Temporary document 003
European Telecommunications Standards Institute

MTSH31

24 to 26 October 2000
Sophia-Antipolis

Sour ce: STF141 Leader

Title: DEG/M T S-00062: M ethodological approach tothe
use of object-orientation in the standards making
process

Date: 22 September 2000

Document for: Approval

Agenda item: 6.4

Page 2

DES/MTS-OOO62 V2.0.9 (2000-09)

Methods for Testing and Specification (MTS);
Methodological approach to the use of object-orientation
in the standards making process;

ETSI (%))\

European Telecommunications Standards Institute

4 DES/MTS-00062 V2.0.9 (2000-09)

Reference
DES/MTS-00062

Keywords
Unified Modeling Language, UML, protocol,
testing, Object Orientation, specification,
methodology

ETSI Secretariat

Postal address
F-06921 Sophia Antipolis Cedex - FRANCE

Office address

650 Route des Lucioles - Sophia Antipolis
Valbonne - FRANCE
Tel.: +334 92 94 42 00 Fax: +33 4 93 65 47 16
Siret N° 348 623 562 00017 - NAF 742 C

Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

X.400
c= fr; a=atlas; p=etsi; s=secretariat

Internet

secretariat@etsi.fr
http://www.etsi.fr

Copyright Notification

Reproduction is only permitted for the purpose of standardization work undertaken within ETS.
The copyright and the foregoing restrictions extend to reproduction in all media.
© European Telecommunications Standards I nstitute yyyy.
All rights reserved.

ETSI

5 DES/MTS-00062 V2.0.9 (2000-09)

Contents

INtelleCtual Property RIGNESei ittt st s be e s e e sbe e e sabe e e snbeeesnbeeeas 7
0= 11V o PR URRRRTR 7
100 (1T 1 o o PSPPI 7
1 S o o= ST 8
2 = 1= 10 SRR 8

3 Definitions, symbols and abbreviations.............oocuiiie i 9

TN R N o] o (.Y = (o] £ 9
I B 1 1 o X (o LTS 9

4 A methodology for the use of the UML in telecommunication standards development...................... 10

o T 1 011 o [o o OO OO
4.2 A process based upon the UML
4.3 Examplesbased on the Private User Mobility (PUMR) SUPPlEMENLArY SEIVICE........ccvuveecrrrereeeieseresesseessessssesseens 12
4.4 Develop a Context Model
4.4.1 Activity overview.........cccoeuene.

442 ATEEFBCES ...t b bbb bbbt
4.4.3 (@010 aT T L= = (01 =N 1 T
4431 PUMRexample.....eennne.

444 Develop Domain Model
4441 ldentify COMMUNICELION ENEITIES.ccurieeerieerieeiee et 16
4442 ldentify system architecture
4443 1AENTTY INTEITACEScvieee ettt es bbb
4444 PUMR EXAMPIE ..ottt sttt s e bbbt
4.5 Develop a Requirements Model
451 ACHIVITY OVEIVIBW ..ottt sttt st ae e s e st R b b s b et ee A bt s e e bt e s s et et s s nn bt e
452 ATEEFACES ..t b bbb R bR bbbt
453 Collect functional requirements
A.5.3.1 DEVEIOP USE CASEScvoverierieireressseesessssessesssssessssssssssessssssesesssssssssssssssssessssssssessssssssesassssssssassssssesssssssstesassssssesssssssessssssssass
TR A o (= 01 () Y71 410 = o (o (=TT
45.3.3 ldentifying use cases
4.5.3.4 PUMR EXGIMPIE ..ot ssesesesessessssessssassssssssssssssasssasssssssssssessssessssesssssssssessssessssasssssssssssssssssssssssssssssssssssssssessssesnnes
4535 DESCIDING EACN USE CASE.......co ittt et
45351 Activity Diagrams
45352 PUMBR EXAIMPIE....e ettt esetsest sttt a st sttt st se et ee s e s e s e st et s sn s e et e nnssnnnsas
454 Collect NON-FUNCLIONEI TEQUITEIMENTS.........cceirieeteeeece et b bbb a bbbt es b s es st s e tee 26
4.6 Develop a Specification Model
4.6.1 ACHIVITY OVEIVIBW ..ottt sttt st ae e s e st R b b s b et ee A bt s e e bt e s s et et s s nn bt e
4.6.2 ATEEFACES ..t b bbb R bR bbbt
4.6.3 Refining the model of communicating entities
4.6.3.1 ClBSSUIAQIAIMS ..eeuceereiriceeieiresesseessesessssssesessssssssesssssessssssesessesesssessssssssesassssssessssesssnsessssssnsasssssesesssssnsesasssssesasnssnsesssssssass
46.3.1.1 Ko g T o oo o o oo o TP
46.3.1.1.1 Operations
4.6.3.1.1.2 PUMR EXBMPIE....iuiiiieririeririereseressessssessssassessssesssssssssssssssessssssssssssssssssssssssssnsesssesnnes
46.3.1.1.3 Attributes 32

46.3.1.2 Further iterations Of the MOUEL............c. et 3
4.6.3.2 SEOUENCE QIBOIAIMSo.cerieeiereiesessesesee s stee s s s s sttt 33
4.6.3.3 Collabhoration QiagramS.........cccccceureeeereiiericie et ssee s s st es s bt se s b s ss et b s s ae s s s ssae bt s se st et s s se b et e e antet s s nnses 35
4.6.3.4 Statechart diagrams
4.7 Use SDL and MSC to specify detail@d DENAVIOUN...........ccviiecieicccesee e ses 37
4.8 Usethe UML to SUPPOrt tESt AEVEIOPMENT.......c.c.ovrceeeece ettt s s s s snsen 40
48.1 Activity overview
4.8.2 ATEEFBCES ... bbb b bbb R bbbt

ETSI

6 DES/MTS-00062 V2.0.9 (2000-09)

4.8.3 [AENEITY COMPONENES ...ttt bbbttt
4831 PUMRexample.......cnens

484 Define test configurations

4841 PUMRexample.......cen.

485 Define test case structure...........

4.8.6 Definetest cases......coenereneenenae

4.8.6.1 PUMR EXAMPIE ...ttt et sttt bbbt R s e e e a et et e e s et b s s et s e ana et s s nnteee
ANNEX A (INfOrmMative): Case SEUAYc.ueeeiiiieiiieeiiie ettt et e e e s nneeesneeas 46
Al QSIG Private User Mobility Registration (PUMR) SUPPIEMENLArY SEIVICE.......cvuerreecrreeeereeeereerenesseessesssseseesssesesennees 46
A2 PUMR UML MOOEISocoieierieneintineieeeie ettt e bbb bbb
A21 (O0 0111 1Y oo =TT
A.22 Requirements Model

A.2.3 SPECITICALION IMIOUELcetcveecetee ettt bbb bbbt s e At bbbt s st et ee bt s e tee
A.24 TESHNG MO ...ttt bbb bbbt e R bt e At e At s e st bt sttt s et s s e tte

L 1 0 Y2 RSP SPRRRI

ETSI

7 DES/MTS-00062 V2.0.9 (2000-09)

Intellectual Property Rights
Foreword

Introduction

ETSI

8 DES/MTS-00062 V2.0.9 (2000-09)

1 Scope

The present document describes a methodol ogical approach to the use of object-orientation, and, in particular the
Unified Modeling Language (UML), in the ETSI standards-making process. The purpose of the document isto establish
aset of guidelines that provide the user with a framework within which the concepts of the UML can be used
effectively in the development of ETSI standards.

The guidelines presented in this document are intended primarily for use in the production of standards specifying
communications protocols. However, they could be applied in part to the use of UML to other types of standard where
thisis deemed to be appropriate and beneficial.

This document presents a straightforward process for using the UML from the collection of the initial broad
reguirements through to the point where it is necessary to begin describing detailed behaviour.

The application of the UML to the development of a protocol standard does not preclude the use of the Specification
and Description Language (SDL). The methodological approach described in the document can be used in conjunction
with the guidelines specified for the use of SDL givenin ETR298[2], EG 201015[3], EG 201 383[4] and

EG 202106[5].

2 References

The following documents contain provisions which, through reference in thistext, constitute provisions of the present
document.

- References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

- For aspecific reference, subseguent revisions do not apply.
- For anon-specific reference, subsequent revisions do apply.

- A non-specific reference to an ETS shall also be taken to refer to later versions published as an EN with the same

number.

[1] ETR 266 (1996): "Methods for Testing and Specification (MTS); Test purpose style guide"

[2] ETR 298 (1996): "Methods for Testing and Specification (MTS); Specification of protocols and
services; Handbook for SDL, ASN.1 and MSC devel opment"

[3] EG 201015 (1999): "Methods for Testing and Specification (MTS); Specification of protocols and
services; Validation methodology for standards using Specification and Description
Language (SDL); Handbook".

[4] EG 201 383 (1999): "Methods for Testing and Specification (MTS); Use of SDL in ETSI
deliverables; Guidelines for facilitating validation and the development of conformance tests".

[5] EG 202 106 (1999): "Methods for Testing and Specification (MTS); Guidelines for the use of
formal SDL as adescriptive tool”.

[6] TCR-TRO011 (1993): "Business Telecommunications (BT); Private Telecommunication Network
(PTN) internal mobility; Private user mobility and cordless terminal mobility; General principles
and service aspects”.

[71 ITU-T Recommendation Z.109 (2000): "SDL in combination with UML"

[8] ISO/IEC 17875 (2000): "Information technology -- Telecommunications and information
exchange between systems -- Private Integrated Services Network -- Specification, functional
model and information flows -- Private User Mobility (PUM) -- Registration supplementary
service"

[9] ISO/IEC 9646: "Information technology — Open Systems I nterconnection — Conformance testing

methodology and framework"

ETSI

9 DES/MTS-00062 V2.0.9 (2000-09)

[10] ISO/IEC 17876 (2000): "Information technology -- Telecommunications and information
exchange between systems -- Private Integrated Services Network -- Inter-exchange signalling
protocol -- Private User Mobility (PUM) -- Registration supplementary service"

[11] Jacobson, Booch & Rumbaugh: "The Unified Software Development Process"’, Addison-Wesley
(1999), ISBN 0-201-57169-2

3 Definitions, symbols and abbreviations

3.1 Abbreviations

For the purposes of the present document, the following abbreviations apply:

HDB Home Data Base

CP Coordination Point

IUT Implementation Under Test

MSC M essage Sequence Chart

MTC Main Test Component

HDB Home Data Base

PCO Point of Control and Observation

PISN Private Integrated Services Network

PINX Private Integrated services Network eXchange
PTC Parallel Test Component

PTN Private Telecommunication Network

PTNX Private Telecommunication Network eX change

Note: Since the publication of TCR-TR 011 [6] in 1993, the terms PTN and PTNX, which were used
extensively in that document, have been replaced by PISN and PINX in the context of Corporate Network
standardization. Throughout this document, PISN and PINX have been used as the current terms.

PUM Private User Mobility

PUMR PUM dynamic Registration

SDL Specification and Description Language
TTCN Tree and Tabular Combined Notation
UML Unified Modeling Language

VDB Visitor Data Base

3.2 Definitions

For the purposes of the present document, the following definitions apply:
actor: an abstraction for entities outside a system or subsystem that interact directly with that system or subsystem
artefact: a piece of information that is used or produced during the development of a standard

Note: This definition of the term "artefact" is commonly used in the context of the UML. Examples of artefacts
are models, textual descriptions, standards and external documents.

domain model: arelated set of UML diagrams and text which together identify at a high level of abstraction, the
logical and physical entities of a system and the relationships between them

feature: acandidate requirement

postcondition: aconstraint that must be true at the completion of an operation

precondition: aconstraint that must be true when an operation isinvoked

QSig: acorporate network signalling system defining basic and supplementary service protocols at the Q-reference

requirements model: aset of UML diagrams and text which together elaborate the requirements to be met by a
standardized system

ETSI

10 DES/MTS-00062 V2.0.9 (2000-09)

use case: the specification of sequences of actions that a system or subsystem can perform by interacting with actors

user: ahuman being or an item of equipment to which aserviceis provided

4 A methodology for the use of the UML in
telecommunication standards development

4.1 Introduction

The UML is apowerful, graphical language that can be used effectively and beneficially within the ETSI standards
making process, particularly in the specification of communication protocols. This document presents a general
framework within which the UML can be applied to this process but the three following points should be considered
before making a commitment to its use:

1. theUML isanideal language for the collection, analysis and processing of requirements. Consequently, the
process described here introduces formality to the early stages of the standards devel opment where such
formalism has not generally existed in the past;

2. particular UML diagram types are recommended at each stage of the process but this should not be regarded as
"set in concrete”. If different UML diagram types appear to be more appropriate or meaningful in particular
situations then these should be used;

3. Theuseof the UML in the standards making process should not imply that the UML diagrams produced must
appear in the standard, although that, too, is not precluded. The language should be regarded as a val uabl e tool
for producing standards of ahigh quality and not just another means of drawing diagrams to describe protocols.

4.2 A process based upon the UML

The UML isamodelling language and is not, itself, a development process. It is possible to think of it as a set of
individual diagram types and symbols which together make up the language and which can be used in an ad hoc manner
wherever and whenever an opportunity arises. However, greater benefits can be gained if it is considered as the basis for
astraightforward process for the overall development of telecommunication standards. It isjust such aprocesswhichis
described here. The process has been derived from the Unified Development Process[11] with some modifications to
reflect the specific requirements of standards development. There are many different types of UML diagram which can
be produced within the process but these have been segregated into three overall modelling stages as follows:

- Context Modelling

the collection, refinement and expression of ideas and existing knowledge to establish the objectives of
standardization project.

- Requirements Modelling

the further processing of the Context Model to establish and express a set of achievable technical
requirementsto be met by the protocol standard(s).

- Specification Modelling

the extension and refinement of the Context Model and the Reguirements Model to provide sufficient detail
for the development of a behaviour model.

Throughout this document, UML activity and package diagrams are used to illustrate the use of the UML in the
standards development process. Figure 1 shows the three discrete models as simple packages.

ETSI

[]

11

These arrows indicate
dependency rather than
the flow of information

Context
Model

Specification '
Model

[]

DES/MTS-00062 V2.0.9 (2000-09)

e

Requirements
M

odel

Figure 1: UML models required in the standardization process

Figure 2 presents an overview in graphic form of aprocess for using the UML to produce these models.

[further refinement
necessary]

Develop Requirements k
Model J\

Develop Context
Model

[context m\EdeI ready]

[Evaluate RequirementsJ

[further refinement
necessary]

[requirem\T/nts ready]

Develop Specification
Model

Evaluate Specmcatlon

[new reauirements
identified)]

[specmcgn ready]

Figure 2: A process using the UML in writing standards

The process involves the following steps:

ETSI

12 DES/MTS-00062 V2.0.9 (2000-09)

1. carry out aninitial study to produce a Context Model comprising alist of desired features and a domain model
based on existing knowledge and experience;

2. model the requirements for the standard so that the requirements can be evaluated and refined;

3. usethese requirementsin the production of a specification model of the system on which the standard isto be
based,;

4. continuously evaluate and refine the specification and, consequently, the requirements.

In each of these activities there will be anumber of different types of UML diagram and textual descriptions produced.
Thefollowing list indicates which are the most likely to be useful at each stage but this does not preclude the inclusion
of any UML diagram type at any stageif itsuseislikely to improve the understandability of the overall specification:

- Contex Model:
- classdiagrams,
- object diagrams;
- text;
- Requirements Model:
- usecase diagrams;
- activity diagrams;
- text;
- Specification Model:
- classdiagrams;
- sequence diagrams,
- collaboration diagrams;
- statechart diagrams;
- text.

Both the Requirements Model and the Specification Model should form the main input to the development of detailed
behaviour specifications of the standardized system and of a corresponding conformance test suite.

It isunlikely that asingle pass through this process will result in afully specified protocol so it should be used
iteratively to refine the requirements and the definition.

4.3 Examples based on the Private User Mobility (PUMR)
supplementary service

In order to illustrate each of the stages involved in developing UML Context Models, Requirements Models and
Specification Models, the QSIG Private User Mobility (PUM) supplementary service, PUM Dynamic Registration
(PUMR) has been used as an example throughout this document. A pre-normative study of mobility issues within
private networks, TCR-TR 011 [6], was produced by ETSI Technical Committee, Business Telecommunications
(TCBTC). The PUMR inter-PINX protocol standards, ISO/IEC 17875[8] and | SO/IEC 17876 [10] were produced by
TC-BTC and ECMA technical committee TC32. The UML examples in this document and the complete example
shown in AnnexA are based on the relevant parts of TCR-TR011 and the protocol standards.

ETSI

13 DES/MTS-00062 V2.0.9 (2000-09)

4.4 Develop a Context Model

4.4.1 Activity overview

The development of a Context Model includes the collection of alist of features as well as the development of a
Domain Model. Asis shown inFigure 3, both activities take place in parallel. In most cases, it is possible to begin
collecting and evaluating desired features while developing a Domain Model based on information already known about
the system.

[Compile Feature List] [Develop Domain Modelj

Figure 3: The Context Modelling process

4.4.2 Artefacts
The following artefacts are produced as part of the Context Model (Figure 4):
- aDomain Model consisting of class and object diagrams;

- afeaturelist

|
Context Model

1

Domain model
1

Class diagrams

Feature list

1

Object diagrams

Figure 4: Artefacts produced as part of the Context Model

4.4.3 Compile feature list

During the standardization process, different parties come up with many ideas for features to be standardized. These
features are used as the basis of discussions from which the requirements for a standard emerge. The UML does not
provide a suitable graphical model for the collection and management of features. However, they are an important input
to the overall process described here for the use of the UML. Therefore, it is useful to collect all desired featuresinto a
feature list. From that collection, each feature is evaluated and its status recorded to indicate whether it has been
selected for inclusion in the next rel ease of the standard, deferred to a subsequent release or rejected altogether. This
process is shown graphically in Figure 5.

ETSI

14 DES/MTS-00062 V2.0.9 (2000-09)

Collect desired
features

Check list for
proposed feature

[available]

Evaluate proposed
feature

[select]

[unavailable]

[reject]

[defer]
Set status to Set status to Set status to
"Selected" "Deferred” "Rejected"

Figure 5: The feature evaluation process

Additional statusindications should be given to those features which have not yet been evaluated and to those which
have been implemented in a specific release of the standard.

Each item in afeature list should be assigned a number and a brief definition along with information regarding its origin
and priority.

443.1 PUMR example
An example of how afeaturelist could be structured is shown in Table 1.

Note: The Priority and Status columns contain values which have been inserted for illustrative purposes only
and do not reflect the real-world situation.

ETSI

15 DES/MTS-00062 V2.0.9 (2000-09)

Table 1: PUMR feature list

No Feature Priority Status

1 A PUM user should be able to register at any capable (wired or wireless) terminal within 1 Selected
the PISN

2 A PUM user registered at another terminal should have a service profile which is as close 2 Deferred

as possible to the service profile offered at the user's normal point of connection to the
network (i.e., at the user's home location)

3 Registration should be for incoming calls, outgoing calls or both incoming and outgoing 1 Selected
calls

4 Registration for outgoing calls may be limited by the PUM user to a preset period of time 3 Rejected
(duration) or a specific number of calls

5 Giving an alternative identifier for the PUM registration requires the Visitor PINX to 2 Selected
enquiry to the Directory PINX to obtain the PUM user's PISN humber

6 Registration for incoming calls should always be mandatory 1 Selected

7 The security mechanisms provided by PUM to support mobility services should at least be 2 Selected
as good as for existing services

8 For the purposes of security at registration, a PUM user should be able to register using 1 Deferred
the user’s assigned PISN number or an alternative identifier

9 A PUM user with a high security level should not be precluded from using an ordinary 1 Deferred
terminal

10 Before registering to another Visitor PINX, a PUM user should be de-registered from a 3 Selected
Previous Visitor PINX

11 A PUM user may register directly from a Visitor PINX or indirectly from a Remote PINX 3 Deferred
via a Visitor PINX, to the Home PINX

12 Security mechanisms should not appear as complicated procedures to the PUM users but 2 Rejected
they should be a part of the general PUM procedures

13 For the purposes of security, it should be possible to request the provision of a Personal 3 Deferred

Identification Number (PIN) in addition to the PUM user’s identity (PISN number or
alternative identifier)

14 A PUM user may be offered a set of possible optional security mechanisms to decide 3 Rejected
upon, for authentication and access control

15 The PUM user should be able to move between terminals during an active call (change of 2 Deferred
access point)

16 Several PUM users may register for incoming calls at the same terminal access 3 Deferred
simultaneously

17 The PUM user should be able to specify different terminal accesses according to the 2 Selected
feature (service type) requested

18 Bearer services offered to a PUM user should include at least a 64 kbit/s circuit mode, a 3 Selected
3,1 KHz audio, and speech telephony service

19 To register, a PUM user should send a message to the PISN containing e.g. its PUM 2 Selected

number, the identifier of the terminal, the indication of the PUM feature (e.g. registration
for incoming and/or for outgoing calls)

20 The PUM user's own number is used as the basis for accounting, independent of any 2 Deferred
terminal or PINX used by the PUM user

As can be seen from thislist, thereis no limit placed on the level of detail which can be included as a desired feature.
L ow-level descriptions such asthe requirement for aPIN are equally asvalid at this stage as high-level ones such asthe
ability to register at any terminal.
4.4.4 Develop Domain Model
As shown inFigure 6, the development of adomain model is done in three steps:
1. identification of communication entities and communication paths;
2. identification of possible system architectures;

3. identification of interfaces.

ETSI

16 DES/MTS-00062 V2.0.9 (2000-09)

Identifv
Communication|
Entities

Identify
svstem
architecture

Identify
interfaces

Figure 6: Domain Modelling process

Domain models can be developed for different levels of abstraction but the final domain model should consist of a
reasonable selection of class and object diagrams. However, the purpose of adomain model isthe development of an
overview of acommunication system and should not include detailed specification. As a guide, adomain model should
contain no more detail than would normally be presented in a pre-normative study report.

Within ETSI, thereis alarge and valuable base of knowledge and experience which is the result of producing numerous
standards for awide range of communication technologies. This knowledge and experience should be used to simplify
the development of the domain model by providing "short-cuts" to possible solutions. As an example, when specifying
anew protocol for an emerging technology, it is not necessary to redesign the ISO Layered Model asits applicationin
thisareais already well understood.

44.4.1 Identify communication entities

The high-level structure of a specification’s context can be described with a domain model which is represented using
UML class diagrams. Associations are used to express the rel ationships between entities in the domain diagram. A
generic domain model class diagram for communication systemsis shown inFigure 7.

ICommunication System

1.* 1..%

Communication Environment Communication System
Entity Entity

Communication Entity

Figure 7: Generic class diagram for communication systems

The Communication System encapsul ates the whol e system for which a standard isto be specified. It contains
Communication System Entities which can, themselves, be composed of other (sub-)entities. Communication
Environment Entities lie outside of the system.

ETSI

17 DES/MTS-00062 V2.0.9 (2000-09)

Both Environment and System Entities are generalisations of the same abstract base class, Communication Entity.
Communication entities are associated with other such entities. This means that communication paths exist between
instances of communication entities as shown in Figure 9. Communication paths use interfaces to exchange signals,
however, the interfaces are realised by the communication entities. Thisisillustrated in Figure 8.

Communication Entity O

Communication interface

Figure 8: Communication entities realise interfaces

4.4.4.2 Identify system architecture

Step two in the development of adomain model isthe collection of possible system architectures. Thisinformationis
then used in the third step to identify interfaces. Figure 9 shows an architecture where two terminals are connected to a
pair of interconnected exchanges.

, — o [_ — _

|Termina|: Communication Environment Entityl |Termina|: Communication Environment EntiuI

Figure 9: Object diagram showing system architecture

4.4.4.3 Identify interfaces

From the object diagrams devel oped in the previous step (subclause 4.4.4.2), interfaces can be identified. There are two
kinds of interfaces: Normative and non-normative ones. Normative interfaces are the subjects of standardization; non-
normative interfaces are either proprietary or standardized in a different document.

Asageneral rule, system entities exchange information with one another through normative interfaces and they
communicate with environment entities through non-normative interfaces. Nevertheless, there may also be non-
normative interfaces between system entities.

Note: Dueto theinterpretation of signals being modelled as operation calls on objects (see subclause 4.6.3.1.1),
each communication path has to be seen as the combination of two interfaces, one on each end of the
path.

4444 PUMR example

Figure 10 shows the top-level class diagram of the context in which PUMR will be found. It contains the following
information: On the system level, there is the Private Integrated Service Network (PISN). A PISN system has
associations with terminals and Private I ntegrated services Network eXchanges (PINX). Terminals are stereotyped as
environment entities, meaning that their behaviour will not be specified within the model. Nevertheless, there would be
no use of the PISN without terminals, that is why they are associated with the system through an aggregation. PINXs
are communication system entities and their association with the PISN through composition shows that they are the
building blocks of the system; without the exchanges there would be no network.

ETSI

18 DES/MTS-00062 V2.0.9 (2000-09)

«communication system»

PISN
1. 2.%
«communication environment entity» «communication system entity»
Terminal PINX

Figure 10: System-level class diagram for the PUM Registration supplementary service

Thefeaturelistin Table 1, the class diagram in Figure 10 and existing knowledge of similar systems and technologies
together provide the basis for the object diagram in Figure 11 which represents the basic architecture of PUMR. The
class diagram shows that there are two basic classes, PINXs and terminals. Each of the objects shown inFigure 11 are
instances of one or other of these classes.

The main feature of PUMR isthe ability of aPUM user to register at any terminal connected to the PISN. Existing
knowledge of the GSM network architecture and protocol has been used in the development of the

Home PINX/Visitor PINX/Previous Visitor PINX architecture represented in Figure 11. Feature 5 from the PUMR
featurelist in Table 1 hasled to the addition of the Directory PINX.

Home :PINX Previous Visitor :PINX
Visitor :PINX Directory :PINX
Terminal

Figure 11: Basic PUMR object diagram

From Figure 11, three functional entities which are necessary for the specification of the PUMR supplementary service
can be identified. These are the Home location, the Visitor location and the Directory function (assuming that a
Previous Visitor is also a Visitor). These entities communicate with one another which means that each of themis
required to handle a specific set of signals. Using the UML, these sets of signals can be represented by interfaces.
Figure 12 showsthat a PINX entity realises three PUMR interfaces, one for each of the Home, the Visitor and the
Directory function. These interfaces are collected together in a package to build the PUM Registration supplementary
service. Since this service is the subject of the standardization effort, the PUMR interfaces are normative. In addition,
there is anon-normative interface between a PINX and aterminal.

Note: At the domain level, classes do not represent physical objects. While Figure 12 suggests that every PINX

has to be able to act asaHome, Visitor and Directory entity, this does not have to be the case during the
deployment of physical exchanges.

ETSI

19 DES/MTS-00062 V2.0.9 (2000-09)

1

The interface between PINX and PUM Registration
Terminal is non-normative.
All PUMR interfaces are normative.

supplementary service

AMR Home

<<system entity>>
PINX
PUMR Visitor
<<environment entity>> \O
Terminal PUMR Directory

Figure 12: Identification of interfaces for PUMR

4.5 Develop a Requirements Model
45.1 Activity overview

The purpose of the Requirements Model isto evaluate the list of features developed as part of the Domain Model and to
elaborate them as formal requirements. A process for devel oping a Requirements Model is shown in Figure 13.

ETSI

20 DES/MTS-00062 V2.0.9 (2000-09)

<>

Select feature from
Feature List
[functional [non-functional
requirement] requirement]

Realize feature as a

Realize feature as a
requirement using
ause case

requirement using
plain text

[further selected
features tn he

considered] t;n?]mr_ulnx]
ehaviour
[non-comnlex
behﬁ\//iour]
[Write text descriptiora DraW activity dlagram

Update Feature Llst

Ino further
selected, features]

®

Figure 13: The Requirements Modelling process

452 Artefacts

By analysing and devel oping the sel ected features from the Feature List, it is possible to specify a set of requirements
for the protocol to be standardized. As can be seen in Figure 14, requirements can be broadly classified as either
functional, which can be described with UML use cases, or non-functional which can only be described in plain text.

ETSI

21 DES/MTS-00062 V2.0.9 (2000-09)

Requirements Model
Functional Requirements Non-functional Requirements
Use case
Diagrams
Textual
Descriptions

Activity Textual
Diagrams Descriptions

Figure 14: Artefacts produced as part of the Requirements Model

When specifying a protocol system, it is often the case that both functional and non-functional requirements are
identified. Asan example, it is clear that the feature " For the purposes of security at registration, a PUM user should be
able to register using the assigned PISN number or an alternative identifier" shown in Table 1 will result in a number of
functional requirements whereas, "Bearer services offered to aPUM user should include at |east a 64 kbit/s circuit
mode, a 3.1 kHz audio and speech telephony service" probably will not.

4.5.3 Collect functional requirements

4531 Develop use cases

Use cases make it possible for requirements to be captured in a structured way. They usually consist of atextual
description, but activity diagrams can be used to represent activitiesinside the system and the interaction of the system
with actors.

The Feature List and the Domain Model should be used as the starting point for the development of use casesin the
Requirements Model. The Domain Model provides the context in which selected features are devel oped into
requirements for the standard.

The development of use casesis an iterative process which involves the following activities:
- identification of actors;
- identification of use cases;
- description of each use case.

Generally, only afew use cases will be found in thefirst iteration; new ones will be added during subsequent passes and
the existing oneswill probably need to be refined.

45.3.2 Identifying actors

Actors are used to represent external systems or some internal parts of a system which use a particular subsystem. There
can also be actors which are related to system initialization and maintenance.

Two criteriashould be used in finding actors:

ETSI

22 DES/MTS-00062 V2.0.9 (2000-09)

1. for every actor there should be at |east one user which will enact therole. A user in this context can be at any
level of abstraction, for example, amobileterminal or protocol layer;

2. there should be minimal overlap of roles between actors. This prevents having two actors that have essentially
the samerole.

All actors should be given relevant names and short textual descriptions of the role they play and how they use the
system.

In the PUM Dynamic Registration example, the actor is the PUM User.

45.3.3 Identifying use cases

Theidentification of use casesis not asimple task. The following guidelines may be helpful:
1. Review the Feature List which has been compiled during domain modelling as a source for system requirements;
2. Consider each service provided by the future system as a good starting point for use case identification;
3. Consider the actor’s point of view. What do actors want to do with the system?

The identification of possible use casesin asystem can be simplified by addressing only one system service in each use
case and by considering only the primary actors as they will initiate most of the use cases.

Every actor needs one or more use casesto fulfil its needs. Each candidate use casesidentified in thisway will not
necessarily become a unique use case as it may be possible for some to be incorporated into other use cases. A potential
use case that appears complete in itself should be identified separately, whereas one that always follows as a
continuation of another should probably be combined with it.

The choice of aname for a use case can help considerably in making the model easy to understand. Use case hames
should clearly identify the function represented by it and, in most instances, should start with averb.

4534 PUMR Example

In order toillustrate the process of developing use cases, an example has been taken from TCR-TR 011 [§]. This
example deals with the requirements for PUM Dynamic registration for incoming callsidentified on page 24 of the
document. These requirements are identified as follows:

- the PUM user can specify aterminal access to which some or all incoming callsto the PUM user will be
presented;

- adifferent terminal access may be specified for each service type (e.g. voice, telefax);

- the PUM user will be able to determine the desired "service profile" attached to this new registration, i.e.,
depending on the calling party'sidentity, call importance indication, for "no answer" and "busy" conditions, and
other possible criteria;

- several PUM users may register for incoming calls at the same terminal access simultaneously;

- inaddition to new facilities brought by the PUM service, the supplementary servicesusually offered to any PISN
user should be made available to PUM users.

There are three use cases that can be defined for PUM Dynamic Registration, as follows:
Usecase 1: Specify Access Point for Incoming Calls

The PUM user specifies aterminal accessto which some or all incoming callsto the PUM user
will be presented. Several PUM users may register for incoming calls at the same terminal access
simultaneously.

Use case 2: Specify Service Type
A different terminal access may be specified for each service type (e.g. voice, telefax).

Use case 3: Specify Profile

ETSI

23

DES/MTS-00062 V2.0.9 (2000-09)

The PUM user will be able to determine the desired "service profile" attached to this new
registration depending on the calling party's identity, call importance indication, "no answer" and

"busy" conditions and other possible criteria[6].

Figure 15 shows how the three use cases for PUM incoming call registration can be presented graphically in a Use Case

Diagram.

NOTE:

4535

PUM User

o

N

Type

Specify Access Point
for Incoming Call

Specify Service

Specify Profile

PISN

Documentation:

The PUM user will be !
able to determine the i
desired "service profile" !
attached to this new !
registration dependingon
the calling party's identity, !
call importance indication, |
"no answer" and "busy" |
conditions and other i
possible criteria. !

Figure 15: Example Use Case diagram for PUM Registration for Incoming Calls

The box marked "Documentation” in Figure 15isintended to show the text that might be included as part
of the specification of the " Specify Profile" use case. It isincluded here for clarity and would not

normally appear in a use case diagram.

Describing each use case

In most instances, it is difficult to construct a use case name which is both easy to read and comprehensivein its
description of the function of the use case. It is, therefore, useful to produce a short description of each use case
included in the Requirements Model. The following information should be used to describe each use case:

4535.1

name of the use case;

brief description:

short overview of the purpose of the use case;

any preconditions;

identities of the actorsinvolved in the use case;

step-by-step specification of what the use case needs to do when interacting with its actors

this can be plain text but, if it extends beyond 2 or 3 steps, an activity diagram could be used to provide

additional clarification;

any postconditions.

Activity Diagrams

When describing communication protocolsit is often not possible to describe the functions of ause casein very simple
terms. When the description of a use case cannot be expressed simply in afew lines of text, a UML activity diagram can

be used aswell. In particular, an activity diagram should be used if:

the use case represents functions which are complex;

ETSI

24 DES/MTS-00062 V2.0.9 (2000-09)

- there are conditional branchesimplied in the function of the use case.

Care should be taken to avoid the inclusion of too much detail in an activity diagram. The purpose of the Requirements
Model isto define the requirements that are to be met by the standardized protocol, not to describe the detailed

behaviour of the constituent entities.

45.35.2 PUMR Example

A simple, tabular description of the "Specify Profile" use caseisshowninTable 2.

Table 2: "Specify Profile" use case description

Name

Specify Profile

Description

The PUM user specifies the desired service profile to be
associated with the new registration

Preconditions

The PUM user is registered at the Visitor PINX.

Processing

See activity diagram

Postconditions

Service profile established for the PUM user

Figure 16 shows how the use case for processing a Service Profile setup request from a PUM user (Figure 15) could be

described in an activity diagram.

ETSI

25 DES/MTS-00062 V2.0.9 (2000-09)

[registratio\l: complete]

Request Service Profile setup]

[visitor support = default] %'>

[visitor support = download profile]

[user ID = alternative identifier] \r ,
/LFmd user's PISN number

[user ID = PISN number]

ﬁ

Request user's Service Proﬁle

Send user's Service Proflle

<J> [profile = indicative]

[profile = detalled]

(Set default local Service ProfiIeJ (nstall user's Service Proflle (Jnstall indicated local Service Profile]

[Report Service Profile establlshed)

Figure 16: Activity diagram showing an overview of the Specify Profile use case

The overview of the Specify Profile use case in Figure 16 shows that arequest from a PUM user to set up a Service
Profile will cause one of the following:

- adefault Service Profile provided by the Visitor Location will be established if the Visitor Location does not
support the downloading of Service Profile information from the Home Location;

- aService Profile provided by the Visitor Location will be established if the Home Location providesasimple
indication of the PUM user's service classification (for example, "select Service Profile No. 5");

- aService Profile provided by the Home Location will be transferred to the Visitor Location and established for
the PUM user.

If the user provides an alternative identifier rather than a PISN (directory) number asidentification, thiswill be resolved
into a PISN number before any request is made to the Home Location.

Although Figure 16 identifies the activities that must occur as part of the Specify Profile use case, it does not indicate
wherein anetwork each activity should take place. Simple visual analysisis usually sufficient at this stage to determine
where the responsibility for each action islikely to lie. For example, it is clear that the sending of the user's Service

ETSI

26 DES/MTS-00062 V2.0.9 (2000-09)

Profileinformation will almost certainly take place at the Home location. UML swimlanes can be used effectively to
highlight these divisions of responsibility as shown inFigure 17.

PUM User Visitor Location Directory Function Home Location

[registration complete]
Request Service Profile setup

[visitor support = defaul]

[visitor support = download profile]
[user ID = alternative identifier]
2 Find user's PISN number

[user ID = PISN number]

Request user's Service Profile =|' Send user's Service Profile

[profile = indicative]

[profile = detailed]

Install default local Service Profile [\nsta\l user's Service Profile] [Set indicated local Service Profile]

By

Report Service Profile established

Figure 17: PUM Specify Profile activity diagram using swimlanes

When partitioning an activity diagram with swimlanesit can be tempting to start adding more detail to the activity
itself. However, at the Requirements Modelling stage, activity diagrams should show only tasks and conditions. Even
the addition of swimlanes should be limited to those instances where their placement is obvious with only the minimum
of analysis.

45.4 Collect non-functional requirements
The UML is not an appropriate language for expressing requirements which are not action-based. Well structured text
and tables should be used for this purpose.

4.6 Develop a Specification Model

4.6.1 Activity overview

A Specification Model is developed from the Domain Model by:
- refining the model of communication entities;
- adding communication interfaces;
- adding new entitiesif necessary;

- specifying the communication between entities;

ETSI

27 DES/MTS-00062 V2.0.9 (2000-09)

The Domain Model and the Requirements Model should be used together as the base from which the Specification
Model is developed. The Requirements Model provides guidance on how more detailed class diagrams can be
developed from the Domain Model. It is at this point in the process that the flow of information across the interfaces
which connect the communication entities should be considered. Initially, the functional messages (for example,
SETUP and RELEASE) of the protocol should be identified and the temporal relationships between them specified
using sequence and collaboration diagrams. In those cases where it is necessary to describe complex behaviour, it may
also be useful to develop some statechart diagrams. A Specification Model should only express the relationships
between classes and describe sequences of actions, but it should not specify how the communication mechanisms are to
berealised. Developing a Specification Model may highlight inadequacies and inaccuracies in the Domain Model
which should be reviewed and revised as necessary.

The activity diagram in Figure 18 shows, in simplified terms, the process involved in the development of a
Specification Model.

Elaborate l
class diagram

T

Develop velop. Develop
sequence diagrams collaboration diagrams statechart diagrams
| [further iterations

required]

Review

class diagram

[no further iterations

req ‘ired]

Figure 18: Specification Model development

4.6.2 Artefacts

The elaboration of a Specification Model is an iterative process involving a number of complementary diagrams as
shown in Figure 19.

ETSI

28 DES/MTS-00062 V2.0.9 (2000-09)

Specification Model
Sequence g --eoeeoececececeeeeeooo--} Statecharts
Diagrams
A R
[> A
5 ‘I‘ \\» ,, “A
'I‘ \"\\ k—’ ’v'
Co !
R Class /
o Diagrams / Textual
i £ ! Descriptions
i ! A !
' \ i /
1 i !
: = /
P |
! ; : /
\
:\ \ ; /
. ! J
\ i ’
S \ 1 ,
NN ! !
“
N Collaboration
Diagrams

Figure 19: Artefacts produced as part of a Specification Model

4.6.3 Refining the model of communicating entities

A class diagram based on the generic class diagram for communication systems shown inFigure 7 isideal for
specifying a system in terms of its communication entities but it does not identify the interfaces necessary for these
entities to communicate. The generic Specification Model shown in Figure 20 extends the Domain Model by adding
communication interfaces which can be either normative or non-normative. It also introduces a " communication
message" class which should be used for specifying the protocol signals which are to be passed across the interfaces,

Communication
System

Communication Communication|
Environment Entit System Entity

1.%

2
«interface» P
Communication Communication
Interface € .. Message
message parameter|

pperation (message: Communication Message)

Can be either normative
or non-normative

Figure 20: Generic Specification Model (class diagram) for communication systems

ETSI

4.6.3.1

46.3.1.1

29

Class diagrams

Identifying candidate classes

DES/MTS-00062 V2.0.9 (2000-09)

Although a number of classeswill have beenidentified during the Domain Modelling stage, it is certain that these
classes will require the addition of further detail and that new classes will need to be specified.

Within a specification model, use cases are realized by classes and their derived objects which communicate and co-
operate together to perform the necessary functions.

Three types of classes are identified within the generic Domain Model and should also be used when specifying classes
for the Specification Model. These class types, denoted by stereotypes, are:

communication entities:

- communication system entities,

- communication environment entities;
communication interfaces;

communication messages.

The following approach, shown graphically in Figure 21, should be used in refining these classes:

review the use cases and the data flows to determine what new communication entities should be added to those

already specified in the Domain Model;

determine what, if any, new interfaces are required between the communication entities;

add operations to each of the interfaces to handle the protocol messages that are necessary to support the use

cases described in the Requirements Model;

specify new message classes for each of the messagesidentified at each interface;

add attributes to each of the message classes to indicate what information the message should carry.

[new entities
required]

Review
Requirements

Add new Communication
System Entities

[new interfaces
required]

[no new entities
required]

Review
interfaces

Add new Normative l
[)

Interfaces

Soecifv
Communication Messages

[no new interfaces
required]

®

Figure 21: Class diagram elaboration

ETSI

30 DES/MTS-00062 V2.0.9 (2000-09)

Those interfaces which are the subject of the standard should be clearly identified by attaching atext box to the
interface classindicating that it is normative, as shown in Figure 22.

Visitor PINX

\V

«communication interface» Normative
PUMR signalling at
a Visitor PINX Interface

registration_Request (registration_request)

PUM_SETUP (PUM Delete registration Invoke)
PUM_CONNECT (PUM Registration Response)

Figure 22: Example of an interface identified as "Normative"

46.3.1.1.1 Operations

Class operations should be used to identify which signals can be legitimately processed by a particular communications
interface. It is conventional within the UML to indicate only those messages that can be received by aclass. Those that
may be sent areimplied by the signals that can be received by adjacent classes.

The following example illustrates how this approach can be used to specify the signalling at a telecommunication
interface. A normative (or non-normative) interfaceis usually considered to be anotional point in the communication
path between two entities implementing the interface. Each of these entities will support the transmission and reception
of agroup of signals which together form the protocol at the interface. Figure 23 uses atraditional reference diagram to
illustrate the implementation of an interface at an imaginary reference point "X". It also shows the protocol messages
that can be exchanged between the Terminal and the Network Access.

X X
X-Ref Reference Reference X-Ref
-Reference [' -Reference
. . Pﬂm P?fm . Network
Terminal | Implementation I I Implementation A
(Terminal Side) - «— (Network Side) cecess
ALERTING SETUP
RELEASE RELEASE
REL_ACK REL_ACK

Figure 23: Representation of an imaginary communication system

Figure 24 shows how the UML can be used to represent this type of system as two communication interfaces each of
which isrealized by one of the communication entities. It uses a class diagram to show how the Terminal side interface
at the X Reference Point can receive SETUP, RELEASE and REL_ACK messages which are all of the generic type,
"PDU" while the Network Access side interface can only receive ALERTING, RELEASE and REL_ACK.

ETSI

31 DES/MTS-00062 V2.0.9 (2000-09)

«communication entity» «communication entity»
TERMINAL NETWORK
Normative = ________] «communication interface» «communication interface» Normative
Interface Xreference X Reference Interface
TERMINAL SIDE NETWORK SIDE

SETUP (setup:PDU) ALERTING ()

RELEASE (release:PDU) RELEASE (release:PDU)

REL_ACK () REL_ACK ()

Figure 24: Class diagram showing signals as operations

4.6.3.1.1.2 PUMR Example

The very simple class diagram in Figure 10 shows the PUMR system comprising little more than a generic PINX which
realizes three separate interfaces. At the specification modelling stage, this model, shown inFigure 25, has been
developed further to give considerably more detail about the messages that can be sent across the interfaces. For each of
the distinct functions (Home, Visitor and Directory) within the PUMR system, a class has been specialized from the

general PINX class. In addition, the communication interface classes have been tagged as either "Normative" or
"Non-normative".

ETSI

«communication environment
Terminal

-

3

-

«communication interface
User signalling

+registration_response ()

Non-normative
Interface

1

] «communication system
— <3 PISN

32

¢

2%

«communication system entity»
PINX

1

DES/MTS-00062 V2.0.9 (2000-09)

0.1

«communication system entity>»
Home PINX

/

/

;

2

«communication system entity»|

«communication system entity»

«communication interface»
PUM signalling at a Home PINX

+PUM SETUP (PUMRegistrationinv: PUM Registration Invoke)

+PUM CONNECT (PISNEnquiryResp : PISN Enquiry Response)
+CALL PROCEEDING ()
+RFI FASF N

+PUM CONNECT (PUMDelReudistrationResp : PUM Delete Registration Response)

+RELEASE_COMPLETE

.

e

\
\

Visitor PINX Directory PINX
«communication interface»
PUM signalling at a Directory PINX
+PLIM_SFTIIP (PISNENquiryinv : PISN Enquiry Invoke)
+RELEASE ()

Normative Interfacl%

«communication interface»
PUM signalling at a Visitor PINX

Normative Interfac;%

+RELEASE ()

+registration_request ()
+PUM_CONNECT (PUMRegistrationResp : PUM Registration Response)

+PUM_CONNECT (PUMRegistrationErr : PUM Registration
+PUM_SETUP (PUMDelRegistrationinv : PUM Delete Registration Invoke)
+CALL_PROCEEDING

+REILEASE COMPIETE

Normative Interfacgll

Figure 25: System-level specification model class diagram for PUM Registration

46.3.1.1.3 Attributes

Class attributes can be used to describe the contents of protocol messages where these messages are described as UML
classes. The attributes should clearly identify which items of information are included in a particular message but

should not attempt to describe the detailed format that they will take asthisis better achieved using ASN.1. However,
itis possible to describe basic data structures using UML.

Figure 26 shows how a SETUP message will contain an originating address and a destination address, which are both
network addresses, and a service identifier which can take any of the values allowed for abasic service. It also shows
how a Network Address has an address portion and a sub-address, each of which isastring of up to 26 dialled digits
and that there are arange of enumerated values possible for the Network Basic Service argument.

ETSI

33 DES/MTS-00062 V2.0.9 (2000-09)

SETUP Network Address Dialled Digit String
Originator: Network Address AddressDidaits: Dialled Diait Strina 1
Destination: Network Address SubAddressDigits: Dialled Digit String

Service i/d: Network Basic Service

1..26

«enumeration» «enumeration»
Network Basic Service Digit

allServices

speech
unrestrictedDigitallnformation
audio3100Hz

telephony

teletex

telefaxGroun4Class 1
videotexSvntaxBased
videotelephony

O©CoOoO~NOUR~AWNRELO

Figure 26: Example of message classes using attributes

46.3.1.2 Further iterations of the model

The classes specified in the earlier stages of modelling should be refined or amended through subsequent iterations so it
isimportant to maintain alog of the changes made to each class and in which use case realisations it participates.

A class should depict only one major objective and should be given a name which clearly identifies that objective using
the vocabulary of the domain. Additional documentation should be added to each class to ensure that its purposeis
made clear and unambiguous.

In order to avoid unnecessary complexity in the Specification Model, it is useful to review each of the possible classes
identified, considering the following points:

- if the specification is similar to another class then it may be possible to combine the classes;

- if the specification of the class cannot be expressed in afew linesthen it is probably too complex and should be
sub-divided;

- if neither aclear name nor a concise specification can be devised then it is probably that the classis not valid and
further analysisisrequired;

- if itisdifficult to decide how a use case can berealized then it is possible that there are further classesto be
defined.
4.6.3.2 Sequence diagrams

Sequence diagrams are used for modelling the relationship in time of the messages which are exchanged within a
system. They show how the “responsibilities’ specified in use cases are assigned to the different objects and classes of
the system. The operations of objects are used to identify the messages which can flow between objects.

Figure 27 shows avery high level sequence diagram for the PUM Registration service. It illustrates the simple
requirement that a PUM user should be able to send aregistration request to the PISN which will return aregistration
response after processing the request and registering the user at the new location.

ETSI

34

registration_request()

DES/MTS-00062 V2.0.9 (2000-09)

registration_response()

From TCR-TR 011 pp 62

r7

IEEE—

Figure 27: High level sequence diagram for PUM user registration

Each sequence diagram should include one or more of the participating actors and the system objects between which
messages are exchanged. The normal message flow should be described first and, if there are complicated exceptions,
these should be shown in separate diagrams. Constraints can be used to highlight the differences between normal and
exceptional flows of messages. Figure 28 represents a refinement of the PUM registration scenario, considering the
different objectsin the system, i.e., Visitor, Home and Previous PINXs.

O

e
A
/7N

PUM User : Terminal INew : Visitor PINX

registration_request ()

PlIM SFTIIP
(PUM registration Invoke)

CALL PROCEEDING ()

PUM CONNECT
(PUM Registration Response)

Previous : Visitor PIN - Directory PINX

PlIM SFTIIP
(PUM Delete Registration Invoke)

registration_response ()

RELEASE ()

CALL_PROCEEDING ()

RELEASE_COMPLETE ()

PlIM CONNFCT
(PUM Delete Registration Response)

RELEASE ()

RELEASE_COMPLETE ()

Figure 28: Complete sequence diagram for successful PUM user registration

Sequence diagrams are used in UML to describe the detailed interaction between objects and, as such, are similar to
basic Message Sequence Charts (MSCs). However, it is not possible to include parts of another sequence diagram or to
structure complex ones similar to HM SCs. Hence sequence diagrams should not include too much detail if they areto

remain understandabl e.

ETSI

35 DES/MTS-00062 V2.0.9 (2000-09)

4.6.3.3 Collaboration diagrams

Collaboration diagrams depict a set of objectsin agiven situation. Links between objects that can interact together show
the messages that can be exchanged. These are numbered in sequence to specify the time order in which they occur and
can have argumentsin the form of a parameter list.

Figure 29 shows the collaboration diagram which represents the same message scenario depicted in the sequence
diagram in Figure 28.

4: PUM_SETUP()
11: RELEASE()

Home : Previous :

—>
PINX PINX
<— —

6: CALL_PROCEEDING()
10: PUM_CONNECT()
12: RELEASE_COMPLETE()

2: PUM_SETUP() 3: CALL_PROCEEDING()
8: RELEASE() 5: PUM_CONNECT()
9: RELEASE_COMPLETE()

1: registration_request()
= Visitor : Directory
PINX : PINX

7: registration_response()
: PUM user

Figure 29: An example UML collaboration diagram for PUMR

Collaboration diagrams are especially useful at the specification modelling stage when determining what objects are
required in the system and specifying the meaning of their interactions. These objects can be either named or unnamed
instances of classes.

Collaboration diagrams and sequence diagrams are different views of the same information. The difference between
them is that sequence diagrams focus on the relationship in time of the messages that flow between objects whereas
collaboration diagrams focus on the rel ationshi ps between the objects themsel ves.

4.6.34 Statechart diagrams

Although class diagrams are very useful for showing the structure of a protocol system, its dynamic behaviour can only
be represented through communication interfaces (operationsin classes), functional requirements (use cases), and object
interaction examples (sequence diagrams). By using statechart diagrams, it is possible to describe the individual
behaviour of agiven object of aparticular classin terms of state changes caused by events. This state behaviour should
correspond to the interpretation of the messages received by the object. Once an object for which it would be helpful to
have a more detailed description of behaviour has been selected from a sequence diagram, the use cases related to its
class should be studied to determine what behaviour isto be modelled. Then, any relevant sequence diagrams and
collaboration diagrams should be studied to ensure that all messages sent and received by the class areincluded in the
statechart diagram as actions or events.

When receiving an event, the statechart initiates the sole transition that is enabled by it, causing an action and a state
change. Actions are the operations specified in the class of the object that receives the event. For example, an action
may be to send asignal to another object. It is acceptable to have events and actions associated only with state
transitions and not with the states themselves. The main reason why thisis acceptableisthat in the standards making
process, SDL is used for detailed behaviour in the next stages and so such basic statechart diagrams are sufficient at the
specification stage.

In the Figure 30, the notation “EVENT [GUARD] / ACTION" is used to label the transitions. Control istransferred from
state "Idle" to state "Processing” or state "Relocating” depending on the value of the "L ocation" argument.

ETSI

36 DES/MTS-00062 V2.0.9 (2000-09)

Start

Setup(bcation)[Location = Previous] / Connect

Setup(Location)[Location = JAome]/ CallProceeding

Processing Relocating
/ CallProceeding

Setup

Figure 30: A simple statechart diagram derived from the PUM study

It must be noted that both guards and actions are only textual and are used for descriptive or referencing purpose only.
Even though they are not executable, they should be expressed in a structured and meaningful form.

All interface objects must have a set of message-receiving operations showing all possible incoming events. Statechart
diagrams should be used if:

an interface object has alarge set of operations;

an interface object has operations representing behaviour which is complex;

there are conditional branchesin theinternal behaviour of the object; and/or

- atagiventime, only asubset of operations of an interface are feasible.

The statechart diagram in Figure 31 shows an overview of the operation of PUM user registration at the Home PINX.
The caret (") character preceding each action indicates the sending of amessage (e.g., ""CALL_PROCEEDING")
during atransition from one state to another. This exampleis consistent with the sequence diagram shown in Figure 28.

ETSI

37 DES/MTS-00062 V2.0.9 (2000-09)

PUM_SE'TUP / "PUM_SETUP
v

/ Processing PUM Registration Request \

Sending
CALL PROCEEDING
to Visitor Location

PUM SETUP sent to
Previous Visitor

CALL_PROCEEDING sent/*PUM_CONNECT CALL_PRICEEDING

PUM_CONNECT sent to
Visitor Location

Wait for PUM CONNECT
from Previous Visitor

PUM_CONNECT / "RELEASE

RELEASE / "RELEASE MPLETE
SE/ SE_CO [PUMfCONNECTreceived]

from Previous Visitor

RELEASE_;;OMPLETE

Figure 31: Statechart diagram showing PUM user registration at Home PINX

The statechart diagram shows how the Home PINX beginsin the Idle state and always returnsto it at the end of
processing aregistration request. The dual path through the chart indicates that CALL_PROCEEDING is be processed
at the same time asthe PUM_SETUP to the Previous Visitor PINX.

Generally, astatechart diagram is attached to a class in order to describe the behaviour of itsinstances, specifying the
eventsto which they must react and how they should react. If the behaviour of ause caseis already defined using
activity diagrams then the corresponding statechart diagrams should refine this behaviour in order to be consistent.
Statechart diagrams should be used in the latter stages of the process to specify details of the behaviour.

4.7 Use SDL and MSC to specify detailed behaviour

Although the UML can support the specification of detailed behaviour using existing industry -standard text -based
languages such as C++ and Java, it currently has no graphical action semantics of itsown. This meansthat in using the
UML thereisareliance on an implementation language to get an executable specification. SDL, however, is able to
produce executable models which are independent of any implementation. Therefore, protocol standards are generally
described using SDL and M SC, and this should continue at least until aviable alternative is available within the UML.

ETSI

38 DES/MTS-00062 V2.0.9 (2000-09)

The general approach presented in this EG isthat UML is used to identify, analyse and specify the system entities,
together with their relationships and then SDL and MSC are used for architectural and detailed behaviour design. The
joint use of the three notations reguires a smooth transition from analysis (Specification Model) to design. Thisis
specified in ITU-T Recommendation Z.109 [7] that defines a set of mapping rules between UML and SDL constructs,
known as the SDL UML profile. This mapping between the diagrams of the two notations can be realised by
introducing a number of stereotypesinthe UML classes.

The UML development process defined here adopts a similar approach. For the purpose of protocol standardisation,
there are five new stereotypes introduced here and the mapping to SDL concepts shown inTable 3 is suggested.

Table 3: Mapping between UML stereotypes and SDL concepts

Stereotype in UML SDL concept
<<communication system>> System
<<communication system entity>> Block
<<communication environment entity>> SDL environment
<<communication interface>> Signal list
<<communication message>> Newtype or ASN.1 type

In addition, the following guidelines should also be considered
- links between the UML objects should be converted to channels;

- associations between <<communication interface>> and <<communication system entity>> or
<<communication environment entity>> join signal liststo channelsin the SDL model;

- every block converted from a <<communication system entity>> should contain a process whose behaviour is
defined by the associated UML statechart diagram.

Use case diagrams are not directly mapped to SDL (they often are informal) but they are realised by classes that are
converted to an SDL structure diagram. UML statechart diagrams can be directly converted to SDL state machine
diagrams with afew adaptations for hierarchical UML states. Finally, sequence diagrams can also be directly mapped to
M SC on aone-to-one basis, as they are a subset of the M SC notation.

Thereisno single point in the UML development process where the transition to an SDL specification can easily be
made. The graphical similarity between UML sequence diagrams and M SC make them an obvious point at which to
move from one language to the other, particularly in those cases where the target standard isto contain a complete SDL
model. Certainly, the UM L-based process described here should be used up to this point. However, there are benefits
to be gained by continuing beyond sequence diagrams and into the specification of statecharts.

Well-defined statechart diagrams, combined with a collection of sequence diagrams form a solid base from which to
develop an SDL model that conforms to the requirements specified in UML. The activity diagram shown in Figure 32
illustrates a general process that can be followed in making the transition from a UML specification of a system to an
SDL specification of its behaviour. It identifies the actions to be taken and the UML artefacts which are the inputs to
those actions.

ETSI

39 DES/MTS-00062 V2.0.9 (2000-09)

¢
Create Commemmmmmaeeee———-4 COmmunication
SDL System J System
Environment
Entity
—
Create [,
SDL Block fentit
entities
. remaining] - Slalechat
Create SDL Process |-------------{ lnteraction
with SDL state machine Diagram
I
\‘\ [no entities
. remaining]
Select Block
Check Communication Entity
links from object diagrams
[Create SDL Channelsk___________, inks
Thlncks remainin between blocks
to be considered
‘Check Communication Interfaces
related to links
Create k& = —cemmmeeeeed Communication
SDL Signallists Interfaces

[no hlacks remaining
to be copsidered]

Figure 32: Transition from UML to SDL

ETSI

40 DES/MTS-00062 V2.0.9 (2000-09)

4.8 Use the UML to support test development

The development of a conformance test suiteisan activity which can take place in parallel with the development of the
base standard. It should be agoal to reuse as much of the standardization specification as possible for test suite
development. This clause provides guidelines on how the UML could be used to support the devel opment of
conformance test suites based on the | SO/IEC 9646 standard [9]. The Second Edition of the Tree and Tabular
Combined Notation (TTCN) is considered to be the target test notation.

4.8.1 Activity overview

The development of atest model can be divided into several distinct activities as shown inFigure 33. In the first step,
independent system components have to be identified. In the next step, test configurations are devel oped which describe
the mapping of components on system and test nodes. In the third and fourth steps, test case structures and test purposes
are defined for all test configurations.

Identify components

Define test configurations

Define test cases

()
¢)
C)

®

Figure 33: Activities during test model development

4.8.2 Artefacts

The following artefacts are produced as part of the Test Model (Figure 34):
- component and deployment diagrams for test configuration specification;
- classdiagramsfor test case structuring;

- sequence, collaboration and statechart diagrams for test purpose definitions.

ETSI

41 DES/MTS-00062 V2.0.9 (2000-09)

Test Model
1]]]
Test configurations Test case structure Test purpose definitions
1] 1 1]
Component diagrams Class diagrams Sequence diagrams

— |

Deployment diagrams Collaboration diagrams

]

Statechart diagrams

Figure 34: Artefacts produced as part of the Test Model

4.8.3 Identify components

The goal of the first activity during test modelling isto identify functional entities which can be tested independently.
With the UML, these functional entities are depicted as components.

During conformance testing, only normative interfaces can be tested. Therefore, components must realise at |east part of
anormative interface. Normative interfaces have been identified during Context Modelling (see subclause 4.4.4.3), so
the Context Model can be used as areference point for component identification.

48.3.1 PUMR example

Using the information about normative interfaces in Figure 12, the following components have been identified for
PUMR:

- PUMR Home;
- PUMR Visitor;
- PUMR Directory.

Figure 35 shows the PUMR components and the interfaces which they realise.

ETSI

42 DES/MTS-00062 V2.0.9 (2000-09)

PUMR Home O

PUMR Home

PUMR Visitor '
From Context Model

PUMR Visitor

PUMR Directory O

PUMR Directory

Figure 35: PUMR components

4.8.4 Define test configurations

After their implementation, the components (functional entities) defined in subclause 4.8.3 will be executed on some
piece of hardware. There are connections between the components, either physical or logical.

During conformance testing, one or more implementation components are replaced with test components. Test
components stimul ate the Implementation Under Test (IUT) and then check the implementation’s response for
conformance with the standard.

In order to be able to specify atest suite, atest configuration hasto be defined first. UML deployment diagrams can be
used to identify the IUT, test components and their connection through Points of Control and Observation (PCO) and
Coordination Points (CP). In Figure 36, the component FE1 residesin anode called "Implementation" which is
stereotyped as IlUT. Component FE2 has been moved from the IUT into the "Tester" node which is stereotyped asMTC
(for Main Test Component) according to 1SO/IEC 9646.

<<MTC>> <<|UT>>
Tester Implementation
PCO1
FE2 <<PCO>> FE1

Figure 36: Generic test configuration

48.4.1 PUMR example

Figure 37 shows an example of atest configuration for a PUMR system. The IUT only contains the PUMR Home
component, suggesting that this component is the target of the test suite. There are three Parallel Test Components
(PTC) which are connected with the IUT through a PCO each. These test components act as Visitor PINX, Previous
Visitor PINX and Directory PINX respectively. A main test component called "Test coordinator” is connected with the
parallel test components through coordination points.

ETSI

43 DES/MTS-00062 V2.0.9 (2000-09)

<<|UT>>
PINX
PUMR Home
PCO 1 PCO 2 PCO 3
<<PCO>> <<PCO>> <<PCO>>
<<PTC>> <<PTC>> <<PTC>>
TC1 TC2 TC3
PUMR Visitor PUMR Visitor PUMR Directory
CP1 CP2 CP3 . Acts as
A_ct_s as New <<CP>> <<CP>> <<CP>> . Directory PINX
Visitor PINX
Acts as Previous
<<MTC>> Visitor PINX

Test Coordinator

Figure 37: PUMR test configuration

4.8.5 Define test case structure

Test suites contain test cases which realise test purposes. It is common to put test cases with similar purposes into
groups. Basic groups of test purposes have already been defined in ISO/IEC 9646 [9]. For example, there are Capability
Tests, Valid Behaviour Tests and Timer Tests. Groups can be nested; the hierarchy of test groupsiscalled Test Suite
Structure.

Through the use of packages within class diagrams, atest suite structure can be defined graphically with the UML, asis
shown in Figure 38. Test cases are also represented as packages. Of course, more than one diagram will be used to
define the test case structurein real-world specifications.

ETSI

44 DES/MTS-00062 V2.0.9 (2000-09)

<<test group>>
Test cases

]]

<<test group>> <<test group>>
Capability tests Valid behaviour tests

<<test case>> <<test case>> <<test case>> <<test case>>

CATestl CATest2 VBTestl VBTest2

Figure 38: Test case structure

NOTE: Thestructure for test steps can be specified similarly to the test case structure.

4.8.6 Define test cases

Viewed at aconceptual level, atest caseisthe realisation of atest purpose. The "Test purpose style guide”,

ETR 266 [1], defines the information which hasto be provided by the test designer in order to write TTCN test cases.
Thisinformation is mostly textual, but Message Sequence Charts may also be included as a graphical representation of
the test purpose.

NOTE: Message Sequence Charts can only express a subset of all possible TTCN behaviour descriptions.

The UML provides several diagram types which can be used to help the development of test cases. Sequence and
collaboration diagrams can show the signal exchange between the tester and the IUT. These may be taken from the
Specification Model and adapted for test specification purposes. As an alternative, statecharts may be used to model the
functionality of individual test components; these can also be taken and adapted from the Specification Model.

4.8.6.1 PUMR example

In this example, atest case should be developed for use case 1 identified in subclause 4.5.3.4. The test purpose isto
verify that a user can successfully register at a Visitor PINX and that he will be deregistered from his Previous Visitor
PINX. Thetest configuration to be used is the one shown in Figure 37. In the Specification Model, a sequence diagram
has been drawn which shows the message exchange necessary for the PUMR user registration (Figure 28). Figure 39
shows aversion of this diagram which has been adapted to show the message exchange during test execution.

ETSI

45 DES/MTS-00062 V2.0.9 (2000-09)

Test purpose description for test
case VBTestl.

______ _>| TC1 MBTestl TC1

| .
Pl IC2 VBTest TC2 i

PUM_SETUP(pumRegistrArg)

CALL_PROCEEDING()

PUM_SETUP(pumDelRegArg)

. PUM_CONNECT(pumRegistrRes)

CALL PROCEEDING()

RELEASE COMPLETE()

PUM_CONNECT(pumDelRegResp)

N/
7\,

RELEASE()

RELEASE COMPLETE()

Figure 39: Sequence diagram for test purpose specification

ETSI

46 DES/MTS-00062 V2.0.9 (2000-09)

Annex A (informative): Case Study

A.l QSIG Private User Mobility Registration (PUMR)
supplementary service

Private User Mobility Registration (PUMR) is a supplementary service that enables a Private User Mobility (PUM) user

to register at, or de-register from, any wired or wireless terminal within the PISN. The ability to register enablesthe

PUM user to maintain the provided services (including the ability to make and receive calls) at different access points.
It was chosen to illustrate the UML guidelines for the following reasons:;

- apre-normative study highlighting theinitial requirementsfor the service already existed in TCR-TR 011 [6];

- thestage 1/ stage 2 [8] and the stage 3 [10] standards are well expressed and include refined user requirements,
ASN.1 specifications of operations, Message Sequence Charts and SDL process charts;

- the PUMR serviceis neither trivially simple nor prohibitively complex.

Contained in this annex are a Context Model, a Requirements Model, a Specification Model and a Test Model for
PUMR. From these it would be possible to derive an SDL specification and a conformance test suite. The models may
have elements missing but they are complete enough to show how the various UML concepts and diagrams can be used
in the development of a protocol standard.

NOTE: The Context, Requirements and Specification Models are presented pictorially here but they are also

available in electronic format as either HTML for browsing or as Rational Rose 2000 models for editing.
The Testing Model isalso available electronically asan XMI-compliant file.

A.2 PUMR UML models

A.2.1 Context Model

The PUMR Context Model isvery simple and isjust used to illustrate the basic concepts upon which the serviceisto be
built.

PLIN ETSI| Generic
............... = Domain Model

Figure 40: Context Model packages

ETSI

47 DES/MTS-00062 V2.0.9 (2000-09)

<<communication systems:»

FISN
1.n 2.n
<<communication emviranment entity=> <<communication system entity ==
Terminal PR

Figure 41: Simple PUMR Domain Model

: Terminal - PISN

registration_requesti)

registration_rasponse()

Figure 42: Sequence diagram indicating the flow of information between the user and the PISN

Home @ PIME Previous . PN
“isitor : PIMNE Directory : PINK
- Termminal

Figure 43: PUMR system architecture shown in an object diagram

ETSI

48 DES/MTS-00062 V2.0.9 (2000-09)

A.2.2 Requirements Model

The use cases developed for the PUMR Reguirements Model are based upon the requirements specified in
TCR-TRO011[6] and the stagel / stage 2 standard, | SO/IEC 17875 [8] where the original requirements have been
refined.

-

Register PLM User at a Terminal
for Qutgoing Calls

Specify Access Point for Incoming / \
Call

-

Specify Serice Type

-

Specify Profile

PLIM user Authorized user

Figure 44: PUM Registration use case diagram

ETSI

49 DES/MTS-00062 V2.0.9 (2000-09)

(Request registration for)
outgoing calls
< [uger D = Alternative Identifier] Find user's
. _PISN Mumber

[User ID 5 PISN Murnber]

<

Stan outguing [Session limit = nurmber of calls | [Session limit = time period] Start session
call counter ./ k8 tirner

[Session limit = unlimited)

Start outgoing
call session

Report "outgoing call)
session started” to user

Figure 45: Activity diagram describing the "Register PUM User at Terminal for Outgoing Calls" use
case

ETSI

50 DES/MTS-00062 V2.0.9 (2000-09)

Request registration
for incoming calls

> [User ID = Alternative ldentifier] Find User's

_PISM Murnber

A

[User ID 5 PISN Mumber]

A

[User status = Registered at another terminal] Delete existing

“._ registration

[User Status = registered elsewhere |

Start incoming
call session
Report incoming call
session started

Figure 46: Activity diagram describing the "Specify Access for Incoming Calls" use case

ETSI

51 DES/MTS-00062 V2.0.9 (2000-09)

[registration complete |

(Fequest Serice)
profile setup

[wisitor support F download profile |

[user ID = alternative identifier
[wisitor support = default] < = F'Flgl‘?l ﬁﬁﬁ:;er

[user D =fISN nurmber]

o

Request user's
service Prafile

< [profile = indicative }— e rated)

”\Incal Service Profile

[profileg= detailed |

Set default local

Service

Install users

Frofile

Senvice Profile

<>

EE Report Service
profile established

Figure 47: Activity diagram describing the "Specify Profile" use case

ETSI

52 DES/MTS-00062 V2.0.9 (2000-09)

Authorized user

-

De-register from cumrent loc ation

PLM uger

Figure 48: PUM De-registration use case diagram

Request PUM user
de-registration
< [User ID = Alternative ldentifier] Find users PISn
nurnber

User D ={ PISM Mumber]

Terminate FUM user [De-registration = Outgoing Calls] J\ [De-registration = coming Calls | -~ B oars
outgoing call session 7 incoming call session

[De-registration = All Calls |

< Terminate PUM user's incoming)
and outgoing call sessions

Report De-registration
to PUM user

Figure 49: Activity diagram describing the "De-register from current location" use case

ETSI

53 DES/MTS-00062 V2.0.9 (2000-09)

A.2.3 Specification Model

The Specification Model draws on the information presented in the Context Model and the Requirements Model as well
asthe existing PUMR Stage 3 standard, | SO/IEC 17576 [10] to offer aset of UML diagrams from which it would be
possible to start developing a detailed behaviour specification in SDL. This*"reverse engineering” approach would not
normally be used as the purpose of using UML isto end up with a Stage 3 standard (or something similar). In this case,
it was used to ensure that the UML specification isfully aligned with the “resultant” standard.

PLIM PLIM Registration
T suplementary Service
(frorm PLIN)
by
LSIG ET=Il Generic
(frorm PLIR Daomain Model
— W
QEIG
Messages
(fram Q=1G)

Figure 50: Specification Model packages

s<communication systems=
PISN

1..n 2.n

“<communication environment entity == <<communication system entity=»
Terminal FlMx

Figure 51: Basic Domain Model (from Context Model)

ETSI

54 DES/MTS-00062 V2.0.9 (2000-09)

Home : Previous :
_PIMx _ PlMx
Yisitor Directory
Pl C PInE
: PURM User
Figure 52: PUMR Object Model
] Yisitor MWisitor Home : Home Previous - Directaory
L PUM User FIRE FIN: Wisitar PINX Directary PINX

registration_requesti)

PUM_SETUR[PumRegistrirg)

CALL_ PROCEEDING()

PUM_SETUP(P urn De RegArg)

PUR_COMNMECT(PumRegistrRes)

'
:""-a.

‘registration response()

CALL_PROCEEDING()

RELEASE()

RELEASE_COMPLETE()

PUM_CONMECT{DummyRes)
[1

RELEASE()

RELEASE_COMPLETE()

Figure 53: Example sequence diagram showing registration using the PUM Number

ETSI

55 DES/MTS-00062 V2.0.9 (2000-09)

/I \ “sitor - Wisitor Horme : Hame Previous Directory :
“PUM Usar PN PN Wisitar PIMA Directory PIMX

registration_request(y : :

—_— > : : :
i i ! PUM_SETUPPisnEngarg) i :
i i : CALL_PROCEEDING() i :
| < = e |
' | PUM_CONNECT(PumRegistrR es) 5 '

RELEASE()
! RELEASE_COMPLETE()
PUM_SETUP(PumRegistrary)
; | CALL_PROCEEDING() | i |
PUM_CONNECT(PumRegistrRes)
: ' PURM_SETUF(PumDelRegArg) :
g RELEASE() i :
RELEASE_COMPLETE()!
rl:ggistratinn respunse(é) CALL_PROCEEDING(]
- S —— : : :
i PUM_CONNECT(PurmDe-regirg) |
! 5 ; RELEASE() : :
: RELEASE_COMPLETE()

Figure 54: Example sequence diagram showing registration using Alternative Identifier

ETSI

56 DES/MTS-00062 V2.0.9 (2000-09)

“ - “isitor . Visitor Home : Home

_ PUM User EINx PIN

v de-registration invoke() :

PUM _SETUP{PumDe-reghrg)

CALL_PROCEEDING()

: v PUM_CONMECT{PumDe-regairg)

+ de-registration respanse()

RELEASE()

! ! RELEASE_COMPLETE()

Figure 55: Example sequence diagram showing de-registration

ETSI

57 DES/MTS-00062 V2.0.9 (2000-09)

s - YWigitar @ Wisitor Horme : Horme Cther Visitar

- PUM User [SICES BN Wisitor PIR
interrogation iroke() . : :
¢+ PUM_SETUP{Purlnterragarg)
| : 1 PUM_SETUP(Purinterroghrg) |

CALL_PROCEEDING()

CALL_PROCEEDING()

I
—
'

PUM COMMECT{Fumintermgirg)

' PUNM_COMME CTPuminterrogirg) |
b PUM_FACITILY (Purninterrogdrg) | :

interrogation responsel) |
E'\-\.._‘]

RELEASE()

RELEASE()

RELEASE_COMPLETE()

RELEASE_COMPLETE(

Figure 56: Example sequence diagram showing PUMR interrogation

ETSI

58 DES/MTS-00062 V2.0.9 (2000-09)

<Zgommunication system entity>=>
PIM

0.1
*—_\—\ «<gommunication setem entity=»

Drirectony PINE

-
-
.

1 <<communication interfacex>
PUM zignalling at a Directony PINX
(from Interfaces)

<dcommunication system entity=>

Wisitor PR
+ FUh_SETURFISHEnquindnv : FisnEngArng)
T + RELEASED
1 “‘
<<gommunication sstem entity==
Home PINZ "
Q <<communication interfacex>
y PLUM zignalling at a Visitor PINX,
. (from Inte rfaces)
. + registration_request])
. + PUM_COMNNECT(PUMRegistrationResp : PumRegistrRas)
' + PUM_COMHECT(FUMRegistrationErr : PumRegErrors)
" + PUM_SETUF{FUMDelRegistrationiny : PumDelRegArg)
5 + CALL_PROCEEDINGD
Q‘ + RELEASE_COMFLETEQ
<2cammunication intefacess + PUW_COMHECT(Fumbe-regArg : Fumbe-reghrg)
PUM signalling at 2 Home PINX : Ef'f:l‘;igon ket
(fn.)m Il?terfaces) - + intarragation invoke()

+ FUM_SETUP(FUMRegistrationlnw : FumRegistrfrg) + PUM_CONNECT(argname : Puminterogérg)
+ PUM_CONMECT{FUMDeIRegistrationResp : PumDe-regirg) L+ PUM_SETUP(argname : Puminteragarg)
[+ FUM_CONHECT(FISHEnquirgResp : FisnEngRes) + PUM_FACITILY({Puminterragang : Puminterrogérg)
+ CALL_PROCEEDINGD
+ RELEASEQ

+ RELEASE_COMPLETEQ
+ FUM_SETUR{FumDe-regfrg : FumbDe-reghng)
+ FUM_SETUF(Fuminterrogérg : Fuminterrogéng)

+ PUM_CONMECT{Fuminterragirg : Puminterragfng)
F A SRR E T T R e T LT R EsT

Figure 57: PUMR detailed Domain Model

ldle

—

PUM_SETUH /S “PUM_SETUP

Frocessing PUM
Registration Reguest

Figure 58: Statechart diagram showing the registration processing at the Home PINX
NOTE: Figure 58 and Figure 59 are exampl es of a statechart diagram and a sub-diagram that could be devel oped

for the PUMR supplementary service. The Specification Model isincomplete at this point and does not
include any further statecharts.

ETSI

59 DES/MTS-00062 V2.0.9 (2000-09)

Sending CALL Proceeding PUM_SETUP sent
to wisitor Location to Previous Yisitor

CALL PROCEEDIMG /
CALL PROCEEDING sent/ *PUM_COMMECT

Wait for PLUMW_COMNMECT
from Previous “isitor

PUM_COMMECE sent to
Yisitor location

PUM_CONMNECT / *RELEASE

PUM_COMMECT received
FELEASE/S *“RELEAZE_COMPLETE from Previous “isitor

FELE _COMPLETE

Figure 59: Statechart sub-diagram showing the detailed processing of a registration request at the
Home PINX

ETSI

60 DES/MTS-00062 V2.0.9 (2000-09)

[]]

Int efaces Messages

[]

PUMRE_Message types

Figure 60: PUMR message-specific packages

<Znormative intefacexx
Q5% Basic Senwice

SETUP(setup : PDLY
CALL_PROCEEDING]
COMMECT{zonnect : FOLUY
RELEASED
RELEASE_COMPLETED

A

<Z<communication system entity==
PIM
tfrom PR
Zdcommunication interface == =seommunication interface ==

FLUM signalling at a Wisitor PINX PUM signalling at a Home PINX
+ registration_request]) + PUM_SETUP(PUMRegistrationlne : PumRegistrArg)
+ PUNM_CONMECTIFUMRegistrationResp : FumRegistrRes) + PUW_COMMECT(PUMDelRegistrationResp : PumbDe-regfrg)
+ PUM_CONHECT(PUMRegistrationErr : PumRegErrars) + PUM_CONHECT(PISMEnquirgResp : PisnEngRes)
+ PUM_SETUP(PUMDelRegistrationlnw : PumDelReghrg) + CALL PROCEEDINGD
+ CALL_PROCEEDINGD + RELEASE(]
+ RELEASE_COMPLETE(] + RELEASE_COMFLETED
+ PUM_COMHECT{PumDe-ragérg : PumbDe-regérg) + PUM_SETUP(PumDe-regfrg : PumbDe-regfrg)
+ RELEASEQ] + PUM_SETUP(Fuminterragarg : Pumintemagirg)
+ de-registration invokel) + PUM_CONHECT(Fumlinterrogirg : Pumintarragfrg)
+ interrogation invoke(+ PUW_COMHECT(dummyRes : CummyRes)
+ PUM_COMNMECT(argname : Fuminterrogfrg) =
+ PUM_SETUP(argname : Pumlnterragsrng) . f,’
+ PUM_FACITILY{Puminterrogfrg : Puminterrogfrg) ‘=\‘_ L

Normative << gommunication interface »»
interfaee - - PUM =ignalling at a Directony PINX

+ PUM_SETUPIPISNEnquingdnw : PisnEngfrg)
F RELEASED

Figure 61: Identification of PUMR signalling at the QSIG interfaces

ETSI

61 DES/MTS-00062 V2.0.9 (2000-09)

Zdcommunication message=»

Z<communication messages==
P SETLR

FLIW_COMNEST

Figure 62: Identification of the two QSIG signals used for carrying PUMR message information

<dgommunication messages>
SETUFP
Calling Usar: PartyNumber
Called Usar: PatyHumber
Bazic Senice : BadoSewioe

Ji)

<<communication mesages=:
P SE TUR

i)

<Zeammunication mesages> <Zgommunication message=>
PumRegistriug PisnEnqérg
(from PUMR_Mesage_types) (from FLUMR_Message_trpes)
[+ pumUserld : PumUserld I+ altemativeld : Altarnativeldentifier
+ basicService : BasicSenice [+ argExtension : PumrBxtension

+ hostingAddress : PatyMumber

+ activatingUserAddr : PatwNumber
[+ serviceOption : ServiceOption

+ sessionFarams : SessionParams
[+ uzerPin : UserPin

+ argExtension : PumrExtenszion

<<eommunication mezages>
FumDelRegdrg
ifrom PUMR_Mezage_types)
+ pumbserld : PumbUserd
+ basicSendce : BasicSewice
+ hostingAddr : PatyNumber
+ senviceOption : ServiceOption
Fumbe-regrg + argestension : PumEstension
(from PUMR_Message_types)
+ pumUserid : PumUserld
+ basicSendice : BasicSenvice
[+ hostingfddr : ParyMumber
[+ activatingUserfddr : PattyNumber
+ senviceDption : ServiceOption
[+ userPin : UserPin
+ argExtension : PumrExtenszion

<Zgommunication messages>
PuminterragArg

(from P UMR_Mez=age_tvpes)
+ pumbszerld : FumUserld
+ basicService : BasicSevice
+ i :

host.lngAdf:Ir. PartyN.umber. <ecommunication messages>
[+ serviceDption : ServiceOption
+ argExtension : FumrExtension

Figure 63: PUMR message contents carried in the SETUP signal

ETSI

62 DES/MTS-00062 V2.0.9 (2000-09)

<<gammunication messages>
COMNECT

Connected User: PartyMNumber

<communication messages>
FUN COMNNECT

2N

FUM Responses EUN Ermors

Figure 64: PUMR message types carried in the CONNECT signal

PLIM Re sponses

A

<<communication messages>= <<communication mes sages==
PumRegistrRes FisnEngRes
(from PUMR_Message_types) {from PUMR_Message_types)
+ purnMumber : PartyNumber + pisniumber : partyNumber
+ seniceOption : ServiceOption + dummyRes : DummyRes
+ geggionParams SessionParams

+ argExtension : PumrExtension

“<commuonication message=>
PumlinterrmgRes
(from PUMR_Message_types)
+ hasicService : BasicSevice
+ hostingAddr : PartyMumber
+ serviceOption © ServiceOption
+ interrogParams | SessionParams
+ argextension : PumrExtension

Figure 65: Contents of the PUMR response messages

ETSI

63 DES/MTS-00062 V2.0.9 (2000-09)

PUM Errors

Py P - <<communication messages>
communication message PisnEngErr

PurnR egistrEr
{from PUMR_Message_types)
+ purmRegErrors ¢ PumRegErrors

(from PUMR_Message_types)
+ pisnEngErrars : PisnEngErrars

<<communication messagess <<communication messages>
PurnDe-regErr PumDelRegEr
{fram PUMR_Message_types) {from PUMR_Message_types)
+ pumDe-RegErrars | PumDe-regErrors + pumDelRegErrors : PumDelRegErrors

Figure 66: Contents of the PUMR error messages

<<communication messages>

iy <<communication messages> <<communication message=>
- II:lumpeglLer rlgcql PumRegistrRes PumRegistrErr

+ pumilserld - Fumllser + pumMurnber : PartyMumber + pumRegErors . PumRegErors

+ hasicSenice : BasicService P y P g g

+ serviceOption © ServiceOption
+ sessionParams | SessionParams
+ argExtension : PumrExtension

+ hostingAddress : PartyMumber

+ activatinglserAddr : PartyMurmber
+ serviceOption : ServiceOption

+ sessionParams | SessionParams
+ uzerPin : UserFin

+ argExtension : PumrExtension

Figure 67: PUMR registration message types

<<communication messages> <<communication message>>
FumDe-regfrg FumDe-regErr
+ pumUserd : PumUserld + pumDe-RegErrors © PurmDe-regErrors

+ basicService : BasicService

+ hostingAddr ;. PartyNumber

+ activatingUserAddr . PartyMumber
+ serviceOption : SericeOption

+ ugerPin : UserPin

+ argExtension : PumrExtension

Figure 68: PUMR de-registration message types

ETSI

64

DES/MTS-00062 V2.0.9 (2000-09)

Z<communication messages>
FumDelRegiry

<<communication message=>
PumDelRegErr

+ pumUserdd : PumUserld

+ baszicSerice : BasicSevice

+ hostingAddr . PartyMNumber

+ serviceOption : SericeOption
+ argextension : PurrExtension

+ purmDelRegErrors . PumDelRegErrors

<<communication message>>
FumDelRegRes

+ dummyRes ; DummyRes

Figure 69: PUMR delete registration message types

<<communication messages>
Furrlnterrogdg

+ purnbUserld : PumUserld

+ basicSenice ;| BasicSevice

+ hostingAddr : PartyMNumber

+ serviceOption © ServiceOption
+ argExtension : PumrExtension

<<communication messages>
PuminterrogRes
+ basicSerice : BasicSevice
+ hostingAddr : PartyMumber
+ serviceCption © ServiceOption
+interrogParams : SessionParams
+ argextension : PumtExtension

<<communication messages>
PuminterrogErr

+ purninterrogErrars ¢ PumninterrogErr

Figure 70: PUMR interrogation message types

PiznEngbrg

<=communication message=>

<<communication message>>
FisnEngHes

+ alternativeld : Alternativeldentifier
+ argExtension . PumrExtension

+ pignfumber ; part yMumber
+ dummyRes: DummyRes

Figure 71: PISN enquiry message types

<<communication messages>
FisnEngErr

+ pisnEngErrars : PisnEngErrars

ETSI

65 DES/MTS-00062 V2.0.9 (2000-09)

<<ghnumerationz:
Sendcelption

<<datatype=>
SessionParams

+¥ inCallRegistration © Integer=10 +§ durationOfSession : Integer=1
+§ outCallRegistration : Integer =1 +§ number2fOutCalls : Integer=2
+§ allCallRegistration : Integer =2

==datatype==
DummyRes

<=datatypes= <=datatype==
MullErntry FumrExtension

Figure 72: PUMR general data types

<<enumeration=>
PumRegErrors
+h irvalidSewedUserMumber : Integer =1
+5 notAuthorized @ Integer= 2
+hunspecifed : Integer=3
+§ notAvailable : Integer =4
+h termpararilyUnavailable © Integer= &
+§ sup plermentary SendcelnteractionMotillowed © Integer =6
+5 pumUserMotSubscribedToThisSenice © Integer= 7
+5 pumUserFailedAothertication : Irteger =8
+§ hostingAddrinvalid © Integer=9

<<enurmneration = ==enumeration==

PurmDelRegErrars PisnEngEmars
+§ unspecified : Integer =3 +5 invalidServed
+§ notAwailable : Integer= 4 +5 unspecified © |
+§ temparatilyUnavailable © Integer =15 +5 supplementar
+§ supplementarySericelnteractionMotAllowed : Integer =6

<<enumetation >
PumDe-RegErors

<<enumeration>>
PuminterragErrors

+§ invalidSeredUserMumber : Integer =1

+§ notAuthorized @ Integer =2

+§ unspecified : Integer=13

+§ temporarilyUnavailable © Integer=15

+§ supplementarySenicelnteractionMotAllowed : Integer =6
+§ purmUserMotSubscribedTaThisSerice : Integer=7

+§ purmUserFailedAuthentication : Integer =13

+§ hostingAddrinvalid @ Integer=9

+§ purnUserMotregistered © Integer =10

+§ irvalidServedUserMumber : Integer =1

+§ notAuthotized @ Integer =2

+§ unspecified : Integer =13

+§ supplementarySenicelnteractionMotAllowed : Integer =6
+§ pumUserFailedAuthentication : Integer =8

+§ hostingAddrinvalid © Integer =9

+§ pumUserMotRegistered : Integer = 10

Figure 73: PUMR error codes

ETSI

66 DES/MTS-00062 V2.0.9 (2000-09)

<<datatype=>=
UserFin

=<datatypes= =«datatypes=
FumlserPin ActwatingllserPin
+ pumllserPin : CharString20 + activatingllserPin : Charstring20

Figure 74: Type specification of PUM user PIN

<<datatypess
Fumllserld

<=datatype=>» <<datatype==
PumMumber Alternativeldentifier
+ pumMurmber - PartyMumber + alternativeld : Charstring20

Figure 75: Type specification of PUM user identifier

<<datatypes>
PurmrExtension

1.7

w<datatypes=
Extension
+ manufacturerlD : CharString20
+ ExtensionElement [0..7] . Byte

Figure 76: Type specification of PUMR message extension

ETSI

67 DES/MTS-00062 V2.0.9 (2000-09)

QA5G Q515 _Message_types
hMessages

Figure 77: QSIG message packages not specific to PUMR

<<communication messages> <<communication message>>
SETUP RELEASE

+ Calling User : PartyMumber
+ Called User : PartyMumber
+ Basic Service : Basicoevice

<<communication message=> <<communication messages>
COMMECT RELEASE_COMPLETE
+ Connected User : PartyMumber

<<communication message=>
CALL_PROCEEDING

Figure 78: QSIG basic service messages

<<enumerations=
BasicService This is a character

+5 allSemvices : Integer=10 T:<hdatsat3_rpe>> string which is limited
+§ speech : Integer = 1 ar tr|r.1g2D B to a maximum of 20
+§ unrestrictedDigitallnformation : Integer = 2 + CharacterString : String characters in length.
+% audio3100Hz : Integer =3
+§ telephany © Integer=4
+§ teletex : Integer=15
+b telefacgroupdClass? : Integer=6
+§ videotexSyntaxBased : Integer=7

+§ viden EEthm! DIEQE[=B

Figure 79: QSIG general data types

ETSI

68 DES/MTS-00062 V2.0.9 (2000-09)

<<datatypess=
PartyMumber
<<datatypess: cedatatupess <<datatypes:=
UnknownPartyhumber Datapartprumber PrivatePartyMumber
+ unknown Party Mumber : NumberDigits - + privateType Oflumber : PrivateTypeQOfMumber
! s * dataPartyNumber . NumberDigils + privateMumberDigits © Mumbedigits
<<datatypess <<datatypes=
PublicPartyhumber TelexPartyMumber <<datat ype=>
+ publicTypeOfumber : PublicTypeOfflumber| [+ telexPartyMumber : NumberDigits i MationalStandardPartyMNumber i
+ publichumberDigits : MumberDigits + nationalStandardPartyMumber : MumberDigits

Figure 80: Type specification of QSIG party number

<<datatype==
MurnberDigits

2

1.20
<<gnumeration==
Diigit
+50=0
+51=1
+52=2
+$3=3
+54=4
+55=45
+56 =6
+57 =7
+58=8
+59=9

Figure 81: Type specification of QSIG digit string

ETSI

69 DES/MTS-00062 V2.0.9 (2000-09)

A.2.4 Testing Model

The Testing Model is derived from the Context and Specification Model and bridges the gap between the functional
specification and its associated test suite.

Identification of functional entities.

PUMR Home

O

PUMR Home
(Context Model Interfaces)

PUMR Visitor O

PUMR Visitor
(Context Model Interfaces)

PUMR Directory i ‘/\

PUMR Directory
(Context Model Interfaces)

e e e

Figure 82: Functional entities

ETSI

70

Simple single tester test configuration.

DES/MTS-00062 V2.0.9 (2000-09)

<<|UT>>

PINX

PUMR Directory PUMR Home

PUMR Visitor

<MTC>

Main Tester

PUMR Visitor

Figure 83: Test configuration with a single tester

ETSI

71 DES/MTS-00062 V2.0.9 (2000-09)
Distributed test configuration.
<<|UT>>
PINX
PUMR Home
/ \\
pco1 PCO 2 PCO3 ™\
\,
<PCO>> /// <<PCO>> <PCO>> AN
S N
<PTC> <PTC>> <PTC>
TC1 TC2 TC3
PUMR Visitor PUMR Visitor PUMR Directory
N \\) \\
AN N4
X
N VAN
CP1 \\\ CP2 CP3 yd \\\ Acts as
Acts as New <«<CP>> \ <CP>> <CP>> // \\\ Directory PINX
Visitor PINX \ / \
\ // \\
AN % N
\,
\\ / \
Acts as Previous
SMre> Visitor PINX

Test Coordinator

Figure 84: Test configuration with distributed testers

ETSI

72

Test group and test case hierarchy.

DES/MTS-00062 V2.0.9 (2000-09)

<<test group>>
Test cases
1] []
<<test group>> <<test group>>
Capability tests Valid behaviour tests
[1 [1 [1 []
<<test case>> <<test case>> <<test case>> <<test case>>
CATestl CATest2 VBTestl VBTest2

Figure 85: Test case structure

ETSI

73 DES/MTS-00062 V2.0.9 (2000-09)

Test purpose description for test
case VBTestl.

______ _>| TC1 MBTestl TC1

| .
Pl IC2 VBTest TC2 i

PUM_SETUP(pumRegistrArg)

CALL_PROCEEDING()

PUM_SETUP(pumDelRegArg)

. PUM_CONNECT(pumRegistrRes)

CALL PROCEEDING()

RELEASE COMPLETE()

PUM_CONNECT(pumDelRegResp)

N/
7\,

RELEASE()

RELEASE COMPLETE()

Figure 86: Test purpose description

ETSI

74 DES/MTS-00062 V2.0.9 (2000-09)

Behaviour description for test
component TC1 in test case VBTest1.

/PUM_SETUP(pumRegistrArg)

)

Wait for Call Proceeding

J

CALL_PROCEEDING

Wait for Connect

PUM_CONNECT(pumRegistrRes)RELEASE()

[Wajt for Release Complete]

®

RELEASE COMPLETE

Figure 87: Behaviour description for test component TC1

Waiting for Setup

Behaviour description for test
component TC2 in test case VBTest1.

PUM_SETUP(pumDelRegArg)/CALL._PROCEEDING()

[Call Proceeding sent

)

/PUM_CONNECT(pumDelRegRes)

[Waiting for Release

J

®

RELEASE/RELEASE COMPLETE()

Figure 88: Behaviour description for test component TC2

ETSI

75 DES/MTS-00062 V2.0.9 (2000-09)

History
Document history
1.0 Sept 1999 — First draft
May 2000
2.0 May 2000 — Revised structure of the document to accommodate UML Activity Diagrams
Sept 2000 describing the individual elements of the standards devel opment process.

ETSI

