

LOG(PCOorCPidentifier, SendObject);

return TRUE;

end
else return FALSE;

end

e procedure BUILD_SEND_OBJECT (ASPorPDUorCMidentifier, ConstraintsReference)

begin

SendObject :=/# an instance of ASPorPDUorCMidentifier

end

whose parameters/fields have the values specified by ConstraintsReference #/

e procedure SEND_EVENT (PCOorCPidentifier, ConstraintsReference)

begin

/# Encode SendObject according to applicable encoding rules and variations,
see ConstraintsReference and associated type definitions #/;
/# Putencoded SendObiject at the end of OUTPUT_Q(PCOorCPidentifier) #/;

end

B.5.8.2 Execution of the SEND event - natural language description

The contents of the ASP or PDU or CM, as specified in the named Constraints Reference entry, are to be sent. Noteistagifidtiées, the SEND
can be executed only if that qualifier evaluates to TRUE.

Step 1.

Step 2.

Step 3.

Step 4.

Step 5.

Step 6

186

If there is a qualifier, then that qualifier will be evaluated before any other processing takes place.
If the qualifier evaluates to FALSE, the SEND cannot succeed.
If the qualifier evaluates to TRUE, then continue with Step 2.

Create an ASP or PDU or CM as specified in the named Constraints Reference.

If the dynamic chaining feature has been used, then the value specified in the Constraints Reference entry will be ass
to the appropriate parameter or field of the ASP or PDU or CM to be sent.

Using the dynamic chaining feature has the effect of storing a copy of the named constraint into the named parame
field of the ASP or PDU or CM being built for comparison. The structure defined for the associated Constraints Refere
is used for this named parameter or field.

If there is an Assignment statement, then that assignment will be performed as in B.5.16, in particular possibly changin
ASP or PDU or CM to be sent.

The ASP or PDU or CM is now fully filled in according to the specifications given. The LT or UT will encode the PDL
(but not ASPs or CMs, apart from PDUs embedded in such) according to the applicable encoding rules. The LT or UT
send the ASP with its embedded encoded PDUs, or the encoded PDU. If a PCO or CP was stated, the ASP or PDU «
is to be sent at that PCO or CP. If the PCO was not statgthe test uses a single PCO - then the ASP or PDU is sent from
the lower PCO, because a CP cannot be implied.

If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be performe
in B.5.17.

Record in the conformance log the following information, as well as the information specified in B.5.24.2:
the PCO or CP at which the SEND occurred;

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

» the fully defined ASP, PDU or CM that was sent.
B.5.9 Execution of the RECEIVE event
B.5.9.1 Execution of the RECEIVE event - pseudo-code

« function RECEIVE (ReceiveLine Y BOOLEAN
begin
/# Read PCOorCPidentifier,

ASPorPDUorCMidentifier,

Qualifier,

Assignments,

TimerOperations,

ConstraintsReference from ReceivelLine #/;
if # INPUT_Q (PCOorCPidentifier) is not emptytién
begin

if (OBJECT_MATCHES(PCOorCPidentifier, ASPorPDUorCMidentifier, ConstraintsReference)
AND EVALUATE_BOOLEAN (Qualifier))then
begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
REMOVE_OBJECT (PCOorCPidentifier);
LOG(PCOorCPidentifier, ReceiveObject);
return TRUE;
end
else return FALSE;
end
else return FALSE;
end

« function OBJECT_MATCHES (PCOorCPidentifier, ASPorPDUorCMidentifier, ConstraintsReferer@&OLEAN
begin
ReceiveObiject := /# copy of encoded object at head of INPUT_Q(PCOorCPidentifier) #/;
if /# ReceiveObject can be decoded according to applicable encoding rules and variations,
as given by ConstraintsReference and associated type definitiies#/
begin
/# decode it, to yield new version of ReceiveObject #/;
if (/# ReceiveObjectis of type ASPorPDUorCMidentifier #/
AND
[# parameters/fields of ReceiveObject have values matching the ConstraintsReferémee #/)
return TRUE;
else return FALSE;
end
else return FALSE;
end

e procedure REMOVE_OBJECT (PCOorCPidentifier),
begin
[# remove object at head of INPUT_Q(PCOorCPidentifier) #/;
end

B.5.9.2 Execution of the RECEIVE event - natural language description

Step 1. If the snapshot that was taken when beginning the current iteration of checking this level of alternatives for matching
shows that there 1soincoming ASP or PDU or CM, then this RECEIVE cannot match.

Otherwise, continue to Step 2.

Delivery 9.4, 17 December 1996 187

Second

Step 2.

Step 3.

Step 4.

Step 5.

Step 6.

Step 7.
Step 8.

Step Q

Edition Mock-Lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

If a PCO or CP was stated, the ASP or PDU or CM shall have been received at that PCO or CP. If the PCO was not s
i.e.,the test suite uses a single PCO, - then the ASP or PDU shall have been received at the lower PCO. Note that a CP
be implied.

The incoming PDUs are decoded according to the applicable encoding rules. A copy is made of the decoded incoming
or of the incoming ASP or CM with decoded nested PDUs.

If the qualifier, possibly using values from the incoming data object, evaluates to FALSE, the RECEIVE cannot ma
Otherwise, continue to step 5.

A copy of the expected ASP or PDU or CM pattern is assembled, using the structure defined in the ASP or PDU or
declaration plus the values, matching mechanisms and chained Constraints References specified in the named Con:
Reference.

This copy is comparied against the incoming ASP or PDU or CM, and its decoded PDUs or the decoded PDU to deter
if the RECEIVE can match as specified. Only if the RECEIVE did match successfully, continue to Step 6.

The incoming ASP or PDU or CM which has just matched will be removed from the incoming PCO or CP queue
discarded.

If there are Assignment statements, then they will be performed as in B.5.16.2.

If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be performe
in B.5.17.

Record in the conformance log the following information, as well as the information specified in B.5.24.2:
the PCO or CP at which the RECEIVE occurred,;
the fully defined ASP, PDU or CM that was received.

B.5.10 Execution of the OTHERWISE event

B.5.10.1 Execution of the OTHERWISE event - pseudo-code

« function
begin

OTHERWISE (OtherwiseLing : BOOLEAN

/# Read PCOidentifier (*A CPidentifier is not allowed.*),

it (

Qualifier,

Assignments,

TimerOperations from OtherwiseLine #/;
[# INPUT_Q (PCOidentifier) is not empty #/
AND EVALUATE_BOOLEAN (Qualifier))then

begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
REMOVE_OBJECT (PCOidentifier);
LOG(PCOidentifier, ReceivedObject);
return TRUE;

end
else
end

return FALSE;

B.5.10.2 Execution of the OTHERWISE event - natural language description

The tester

shall accept any incoming data that it has not been possible to decode or that has not matched a previeus dlftisrnativ

OTHERWISE event. Note that if there is a qualifier, the OTHERWISE can only match if that qualifier evaluates to TRUE.

Step 1.
Step 2.

188

If the qualifier evaluates to FALSE, the OTHERWISE cannot match. Otherwise, continue to step 2.

If the snapshot that was taken when beginning the current iteration of checking this level of alternatives for matching st
that there is no incoming ASP or PDU, then this OTHERWISE cannot match.

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

Otherwise, continue to Step 3.

Step 3. If a PCO was stated, the ASP or PDU shall have been received at that PCO. If the PCO was n&. dtadaest
uses a single PCO, then the ASP or PDU shall have been received at the lower PCO, because a CP cannot be implied

Step 4. The incoming ASP or PDU will be removed from the incoming PCO queue and discarded.
Step 5. If there are Assignment statements, then they will be performed as in B.5.16.2.

Step 6. If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be performed
asin B.5.17.

Step 7 Record in the conformance log the following information, as well as the information specified in B.5.24.2:
» the PCO at which the OTHERWISE occurred,;
» the ASP or PDU that was received.

B.5.11 Execution of the TIMEOUT event
B.5.11.1 Execution of the TIMEOUT event - pseudo-code

« function TIMEOUT (TimeoutLine) BOOLEAN
begin
/# Read Timerldentifier,
Qualifier,
Assignments,
TimerOperations from TimeoutLine #/;
if EVALUATE_BOOLEAN (Qualifier)then
begin
if TIMER_EXPIRED (Timerldentifierjhen
begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
LOG(Timerldentifier);
return TRUE;
end
else return FALSE;
end
else return FALSE;
end

« function TIMER_EXPIRED (Timerldentifier): BOOLEAN
begin
if /# Timerldentifier is not empty #hen
begin
if /# timeout notification from Timerldentifier is in copy of timeout list in Snapshtiet
begin
/# delete timeout notification from Timerldentifier in actual timeout list #/;
/# stop and reset the timer Timerldentifier #/;
return TRUE;
end
else return FALSE;
end
else(* Timerldentifier not specified *)
begin
if /# any timeout natification is in copy of timeout list in Snapshahénh
begin
I# stop and reset all timers mentioned in actual timeout list#/;
[# delete all timeout notifications in actual timeout list #/;
return TRUE;

Delivery 9.4, 17 December 1996 189

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

end
else return FALSE;
end
end

B.5.11.2 Execution of the TIMEOUT event - natural language description

The tester will check to see if the named timer has expired. (If no timer name is given, the tester will checlaty t®eifhas expired.) Note that
if there is a qualifier, the TIMEOUT is only considered as matching if that qualifier evaluates to TRUE.

Step 1. If there is a qualifier, then that qualifier will be evaluated before any other processing takes place.
» If the qualifier evaluates to FALSE, the TIMEOUT cannot match.
 If the qualifier evaluates to TRUE, then continue with Step 2.
Step 2. See if any of the timers explicitly or implicitly named on the TIMEOUT event have been running, but have expired.

« If no timer identifier is specified, then the tester shall check to segtfmer that had been running has now expired. If
so, all timers which have timed out are reset (and left stopped). The timeout entry (entries) is (are) removed fron
timeout list.

« If a timer identifier is specified, then the tester shall check to see if this timer had been running, but has now expire
so, the expired timer is reset (and left stopped). The timeout entry is removed from the timeout list.

« If no timers have expired the TIMEOUT event can not matehthe next alternative will be attempted.
Step 3. If there is an Assignment statement, then that assignment will be performed as in B.5.16.2.

Step 4. If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be performe
in B.5.17.

Step 5. Record in the conformance log the information specified in B.5.24, as well as the name of the timer that expired.
B.5.12 Execution of the DONE event

B.5.12.1 Execution of the DONE event - pseudo-code

« function DONE (DoneLine) :BOOLEAN

begin
/#Read TComplList,
Qualifier,
Assignments,
TimerOperations from Doneline #/;
if EVALUATE_BOOLEAN (Qualifier) AND ALL_TERMINATED(TCompList)then
begin

EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
LOG(TComplList);
return TRUE;
end
else return FALSE;
end

¢ function ALL_TERMINATED (TCompList) :BOOLEAN
begin
if TComplList =/# EmptyList #then
TComplList := /# list of all created Parallel Test Components #/;
for /# everyTCompin TCompList #/do
begin
if /# TComp has not terminated in the Snapshtiet
return FALSE;
end

190 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

return TRUE;
end

B.5.12.2 Execution of the DONE event - natural language description

The termination status of the given list of Test Components is to be checked. If all given components have terminatect (ot the kst
SNAPSHOT) then the event matches, provided that the qualifier also evaluates to TRUE.

Step 1. If there is a qualifier, then that qualifier will be evaluated before any other processing takes place.
» If the qualifier evaluates to FALSE, the DONE cannot succeed.
» If the qualifier evaluates to TRUE, the continue to Step 2.

Step 2. If all test components listed in TCompList had terminated at the time of the last SNAPSHOT, then continue to Step
3, otherwise this DONE cannot match.

Step 3 If there is an Assignment statement, then that assignment will be performed as in B.5.16.

Step 4. If one or more timer operations were coded on the behaviour line, the appropriate timer operation(s) will be performed
asin B.5.17.

Step 5. Record in the conformance log the information specified in B.5.24, as well as the TCompList.

B.5.13 Execution of the IMPLICIT SEND event
B.5.13.1 Execution of the IMPLICIT SEND event - pseudo-code

« function IMPLICIT_SEND (Alternative) :BOOLEAN
begin
[# Execute IMPLICIT_SEND according to natural language descrigfjon
return TRUE;
end

B.5.13.2 Execution of IMPLICIT SEND - natural language description

The IUT is induced to do whatever is necessary to send the contents of the ASP or PDU, as specified in the constramenteferttie
alternative.

If the dynamic chaining feature has been used, then the value specified in the Constraints Reference entry will be tesigepoiate
parameter or field of the ASP or PDU to be sent.

IMPLICIT SENDing always succeeds.

B.5.14 Execution of a pseudo-event
B.5.14.1 Execution of a pseudo-event — pseudo-code

« function EVALUATE_PSEUDO_EVENT (PseudoEventLine:))BOOLEAN
begin
/# Read Qualifier,
Assignments,
TimerOperations from PseudoEventLine #/;
if EVALUATE_BOOLEAN (Qualifier)then
begin
EXECUTE_ASSIGNMENTS (Assignments);
TIMER_OPS (TimerOperations);
LOG();
return TRUE;
end
else return FALSE;
end

Delivery 9.4, 17 December 1996 191

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

B.5.14.2 Execution of PSEUDO-EVENTS - natural language description

If the TTCN statement is a pseudo-event, then it will be evaluated as specified in B.5.15 for a Boolean Expression ad.Bdfidoment Statement,
B.5.17 for a timer operation (START, CANCEL, or READTIMER).

After completion of the pseudo-event, record in the conformance log the information specified in B.5.24.

B.5.15 Execution of BOOLEAN expressions
B.5.15.1 Execution of BOOLEAN expressions - pseudo-code

¢ function EVALUATE_BOOLEAN (Qualifier) :BOOLEAN
begin
if /# Qualifier is empty #then
return TRUE;
else
begin
if /# Qualifier evaluates to TRUE tHen
return TRUE;
else return FALSE;
end
end

B.5.15.2 Execution of BOOLEAN expressions - natural language description

A Boolean expression.€., qualifier) specifies a condition that is to be tested. This condition will either be TRUE or FALSE. A Boolean expressi

may be stated as part of a statement lilee, 6n the same line with a SEND, RECEIVE, TIMEOUT, or OTHERWISE), or as a statement line on it:

own (.e.,as a pseudo-event).

Step 1. The Boolean expression shall be evaluated to determine if the condition specified is TRUE or FALSE. The normal rule
Boolean Logic apply, with the precedence rules specified in 11.4.2.1.

B.5.16 Execution of assignments
B.5.16.1 Execution ossignments pseudo-code

e procedure EXECUTE_ASSIGNMENTS (AssignmentList)
begin
for /# every assignme@urrentAssignmerih AssignmentList, in the given orderdd
begin
/# Execute CurrentAssignment #/;
end
end

B.5.16.2 Execution of ASSIGNMENTS - natural language description

The assignment list is evaluated in left to right order. In each assignment, the variable on the left-hand side of thaisstatezke on the value of
the expression on the right-hand side of the statement. This expression is evaluated observing the precedence indieaed in Tabl

If the assignment is performed in a Send line, the left-hand side may denote an ASP-, PDU- or CM-component, referrifectddtoeaent. If the
assignment is performed in a Receive line, the expression may refer to components of the ASP-, PDU- or CM to be received.

B.5.17 Execution of TIMER operations

B.5.17.1 Execution of TIMER operations - pseudo-code

e procedure TIMER_OPS (TimerOperations)
begin
for /# everyTimerOperatiorin TimerOperations #lo
caseTIMER_OP_TYPE_OF(TimerOperatiormf

begin
START_TIMER: START_TIMER(TimerOperation);
CANCEL_TIMER: CANCEL_TIMER(TimerOperation);
READ_TIMER: READ_TIMER(TimerOperation);

192 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

end
end

e procedure START_TIMER (TimerOperation)
begin
[# perform as in B.5.17.2 #/;
end

e procedure CANCEL_TIMER (TimerOperation)
begin
[# perform as in B.5.17.3 #/;
end

e procedure READ_TIMER (TimerOperation)
begin
[# perform as in B.5.17.4 #/;
end

B.5.17.2 Execution of START timer - natural language description
Step 1. If the timer is already running, cancel it and continue to Step 2. Otherwise continue directly to Step 2.

Step 2. The timer is to be started with an initial value indicating no time has passed. Any entry for this timer in the timeout
list is removed from the list.

B.5.17.3 Execution of CANCEL timer - natural language description
The CANCEL timer operation specifies that a timer (or timers) is to stop ticking.

Step 1. Determine the name of the timer(s) to be cancelled:
 if no timer identifier is specified, then canedll timers;
 if a timer identifier is specified, then cancel the timer with this timer identifier.

Step 2. The status of the named or implied timer(s) is to be set to "not running". The amount of time elapsed for the timer(s)
is to be set to zero. If the timeout list contains an entry for the timer(s), the entry (entries) is (are) removed ftom the lis

B.5.17.4 Execution of READTIMER - natural language description

The READTIMER operation specifies that the amount of time that has passed for a currently running timer is to be steegthbito @he
timer continues to run without interruption.

Step 1. Interrogate the value of the timer having the specified name. If the amount of time passtthés units declared
for this timer type, store into the named variable.

If the timer is not currently running, the named variable shall be set to zero.
B.5.18 Functions for TTCN constructs
B.5.18.1 Functions for TTCN constructs - pseudo-code

e function EVALUATE_CONSTRUCT (Construct) BOOLEAN

(* As the EvaluationTree is expanded at the CurrentLevel, the REPEAT and ATTACH constructs are not encountered here. *)

begin
caseCONSTRUCT_TYPE_OF(Construabf
begin
ACTIVATE: ACTIVATE(Construct);
CREATE: CREATE (Construct);
GOTO: (* no action here, see GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT *);
RETURN: (* no action here, see GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT *);
end

return TRUE;

Delivery 9.4, 17 December 1996 193

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

end

B.5.18.2 Functions for TTCN constructs - natural language description

If the TTCN statement is a TTCN construct, then it will be evaluated as specified in B.5.19 for an ACTIVATE construcifieasia®®&.20 for a
CREATE construct, as specified in B.5.21 for a GOTO construct, or as specified in B.5.22 for a RETURN construct. Theesl iraeakwith
REPEATS, as they all have been replaced in the CurrentLevel.

TTCN constructs will always succeed.

B.5.19 Execution of the ACTIVATE construct
B.5.19.1 Execution of the ACTIVATE construct - pseudo-code

« procedure ACTIVATE (ActivateLine)
begin
/# Read DefRefList from ActivateLine #/;
Defaults:=DefRefList;
LOG(DefRefList);
end

B.5.19.2 Execution of the ACTIVATE construct - natural language description
Change the current defaults context to the DefaultRefList that appears as parameter to the ACTIVATE construct.
Stepl Change default context to DefaultRefList.

Step 2. Record in the conformance log the following information as well as the information specified in B.5.24:
» the DefaultRefList.

B.5.20 Execution of the CREATE construct
B.5.20.1 Execution of the CREATE event - pseudo-code

» procedure CREATE (CreateLine) BOOLEAN
begin
/# Read CreateList from CreatelLine #/;
for /# every(TCompldentifier, TreeReference, ActualParLds@wn from CreateList #lo
begin
start processEVALUATE_TEST_COMPONENT(TCompldentifier, TreeReference, ActualParList);
(* This starts the concurrent evaluation of TreeReference. *)
LOG(TCompldentifier,TreeReference, ActualParList);
end
end

e process EVALUATE_TEST_COMPONENT(TCompld, TreeReference, ActualParList)

(* This process initializes the EvaluationTree by the appropriate Test Step root tree or local tree and the default confeafantsheeferences
listed with the corresponding behaviour table. It moves control to the top level of alternatives and calls their evaluation. *)

global EvaluationTree, CurrentLevel, Defaults, Snapshot, ReturnLevel, ReturnDefaults, SendObject, ReceiveObiject;
begin
/# Initialize the local instances of Test Case Variables, local R, Timers, and the Timeout List of TCompld. #/;
EvaluationTree := ROOT_TREE(TreeReference);
(* EvaluationTree is a growing finite tree built up by pasting together and expanding copies of trees from the test casedlesbheagtomir
and from the test step and default libraries. A component IsExpanded is added to each level. *)
REPLACE_PARAMETERS (TreeReference, EvaluationTree, ActualParList);
CurrentLevel := FIRST_LEVEL(EvaluationTree) ;
(* Alevel denotes both a position in a tree and the ordered set of alternatives at this position. *)
ReturnLevel := CurrentLevel;
Defaults := DEF_REF_LIST(TreeReference);

194 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

ReturnDefaults := Defaults;

EVALUATE_LEVELS ();

(* This includes, by nested calls, the evaluation of all relevant subsequent levels in the growing evaluation tree. *)
end

B.5.20.2 Execution of the CREATE event - natural language description
The evaluation of the given Test Component is to be started.

Step 1. Evaluation of TCompldentifier, bound to TreeReference, is started, with the ActualParList parameters replacing the
Formal Parameters by textual substitution in TreeReference. All Test Case Variables, the local result variable R,

timers and the local timeout list are provided afresh for the sole use by this test component.
Step 2. Record in the conformance log the following information as well as the information specified in B.5.24:
» the TCompldentifier
» the TreeReference

» the ActualParList.

B.5.21 Execution of the GOTO construct
Control is transferred to the set of alternatives having the specified target label in the labels column. Execution newaithisinew level.
In pseudo-code, the GOTO construct is performed as a part of GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT.

B.5.22 Execution of the RETURN construct
Control is transferred to the set of alternatives from which the defaults were entered the last time. Execution now ttnsmmss kvel.
In pseudo-code, the RETURN construct is performed as a part of GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT.

B.5.23 The verdict

B.5.23.1 Theverdict - pseudo-code

e procedure EVAL_VERDICT_ENTRY (VerdictEntry)
begin
[# Expand VerdictEntry to full word, e.g. (P) becomes (PASS) #/;
if /# VerdictEntry is a preliminary verdict “("PrelimVerdict*)” #hen
begin
UPDATE_PRELIM (PrelimVerdict, /# local R, or MTC_R in case of Main Test Component #/);
UPDATE_PRELIM (PrelimVerdict, /# global R #/);
end
else(* VerdictEntry is a final verdict. *)
begin
if /# Current process is EVALUATE_TEST_CASE#n
begin
EXCLUDE_INCOMPATIBLE_ENTRY (VerdictEntry, /# global R #/);
LOG(VerdictEntry);
[# assign final verdict in main test component or test case #/;
TERMINATE_TEST_CASE();
end
else(* Process is EVALUATE_TEST_COMPONENT *)
begin
EXCLUDE_INCOMPATIBLE_ENTRY (VerdictEntry, /# global R #/);
UPDATE_PRELIM (VerdictEntry, /# global R #/);
stop process;
end
end
end

Delivery 9.4, 17 December 1996

195

Second Edition Mock-Lp for ETSI TC/MTS

e process EXCLUDE_INCOMPATIBLE_ENTRY (Entry, RVal)
begin
if ((Entry =“R” AND /# RVal = none #/) OR
(Entry = “PASS” AND /# Rval = inconc #/) OR
(Entry = “PASS” AND /# Rval = fail #/) OR
(Entry = “INCONC” AND /# Rval = fail #/) Yhen
begin
LOG(TestCaseError);
STOP_TEST_CASE();
return FALSE;
end
else return TRUE;
end

e procedure UPDATE_PRELIM (PrelimVerdict, ResultVar)
begin
if (ResultVar =none OR
(ResultVar = pass AND PrelimVerdiet PASS) OR
(ResultVar = inconc AND PrelimVerdict = FAIL)then
begin
/# replace value of ResultVar by PrelimVerdict in lower case letters #/;
LOG(“("PrelimVerdict")");
end
end

B.5.23.2 The VERDICT - natural language description

If a verdict is coded, process the verdict.

» If the verdict is preliminary, i.e. enclosed in parentheses, then the local and global result variables will be upd
according to the verdict algorithm in 15.17.2. Note that in the Main Test Component the local R is denoted by MTC

The stated verdict is recorded in the conformance log.

» Ifthe verdict is R, then, in non-concurrent TTCN or in the Main Test Component, the current value of R (the only or

19 December 1996, Delivgr9.4

global R) will be used as the verdict of the Test Case. If R is set to none, raise a test case error.

» If the verdict is PASS, INCONC or FAIL, then, in non-concurrent TTCN or in the Main Test Component, the stat
verdict will be used as the final verdict for the Test Case. If the final verdict is inconsistent with local or globaleR, rais

TestCaseError.

» In Parallel Test Components, a final verdict R, PASS, INCONC or FAIL, is used to update the global R like a prelimin
verdict. The stated verdict is recorded in the conformance log. A final verdict terminates the evaluation of the T

Component.

B.5.24 The Conformance Log
B.5.24.1 The LOG - pseudo-code

e procedure LOG(/# any number of arguments #/)
begin
[# log the line number of the event line (if any) #/;
[# log the label associated with the event line (if any) #/;

/# log the arguments passed to LOG #/;
[# log the assignment(s) made (if any) #/;
[# log the timer operation(s) performed (if any) #/;

[# log current time #/; (* current time may be actual or relative *)
end

196

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

B.5.24.2 The conformance log - natural language description

Record the following information in the conformance log:

the line number of the event line (if any);
the label associated with the event line (if any);

other arguments defined elsewhere in this annex associated with the event line (if any), e.g. the final or preliminary
verdict, or the data object sent or received;

the assignment(s) made (if any);
the timer operation(s) performed (if any);

time stamp;

B.5.25 Tree handling functions and procedures

To facilitate lookup, the procedures and functions are defined in alphabetical order.

procedure APPEND_TO_LEVEL (Tree,Level,Alternative)

begin

[# Update Level and Tree by appending Alternative as new last alternative in Level in Tree #/;

end

function FIRST_LEVEL (Tree) :.LEVEL

begin

return /# the set of alternatives at the first level of indentation of Tree, i.e. the numerically lowest (in TTCN.MP),

end

i.e. the leftmost (in TTCN.GR), level of indentation of the root tree #/;

procedure GOTO_NEXT_LEVEL_OR_STOP_WITH_VERDICT (Alternative)

begin

(* search the next level to evaluate, if any *)

if /# Alternative is of the type “GOTO Label” or “-> Label" tifen
CurrentLevel := /# the unique level labelled with Label #/;

else if/# Alternative is of the type “RETURN” #hen

begin

CurrentLevel := ReturnLevel;
Defaults := ReturnDefaults;

end

else if/# Alternative is a leaf of EvaluationTree #/; (* but not a RETURN or GOT(Den
EVAL_VERDICT_ENTRY(“R”); (* This will stop the execution of the process. *)

else

CurrentLevel := /# set of alternatives at next level of indentation below Alternative #/;

(* save information for coming RETURN statements *)
if /# Component IsDefault of CurrentLevel #/ = FALBEN

begin

ReturnLevel := CurrentLevel;
ReturnDefault := Default;

end
end

function IS_EXPANDED () : BOOLEAN

begin

return /# Component IsExpanded of CurrentLevel #/;

end

function LEVEL_OF (Tree, Alternative) LEVEL

Delivery 9.4, 17 December 1996 197

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

begin
return /# the level in Tree of which this Alternative is a member #/;
end

¢ function MAKE_TREE (Statement, Treel, TreeZyREE

begin
return /# the following tree:
Statement
Treel
Tree2 #

(* Treel and/or Tree2 may be empty, denoted by an empty parameter position in the call of MAKE_TREE. *)
end

e function NEW_LABEL () :LABEL
begin
return /# a label which has not yet been used in the execution of this Test Component, nor in the (relabelled) Test Suite #/ ;
(* This may be achieved by means of counters and test component names. *)
end

e procedure RELABEL (Tree)
begin
for /# each labdl originally occurring in Tree #lo
begin
NewLabel := NEW_LABEL();
for /# each occurrence bfin Tree, in the label column or as the target of a GOTe #/
begin
/#replace L by NewLabel #/;
end
end
end

e procedure REPLACE_ALT_TREE (Tree, Level, A, ReplacementTree)
begin
(* Alis an alternative in Level, which is a level in Tree *)
/# In Tree, replace the subtree of Tree consisting of
A and SUBSEQUENT_BEHAVIOUR_TO (Tree, A) by ReplacementTree,
with all values of IsDefault in ReplacementTree set to the IsDefault-value of A,
and all values of IsExpanded of levels in ReplacementTree set to FALSE. #/;
end

¢ procedure REPLACE_PARAMETERS (Treeld, Tree, ActualParList)
begin
/# Replace the formal parameters in Tree by the actual parameters specified in ActualParList,
doing so by textual substitution in Tree, using the formal parameter list accessible via Treeld. #/;
end

¢ function ROOT_TREE (Treeld) TREE
begin
return /# its root tree if Treeld denotes a Test Case or Test Step or Default Behaviour Table —
otherwise the local tree with this name. Each level gets a new Boolean component
“IsExpanded”, initialized with value FALSE, indicating that this level has not yet been expanded. #/;
end

» function SUBSEQUENT_BEHAVIOUR_TO (Tree, Alternative fREE
begin
return /# the subtree below Alternative in Tree #/;

(* This would be Tree3 if Tree has the form:

198 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

Treel
Tree2
Alternative
Tree3
Tree4
Treeb5 *)
end

B.5.26 Miscellaneous functions used by the pseudo-code

function CONSTRUCT_TYPE_OF(Construct) CONSTRUCT_TYPE
begin

return /# ACTIVATE, CREATE, GOTO, or RETURN, as appropriate #/;
end

function DEF_REF_LIST(TreeReference)DEFAULT_REF_LIST
begin

return /# the default reference list in the header of the corresponding table in the case of a test step in the test stefhéteargtyor
list in the case of default behaviour, or in the case of a local tree attachment the current value of Defaults (i.etljhactiveetlefaults

in the calling tree)#/;
end

function EVENT_TYPE_OF(Alternative) :EVENT_TYPE
begin

return /# SEND, RECEIVE, OTHERWISE, TIMEOUT, DONE, or IMPLICIT_SEND, as appropriate #/;

end

function INPUT_Q(PCOorCPidentifier) QUEUE
begin
if /# PCOorCPidentifier is empty #tien
return /# default PCO input queue #/;
else return/# input queue identified by PCOorCPidentifier #/;
end

function OUTPUT_Q(PCOorCPidentifier) QUEUE
begin
if /# PCOorCPidentifier is empty #en
return /# default PCO output queue #/;
else return/# output queue identified by PCOorCPidentifier #/;
end

function SNAPSHOT_FIXED () : BOOLEAN
begin
if /# all relevant PCO and CP queue(s) have some event(s) on them and all relevant timers hav/dkgired
return TRUE;
else return FALSE;
end

function STATEMENT_LINE_TYPE_OF (Alternative) :STATEMENT_LINE_TYPE
begin

return /# EVENT, PSEUDO_EVENT, or CONSTRUCT, as appropriate #/,
end

procedure STOP_TEST_CASKE)
begin

Delivery 9.4, 17 December 1996

Second Edition Mock-Up for ETSI TC/MTS

199

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

[# stop all runningproceses #/;
end

e procedure procedure TAKE_SNAPSHOT)

(* A snapshot of the incoming PCO and CP queue(s), the relevant timeout list, and the termination status of any othemtestisrtgden. The act
of taking a snapshot does not remove an event from any PCO, CP or timeout list.*)

begin

[# save current PCO and CP input queues in Snapshot #/;

[# save current timeout list in Snapshot #/;

[# save current list of terminated Test Components in Snapshot #/;
end

e procedure TERMINATE_TEST_CASE()
begin
if /# any Parallel Test Component processes are still runnther/
LOG(TEST_CASE_ERROR);
STOP_TEST_CASE();
end

e function TIMER_OP_TYPE_OF (Alternative) :TIMER_OP_TYPE
begin
return /# START_TIMER, CANCEL_TIMER, or READ_TIMER, as appropriate #/;
end

200 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

Annex C
(normative)

TTCN Modules

C.1 Introduction
A TTCN Module shall contain the following sections in the order indicated:
a) TTCN Module Overview Part
b) Import Part
c) Declarations Part
d) Constraints Part
e) Dynamic Part

C.2 TTCN Module Overview Part

C.2.1 Introduction
The purpose of the TTCN Module Overview Part of a module is to provide information needed for the use of the module by other

| modulesor test suitegrsource-package. This includes:
a) TTCN Module Exports

b) TTCN Module Structure
c) Test Case Index

d) Test Step Index

e) Default Index

C.2.2 TTCN Module Exports

The TTCN Module Exports proforma identifies the module and provides information on the overall objective of the TTCN Mod-
ule (e.g. constraints library for a particular protocol).

If a PCO type is given as an exported object in the Export table, it must be defined in the optional PCO Type table.
The name of the original source object shall be given if the object is imported.

If the object is declared as an external object (explicit external) or is an object which is omitted in the importedscagee
object (implicit external), the keyword EXTERNAL is given instead of the source object name.

Exporting an object of type Enumeration or Named Number requires that the corresponding type is given. The other objects
which are defined in the corresponding type are not exported as well. They are however implicitly exported and can be referred
in other exported objects. The type name is given as a suffix to the object name embedded in brackets.

The following information shall be supplied in the TTCN Module Exports:
a) the name of the TTCN Module
b) a description of the objective of the module
c) a full reference of the TTCN module
d) references to the relevant base standards if any
e) a reference to the PICS proforma if any
f) a reference to the PIXIT proforma if any
g) an indication of the test method(s) if any

Delivery 9.4, 17 December 1996 201

Second Edition Mock-Lp for ETSI TC/MTS

h) other information which may aid understanding of the TTCN Module, this should be included as a comment

i) a list of exported objects

where the following information shall be supplied for each exported object:

1) the name of the object

If the object is of type NamedNumber or Enumeration the corresponding type shall be given as a suffix to the object name er

ded in brackets.
2) the object type

3) the name of the original source object if the object is impad

source-package or the object directive EXTERNAL

4) a page number

19 December 1996, Delivgr9.4

providing the location of the object in the module (no page number shall be given for imported objects)

| This information shall be provided in the format shown in the following proforma:

TTCN Module Exports

TTCN Module Name

TTCN_Moduleldentifier

Objective [FreeText]
TTCN Module Ref [FreeText]
Standards Ref [FreeText]
PICS Ref [FreeText]
PIXIT Ref [FreeText]
Test Method(s) [FreeText]
Comment [FreeText]

Object Name Object Type Source Name Page Nr Comments

[FreeText]

| Objectlaentifier TTCN_dbjectType [Sourcelldentifier | Nur.nber
ObjectDirective]

Detailed Comments: [FreeText]

202

Proforma C.1 - TTCN Module Exports

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

Second Edition Mock-Up for ETSI TC/MTS

Example C.1: TTCN Module Exports
TTCN Module Exports
TTCN Module Name: TTCN_Module_A
Objective To illustrate the use of the TTCN Module Exports table.
TTCN ModuleRef
Standards Ref
PICS Ref
PIXIT Ref
Test Method(s)
Comments
Object Name Object Type Source Name | Page Nr Comments
String5 SimpleTypeDef 3
wait TimerDcl Module_B
INTC TTCN_PDU_Type 13
DEF1 Default TestSuite_1
TC_2 TestCase TestSuite_2
TC 3 TestCase 33
Preamble TestStep EXTERNAL

C.2.3 TTCN Module Structure

The TTCN Module Structure contains a list of Test Groups in the module (if any). The following information shall be supplied
for each group:

a) the Test Group Reference

where the first identifier may be the module name, and each successive identifier represents further conceptual ordering of the
module.

b) an optional selection expression identifier

c) the Test Group Objective

d) a page number (page number shall not be supplied for imported groups)
This information shall be provided in the format shown in the following proforma:

TTCN Module Structure

Test Group Reference Selection Ref Test Group Objective Page Nr
TestGroupReference [SelectExpr- FreeText Number
Identifier]

Detailed Comments: [FreeText]

Proforma C.2 - TTCN Module Structure

Delivery 9.4, 17 December 1996 203

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

The static semantics described in the "10.2 Test Suite Structure” are applicable for TTCN Module Structure.

C.2.4 Test Case Index
The definition of the Test Case Index for modules is the same as the definition of Test Case Index for Test Suites.

C.2.5 Test Step Index
The definition of the Test Step Index for modules is the same as the definition of Test Step Index for Test Suites.

C.2.6 Default Index
The definition of the Default Index for modules is the same as the definition of Default Index for Test Suites.

C.3 Import Part

C.3.1 Introduction

The purpose of the Import Part of a module is to declare the objects which are not explicitly defined but have been usieigcithese
are either declared as external objects or are imported from other source objects. This part includes:

a) External
b) Import

C.3.2 External

The External Objects proforma lists the objects being referred to by their identifier in the TTCN module, but neitherrimpexdid -
itly defined. An external object lets the importer know what he has to define, when importing the TTCN module.

The following information shall be supplied for each external object:
a) the Object identifier and parameters
parameters are included when the object is a Test Suite Operation, a Constraint or a Test Step
b) the object type
¢) an optional comment
This information shall be provided in the format shown in the following proforma:

External Objects

Object Name Object Type Comments
Identifier | TS_Opld&ParList | ObjectType [FreeText]
Consld&ParList | TestStepld&ParList

Detailed Comments: [FreeText]

Proforma C.3 - External Objects

204 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

EXAMPLE C.1 - External Objects:

Second Edition Mock-Up for ETSI TC/MTS

External Objects

Object Name Object Type Comments
CRC(P:A_PDU) TS_OpDef
CONSTRAINT_A(acstr:T_CONNECT) TTCN_PDU_Constraint
TESTSTEP_A(:INTEGER) TestStep
DEF3 Default
C.3.3 Import

The definition of the Import for modules is the same as the definition of Import for Test Suites (see 10.7).

Delivery 9.4, 17 December 1996

205

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

a comment

206 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

Comments
Objectidentifier ObjectType [Sourceldentifier | {FreeText
. = ObjectDirective] =
Detailed Comments: [FreeText]
Proforma D1 - Package Exports
EXAMBRLE D.1 - Package Exports
PRackage Exports
Package Name + Package-A
Comments + Todllustrate the-use-of the Package Exports-table
ObjectName Object Fype Source-Name Comments
Stringb SimpleTypeDef EXTERNAL
wait FimerDel Module-B
INTC FFCN_PDU_Type | OMIT
DEF1 Default TestSuite_1
TC-2 TestCase Package-1
Fc-3 TestCase Module—A

W names are

he override

Delivery 9.4, 17 December 1996 207

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

208

h. It is also

3 eferred to)
idden-(redefined)by any other

er to make
the source
a comment
be provided:

rame conflicts.

a eferences of
alogouswith giving the

ienier - . | o] .

Detailed Comments: [FreeText]

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

EXAMPLE D.2 - A Package-lmports-table
PRackage lmports

Source-Name ;+ FFCN-ModuleA

Comments . ISDN-D-channel-Layer 2 Test Suite

Strings SimpleTypeDef | String5 Strings 1)

Wait FimerDdl 2)

P4D1 PREAMBLE TFestStep P4 _Preamble 3)

normal_init FestStep internalinit 4)

initfailure TestStep OMIT initfailure 5)

Delay Default EXTERNAL 6)
.|Importing
his means

may lefer to

_irfit. This
nalltest step

d-pbjects is

Delivery 9.4, 17 December 1996 209

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Annex E
(normative)

Test Suite Index

E.1 Introduction

The Test Suite Index is a complete list of all objects in a expanded test suite and is a result of converting a modutarizetbtas
expanded test suite. This list contains information about each object (e.g. the source object/test suite name, the erayicatheam
page number in the very original source object).

E.2 The Test Suite Index

E.2.1 Introduction

The purpose of the Test Suite Index is to provide information needed for all imported objects in a expanded test stitenatiosin
is used to easily find the definition of an object.

E.2.2 The Test Suite Index

The Test Suite Index proforma identifies all objects used in a test suite. The following information shall be suppliedbjeetach
a) the name of the object
the name with which the object is referred to (e.g. a generated
animported-object)
b) the object type
which shall be the same as the type given when the object is defined

c¢) the name of the source object or the test suite
where the object is defined
d) the original name of the object
the given name when the object is explicitly defined
e) an optional page number
providing the location of the object in the original source object
This information shall be provided in the format shown in the following proforma:

Test Suite Index

Object Name Object Type Source Name | Original Object Ref | Page Nr Comments

Objectldentifier ObjectType Sourceldentifier| [ObjectReference] | [Number] [FreeText]

Detailed Comments: [FreeText]

Proforma E.1 - Test Suite Index
The page number is given when the original source object is standard and the location of the object is unambiguous.

210 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

Second Edition Mock-Up for ETSI TC/MTS

Examples
EDITOR’S NOTE 4 - The following examples need updating now that Packages have been deleted.
Example 1:
Pl
TS M 1 Package Exports
Name: P1
Import Module Exports
Name: P71 Name: M1 Sourceld
Sourceld
PRE
TC TC
PRE PRE
Test Step Test Step Test Case Test Step Package Import
Name: TS1 Name: PRE1l Name: TC Name: PRE Name: M1
+TS1 DEF REF
+ PRE +PRE TC

PRE| PRE PRE1

All references to the

object PRE in the

source package P1

are renamed.

TS (expanded)
Test Step Test Step Test Case Test Step
Name: TS1 Name: PRE1| | Name: TC Name: PRE
+TS1
+ PRE + PRE1

Assume that the test case TC with an attachment to the preamble test step PRE is defined in the TTCN module M1. Assume als
that the test step PRE needs to be redefined using the original test step PRE. The renaming is performed in the source packac

P1 which exports the objects TC and PRE. The reference PRE in TC is renamed to PREL.

Delivery 9.4, 17 December 1996

211

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Example 2:
TS P1
Import M 1 Package Exports
Name: P1 Name: P1
Module Exports
Name: M1 Sourceld
TC TC
Sourceld PRE EXTERNAL
TC
Test Step PRE
Name: PRE
Test Case Test Step Package Import
Name: TC Name: PRE Name: M1
DEF REF
+ PRE TC
PRE| OMIT | PRE
TS The object PRE is omitted when it
(expanded) is imported from the module M1.
Test Step Test Case

Name: PRE Name: TC

+ PRE

The test step PRE (which is defined in the module M1) is overridden with the test step PRE (which is defined in th& @)t suite

212 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

Second Edition Mock-Up for ETSI TC/MTS

Example 3:
P1
Package Import Package Import Package Exports
Name: M1 Name: M2 Na.lrm.we: P1
DEF REE DEF REF Sourceld
PRE from M1 is TC TC
overridden by PRE PRE
PRE| OMIT | PRE
from M2
M1 M2
Module Exports Module Exports
Name: M1 Name:
Sourceld Sourceld
e PRE
PRE
TS
Test Case Test Step Test Step
Import Name: TC Name: PRE Name: PRE
Name: P1
+ PRE
TC
TS (expanded)
Test Case Test Step
Name: TC Name: M2__ PRE
+M2__PRE

The test step PRE (which is defined in the module M1) is overridden with the test step PRE (which is defined in the module M2).

Delivery 9.4, 17 December 1996 213

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Example 4:
M1
TS M2
Import Import Module Exports Module Exports
Name: M1 Name: M2 Name: M1 Name: M1
Sourceld Sourceld
TC PRE TC
PRE
Test Step Test Case Test Step
Name: PRE Name: TC Name: PRE
+ PRE

TS (expanded)

Test Step Test Case Test Step
Name: PRE Name: TC Name:M2__PRE|
+ M2__PRE

The test step PRE (which is defined in the module M2) is implicitly imported from M1 in TS.

214 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

Example 5:
M2
Module Exports
Name: M1
Sourceld Pl
TC
PRE1 P1 M 1 Package Exports
Module Exports Name: P11
Import
Name: P71 Nla-l.rr-1e: M1 Sourceld
Sourceld PRE1
PRE1 PRE
TS Test Step Package Import
Test Case Test Step N PRE
ame: .
Import Name: TC Name: PRE NéTe' M1
Name: M2 DEF REF
TC + PRE PRE| PRE1| PRE1
+ PRE1
PRE is defined in M1,
renamed in P1 and
explicitly exported from
M2. Another object TS (expanded)
called PRE is defined in
M2. Both are implicitly Test Case Test Step Test Step
imported in TS. No Name: TC Name: M2_PRE| | Name: M1__PRE
override is done.
+M2__PRE
+M1__PRE

Neither the object PRE defined in M2 nor the one defined in M1 is overridden in TS. Both are implicitly imported and renamed
to a unique name. Hence No name clash has occured.

Delivery 9.4, 17 December 1996 215

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Annex F
(normative)

Compact proformas

F.1 Introduction

As an option, many Constraints and/or many Test Cases can be printed in a single table. This may be useful to highgheteladin the single
constraints and/or single Test Cases. This annex states the requirements for using compact Constraints proformas antiést €aspagiroformas
and gives some examples. These proformas are specific and differ from the generalized layouts given in 7.3. Since threnasvaigrofdy another
way to present the same information, there is no TTCN.MP associated with it. The information contained in a compact Gogtaoumpact
Test Cases table can be translated in the TTCN.MP associated with the many single constraint tables and/or many Testl@asatahillee same
information contents.

F.2 Compact proformas for constraints

F.2.1 Requirements
It shall only be allowed to print many single constraint tables as a single compact constraint table if
a) the constraints have the same ASP type, PDU type, Structured Type or ASN.1 Type;

b) there is no encoding information specified in any of the single constraint table headers nor in the encoding colurhthofany o
tables (ASN.1 encodings spefified in ASN.1 Value may, however, be specified in compact proformas); and

c) there are no entries in the comments column of any single constraint table.

NOTE - If the single constraints tables only have comments in the detailed comments.éates comments column is empty), then it is possible
to print these constraints in the compact format. In such cases the individual detailed comments from the single profofiasshected and
printed as a single comment in the detailed comments footer of the compact proforma.

216 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

F.2.2 Compact proformas for ASP constraints

In cases where a constraint contains only a few parameters, or when there are only a small number of constraints, themaynbeaire-

sented in the compact version of the ASP constraints proforma:

Second Edition Mock-Up for ETSI TC/MTS

ASP Constraints Declarations
ASP Type : ASP_ldentifier

Constraint Derivation Parameter Name Comments
Name Path ASP_ParIdentifieI ASP_ParIdentifieﬁ
Consld- Derivation- ConstraintValue- ConstraintValue-

&ParListq Pathy &AttributesL1 &Attributesl,n [FreeTexth
Consld- Derivation- ConstraintValue- ConstraintValue-

&ParList, Path, &Attributesz’1 &Attributesz,n [FreeText},
Consld- Derivation- ConstraintValue- ConstraintValue- [FreeText]

&ParlList,, Path,, &Attributes, 1 &Attributes,

This proforma is used for ASPs and their parameters in the same way that PDU Constraints Declarations proforma is usethébtiiebUs

fields (see F.2.3).

Proforma F.1 - (Compact) ASP Constraints Declarations

F.2.3 Compact proformas for PDU constraints

F.2.3.1 Introduction

In cases where a constraint contains only a few fields, or when there are only a small number of constraints, the caystaimtssanted

in the compact version of the PDU constraints proforma:

PDU Constraints Declarations
PDU Type PDU_ldentifier

Constraint Derivation Field Name Comments
Name Path ASP_ParIdentifieI ASP_ParIdentifieﬁ
Consld- Derivation- ConstraintValue- ConstraintValue-

&ParListy Pathy &Attributeﬁl 1 &Attributesl’n [FreeTexth
Consld- Derivation- ConstraintValue- ConstraintValue-

&ParList, Path, &Attributeszy 1 &Attributes,z,n [FreeText],
Con;ld- Derivation- Const.raintVaIue- Const.raintVaIue- [FreeText],,

&ParList, Path, &Attrlbute%’ 1 &Attrlbute%’n

Proforma F.2 - (Compact) PDU Constraints Declarations

Delivery 9.4, 17 December 1996

217

Second Edition Mock-Lp for ETSI TC/MTS

The compact constraints proforma has field names across the top of the proforma, and different instances of the PDUircoostsaivithin the
proforma. If there ara fields in the PDU type definition then there shalhtfeeld columns in the compact constraint proforma.

The derivation path column is optional; however, it shall be used to specify the derivation path of modified constradn®.(8eminpact table can
collect several base constraints (as illustrated in Example C.1) or can collect a base constraint and its modified asmstEaiataple C.2. When
modified constraints are declared in a compact table, the fields not modified in the modified constraints appear adlaoXeaddfie intersection
of the modified constraint row and of the field column. When mapping a compact table to TTCH.MRgle format), blank fields due to inheritance

19 December 1996, Delivgr9.4

shall be omitted. Fields not specified in modified constraints are left blank in modified constraints.

218

F.1.1Given the declaration of PDU_B to be

EXAMPLE F.1 - Constraints using the compact constraints proforma

PDU Type Definition
PDU Name : PDU_B
PCO Type : XSAP
Comment
Field Name Field Type Comments
FIELD1 INTEGER
FIELD2 BOOLEAN
FIELD3 IA5String
F.1.2the constraints on PDU_B using the compact constraints proforma could be
PDU Constraints Declarations
PDU Type: PDU_B
Constraint Name Field Name Comments
FIELD1 FIELD2 FIELD3
CN1 3 TRUE "A string”
CN2 (4,5,6) FALSE "A string"
CN3 0 ? -

EXAMPLE F.2 - The inheritance mechanism using the compact constraint proforma:

The constraints reference in the dynamic part might then contain entries such as PDU_B[CN1] and PDU_B[CN2]

PDU Constraints Declarations

PDU Type: PDU_A
Constraint Derivation Field Name Comments
Name Path
FIELD1 FIELD2 FIELD3 FIELD4

CNO FFH 008 TRUE
CN1 CNO.
CN2 CNO.CN. } 2

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

F.2.3.2 Parameterized compact constraints
Compact constraints may also be parameterized. In such cases the parameter lists shall be appended to the constraioturaimeéhand o
constraint name column of compact constraint proformas.

EXAMPLE F.3 - A parameterized compact constraint

The invocation of the constraints on PDU_X in a Test Step may be made as follows: S1, S2, S3, S4, S5(0), S5(1) or S5(Var)
where Var is a Test Case or Test Suite Variable.

PDU Constraints Declarations
PDU Type: PDU_X
Constraint Field Name Comments
Name 1 >

S1 0 0
S2 0 1
S3 1 0
S4 1 1
S5(AINTEGER) | 1 A

F.2.4 Compact proformas for Structured Type constraints
Compact Structured Type constraints shall be provided in the following proforma:

Structured Type Constraints Declarations
Structure Type : Structldentifier

Constraint Derivation Field Name Comments
Name Path ASP_ParIdentifie_[ASP_ParIdentifierq
Consld- Derivation- ConstraintValue- ConstraintValue-

&ParListq Pathy &Attributeﬁ’ 1 &Attributesl’n [FreeTexth
Consld- Derivation- ConstraintValue- ConstraintValue-

&ParList, Path, &Attributesz’ 1 &Attributesz,n [FreeText],
Con;ld- Derivation- Const.raintVaIue- ConstraintVaIue- [FreeText],,

&ParList, Path | &Attributes, 4 &Attributes,

Proforma F.3 - (Compact) Structured Type Constraints Declarations

EXAMPLE F.4 - Use of structured compact constraints

The PDU_Y consists of five fields named Y1 through Y5. The fields Y1, Y2 and Y3 have been combined into the Structured
Type called A. In the following, the first table shows the constraints defined on PDU_Y. The second and third tables convey
the same information as the last table;

The second and third tables show the Structured Type A’s constraint specification using the single constraint proformas, while
the last table shows A’s constraint using the compact constraint proforma. Both figures also use the modification mechanism.
For the following tables, it can be seen that if the constraint YY1 was used, the values for field Y1 through Y5 would be
0,0,0,0,1 respectively, where the values for fields Y1 through Y3 are derived from the Structured Type A using constraint Al.
If the constraint YY2 was used, the values for Y1 through Y5 would be 0,3,0,1,0 respectively, where the values for fields Y1

Delivery 9.4, 17 December 1996 219

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

through Y3 are derived from the Structured Type A using constraint A2.
F.4.1A PDU constraints table that uses a Structured Type (called A)

PDU Constraints Declarations
PDU Type: PDU_Y
Constraint Name Field Name Comments
A Y4 Y5
YY1 Al 0 1
YY2 A2 1 0
YY3 A2 0 1

F.4.2A1 is a base constraint of Structured Type A:

Structured Type Constraint Declaration

Constraint Name : Al
Structured Type : A
Derivation Path
Comment

Element Name

Element Value Comments

Y1
Y2
Y3

o

F.4.3The Structured Type constraint, A2, is a modified constraint derived from Al:

Structured Type Constraint Declaration

Constraint Name : A2
Structured Type : A
Derivation Path o AL
Comment

Element Name

Element Value Comments

Y2

220

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

F.4.4 Structured Type A’s constraints Al and A2 in the compact form

Structured Type Constraints Declarations

Structured Type Name:A

Constraint Derivation Element Name Comments
Name Path
Y1 Y2 Y3
Al 0 0 0
A2 Al. 3

When using Structured Types within PDU Constraint Declarations, each field name used within the Structured Type defirétiantighal
match the name (or short name, if both the short name and full name were defined) of the PDU field which it representsifjioia DU
type definition.

F.2.5 Compact proformas for ASN.1 constraints

The following proformas shall be used for compact ASN.1 ASP, ASN.1 PDU and ASN.1 Type constraints definitions respectively:

ASN.1 ASP Constraints Declarations
ASP Type: ASP_ldentifier
Constraint name ASN.1 Value
Consldé&ParlLisg ConstraintValue&Attribute
Consld&ParLisf, ConstraintValue&Attributg,

Proforma F.4 - (Compact) ASN.1 ASP Constraints Declarations

Delivery 9.4, 17 December 1996 221

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

ASN.1 PDU Constraints Declarations
PDU Type: PDU_ldentifier
Constraint name ASN.1 Value
Consld&ParlLisg ConstraintValue&Attributes
Consldé&ParLisf, ConstraintValue&Attributeg

Proforma F.5 - (Compact) ASN.1 PDU Constraints Declarations

ASN.1 Type Constraints Declarations
Type Name:ASN1_Typeldentifier
Constraint name ASN.1 Value
Consld&ParlLisg ConstraintValue&Attributes
Consld&ParList, ConstraintValue&Attributeg

Proforma F.6 - (Compact) ASN.1 Type Constraints Declarations

F.3 Compact proforma for Test Cases

F.3.1 Requirements
Itis only permitted to print many single Test Case dynamic behaviour tables as a single compact Test Case dynamic biehatieutha following
rules apply:

a) all single Test Case dynamic behaviour tables shall belong to the same Test Group;

222 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

b) all single Test Case dynamic behaviour tables shall have either the same Default tree or no Default tree; it is recommended

that there be no Default tree;
¢) the behaviour description of each single Test Case dynamic behaviour table shall consist of a single ATTACH construct.

F.3.2 Compact proforma for Test Case dynamic behaviours

Where a series of Test Cases have essentially the same dynamic behaviour and differences occur only in the referentsed.gatsstain
for parameter variations of ASPs and/or PDUSs), the Test Cases may be presented in the compact version of the Test Claskadyoamic

proforma:

Test Case Dynamic Behaviours

Group . TestGroupReference

Default . DefaultReference
Test Case Name Purpose Test Step Attachment Comments
TestCaseldentifier FreeText Attach [FreeText]

Proforma F.7 - (Compact) Test Case Dynamic Behaviours

Each row in the body of this proforma describes a single Test Case. If the compact Test Case proforma is used thersplgleetablseries
of Test Case dynamic behaviour tables in the behaviour part of the test suite.

The comments column contains comments pertaining to individual Test Cases against each attachment.

Test Cases within compact Test Case proforma may form a subset of their group and shall appear in the order indicase Casthindex.

EXAMPLE F.5 - A compact Test Case table that defines a series of tests for FTAM:

Test Case Dynamic Behaviours

Group . R/BV/PV/LM/CR/OV
Default

Test Case Name Purpose Test Step Attachment
OVERIDE1 Omit the overide parameter, + OVERRIDE (FCRERQ_001, FCRERP_001)

when file exists.

OVERIDE2 Omit the overide parameter, + OVERRIDE (FCRERQ_002, FCRERP_002)
when file does not exist.

Delivery 9.4, 17 December 1996 223

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Annex G
(informative)

Examples

G.1 Examples of tabular constraints
G.1.1 ASP and PDU definitions
G.1.1.1 Flat type definition:

PDU Type Definition

PDU Name : T_CONNECT1

PCO Type
Comment : lllustration of TTCN mechanisms

Field Name Field Type Comments
Source BITSTRING [4] Length is 4 bits
Destination BITSTRING [4] Length is 4 bits
T_Class INTEGEROto4 Defined as a simple type
UserData IA5String

G.1.1.2 Structured Type definition:

PDU Type Definition

PDU Name : T_CONNECT2

PCO Type
Comment : lllustration of TTCN mechanisms

Field Name Field Type Comments
T_Addresses T_Addressinfo
T_Class INTEGEROto4 Defined as a simple type
UserData IA5String

Structured Type Definition

Type Name : T_Addressinfo
Comments : Can be used in all Transport PDU examples.

Element Name Type Definition

Comments
Source BITSTRING [4] Length is 4 bits
Destination BITSTRING [4] Length is 4 bits

224 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

Second Edition Mock-Up for ETSI TC/MTS

G.1.1.3 Special type PDU, in order to allow use of (static) chaining of constraints:

ASP Type Definition

ASP Name : N_DATArequest
PCO Type : N_SAP
Comment : For illustration only

Parameter Name Parameter Type

Comments

CallingNetworkAddress HEXSTRING
CalledNetworkAddress HEXSTRING
Connectionldentifier HEXSTRING
Data PDU

To enable chaining of constraints

G.1.2 ASP/PDU constraints

G.1.2.1 Flat:
PDU Constraint Declaration

Constraint Name : TCON_Class4_1

PDU Type : T_CONNECT1

Derivation Path

Comment

Field Name Field Value Comments

Source TS Parl

Destination TS _Par2

T _Class 4

UserData "testing, testing"

G.1.2.2 Structured, referring to field groups:
PDU Constraint Declaration

Constraint Name : TCON_Class4 2

PDU Type . T_CONNECT2

Derivation Path
Comment

Field Name Field Value Comments
T_Addresses WrongAddress WrongAddress is a reference to a
structured type constraint.

T Class 4

UserData "one, two, three"

Delivery 9.4, 17 December 1996

225

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Structured Type Constraint Declaration

Constraint Name
Structured Type
Derivation Path

: WrongAddress
T_Addressinfo

Comment
Element Name Element Value Comments
Source TS_Parl
Destination '0000'B
G.1.2.3 Chaining, useful for (nested) PDUs in ASPs:
ASP Constraint Declaration
Constraint Name : N_DATAreq_With_T_CON_Class4_1
ASP Type . N_DATArequest
Derivation Path
Comments : TCON_Class4_1 is a PDU constraing(, chaining)
Parameter Name Parameter Value Comments
CallingNetworkAddress TS_Par3
CalledNetworkAddress TS_Par4d
Connectionldentifier 'ABCDEF'H

Data TCON_Class4_1

G.1.2.4 Parameterized constraints; it is possible to parameterize flat, structured and chained constraints. The following example
parameterization to pass a value:

PDU Constraint Declaration

Constraint Name : TCON_1(class:INTEGER)
PDU Type : T_CONNECT1
Derivation Path
Comment

Field Name Field Value Comments
Source '1000'B
Destination ?
T_Class class class is a formal parameter
UserData ?

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:
TCON_1(4) or TCON_1(TCvariable)

226 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

Field values may be whole (chained) PDUs:

ASP Constraint Declaration

Constraint Name : N_DATAreq_With_T_CON(A_Constraint:T_CONNECT?2)
ASP Type . N_DATArequest
Derivation Path
Comments : TCON_Class4_1 is a PDU constraing(, chaining)

Parameter Name Parameter Value Comments
CallingNetworkAddress TS_Par3
CalledNetworkAddress TS_Par4d
Connectionldentifier '1234567'H
Data A Constraint A_Constraint is a formal parametegr

This constraint can be called as, for example:
N_DATAreq_With_TCON(TCON_Class4_2)
Since the actual parameter is a constraint name, which can itself be parameterized, it is possible to express an drbitreegtaepof PDUs.

G.1.2.5 Modified constraints; it is possible to use existing constraints and modify them to define new constraints. This can be
done with flat, structured and parameterized constraints.

PDU Constraint Declaration

Constraint Name : TCON_Class0O 1

PDU Type : T_CONNECT1
Derivation Path : TCON_Class4 1.
Comment : Class 0 is acceptable
Field Name Field Value Comments
T_Class 0

Wildcards can be used for values:

PDU Constraint Declaration

Constraint Name : TCON_AnyClass

PDU Type : T_CONNECT1
Derivation Path : TCON_Class4 1.
Comment : Any class (0 .. 4) is acceptable
Field Name Field Value Comments
T Class ?

This is considered to be bad style, however. It is better to use the more general constraint as a base.

Delivery 9.4, 17 December 1996 227

Second Edition Mock-Lp for ETSI TC/MTS

It is also possible to delete whole fields:

19 December 1996, Delivgr9.4

PDU Constraint Declaration

Constraint Name : TCON_Erroneous_NoClass
PDU Type : T_CONNECT1
Derivation Path : TCON_Class4_1.
Comment : No class present
Field Name Field Value Comments
T_Class - T_Class omitted

G.2 Examples of ASN1 constraints
G.2.1 ASP and PDU definitions

G.2.1.1 Flat:

ASN.1 PDU Type Definition

PDU Name : T_CONNECT1
PCO Type
Comment

Type Definition

-- only to illustrate use of ASN.1 in TTCN

SEQUENCE { source BITSTRING (SIZE (4..4)),
destination BITSTRING (SIZE (4..4)),
t Class INTEGER (0..4),
userData IA5String OPTIONAL
}

G.2.1.2 Structured:

ASN.1 PDU Type Definition

PDU Name : T_CONNECT2
PCO Type
Comment

Type Definition

-- only to illustrate use of ASN.1in TTCN

SEQUENCE { t_Addresses T_Addressinfo,
t Class INTEGER (0..4),
userData IA5String

}

-- expansion of T_Addressinfo can be found in a table of its own

228

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

Related ASN.1 productions that are normally in one ASN.1 module may be distributed over more tables in TTCN:

ASN.1 Type Definition

Type Name :T_Addressinfo
Comments

Type Definition

SEQUENCE { source BITSTRING (SIZE (4..4)),
destination BITSTRING (SIZE (4..4)),
}

G.2.1.3 An ASP definition:

ASN.1 ASP Type Definition

ASP Name : N_DATArequest
PCO Type : N_SAP

Comment
Type Definition
SEQUENCE { callingNetworkAddress OCTETSTRING, -- even number of octets
calledNetworkAddress OCTETSTRING, -- even number of octets
connectionldentifier OCTETSTRING, -- even number of octets
data T _PDUS

ASN.1 Type Definition

Type Name :T_PDUS
Comments

Type Definition

CHOICE { t1 T_CONNECTL,
2 T_CONNECT2
}

G.2.2 ASN.1 ASP/PDU constraints

G.2.2.1 Flat:
ASN.1 PDU Constraint Declaration
Constraint N\ame : TCON_Class4_1
PDU Type : T_CONNECT1
Derivation Path
Comments
Constraint Value
{ source TS_PAR1,
TS_PAR2, --field identifier can be omitted if desired

t Class 4,

userData "testing, testing"
}

Delivery 9.4, 17 December 1996 229

Second Edition Mock-Lp for ETSI TC/MTS

G.2.2.2 Structured:

G.2.2.3 Chaining a PDU constraint:

230

19 December 1996, Delivgr9.4

ASN.1 PDU Constraint Declaration

Constraint Name

: TCON_Class4_2

PDU Type : T_CONNECT2
Derivation Path
Comments
Constraint Value
{ t_Addresses WrongAddress, -- areference to a PDU field constraint
t_Class 4,
userData "one, two, three"

ASN.1 Type Constraint Declaration

Constraint Name
Structured Type
Derivation Path

: WrongAddress
: T_Addressinfo

Comments
Constraint Value
{ source TS_PAR1,
destination '0000'B
}

ASN.1 ASP Constraint Declaration

Constraint Name
ASP Type
Derivation Path
Comments

: N_DATAreq_With_TCON_Class4_1
: N_DATArequest

Constraint Value

{ callingNetworkAddress
callednetworkAddress
connectionldentifier

data

}

TS_PAR_3,
TS_PAR 4,
'"ABCDEFH,

t1 TCON_Class 4 1 -- chaining to a PDU constraint

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

G.2.2.4 Parameterized constraints; ASN.1 constraints may be parameterized like TTCN tabular constraints, for example:

ASN.1 PDU Constraint Declaration
Constraint Name : TCON_1(class:INTEGER)
PDU Type : T_CONNECT1
Derivation Path
Comments
Constraint Value

{ source '0000'B,

destination ?, -- wildcard

t_Class class, -- formal parameter

userData ?
}

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:
TCON_1(4) or TCON_1(TCvariable)
A parameter may also represent a whole chained PDU:

ASN.1 ASP Constraint Declaration

Constraint Name : N_DATAreq_With_TCON(a_constraint:T_CONNECT2)

ASP Type : N_DATArequest
Derivation Path
Comments
Constraint Value
{ callingNetworkAddress TS_PAR_3,
callednetworkAddress TS_PAR_4,
connectionldentifier '1234567'H,
data t2 a_constraint

-- a_constraint is a formal parameter containing a whole PDU

This can be referenced from the Test Case, Test Step or Default behaviour tables, as for example:
N_DATAreq_With_TCON(TCON_Class4_2)
Since the actual parameter is a constraint name, which itself can be parameterized, it is possible to express an drlufraegtitept

G.2.2.5Modified constraints; new constraints may be constructed by modifying already defined constraints using the REPLACE
mechanism:

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_Class0_1

PDU Type : T_CONNECT1
Derivation Path . TCON_Class4_1.
Comments

Constraint Value

REPLACE t_Class BY 0

Delivery 9.4, 17 December 1996 231

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Wildcards can be used as replacements as well:

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_AnyClass

PDU Type : T_CONNECT1
Derivation Path . TCON_Class4_1.
Comments

Constraint Value

REPLACE t_Class BY ?

To specify fields that shall be omitted, the OMIT mechanism is used:. This is only allowed if the field is declared as OPTIONAL

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_NoUserData

PDU Type : T_CONNECT1
Derivation Path : TCON_Class4_1.TCON_AnyClass.
Comments

Constraint Value

OMIT UserData

It is possible to modify ASN.1 parameterized constraints, but note that the parameterized fields themselves can not:be replaced

ASN.1 PDU Constraint Declaration

Constraint Name : TCON_2(class:INTEGER)

PDU Type : T_CONNECT1
Derivation Path : TCON_1.
Comments

Constraint Value

REPLACE userData BY "CPS"

232 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

G.2.3 Further examples of ASN.1 constraints
G.2.3.1 Definition of an FTAM F_INITIALIZEresponse PDU, made in an ASN.1 PDU type definition table:

ASN.1 PDU Type Definition

PDU Name : F_INITIALIZEresponse

PCO Type

Comment

Type Definition

SEQUENCE {
state_result State_Result DEFAULT success,
action_result Action_Result DEFAULT success,
protocol_version Protocol_Version DEFAULT { version_1},
implementation_information Implementation_Information OPTIONAL,
presentation_context_management [2] IMPLICIT BOOLEAN DEFAULT FALSE,
service_class Service_Class DEFAULT { transfer_class },
functional_units Functional_Units,
attribute_groups Attribute_Groups DEFAULT { },
shared_ASE_information Shared_ASE_Information OPTIONAL,
ftam_quality_of_service FTAM_Quality_Of_Service,
contents_type_list Contents_Type_List OPTIONAL,
diagnostic Diagnostic OPTIONAL,
checkpoint_window [8] IMPLICIT INTEGER DEFAULT 1

}

The fields of the PDU (State_Result, Action_Result etc.) are declared in ASN.1 Type Definitions.
For example, Functional_Units:

ASN.1 Type Definition

Type Name : Functional_Units
Comments

Type Definition

[4] IMPLICIT BITSTRING
{ read(2),

write (3),
file_access (4)
limited_file_management (5),
enhanced_file_management (6),
grouping (7),
fadu_locking (8),
recovery (9),
restart_data_transfer (10)

Delivery 9.4, 17 December 1996 233

Second Edition Mock-Lp for ETSI TC/MTS

A base constraint, F_INITrsp_001, on the F-INITIALIZEresponse is declared In the constraints part:

19 December 1996, Delivgr9.4

ASN.1 PDU Constraint Declaration

Constraint Name : F_INITrsp_001

PDU Type . F_INITIALIZEresponse

Derivation Path

Comments

Constraint Value
{

state_result State_Result_001,
action_result Action_Result_001,
protocol_version Protocol_Version_001,
implementation_information Implementation_Information_001,
presentation_context_management FALSE,
service_class Service_Class_001
functional_units Functional_Units_001,
attribute_groups Attribute_Groups_001,
shared_ASE_information Shared_ASE_Information_001,
ftam_quality_of_service FTAM_Quality_Of_Service_001,
contents_type_list Contents_Type_List_001,
diagnostic Diagnostic_001,
checkpoint_window 1

}

A constraint on Functional_Units, Functional_Units_001, is declared in an ASN.1 PDU field constraint declaration:

A second con

ASN.1 Type Constraint Declaration

Constraint Name : Functional_Units_001
Structured Type : Functional_Units
Derivation Path

Comments

Constraint Value

'001'B -- Write only

straint, F_INITrsp_002 can be built by modifying the base constraint, F_INIT_rsp001:

ASN.1 PDU Constraint Declaration

Constraint Name : F_INITrsp_002

PDU Type . F_INITIALIZEresponse
Derivation Path . F_INITrsp_001.
Comments

Constraint Value

OMIT implementation_information,

REPLACE presentation_context_management BY TRUE,

REPLACE functional_units BY Functional_Units_002,
REPLACE checkpoint_window BY ?

where Functional_Units_002 is an ASN.1 PDU Constraint Declaration.

234

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

G.3 Base and modified constraints

Suppose that we have the following PDU type definition:

PDU Type Definition
PDU Name : PDU_B
PCO Type
Comments : This is the declaration of the protocol data unit PDU_B
Field Name Field Type Comments
FIELD1 INTEGER
FIELD2 HEXSTRING
FIELD3 BITSTRING
FIELD4 BOOLEAN
A base constraint for PDU_B could be
PDU Constraint Declaration
Constraint Name : CO
PDU Type : PDU_B
Derivation Path
Comments
Field Name Field Value Comments
FIELD1 0
FIELD2 ‘FF'H
FIELD3 ‘00'B
FIELD4 TRUE
A modified constraint C1 to the base constraint CO could be
PDU Constraint Declaration
Constraint Name : C1
PDU Type : PDU_B
Derivation Path . CoO.
Comments
Field Name Field Value Comments
FIELD1 1 In the base CO this field value is 0

Delivery 9.4, 17 December 1996

Second Edition Mock-Up for ETSI TC/MTS

235

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

We can further build on C1:

PDU Constraint Declaration
Constraint Name : C2
PDU Type : PDU_B
Derivation Path . CO0.C1.
Comments

Field Name Field Value Comments
FIELD2 - This field is omitted
FIELD3 ? Any legal value accepted

Reference to a modified constraint in a behaviour tree is made using its name.

G.4 Type definition using macros
PDU type definition with macro symbol:

PDU Type Definition

PDU Name : T_CONNECT3
PCO Type
Comment : lllustration of TTCN macro mechanism

Field Name Field Type Comments
<- T_AddressGroup
T_Class INTEGEROto4 Defined as a simple type
UserData IA5String

Structured Type Definition

Type Name : T_AddressGroup
Comments

Element Name Type Definition

Comments
Source BITSTRING [4] Length is 4 bits
Destination BITSTRING [4] Length is 4 bits

236 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

Second Edition Mock-Up for ETSI TC/MTS

PDU Constraint Declaration
Constraint Name : TCON_Class4_3
PDU Type . T_CONNECT3
Derivation Path
Comment
Field Name Field Value Comments
<- GoodAddress Reference to the structured type cdn-
straint declaration.
T_Class 4
UserData "one, two, three"

Structured Type Constraint Declaration

Constraint Name
Structured Type
Derivation Path
Comment

. GoodAddress

T_AddressGroup

Element Name

Element Value Comments

Source
Destination

‘0101'B
'1111'B

Delivery 9.4, 17 December 1996

237

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

G.5 Use of REPEAT

Test Case Dynamic Behaviour

Test Case Name RPT_EX2

Group : TTCN_EXAMPLES/REPEAT_EXAMPLE2/
Purpose . Toillustrate use of REPEAT and parameter passing by textual substitution.
Default
Comments
Nr | Label Behaviour Description Constraints Ref Verdict | Comments
1 (FLAG:=FALSE, COUNTER:=0)
2 1A Al
3 REPEAT STEP2 (FLAG, COUNTER)
UNTIL [FLAG OR COUNTER=3]
4 [FLAG]
5 D D1 PASS
6 [COUNTER=3]
7 IE El FAIL
STEP2 (F:BOOLEAN; NUMBER:INTEGER)
8 ?B (F:=TRUE) B1
9 ?C (F:=FALSE, NUMBER:=NUMBER+1) C1

Detailed Comments:
This example shows how repeated execution of STEP2 can be ended either by reception of message B, or reception of dsssgethdnrthe
lines following the REPEAT construct, Boolean expressions are used to describe that in the case where B is receivedjsiiessageri, and
the case where three other messages are received E is to be sent.

This example also illustrates the effect of parameter passing by textual substitution. This means that F is replaced iy RUMBER is replacefl
by COUNTER, thus making it possible for FLAG and COUNTER to obtain the results of the assignments in STEP2.

=}

238 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

G.6 Test suite operations

Using a Test Suite Operation to set a checksum:

Test Suite Operation Definition

Operation Name : CRC(P:A_PDU)
Result Type : INTEGER
Comment :

Description

Calculate and return the checksum of the PDU P according to the CRC algorithm.
NOTE - In a real ATS this operation would be described in greater detail.

PDU Constraint Declaration

Constraint Name : CONS1

PDU Type : A_PDU
Derivation Path
Comment
Field Name Field Value Comments
Checksum ?

A_PDU.Checksum := CRC(CONSL) in the approprait SEND event in a behaviour description will set the CH
in the constraint CONS1.

G.7 Example of a Test Suite Overview

ecksum

In the Test Suite Structure table shown below, a hierarchy of the groups and Test Cases in the suite is defined. Wiitturéhitest selec-
tion expressions are identified which govern the selection of Test Groups and the Test Cases for execution. For exampl& 084 EXP
erenced as the controlling expression for Feature X of the protocol. If Feature X is not supported, none of the TesteCasgs which are

within the Feature X group will be selected.

Test Suite Structure

Suite Name : TEST_SUITE_A

Standards Ref : ISO/IEC xxxx

PICS Ref . ISO/IEC aaaa

PIXIT Ref : ISO/IEC bbbb

test notation(s) : DS test method

Comments : This is an example only.

Test Group Reference Selection Ref Test Group Objective Page Nr

FEATURE_X SELEXP_100 | Test optional Feature X 50

FEATURE_X/ATTR_A Test mandatory Attribute A 50

FEATURE_X/ATTR_A/NEGOTIATION SELEXP_101 | Test optional Attribute A negotiation 50

FEATURE_X/ATTR_A/USAGE Test Attribute A usage 60

FEATURE_X/ATTR_B Test mandatory Feature Y 80
Delivery 9.4, 17 December 1996

239

Second Edition Mock-Lp for ETSI TC/MTS

19 December 1996, Delivgr9.4

To determine whether or not Feature X is supported, SELEXP_100 must be evaluated. This is done by determining whetleeF@stnot th
Suite Parameter in SELEXP_10@,, TST_FX, is TRUE. If it is, the processing within the group continues. Note that tests for attribute A will
be selected (no expression), but that tests for the optional negotiation feature of Attribute A will only be selected if $&1LEXPRUE.

Test Case Index
Test Group Reference Test Case Id | Selection Ref Description Page Nr
FEATURE_X/ATTR_A/NEGOTIATION FX_ANEG_1 | SELEXP_102 | Req. Attr. A, valid neg. 50
FX_ANEG_2 | SELEXP_102 | Req. Attr. A, invalid neg. 52
FX_ANEG_3 Rcv. Attr. A, invalid neg. 54
FX_ANEG_4 Rcv. Attr. A, invalid neg. 56
FEATURE_X/ATTR_A/USAGE FX_AUSE_1 | SELEXP_103 | Use Attr. A (VAL=0). 60
FX_AUSE_2 Rcv. Attr. A 62
FX_AUSE_3 Rcv. Attr. A 64

If Attribute A negotiation is supported, Test Case FX_ANEG_01 through FX_ANEG_04 are candidates for selection. HowevesesTest Ca
‘01" and ‘02’ will only be chosen if the additional selection expression SELEXP_102 is TRUE. Test Case FX_ANEG_01 wilseldgtbd
if the PICS indicates that a value of zero for Attribute A is supported.

The PICS and PIXIT questions used in the test selection expressions are declared as Test Suite Parameters.

Test Suite Parameter Declarations

Parameter Name Type PICS/PIXIT Ref Comments
TSP_FX BOOLEAN PICS question FX1 Q: Feature X supported?
TSP_FXA_N BOOLEAN PICS question FX2 Q: Feat. X neg supported?
TSP_FXA_NINIT BOOLEAN PICS question FX3 Q: Does IUT req. neg?
TSP_FXA_MINVAL INTEGER PIXIT question FXVAL Q: Will IUT use VAL=0

The test selection expressions are declared as Boolean expressions, as defined in 11.5.

240

Test Case Selection Expression Definitions

Expression Name

Selection Expression

Comments

SELEXP_100
SELEXP_101
SELEXP_102
SELEXP_103

TSP_FX
TSP_FXA_N
TSP_FXA_NINIT
TSP_FXA_VAL=0

Feature X supported.
Feature X negotiation.
Reg. Feature X negotiation
Accept Feature X val=0.

Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

G.8 Example of a Test Case in TTCN.MP Form

For the sample Test Case given below:

Second Edition Mock-Up for ETSI TC/MTS

Test Case Dynamic Behaviour

Test Case Name : PACKET/P4/PROPER/T_02

Reference 2 T_7_02

Purpose : Verify the IUT acknowledges a Clear cause code 05 while in state p4

Default

Comment

Nr | Label Behaviour Description Constraints Ref Verdict | Comments
0 +R1_PREAMBLE(SVC)
1 +P4D1_PREAMBLE
2 ICLEAR START TD CLR_0O(LC) clear cause=5
3| U ?CLEARC CANCEL TD CLRC_0(LC) (PASS)
4 +R1_POSTAMBLE
5 ?CLEAR CANCEL TD CLR_LO(LC) (PASS)
6 +R1_POSTAMBLE
7 ?RESTART [RST_ON_ERR] CANCEL TD STRT_DTEA (PASS)
8 IRESTARTC STRTC
9 +R1_POSTAMBLE

10 +D1C_UNEXPECTED

11 -> L1

12 +RSRT_UNEXPECTED

13 ?TIMEOUT TD FAIL
14 ?0THERWISE CANCEL TD FAIL

The TTCN.MP that corresponds to this table is:

$BeginTestCase
$TestCaseldT_7_02
$TestGroupRefPACKET/P4/PROPER/T_02
$TestPurpose* Verify the IUT acknowledges a Clear cause code 05 while in state p4 */
$DefaultsRef
$BehaviourDescription
$BehaviourLine

$Label

$Line [0] +R1_PREAMBLE(SVC)

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [1] +P4D1_PREAMBLE

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [2] ICLEAR START TD

Delivery 9.4, 17 December 1996

241

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

$Cref CLR_0O(LC)

$Verdict

$Comment/* clear cause = 5 */
$End_BehaviourLine
$BehaviourLine

$Label L1

$Line [3] 2CLEARC CANCEL TD

$Cref CLRC_0(LC)

$Verdict (PASS)

$End_BehaviourLine
$BehaviourLine

$Label

$Line [4] +R1_POSTAMBLE

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] 2CLEAR CANCEL TD

$Cref CLR_LO(LC)

$Verdict (PASS)
$End_BehaviourLine
$BehaviourLine

$Label

$Line [4] +R1_POSTAMBLE

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] 2RESTART [RST_ON_ERR] CANCEL TD

$Cref STRT_DTEA

$Verdict (PASS)
$End_BehaviourLine
$BehaviourLine

$Label

$Line [4] IRESTARTC

$Cref STRTC

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [5] +R1_POSTAMBLE

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] +D1C_UNEXPECTED

$Cref

242 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [4] -> L1

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] +RSRT_UNEXPECTED

$Cref

$Verdict
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] ?TIMEOUT TD

$Cref

$Verdict FAIL
$End_BehaviourLine
$BehaviourLine

$Label

$Line [3] ?0THERWISE CANCEL TD

$Cref

$Verdict FAIL
$End_BehaviourLine

$End_BehaviourDescription
$End_TestCase

The layout shown here is only intended to aid readability.

G.9 Use of Component Reference for Field Value Assignment in Constraints

When a number of field values in a received PDU must be assigned to the fields in several subsequent send PDUs, the Ryimamic Bel
table can become cluttered with lengthy assignment statements using the dot notation.

TTCN allows PDU field value assignments in the constraint tables using component reference associated with a formalpecaiveter.
ASPs or PDUs in the Behaviour table may be assigned to a variable and subsequently passed as an actual parameteiritstreferemstea
to a formal parameter in the constraint table. The constraint table then specifies the required field assignments usaigptrafoeter and

its components. The following tables illustrate these principles:

Figure G.1 illustrates possible field assignments in the behaviour specification without the use of component reference.

Delivery 9.4, 17 December 1996 243

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Test Case Dynamic Behaviour
Test Case Name :TTCN_EXAMPLES/STYLE1

Group . ST_EX1

Purpose : Toillustrate the use of component references in the behaviour description.

Default :

Nr Label Behaviour Description Constraints Ref | Verdict = Comments
1 ?INASP(v:=InASP.userdata) Cinl

2 IOUtASP Coutl

(OutASP.userdata.OutPDU.FieldA:=v.Field2;
OutASP.userdata.OutPDU.FieldC:=v.Field3)

Figure G.1 - Lengthy assignment statements clutter the behaviour description.

Figure G.2 illustrates the simplification of the behaviour specification resulting from the use of component referencaimsonst

Test Case Dynamic Behaviour

Test Case Name : TTCN_EXAMPLES/STYLE1

Reference : ST_EX1

Purpose 1 Toillustrate the use of component references in the behaviour description.

Default

Nr Label Behaviour Description Constraints Ref Verdict Comments
1 ?InASP(v:=InASP.userdata) Cinl

2 IOUtASP Cout2(v)

Figure G.2 - Lengthy assignment statements are removed form the behaviour description.

For simplicity, the definitions of all required ASP and PDU types have been omitted.

The ASP types INASP and OutASP consist of the single parameter field userdata, which is of the type InPDU and OutPDUy résp&dtive
contains the three fields Field1, Field2 and Field3, which all are of the type I1A5String.

OutPDU contains the three fields FieldA, FieldB and FieldC, which also are of the type IA5String.
v has to be declared as a Test Case Variable of a PDU type.

244 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

Second Edition Mock-Up for ETSI TC/MTS

The following tables give the required ASP and PDU constraint declarations:

ASP Constraint Declaration

Constraint Name : Coutl
ASP Type . OutASP
Derivation Path
Comments
Parameter Name Parameter Value Comments
userdata CoutPDU1
ASP Constraint Declaration
Constraint Name : Cout2(p:PDU)
ASP Type . OutASP
Derivation Path
Comments
Parameter Name Parameter Value Comments
userdata CoutPDU2(p)
ASP Constraint Declaration
Constraint Name : Cinl
ASP Type : InASP
Derivation Path
Comments
Parameter Name Parameter Value Comments
userdata CinPDU
PDU Constraint Declaration
Constraint Name : CoutPDU1
PDU Type . OutPDU
Derivation Path
Comments
Field Name Field Value Comments
FieldA A
FieldB B’
FieldC C

Delivery 9.4, 17 December 1996

245

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

PDU Constraint Declaration

Constraint Name : CoutPDU2(p : InPDU)
PDU Type . OutPDU

Derivation Path
Comments

Field Name

Field Value

Comments

FieldA
FieldB
FieldC

p.Field2
B’
p.Field3

PDU Constraint Declaration

Constraint Name : CinPDU
PDU Type : InPDU
Derivation Path

Comments

Field Name Field Value Comments

Field1 *
Field2 *
Field3 *

G.10 Multi-Party Testing

Figure G.3 illustrates a test component configuration for a typical multi-party testing context. Only a single uppesltestar nce communica-
tion among multiple upper testers and/or UTCF is only applicable to contexts that exclusively use the local test method.

In the example shown in Figure G.3, for simplicity, each lower tester is specified by a single PTC and the LTCF is sptafldd Gy Another
PTC is used to specify the upper tester. Coordoination points are used between the lower tester PTCs and the MTC.

This is a straightforward use of concurrency to meet multi-party requirements, but it should not be taken to imply thattthkesaltme toonerela-
tionship between lower testers and PTCs, or between the LTCF and the MTC, or between the upper tester and a PTC.

246 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

Second Edition Mock-Up for ETSI TC/MTS

MTC_LTCF

T

A

PTC_
LT3
PTC
PTC_ | LT2
LT
A
T T PCO_LT3
PCO_LT2
PCO_LT1

¢

PTC_
Ut

PCO_UT

IlUT

X - Service Provider(s)

Figure G.3 - Example Test Component Configuration for Multi-Party Testing with a Single Upper Tester.

G.11 Multiplexing/Demultiplexing

There are two ways of using concurrent TTCN in test cases using multiplexing/demultiplexing. These are illustrated irdFithei(st,
shown in Figure G.4 a), specifies the multiplexing and demuliplexing explicitly within test component MTC1, with PTC1 aed¢hTiGh-
dling the behaviour on one of the two multiplexed connections. This provides for maximum flexibility in the way that thexmgltémd
demultiplexing behaviour is specified, including possibilities of invalid behaviour. However, the disadvantage of this apihaelatively
complex multiplexer/demultiplexer has to be specified even if the test purpose concerns only the behaviour on each ohtrectivosc
The alternative approach is to use a separate PCO for each separate stream of events and a test suite parameter (Muiadéal wejrasso
each of these PCOs that are to be multiplexed and demultiplexed within the underlying service provider, rather thanLwitign Tiester.
This allows the configuration shown in Figure G.4 b) to be used. Since the multiplexing/demultiplexing is performed vegmincd@ro-
vider, there are two PCOs in this configuration, corresponding to the two CPs in the other configuration, but they acergivem &ux-
Value, MuxA, to indicate that within the service provider they are to be multiplexed. To keep things simple, one of thedwmpoeents is
made the MTC, although a separate MTC not connected to a PCO could be used instead if preferred.

Delivery 9.4, 17 December 1996

247

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

PTC1

CPa

MTC 1

PCO1(MuxA) PCO2(MuxA)

CP1

Figure G.4 b)

Figure G.4 a)

Figure G.4 - Possible Configurations for Multiplexing/Demultiplexing Test Cases

G.12 Splitting and Recombining

In order to specify test cases involving splitting and recombining, there is no alternative to specifying explicitlyititgessplitecombining behaviour
in the test case. Concurrency can be used to separate the splitting and recmbining behaviour into one test componenigid G15nfiom the
protocol behaviour that lies above this function by using a second test component, PTC1 in Figure G.5.

PTC1

PCOa| PCOb| PCOc

Figure G.5 - Possible Configuration for Splitting/Recombining Test Cases.

G.13 Multi-Protocol Test Cases

Multi-protocol test cases, including those using the embedded variants of the test methods, can use concurrent TTCiNeéparakerttte behaviour
associated with each protocol into a different test component, as illustrated in Figure G.6, which shows an exampleaofdigiestthg Session
embedded under FTAM

248 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

FTAM

CP_ACSE

ACSE

CP_Presentation

Presentation

CP_Session

Session

PCO_Transport

Figure G.6 - Possible Configuration for Multi-Protocol Testing - Session embedded under FTAM.

Delivery 9.4, 17 December 1996 249

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Annex H
(informative)

Style guide

H.1 Introduction

This informative annex presents some recommended style rules that can be employed when using TTCN. The aim is to peovide .
consistency between the TTCN styles used by different test suite specifiers.

H.2 Test case structure

In order to have a better analysis of test results and to identify easily whether or not the test purpose is achievatkrdteonafs
the following points on structuring Test Cases is suggested:

a) the test suite specifier should clearly identify the preamble and postamble sub-trees;

b) the postamble and the preamble should be specified through a single test tree attachment (local to the Test Cas& estfrom t
Step Library) in the Test Case main behaviour tree. Such test trees may attach subsequent sub-trees;

¢) once the preamble and postamble(s) sub-trees are identified within a Test Case main behaviour tree, the remainitigeevent
Test Case main behaviour tree may be considered to be related to the tesehedgifts related to the test purpose).

Using this mechanism the boundaries between preamble, test body and postamble within a Test Case can be easily idésntified.
may be used to indicate the start and end of the test body in the conformance log.

Test Case Dynamic Behaviour

Test Case Name : TTCN_EXAMPLES/STYLE1

Reference : ST_EX1

Purpose . To illustrate identification of pre- and post ambles.

Default

Comment

Nr Label Behaviour Description Constraints Ref Verdict Comments
1 +Preamble
2 1A Al related to purposg
3 Body 7B Bl related to purposg
4 CinBody 2C c1 (PASS) | related to purposg
5 + postamble_1 lated |
6 DinBody 2D D1 (PASS) | "elated to purposg
! ” + postamble_2 related to purposg
8 ’E El INCONC related to purpose

9 ?0THERWISE FAIL

Figure K.1 - Identification of pre- and post ambles.

Since final verdicts cause termination of Test Case execution, a test suite specifier can not assign a final verdicy ifithe becessary to enter
the postamble. Still, it is desirable to give a verdict at the point in the Test Case where the test purpose is achiewatkaretdiots in postambles.
It is therefore recommended to state preliminary results in the verdict column if a test purpose is achieved but a posiarstlebghexecuted. In
the definition of the postamble, a test suite specifier may use the result variable R as a verdict assigned at theddaelesvaduhtree, to indicate
that if no errors were encountered in the postamble the verdict is determined in the test body.

250 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4

Second Edition Mock-Up for ETSI TC/MTS

H.3 Use of TTCN with different abstract test methods

H.3.1 Introduction

This subclause ties the TTCN with the abstract test methods defined in ISO/IEC 9646-2. It gives the TTCN syntax usedtte exoress
rence of events at PCOs, and constraint references for the various abstract test methods.

It is assumed that the ASP type definitions define the type of the UserData parameter as PDU. It is therefore posshaeingisEamn-

straints {.e., to refer to a constraint for an ASP that contains a PDU in the UserData parameter), as a reference to an ASP conatraint tha

PDU constraint as an actual parameter.

H.3.2 TTCN and the LS test method
Possible TTCN events:

Behaviour Description

LT! N_ASP

LT? N_ASP

UT! T_ASP

UT? T_ASP
H.3.3 TTCN and the DS test method
Possible TTCN events:

Behaviour Description

LT! N_ASP

LT? N_ASP

UT! T_ASP
UT? T_ASP
H.3.4 TTCN and the CS test method
Possible TTCN events:
Behaviour Description
LT! N_ASP
LT? N_ASP

Constraints Reference

N_ASPconstraint(N_PDUconstraint)
N_ASPconstraint(N_PDUconstraint)

T_ASPconstraint
T_ASPconstraint

Constraints Reference

N_ASPconstraint(T_PDUconstraint)
N_ASPconstraint(T_PDUconstraint)

T_ASPconstraint
T_ASPconstraint

Constraints Reference

N_ASPconstraint(T_PDUconstraint)
N_ASPconstraint(T_PDUconstraint)

Exchanging TM_PDUs between the LT and TM protocol implementation in the IUT, via the connection that is used for testimat. iNote
this case the PDU definition shall have declared its UserData field as of type PDU.

LT! N_ASP
LT? N_ASP

Delivery 9.4, 17 December 1996

N_ASPconstraint(T_PDUconstraint(TM_PDUconstraint))
N_ASPconstraint(T_PDUconstraint(TM_PDUconstraint))

251

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

H.3.5 TTCN and the RS test method
Possible TTCN events:

Behaviour Description Constraints Reference
LT! N_ASP N_ASPconstraint(T_PDUconstraint)
LT? N_ASP N_ASPconstraint(T_PDUconstraint)
Since there is no UT or TMP the IMPLICIT SEND is used to describe send events at the side of the IUT connection.
<IUT! N_ASP> N_ASPconstraint(T_PDUconstraint)
<IUT! T_PDU> T_PDUconstraint

H.4 Use of Defaults

As a matter of style, a test suite specifier should avoid situations where the attempt of an alternative of a Defaultib¢haviotmal specification
of theexpectedehaviour of the IUT. It would be the case for instance if a Test Step represents the behaviour of the LT or UT andhbe Ualidw
test events are sent, and if the responses of the IUT to invalid or inopportune test events sent by the LT or UT weria &pefaifiks implicitly
attached to that Test Step when called by other Test Cases. Such Defaults would have to bear Pass verdicts.

This is not a recommended practice, when the attachment of a Default tree is left unspecified and carries a degreetypf Hrpbcitinattached
trees or the main tree should be used instead.

H.5 Limiting the execution time of a Test Case

In previous versions of TTCN, an ELAPSE statement was defined, allowing the test case specifier to limit the abnormalf dufasoiCase, if for
instance a snapshot processing never ends, or if an uncontrolled recursion of tree attachment occurs.

The ELAPSE statement is no longer part of TTCN, as the problem it was intended to solve is considered to be outsidef testssoipe specifi-
cation.

To limit the execution time of a Test Case, it is now recommended that the test realizers implement local mechanismssofhtestiag. Explicit
timers can be used together with the TIMEOUT event whenever a limit needs to be placed on waiting for an event to occur.

H.6 Structured Types

a) In pre-DIS versions of TTCN, generic fields and generic values were defined as features allowing either to groupldeeeral fie
values in a constraint table, and/or to reuse such a group in several constraint tables of similar contents;

b) In this version, the grouping of ASP parameters and PDU (ex-data types) fields is introduced first in the declaratioribeart,
sake of completeness of that part, and consistency with the use of ASN.1 in TTCN. Refer to 11.2.3.3 for a definitionaititiee Str
Type definition tables. Once a Structured Type is declared, it can be used by one or more ASP type or PDU type defirigins. Th
and PDU definition table can therefore be “flat” (no group, or a group introduced by a macro call), or structured (bysmaansef
specifications for named ASP parameters or PDU fields);

¢) In the constraint part, structure elements must be assigned values in Structured Type constraint tables. The narmes-of the
straints can be used in the base ASP or PDU constraint tables as values.

The ASP and PDU constraint tables can therefore also be
- flat, i.e.,assigning values to all parameters or fields individually, and only referring to the structure constraint tables by noacro ca
- structuredi.e., replacing values of declared groups of parameters or fields by names of group constraints.

d) If the declared ASP or PDU is structured by use of some ASP parameters or PDU fields being specified by referenced to str
elements, then the constraints have to have the same structure.

Whichever form is used, ASP/PDU constraints can also be

- modified; and

- parameterized, by means of a parameter to be bound to a field/parameter value or to a Structured Type constraint.
e) The Structured Type constraint tables replace the generic field tables of previous versions of TTCN;

252 Delivery 9.4, 17 December 1996

19 December 1996 Delivery 9.4 Second Edition Mock-Up for ETSI TC/MTS

f) The concept of generic values is deleted;
g) Examples are given in annex D.

H.7 Abbreviations

In previous versions of TTCN, it was allowed to declare, in a specific table, abbreviations to be used in the behaviowf tbkifrest Cases
and Test Steps. This facility proved to be confusing and has been restricted so that only the names of ASPs and PDU#) evient lised,
can be abbreviated. This facility is now called Alias.

H.8 Test descriptions

Informal behaviour descriptions, giving more detail than the test purposes, but less detail than the TTCN specificaliest@dlses may,
if desired, be included in a standardized ATS.

Such test descriptions may use text, time sequence diagrams or any other notation and be located in the commentsfiattiofdatlative
annex or both.

The TTCN specifications of the Test Cases always take precedence over such informal test descriptions.

H.9 Assignments on SEND events

TTCN allows for overwriting constraint values prior to a SEND event in an assignment statement on the event line. Thiatrfiesiribeh
data to be sent is constructed from the constraint definition and then the assignments are executed.

This feature should be used with care since it may lead to confusion for the test suite reader what the actual valte lie thextisin par-
ticular, it is considered to be bad style to use the same constraint for both sending and receiving.

H.10 Multi-service PCOs

Where a PCO covers more than one SAP the precise specification of such a PCO is given by the set of ASPs and PDUs that can occu

EXAMPLE E.1 - An FTAM PCO:

PCO Declarations

PCO Name PCO Type Role Comments

L A_P_SAPs LT PCO through which we can observe all ACSE
ASPs and all Presentation ASPs except P-CON-
NECT, P-RELEASE and P-ABORT.

The PCO “L" is of type A_P_SAPs which is able to observe all ACSE and Presentation ASPs, excluding P-CONNECT, P-
RELEASE and P-ABORT. The type column shows which SAPs belong to the set to be observed by the PCO, “A” and “P”,
each SAP separated by underscore (“_"). The comments column describes exactly what can be seen by the PCO.

This method is extensible to many SAPs, each of which would be separated by an underscore.

Delivery 9.4, 17 December 1996 253

Second Edition Mock-lp for ETSI TC/MTS 19 December 1996, Delivgr9.4

Annex |
(informative)

Index of part 3

.1 Introduction

[.1.1 The Index
To be provided later.

254 Delivery 9.4, 17 December 1996

