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Abstract
In this paper we define real-time TTCN and apply it to several applications. In real-
time TTCN, statements are annotated with time labels that specify their earliest and
latest execution times. The syntactical extensions of TTCN are the definition of a
table for the specification of time names and time units, and two new columns in
the dynamic behaviour description tables for the annotation of statements with time
labels. We define an operational semantics for real-time TTCN by mapping real-
time TTCN to timed transition systems. Alternatively, we introduce a refined TTCN
snapshot semantics that takes time annotations into account.
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1 INTRODUCTION

Testing, or to be preciseconformance testing, is the generally applied process in val-
idating communication software. A conformance testing methodology and frame-
work (ISO9646-1 1994) have been established within the standardization bodies of
ISO and ITU. An essential part of this methodology is a notation, called TTCN (Tree
and Tabular Combined Notation) (ISO9646-3 1996), for the definition of confor-
mance test cases. TTCN has been designed for testing systems for which in general
timing between communicating entities has not been an issue. Test cases are speci-
fied as sequences of test events which are input and output events of abstract service
primitives (ASP) or protocol data units (PDU). The relative ordering of test events is
defined in atest case behaviour description.

The situation is changing now. We can identify two main new kinds of distributed
systems: firstly, real-time systems which stem from the use of computers for con-
trolling physical devices and processes. For these systems, real-time communication
is essential for their correct behaviour. Secondly, multimedia systems which involve
the transmission of several continuous streams (of bits) and their timely reproduction
(e.g., synchronization of audio and video). However, as pointed out in, e.g., (Ateset
al. 1996), TTCN is not an appropriate test notation for testing real-time and multi-
media systems: Firstly, test events in TTCN are for message-based systems and not
for stream-based systems. Secondly, in TTCN real-time can only be approximated.
In this paper we define a real-time extension of TTCN as a contribution for solving
the second problem.

Our extension of TTCN toreal-time TTCNis on a syntactical and a semantical
level. The syntactical extension is that we allow an annotation of test events with
an earliest execution time (E ET) and a latest execution time (L ET). Informally, a
test event may be executed if it has been enabled for at leastE ET units and it must
be executed if it has been enabled forL ET units. For the definition of an opera-
tional semantics of real-time TTCN we use timed transition systems (Henzingeret
al. 1991).

A number of techniques for the specification of real-time constraints have been
proposed which are besides others: time Petri Nets (Berthmieuet al. 1991, Merlin
et al. 1976) and extensions of LOTOS (Bowmanet al. 1994, Hogrefeet al. 1992,
Léonardet al. 1994, Quemadaet al. 1987), SDL (Hogrefeet al. 1992, Leue 1995)
and ESTELLE (Fischer 1996). As in the cited literature, our approach allows the tim-
ing of actions relative to the occurrence of previous actions. The difference between
the cited approaches and ours is that real-time TTCN is a hybrid method used for
the specification ofpropertiesof test systems andrequirementson implementations
under test (IUT).

Section 2 gives a brief introduction to TTCN. Section 3 explains real-time TTCN.
The applicability of our approach is shown in Section 4. Section 5 concludes the
paper with an assessment of our work and the discussion of open issues.



2 TTCN - TREE AND TABULAR COMBINED NOTATION

TTCN is a notation for the description of test cases to be used in conformance testing.
For the purpose of this paper we restrict our attention to TTCN concepts related to
the description of the dynamic test case behaviour. Further details on TTCN can be
found in: (Baumgarten and Giessler 1994, Baumgarten and Gattung 1996, ISO9646-
3 1996, Kristoffersenet al. 1996, Linn 1989, Probertet al. 1992, Sarikaya 1989).

2.1 Abstract testing methods and TTCN

A test case specifies which outputs from an IUT can be observed and which inputs
to an IUT can be controlled. Inputs and outputs are eitherabstract service primi-
tives(ASPs) orprotocol data units(PDUs). In general, several concurrently running
distributedtest components(TC) participate in the execution of a test case. TCs are
interconnected bycoordination points(CPs) through which they asynchronously ex-
changecoordination messages(CMs). TCs and IUT logically communicate by ex-
changing PDUs which are embedded in ASPs exchanged atpoints of control and
observation(PCOs), which are interfaces above and below the IUT. Since in most
cases the lower boundary of an IUT does not provide adequate PCO interfaces, TCs
and IUT communicate by using services of an underlying service provider.

2.2 Test case dynamic behaviour descriptions

The behaviour description of a TC consists ofstatementsandverdict assignments.
A verdict assignment is a statement of either PASS, FAIL or INCONCLUSIVE,
concerning the conformance of an IUT with respect to the sequence of events which
has been performed. TTCN statements aretest events(SEND, IMPLICIT SEND,
RECEIVE, OTHERWISE, TIMEOUT and DONE),constructs(CREATE, ATTACH,
ACTIVATE, RETURN, GOTO and REPEAT) andpseudo events(qualifiers, timer
operations and assignments).

Statements can be grouped intostatement sequencesandsets of alternatives. In the
graphical form of TTCN, sequences of statements are represented one after the other
on separate lines and beingindentedfrom left to right. The statements on lines 1 -
6 in Figure 1 are a statement sequence. Statements on the same level of indentation
and with the same predecessor are alternatives. In Figure 2 the statements on lines 4
and 6 are a set of alternatives: they are on the same level of indentation and have the
statement on line 3 as their common predecessor.



Test Case Dynamic Behaviour
Nr Label Behaviour Description CRef V Comments
1 CP ? CM connected RECEIVE
2 (NumOfSends := 0) Assignment
3 REPEAT SendData Construct

UNTIL [NumOfSends> MAX]
4 START Timer Timer Operation
5 ?TIMEOUT timer TIMEOUT
6 L ! N-DATA request data SEND

Figure 1 TTCN Behaviour Description - Sequence of Statements.

Test Case Dynamic Behaviour
Nr Label Behaviour Description CRef V Comments
1 [TRUE] Qualifier
2 L1 (NumOfSends := NumOfSends + 1)
3 +SendData ATTACH
4 [NOT NumOfSends> MAX] Alternative 1
5 -> L1 GOTO
6 [NumOfSends> MAX] Alternative 2

Figure 2 TTCN Behaviour Description - Set of Alternatives.

2.3 Test component execution

A TC starts execution of a behaviour description with the firstlevel of indentation
(line 1 in Figure 1), and proceeds towards the last level of indentation (line 6 in
Figure 1). Only one alternative out of a set of alternatives at the current level of
indentation is executed, and test case execution proceeds with the next level of in-
dentation relative to the executed alternative. For example, in Figure 2 the statements
on line 4 and line 6 are alternatives. If the statement on line 4 is executed, processing
continues with the statement on line 5. Execution of a behaviour description stops if
the last level of indentation has been visited, a test verdict has been assigned, or a
test case error has occurred.

Before a set of alternatives is evaluated, asnapshotis taken (ISO9646-3 1996),
i.e., the state of the TC and the state of all PCOs, CPs and expired timer lists related
to the TC are updated and frozen until the set of alternatives has been evaluated.
This guarantees that evaluation of a set of alternatives is anatomicanddeterministic
action.

Alternatives are evaluated in sequence, and the first alternative which isevaluated
successfully(i.e., all conditions of that alternative are fulfilled (ISO9646-3 1996)) is
executed. Execution then proceeds with the set of alternatives on the next level of
indentation. If no alternative can be evaluated successfully, a new snapshot is taken
and evaluation of the set of alternatives is started again.



3 REAL-TIME TTCN

In real-time TTCN, statements are annotated with time labels for earliest and lat-
est execution times. Execution of a real-time TTCN statement is instantaneous. The
syntactical extensions of TTCN (Section 3.2) are the definition of a table for the
specification of time names and time units and the addition of two columns for the
annotation of TTCN statements in the behaviour description tables. We define an
operational semantics for real-time TTCN (Section 3.3). For this we define a map-
ping of real-time TTCN to timed transition systems (Henzingeret al. 1991) which
are introduced in Section 3.1. Applying timed transition systems has been motivated
by our experiences with the definition of an operational semantics for TTCN (Walter
et al. 1992, Walter and Plattner 1992). To emphasize the similarities of TTCN and
real-time TTCN we also propose a refined snapshot semantics which takes time an-
notations into account and which is compliant with the timed transition system based
semantics. In the following section we quote the main definitions of (Henzingeret
al. 1991).

3.1 Timed transition systems

A transition system(Keller 1976) consists of a setV of variables, a set6 of states,
a subset2 ⊆ 6 of initial states and a finite setT of transitions which also includes
the idle transitiontI . Every transitiont ∈ T is a binary relation over states; i.e., it
defines for every states ∈ 6 a possibly empty sett (s) ⊆ 6 of so-calledt-successors.
A transition t is said to beenabledon states if and only if t (s) 6= ∅. For the idle
transitiontI we have thattI = {(s, s) | s ∈ 6}.

An infinite sequenceσ = s0s1 . . . is a computationof the underlying transition
system ifs0 ∈ 2 is an initial state, and for alli ≥ 0 there exists at ∈ T such

that si+1 ∈ t (si ), denotedsi
t−→ si+1, i.e., transitiont is takenat positioni of

computationσ .
The extension of transition systems to timed transition systems is that we assume

the existence of a real-valued global clock and that a system performs actions which
either advance time or change a state (Henzingeret al. 1991). Actions are executed
instantaneously, i.e., they have no duration.

A timed transition systemconsists of an underlying transition system and, for each
transitiont ∈ T , an earliest execution timeE ETt ∈ IN and a latest execution time
L ETt ∈ IN ∪ {∞} is defined.∗ We assume thatE ETt ≤ L ETt and, wherever they
are not explicitly defined, we presume the default values are zero forE ETt and∞
for L ETt . E ETt and L ETt define timing constraints which ensure that transitions
cannot be performed neither to early (E ETt ) nor too late (L ETt ).

A timed state sequenceρ = (σ, T) consists of an infinite sequenceσ of states and

∗In principle, time labels may not only be natural numbers. For an in-depth discussion of alternative
domains for time labels, the reader is referred to (Aluret al. 1996).



an infinite sequenceT of timesTi ∈ IR andT satisfies the following two conditions:

• Monotonicity:∀i ≥ 0 eitherTi+1 = Ti or Ti+1 > Ti ∧ si+1 = si .• Progress:∀t ∈ IR ∃ i ≥ 0 such thatTi ≥ t.

Monotonicity implies that time never decreases but possibly increases by any amount
between two neighbouring states which are identical. If time increases this is called a
time step. The transition being performed in a time step is the idle transition which is
always enabled (see above). The progress condition states that time never converges,
i.e., since IR has no maximal element every timed state sequence has infinitely many
time steps. Summarizing, in timed state sequences state activities are interleaved with
time activities. Throughout state activities time does not change, and throughout time
steps the state does not change.

A timed state sequenceρ = (σ, T) is acomputationof a timed transition system
if and only if state sequenceσ is a computation of the underlying transition system
and for every transitiont ∈ T the following requirements are satisfied:

• for every transitiont ∈ T and positionj ≥ 0 if t is taken atj then there exists a
positioni , i ≤ j such thatTi + E ETt ≤ Tj andt is enabled onsi , si+1, . . . , sj −1
and is not taken at any of the positionsi , i + 1, . . . , j − 1, i.e., a transition must
be continuously enabled for at leastE ETt time units before the transition can be
taken.• for every transitiont ∈ T and positioni ≥ 0, if t is enabled at positioni , there
exists a positionj , i ≤ j , such thatTi + L ETt ≥ Tj and eithert is not enabled
at j or t is taken atj , i.e., a transition must be taken if the transition has been
continuously enabled forL ETt time units.

A finite timed state sequence is made infinite by adding an infinite sequence of idle
transitions or time activities.

3.2 Syntax of real-time TTCN

In real-time TTCN, timing information is added in the declarations and the dynamic
part of a test suite.

As shown in Figure 3 the specification of time names, time values and units is
done in an Execution Time Declarations table. Apart from the headings the table
looks much like the TTCN Timer Declarations table. Time names are declared in the
Time Name column. Their values and the corresponding time units are specified on
the same line in the Value and Unit columns. The declaration of time values and time
units is optional.



Execution Time Declarations
Time Name Value Unit Comments
EET 1 s EET value
LET 1 min LET value
WFN 5 ms Wait For Nothing
NoDur min No specified value

Figure 3 Execution Time Declarations Table.

EET and LET∗ are predefined time names with default values zero and infinity.
Default time values can be overwritten (Figure 3).

Besides the static declarations of time values in an Execution Time Declarations
table, changing these values within a behaviour description table can be done by
means of assignments (Figure 4). However, evaluation of time labels should alway
result in E ET andL ET values for which 0≤ E ET ≤ L ET holds. As indicated
in Figure 4 we add a Time and a Time Options column to Test Case Dynamic Be-
haviour tables (and similar for Default Dynamic Behaviour and Test Step Dynamic
Behaviour tables). An entry in the Time column specifiesE ET and L ET for the
corresponding TTCN statement. Entries may be constants (e.g., line 1 in Figure 4),
time names (e.g., the use of NoDur on line 3), and expressions (e.g., line 6).

In general,E ET andL ET values are interpreted relative to the enabling time of
alternatives at a level of indentation, i.e., the time when the level of indentation is
visited the first time. However, some applications may require to defineE ET and
L ET values relative to the execution of an earlier test event, i.e, not restricted just to
the previous one. In support of this requirement, a label in the Label column may not
only be used in a GOTO but can also be used in the Time column, so thatE ET and
L ET values are computed relative to the execution time of the alternative identified
by the label: In Figure 4 on line 6 the time labels (L1 + WFN, L1 + LET) are referring
to the execution time of the alternative in line 1 (for which label L1 is defined).

Entries in the Time Options column are combinations of symbols M and N. Similar
to using labels in expressions, time option N allows to express time values relative
to the alternative’s own enabling time even though some TTCN statements being
executed in between two successive visits of the same level of indentation. Thus, the
amount of time needed to execute the sequence of TTCN statements in between two
successive visits is compensated: If time option N is defined, then execution of this
alternative is not pre-emptive with respect to the timing of all alternatives at the same
level of indentation.

In some executions of a test case, a RECEIVE or OTHERWISE event may be
evaluated successfully before it has been enabled forE ET units. If it is intended
to defineE ET as a mandatory lower bound when an alternative may be evaluated
successfully, then time option M has to be specified. Informally, if time option M is
specified and the corresponding alternative can be successfully evaluated before it
has been enabled forE ET units, then this results in a FAIL verdict.

∗We use different font types for distinguishing between syntax, EET and LET, and semantics,E ET and
L ET.



Test Case Dynamic Behaviour
Nr Label Time Time Behaviour Description C V Comments

Options
1 L1 2, 4 M A ? DATA und Time label

MandatoryE ET
2 (NoDur := 3) Time assignment
3 2, NoDur A ! DATA ack
4 (LET := 50) LET update (ms)
5 A ? Data ind
6 L1 + WFN, M, N B ? Alarm MandatoryE ET

L1 + LET not pre-emptive

Figure 4 Adding EET and LET values to behaviour lines.

3.3 Operational semantics of real-time TTCN

The operational semantics of real-time TTCN is defined in two steps:

1. We define the semantics of a TC using timed transition systems. An execution
of a TC is given by a computation of the timed transition system associated with
that TC. As time domain we use the real numbers IR which are anabstracttime
domain in contrast to theconcretetime domain of TTCN which counts time in
discrete time units. Progress of time however is, however, a continuous process
adequately modelled by IR.

2. The semantics of a test system is determined by composing the semantics of in-
dividual TC (for details see (Walteret al. 1997)).

Given a TC we associate with it the following timed transition system: A states ∈
6 of a TC is given by a mapping ofvariablesto values. The set of variablesV
includes constants, parameters and variables defined for the TC in the test suite and,
additionally, a variable for each timer. Furthermore, we introduce acontrol variable
π which indicates the location of control in the behaviour description of the TC.π

is updated when a new level of indentation is visited. We let PCOs and CPs be pairs
of variables so that each holds a queue of ASPs, PDUs or CMs sent and received,
respectively.

In the initial state of a TC all variables have assigned their initial values (if spec-
ified) or being undefined. All PCO and CP variables have assigned an empty queue
and all timer variables have assigned the value stop. The control variableπ has been
initialized to the first level of indentation. If the TC is not running, i.e., the TC has
not been created yet, then all variables are undefined.

The setT of transitions contains a transition for every TTCN statement in the TC
behaviour description and the idle transitiontI . Furthermore, we have a transition
tE which models all activities performed by the environment, e.g., the updating of
a PCO, CP or timer variables. Execution oftE changes the state of the TC because
shared PCO, CP or timer variables are updated.



In the following we assume that the current level of indentation has been ex-
panded as defined in Annex B of (ISO9646-3 1996). After expansion its general
form is A1[eexp1, lexp1], . . . , An[eexpn, lexpn], whereAi denotes an alternative
andeexpi , lexpi are expressions for determiningE ET andL ET values of alterna-
tive Ai . The evaluation of expressionseexpi andlexpi depends on whethereexpi
andlexpi make use of a label Ln. If so, absolute time references are converted into
time references relative to the enabling time of the current set of alternatives.

Let eval be a function from time expressions to time values forE ET or L ET. Let
enablingTime(Ai ) be a function that returns the time when alternativeAi has been
enabled. Let executionTime(Ln) be a function that returns the execution time of an
alternative at the level of indentation identified by label Ln. Function NOW returns
the current global time. Notice that for all alternativesAi in a set of alternatives,
enablingTime(Ai ) is the same. Since only one alternative of a set of alternatives is
executed, executionTime(Ln) returns the execution time of the executed alternative.
For the evaluation of time expressions the following rules apply:

1. If eexpi andlexpi do not involve any operator Ln thenE ET = eval(eexpi ) and
L ET = eval(lexpi ). It is required that 0≤ E ET ≤ L ET holds; otherwise test
case execution should terminate with a test case error indication.

2. If eexpi and lexpi involve any operator Ln then, firstly, executionTime(Ln) is
substituted for Ln ineexpi and lexpi resulting in expressionseexp′i or lexp′

i ,
and secondly,E ET = eval(eexp′i ) − NOW andL ET = eval(lexp′

i ) − NOW. It
is required that 0≤ E ET ≤ L ET holds; otherwise test case execution should
terminate with a test case error indication.

We say that alternativeAi is potentially enabledif Ai is in the current set of alter-
natives.Ai is enabledif Ai is evaluated successfully (Section 2.3),Ai is executable
if Ai is enabled andAi has been potentially enabled for at leastE ETi and at most
L ETi time units.

We make the evaluation of a TC explicit by defining the following refined snapshot
semantics (cf. Section 2.3).

1. The TC is put into its initial state.
2. A snapshot is taken, i.e., PCO, CP and timer variables are updated and frozen.

(a) If the level of indentation is reached from a preceding alternative (i.e., not by a
GOTO or RETURN) then all alternatives are markedpotentially enabledand
the global time is taken and stored. The stored time is accessible by function
enablingTime(Ai ).

(b) If the level of indentation is reached by executing a GOTO or RETURN and
enabling-Time(Ai ) has been frozen (see Step 5. below) then all alternatives are
markedpotentially enabledbut enablingTime(Ai ) is not updated.

(c) If the level of indentation is reached by executing a GOTO or RETURN but
enablingTime(Ai ) has not been frozen previously then all alternatives are mar-



kedpotentially enabledand the global time is taken and stored. The stored time
is accessible by function enablingTime(Ai ).

(d) Otherwise, it is a new iteration of Steps 2. - 5.

E ET andL ET are computed as described above.
If for an Ai enablingTime(Ai ) + L ETi < NOW then test case execution stops
(FAIL verdict).

3. All alternatives which can be evaluated successfully are markedenabled. If no
alternative in the set of alternatives can be evaluated successfully then processing
continues with Step 2.
If for an enabled alternative, sayAi , time option M is set and if enablingTime(Ai )+
E ETi > NOW then test case execution stops with a FAIL verdict.

4. An enabled alternativeAi is markedexecutableprovided that enablingTime(Ai )+
E ETi ≤ NOW ≤ enablingTime(Ai ) + L ETi and if there is another enabled
alternativeAj with enablingTime(Aj ) + E ETj ≤ NOW ≤ enablingTime(Aj ) +
L ETj , theni < j , i.e., thei -th alternative precedes thej -th alternative in the set
of alternatives.
If no alternative can be marked executable then processing continues with Step 2.

5. The alternativeAi marked executable in Step 4. is executed. If a label Ln is spec-
ified then the alternative’s execution time is stored and which can be accessed by
function executionTime(Ln). If time option N is specified for the executed alter-
native, enablingTime(Ai ) is frozen for later use. Control variableπ is assigned
the next level of indentation.
Test case execution terminates if the last level of indentation has been reached or
a final test verdict has been assigned; otherwise, evaluation continues with Step 2.

Remarks: If any potentially enabled alternative cannot be evaluated successfully be-
fore latest execution time then a specified real-time constraint has not been met and
test case execution stops. Conversely, if an alternative can be evaluated successfully
before it has been potentially enabled forE ET (Step 3.) then a defined real-time con-
straints is violated, too, and test case terminates with an error indication. In Step 4.,
the selection of alternatives for execution from the set of enabled alternatives fol-
lows the same rules as in TTCN (ISO9646-3 1996). If a TC stops (Step 5.) then the
finite timed state sequence is extended to an infinite sequence by adding an infinite
sequence of idle transitions. Every iteration of Steps 2. - 5. is assumed to beatomic.

In terms of the definitions given in Section 3.1, a computation of a TC is a timed
state sequenceρ = (σ, T). By substitutingpotentially enabledfor enabledandexe-
cutedfor taken, the refined snapshot semantics can be stated formally as:

1. If alternativeA is executed at positionj of ρ then there exists positionsi andl ,
i ≤ l ≤ j , such thatTi +E ET ≤ Tj and enablingTime(A) = Ti and alternativeA
is evaluated successfully on all statessl , sl+1, . . . , sj −1 and is not executed at any
positionl , l + 1, . . . , j − 1; i.e., alternativeA is potentially enabled for at least



Test Case Dynamic Behaviour
Nr Label Time Time Options Behaviour Description CRef V C
1 L1 2, 4 M PCO1 ? N-DATA ind info
2 ...
3 -> L1
4 0, INFINITY PCO2 ? N-ABORT ind abort
5 ...

Figure 5 Partial Real-Time TTCN Behaviour Description.

E ET time units before it is executed provided it can be evaluated successfully
after having been potentially enabled, and

2. for positioni ≥ 0, if enablingTime(A) = Ti then for positionj , i ≤ j , Ti +
L ET ≥ Tj and alternativeA is not evaluated successfully on any statesl , . . . , sj

or A is executed atj provided no other alternativeA′ exists for which these condi-
tions hold and which precedesA in the set of alternatives; i.e., the first alternative
evaluated successfully is executed at latestL ET units after being potentially en-
abled.

Example 1 In ISDN (Integrated Digital Services Network) systems (Halsall 1994,
Tanenbaum 1989), the B channels are used by applications for data exchange whereas
the D channel is used for the management of connections between users or appli-
cation processes. We consider a scenario where an ISDN connection between test
system and IUT has been established and where PCO1 and PCO2 are the respective
B and D channel interfaces. At the B channels we expect to receive user data ev-
ery E ET1 = 2 to L ET1 = 4 time units. At any time the ISDN connection may be
aborted on the D channel.

We consider the partial real-time TTCN behaviour description given in Figure 5.
The first alternative may be evaluated successfully and may be executed only in the
interval E ET1 = 2 andL ET1 = 4 because time option M is set on line 1. Let us
assume that atT ′ with enablingTime(A1) + E ET1 ≤ T ′ ≤ enablingTime(A1) +
L ET1, an N-DATA indication is received. The first alternative may be executed at
T ′′ with enablingTime(A1) + E ET1 ≤ T ′ ≤ T ′′ ≤ enablingTime(A1) + L ET1
(Step 4.) because no other alternative is executable (no N-ABORT indication has
been received yet). A corresponding computation might be:

. . . −→ (s, enablingTime(A1))
tI−→

(s, T ′) tE−→ (s′, T ′) tI−→ (s′, T ′′) t1−→ (s′′, T ′′) −→ . . .

The reception of an N-DATA indication at timeT ′ is a state activity,(s, T ′) tE−→
(s′, T ′), because a PCO variable is updated by the environment performing transition
tE. TransitionstI are time activities, and transitiont1 is the transition that is derived
from TTCN statement line 1.

Suppose that an N-DATA indication and an N-ABORT indication have been re-
ceived from the environment at someT ′′′ : T ′ ≤ T ′′′ ≤ T ′′. Then, although both



alternatives are executable, the first alternative is executed because of the ordering of
alternatives in the set of alternatives (Step 4.). If an N-DATA indication is received at
T < enablingTime(Ai ) + E ET1 then test case execution stops with a FAIL verdict
(Step 3.).

If no N-DATA indication and no N-ABORT indication have been received be-
fore L ET1 time units after the alternatives have been potentially enabled, test case
execution stops with a FAIL verdict (Step 2.).

3.4 Discussion of the proposal

If we assume that no time values are defined (in this caseE ET andL ET are zero and
infinity, respectively), execution of a test case results in the same sequence of state-
transitions as in TTCN. Therefore, our definition of real-time TTCN is compatible
to TTCN (ISO9646-3 1996, Baumgarten and Gattung 1996).

Real-time TTCN combines property and requirement oriented specification styles.
Time labels for TTCN statements, in general, define real-time constraints for the test
system. A test system should be implemented so that it can comply with all prop-
erties defined. Time labels for RECEIVE and OTHERWISE events, which imply a
communication with the IUT, define requirements on the IUT and the underlying
service provider. As well as the test system, the underlying service provider is as-
sumed to be “sufficiently reliable for control and observation to take place remotely”
(ISO9646-1 1994). For real-time TTCN, the underlying service provider should also
be sufficiently fast with respect to the timing of activities. Therefore, if a timing con-
straint of a RECEIVE or OTHERWISE event is violated, this clearly is an indication
that the IUT is faulty and the test run should end with a FAIL verdict assignment.

In Figure 6, a test case in TTCN is given for the one in Example 1. The timing
constraints on the reception of N-DATA indications are expressed using timers T1
and T2. The alternatives coded on lines 2 and 8 in combination check that an N-
DATA indication should not be received beforeE ET (= timer T1); otherwise, test
case execution results in a FAIL verdict (line 8). The TIMEOUT event on line 6
controls the latest execution time and if timer T2 expires then this gives a FAIL
verdict.

Let us assume that test case execution is at the third level of indentation (lines 3, 5
and 6) and that TIMEOUT of timer T2 precedes reception of an N-DATA indication.
Furthermore, let us assume that the system executing the test case is heavily loaded
and therefore evaluation of a set of alternatives lasts too long, so that both events
are included in the same snapshot. The late arrival of an N-DATA indication gets
undetected because of the ordering of alternatives on line 3, 5 and 6. A fast system
will take a snapshot which includes the TIMEOUT only whereas a slow system will
take a snapshot which includes an N-DATA indication and a TIMEOUT. For the
slow system, the RECEIVE succeeds over the TIMEOUT event. Unfortunately, the
behaviour description does not comply with the requirement stated in (ISO9646-



Test Case Dynamic Behaviour
Nr Label Behaviour Description CRef V C
1 L1 START T1(EET)
2 ?TIMEOUT T1 START T2(LET-EET)
3 PCO1 ? N-DATA indication data
4 -> L1
5 PCO2 ? N-ABORT indication STOP T2 abort INCONC
6 ?TIMEOUT T2 FAIL
7 PCO2 ? N-ABORT indication STOP T1 abort INCONC
8 PCO1 ? OTHERWISE STOP T1 FAIL

Figure 6 TTCN Behaviour Description for Example 1.

1 1994) “that the relative speed of the systems executing the test case should not
have an impact on the test result” and thus is not valid.

In conclusion, real-time TTCN is more powerful than TTCN. The advantage of
real-time TTCN is that all requirements on the behaviour of test systems and IUT
are made explicit. The timing constraints that are to be met and thus the result of a
test case is determined by the observed behaviour only.

4 APPLICATION OF REAL-TIME TTCN

In this section we continue the discussion of real-time TTCN by elaborating on an
example taken from high speed networking.

In ATM (Asynchronous Transfer Mode) networks (Black 1995, Prycker 1995),
network traffic control is performed to protect network and users to achieve prede-
fined network performance objectives. During connection set up atraffic contract
specificationis negotiated and agreed between users and network. A contract speci-
fication consists of the connection traffic descriptor, given in peak cell rate and cell
delay variation tolerance; the requested quality-of-service class, given in terms of
required cell loss ratio, cell transfer delay and cell delay variation; and the definition
of a compliant connection.

A connection is termedcompliantas long as the number of non-conforming cells
does not exceed a threshold value negotiated and agreed in the traffic contract. If the
number of non-conforming cells exceeds the threshold then the network may abort
the connection. The procedure that determines conforming and non-conforming cells
is known as thegeneric cell rate algorithm(GCRA(T ,τ )) (Figure 7). The variant we
discuss is referred to asvirtual schedulingand works as follows (Prycker 1995):
The algorithm calculates the theoretically predicted arrival times (TAT) of cells as-
suming equally spaced cells when the source is active. The spacing between cells
is determined by the minimum interarrival timeT between cells which computes to
T = 1/Rp with Rp the peak cell rate (per seconds) negotiated for the connection. If
the actual arrival time of a cellta is after TAT− τ , τ the cell delay variation toler-
ance caused, for instance, by physical layer overhead, then the cell is a conforming
cell; otherwise, the cell is arriving too early and thus is being considered as a non-
conforming cell. Traffic control subsumes all functions necessary to control, monitor



Arrival of a Cell at time ta

TAT = max(ta, TAT) + T
Conforming Cell

Non-Conforming Cell ta < TAT - t

No

Yes

At the time of arrival ta of the first cell of the connection, TAT = ta

Next Cell

Figure 7 Generic Cell Rate Algorithm - Virtual Scheduling.

and regulate traffic at the user-network-interface (UNI). The correctly timed delivery
of ATM cells at the UNI is important for a connection to be compliant.

A possible test purpose derivable from the informal definition of traffic contract
specification and GCRA may be as follows: “It is to be tested that the amount of
traffic (in terms of ATM cells) generated at the UNI is compliant to the traffic contract
specification”.

For the following discussion we assume a testing scenario as depicted in Figure 8.
The IUT, i.e., the user’s end-system, is connected to an ATM switch which in this
scenario is the test system. Several ATM sources may generate a continuous stream
of ATM cells which is, by the virtual shaper, transformed into a cell stream compliant
with the traffic contract. Via the physical connection of end-system and ATM switch
ATM cells are transferred. It is the test system that checks compliance of the received
cell stream to the traffic contract.

The definition of a test case assumes that a connection has already been estab-
lished so that a traffic contract specification is available. From the traffic contract,
parametersRp, T andτ can be extracted which are assigned to test case variables.
The threshold value (for determining when a connection is to be aborted) is provided
as a test suite parameter. For simplicity we letτ = 0.

The definition of the dynamic test case behaviour (Figure 9) is based on the obser-
vation that according to the GCRA, except for the first cell, at most everyT(= E ET)

time units an ATM cell is expected from the IUT. Since we do not expect an ATM
cell to arrive beforeT time units, time option M is defined. If an ATM cell arrives
beforeT time units then the test case is terminated with a FAIL verdict.

This test case implies a threshold value of zero. If we allow for a number of non-
conforming cells (NCC) greater than zero then the test case definition changes as
shown in Figure 10. The difference compared to the previously discussed test case
is that whenever an ATM cell arrives beforeT time units then counter NCC is in-
cremented and is checked against the defined threshold. Time option N on line 2
instructs the system not to pre-empt the time constraint of the current set of alterna-
tives. If control returns to level L2 from line 5 the enabling time is not updated.
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Figure 8 Generic Cell Rate Algorithm - Testing Scenario.

Test Case Dynamic Behaviour
Nr Label Time Time Behaviour CRef V C

Options Description
1 0, INFINITY UNI ? ATM-Cell ? First cell to

initialize GCRA
2 L2 T, INFINITY M UNI ? ATM-Cell ?
3 -> L2

Figure 9 Real-Time TTCN Behaviour Description for GCRA - Threshold= 0.

We have shown the use of time labels and time options. Without time options (in a
previous paper, (Walteret al. 1997), we have used time labels only) the specification
of both test cases would have been more complex. For the first test case it would have
been necessary to introduce a second alternative similar to line 2 of Figure 10 instead
of using time option M. For the second test case without time option N calculations
of absolute and relative time values would have be necessary in order to adjustE ET.
Nonetheless, without real-time features, testing GCRA would have been impossible.

Test Case Dynamic Behaviour
Nr Label Time Time Behaviour CRef V C

Options Description
1 0, INFINITY UNI ? ATM-Cell (NCC := 0) ?
2 L2 0, T N UNI ? ATM-Cell ?

(NCC := NCC + 1)
3 [NCC > Threshold] FAIL
4 [NCC <= Threshold]
5 -> L2
6 T, INFINITY UNI ? ATM-Cell ?
7 -> L2

Figure 10 Real-Time TTCN Behaviour Description for GCRA - Threshold> 0.



5 CONCLUSIONS AND OUTLOOK

We have defined syntax and semantics of real-time TTCN. On a syntactical level
TTCN statements can be annotated by time labels. Time labels are interpreted as ear-
liest and latest execution times of TTCN statements relative to the enabling time of
the TTCN statement. The operational semantics of real-time TTCN is based on timed
transition systems (Henzingeret al. 1991). We have described the interpretation of
real-time TTCN in timed transition systems. The applicability of real-time TTCN
has been shown by an example: We have defined test cases for the generic cell rate
algorithm employed in ATM networks for traffic control (Black 1995, Prycker 1995).

The motivation for our work has been given by the demand for a test language
that can express real-time constraints. The increasing distribution of multimedia ap-
plications and real-time systems impose requirements on the expressive power of a
test language that are not met by TTCN. Particularly, real-time constraints can not
be expressed. However, for the mentioned new applications correctness of an imple-
mentation also with respect to real-time behaviour is essential and, thus, should also
be tested.

In our approach a TTCN statement is annotated by time labels. The advantages
of this approach are twofold: Firstly, only a few syntactical changes are necessary.
Secondly, TTCN and real-time TTCN are compatible: If we assume that zero and
infinity are earliest and latest execution times, a computation of a real-time TTCN
test case is the same as in TTCN. A possible extension of our approach is to allow
the use of time labels at a more detailed level, e.g., the annotation of test events,
assignments and timer operations (an extension of (Walteret al. 1992, Walter and
Plattner 1992)). Our future work will focus on these aspects.
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