Temporary document 018
European Telecommunications Standards Institute

MTSH31

24 to 26 October 2000
Sophia-Antipolis

Sour ce: STF169 leader

Title: DTSMTS-00068: Specification of ASN.1 Encoding
Control Notation

Date: 13 October 2000

Document for: | nformation

Agenda item: 6.6

Page 2

DTS/MTS-OOOGS V1.1.1 (2000-10)

Methods for Testing and Specification (MTS);
Abstract Syntax Notation 1 (ASN.1) encoding rules;
Specification of Encoding Control Notation (ECN);
(ISO Draft Standard 8825-3,

ITU-T Draft Recommendation X.692)

1 DTS/MTS-00068 V1.1.1 (2000-10)

Reference
DTS/MTS-00068

Keywords
ASN.1, protocol, specification

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +334 92944200 Fax:+33493654716
Siret N° 348 623 562 00017 - NAF 742 C

Association a but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In
case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status /

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restrictions extend to reproduction in all media.

© European Telecommunications Standards Institute yyyy.
All rights reserved.

2 DTS/MTS-00068 V1.1.1 (2000-10)

Contents

INtellectual Property RIGNES.uii ittt et e s snbe e s nnn e e e nne e e eneeas 6
0= Yo (o O PRPSOPRPRS 6
(g1 (1o i o PR 6
1 SO0 I ettt ettt ettt —————— 7
2 NOIMELIVE FEFEIEICES. ... ettt e et e et e e e st e e s s bee e e e e e sbb e e e e e nbe e e e s annteeeeaannneeeeennees 7
2.1 Identical Recommendations | International StaNAards............oeereerririeinienieieree e ses e ses s eens 7
2.2 AAGItiONE] FEFEIENCES.......oieeeeereetrieereee sttt ea bbb s bbb bbbttt 7
3 D 0T (o PP PSR 8
3.l ASNLL DEFINITIONS....cutiuereeireirietree sttt eas s bbb bbb a s bbb bbb bbb 8
3.2 ECN-SPECIHTIC AEFINITIONS ...ttt bbb bbbttt 8
4 F Y oo (=Y T (o PRSP 10
5 Definition Of ECN SYNEBX..........cuuiiiiiie i e e e e e e st e e e e e e e s st b e e e e e e e e e e s snarrreeeeaeeas 10
6 Encoding conventions and NOLELIONouuireeiiiiieeeeieee e st e e e e e e e st e e e s sssaeeeeesnaeeeessnseneeeanns 10
7 The ECN Charaller SEL.......ocoiieiiie ettt e e e e e e e e s e e e e e e e e nnnneeeeennnees 11
8 O = Loz] = 0SSR
8.1 ENCOUING ODJECE FEFEIENCES ...ttt et
8.2 Encoding object set references...

8.3 Encoding classreferences...........

8.4 ReSErVEd WO ItEMScccuieeirierereerireireeiresere ettt sess s

8.5 Reserved encoding class name items

ST I =101 = 1= 01 B0 o 11 (TR

9 L N O 0= o PPN 13
9.1 Structure of Encoding Control Notation (ECN) SPECITiCatiONS.........cccvreeeurniniecinrisssteesese s sesssssssssssssessssensens 13
9.2 Encoding classes

0.3 ENCOUING SLIUCIUIESeueeceeeececeeteisesssesesessssssssesssssesssssssssssssssssessssssssessssessssssssssssssessssssnsessssssnsesassssesesnssssssessssssssnsesnssssesnssnssns

LS R S oo o] g To o o=t £ TP
9.5 Encoding object Sets......ccoevererennen.

9.6 Defining new encoding classes

9.7 Defining encoding objects...............

9.8 Differentia encoding-decoding

9.9 Properties of encoding objects........

9.10 Lz 01 (= 1 (o) o OO
911 (GOVEITNIONS.....ceeeesereseee sttt e sttt se e e e e e ne e84 £ A e e e84 £ e eS8 848 A8 e84 82 eE e 8 A8 48 A8 e 8 e 8 A8 HE e A e E S A A e A e b e e e e e b e b e A eE e b e b eEeEnbebebneebebesneebebesnnas
9.12 General aspects of encodings

9.13 Encoding structure field-references and determinants...........ccovcccerereenrensicie s sssss s sssssssens
9.14 Mapping abstract values onto fields of eNCOdiNg SIIUCLUIEScccueeeeurirecce st seanens
9.15 Contents of Encoding Definition MOAUIEScccvvevcnrenserereecieenes

9.16 Contents of the Encoding Link Module..........cocovevnecennenserereeeeennenas

9.17 Application of encodings..............

9.18 Combined encoding object set

9.19 Application point..........cooeeereeerneeees

9.20 CONAItIONAl BNCOUINGS......ucrevuerererreerreser ettt s res e s bbbt
9.21 Changes to ASN.1 Recommendations | I nternational Standards

10 Identifying encoding classes, encoding objects, and encoding SELS.........uvvveiriieieeeiiieee e 23
N = 0o o [00 AN V0 1Y SRS 25
111 LT 0T - | OO 25
11.2 Built-in encoding classes used for implicCit enCOding SITUCTUIESccvivrecrrecrieeeeree e 26
113 Simplification and expansion of ASN.1 notation for encoding PUIPOSES.........cwueereeeriremseremserseserseersesessesesseseens 26
114 TheimpliCit @NCOAING SITUCIUIE ..ottt b e bbb s st s et b 28
12 The Encoding LinK MOAUIE (ELM)cooiiiiiiieeiiie ettt e e s 28

121 SUrUCLUrE Of AN ELIM MOAUIE ...ttt ettt b e s sttt b et bs b et se st e ss s st st e ba s enes 28

3 DTS/MTS-00068 V1.1.1 (2000-10)

12.2 ot o 1 g o = V7 o 29
12.3 ENCOAING MUIIPIE LY PES....viiieeereeiseeisesiresesie s tsesess s sessse et ase s s s se st sesesns et eesssnsessesnsnsessssnssnsssnesssessssnnsns 29
13 Application Of ENCOUINGS........uuiieiiiiiie et e e e e e e e e e e e e et e e e e esar e e e e e ssreeeeaanaeeeas 30
131 GBINEFA ...ttt R AR AR 30
13.2 The combined encoding object set and itS 8PPliCALION. ... 30
14 The Encoding Definition MOAUIE (EDM)ooiiiiiiiiie ittt 32
15 ENCOding Class @8SSIgNMENES.cccoiiiiiie et e ettt e e et e e et e e e e b e e e s sbneeeeaannaeeeas
151 GBINEFA ...ttt R R AR R R AR R bbbt
15.2 Encoding structure definition.......

15.3 Alternative encoding structure

154 Repetition encoding StTUCUIE. ...t

155 Concatenati on ENCOUING SIFUCTUNE........c.vcuieeerieeeieeeri e sese s bbb
16 ENCOdiNg ODJECE SSIGNMIENES.....o.ueieiiiie ettt ettt ettt e e st e e sab e e e saae e e saneeenneeennes 33
16.1 Categories of encoding ODJECt aSSIGNMENTSccirriirrecrre et 3
16.2 Encoding with a defined syntax

16.3 Encoding With encoding ODJECT SELS........coeueiiece e 40
16.4 ENcoding USING VAlUE MAPPINGSvvvueueiiiicietieseeietsessssessssesssetsssssssssesssssessssssssssessssssssessssssssessssssssessssssssessssssssesssssnssns
16.5 Encoding an encoding StrUCLUE...........cceecceresccie et

16.6 Differential encoding-decoding.........ccccceveveerrencciensecse e

16.7 User-defined encoding-functions.

17 Encoding ODjeCt SEt @SSIgNMENESccceiii it e e e e e e e e e e eeaeeas
S BV = o o 1 00 N = [0TSR
181 GBNEFA ...ttt R R R R AR E e E A bbb bbbt
182 MapPING DY EXPLICIE VAIUES........ccucueecccreccte sttt bbbt es st s s s anae s s s aneas
18.3 Mapping bY MatChiNG FIEIAS. ..ottt es s nae s e s e
184 Mapping by #TRANSFORM encoding objects

185 Mapping by abstract value ordering...........cocceevevevennenssesenesesesesenenns

18.6 Mapping by value distribution

18.7 Mapping integer valuesto bits

19 Built-in encoding classes supported by defined SyNtaX............ccevveieiiiieiiieeiie e 51
191 GBINEFA ...ttt R R R AR AR
19.2 Common types

19.3 The # TRANSFORM encoding Class........coveeerneeerneeernersnesnesesnesenneennes

1931 Source class and target encoding class

19.3.2 TNE INE-LO-INE IFANSTOIMTS ...t bbbt b bbb
19.33 The DOOI-LO-DOO0I tFANSFOIMS ...ttt bbbttt
19.34 The bool-to-int transforms

19.35 Theint-to-bool transforms

19.3.6 Theint-to-chars transforms

19.37 Theint-to-bitstransforms......

19.3.8 The bits-to-int transforms......

19.39 The char-to-bits transforms

19.3.10 The bits-to-char transforms

19.3.11 Thebit-to-bitstransforms......

19.3.12 The bitS-t0-DIt trANSFOMMS ...ttt et s e nns et e
19.3.13 The bitS-t0-fiXeO-UNITS trANSFOMM.....c.cieeeereece ettt
194 The pre-alignment parameters

195 The padding PAraMELEr GrOUP.........ccceureeeereereiuetessesese e ssesssssssssssss s s s ssesessassessssssstebessssssesssssssessssssssetesssnssesessssssesssens
19.6 The pad-padding ParaMELEL GIOUD.........ccocurureiueieireeseressesse s sessss e sessssesessssssesss s sstebsssssssesesssssessssssssetesssassesessssssesssens
19.7 Thebit reversal ParamEtErS..........oocceveveeereree e eaes

19.8 Encoding space parameters.......

19.9 Determination mechanisms.......

19.9.1 General ...

199.2 Use of alength determinant

19.9.3 UNUSE DItS AELEIMINGLIONcevreeieeeieeeeee ettt bbb
1994 End of container [ength determinaliON............ccveercreirerreeeeeeie e es e
19.95 Special pattern length determination

19.10 Definition of haNdIES.........cccueviieerrcce e

1911

Use of handles

4 DTS/MTS-00068 V1.1.1 (2000-10)

19.12 RV U=t g Toce T [1o I AN LT
19.13 Value-encoding for Bool ...
19.14 Value-encoding for Int
19.15 The concatenation procedure parameters
19.16 REPELitioN ENCOAINGcecveeeerieririreereeeee s
19.17 Value-encoding fOr BitSccveenininerneeee e
19.18 Value-encoding fOr OCLELS.........ccveirineineeee e
19.19 Value-encoding for Chars ... sesees
19.20 The ordering procedure Parameters.........cocveeeeereeeeessesse e sseseses
19.21 (@0 a1 e= 1T 0 =T0 3] 0 L= = aTo0 T |1 o RO
19.22 The HOUTER €NCOUING CLASS........cceureeeciresisie st sss st s s s ssss sttt es s s st sssssssessssssssssesssnsssssssssssessnens

Annex A (Normative): Specification of ENCOdiNG Classes.......cuuviieiiiiiiiiiiiei et 65
Al Commonly-USed tyPe AEfiNItIONS.......cciceecce ettt bbb ae st tes
Y € (01U o TS o) o= -0 1=: =TT
A.3 The#HTRANSFORM ENCOUING ClASS......cccoiiieeiririiiririressisisessss e sesssssetsssssssssesessse e ssesssssesssssssssssssssssessssssssesesssssssssenssesans
A.4 Defining encoding objects for alternative classes
A.5 Defining encoding objectsfor #BITS and #BIT-STRING ClaSSESccccevrereeirrinirerrenssenesesssiesessssssssesessssssessssessees
A.6 Defining encoding objects for #BOOL and #BOOLEAN ClaSSEScovuerreuerrieemrernneineeesesesessssssesssse e sseaees
A.7 Defining encoding objects for #CHARS and other character string classes
A.8 Defining encoding objects for CONCALENALiON CIASSESciuieerriecrriieiereer e
A.9 Defining encoding objectsfor #INT, #CONDITIONAL-INT, #iINTEGER and #ENUMERATED classes........... 72
A.10 Defining encoding objects for #NUL and #NULL ClaSSES ...ttt ssssssesssssssesssssssens
A.ll Defining encoding objects for #OCTETS and #OCTET-STRING classes
A.12 Defining encoding objects for OptioNality ClASSES ...t se s anaas
A.13 Defining encoding 0bjeCtS fOr the HPAD ClaSS.......cccceccrrece sttt ss s sssssanens
A.l4 Defining #REPETITION, #CONDITIONAL-REPETITION, #SEQUENCE-OF, #SET-OF class

=00 1o [o TR
A.15 Defining encoding objects for #OUTER class

Annex B (Normative): Addendum to ITU-T Rec. X.680 | ISONIEC 8824-1ccceeeeviiiieeeeiiieie e 78
B.1 EXPOrts and impPOrtS SLALEMIENES.......ccvceurerireeeresesieistsessstsesesse e sessss s ss st ssssssssssss s sssesssssssssssssssssessssssssesassssssesasnssssesssnens
B.2 Absolute reference........ccccoveerneecnnee

B.3 Addition of "REFERENCE"

B.4 Notation for character string values

Annex C (Normative): Addendum to ITU-T Rec. X.681 | ISO/IEC 8824-2cccooviueeiiiieiiiieeiee e 80
L300 I T 1 o 1o TP
C.2 Additional lexical items.........cccccuvenee.

C.3 Addition of "ENCODING-CLASS" ..
C.4 FieldSPec additioNS. ... s

(O ST =l o Voo o [FaTo o o1 it 11= Ko I o= oSO R TP
(O ST = o Toro o [FpTo o o = ot ars = = o 1= o= vl TR
C.7 Encoding object list field spec....
C.8 Encoding object list notation......
C.9 Primitivefield names...................
C.10 Additional reserved words............

Cc11 Definition of encoding objects.....

C.12 AQUITIONSTO " SEIING'oeeeeeeeeriet et e b bbb
C.13 ENCOAING ClaSS FIEIA LY PRttt

Annex D (Normative): Addendum to ITU-T Rec. X.683 [ISO/IEC 8824-4cooocueeiiieiiiieiiieeeiiee &4
D.1 ParameteriZed @SSIGINIMENTScciueurierreeeeriseestesesesesse s sese st s s ese s s s s ee e s b ees e bbbt %
D.2 Parameterized enCOUiNg 8SSIGNMENTS.ceiereiererereeerreee s s sses s ees e e bbb A
D.3 Referencing parameterized defiMitiONS..........orerereeeireeeeeeer e s 85
D.4 ACIUSH PArBMELET [ISt.....oieeeiriecrrierrie ettt b bbbt 85

ANNeX E (INfOrmative): EXAMPIEScceiieiee et siee e ettt e et e e e st e e e e st e e e e snnae e e e e nteeeeeensneeeeannneeeens
E. 1l GENEAl EXAMPIES......coieciiieecteecr ettt bR R
El1 AN ENCOUING ODJECT SBL......oueveerierricirie ettt e
E.1.2 An encoding object for aboolean type
E.1.3 An encoding 0bJECE FOr @N INTEJEE TYPE......cuviueieirircerere et s sttt s s
E.14 Another encoding 0bj€Ct fOr @ INTEGEN LYPE.......vveccrcce e st s
E.1.5 Encodings of values of integer typeswith holes..........ccccvveveerrecnnne.

E.1.6 A more complex encoding object for an integer type

5 DTS/MTS-00068 V1.1.1 (2000-10)

E.1.7 Positive integers eNCOUEA iNBCD ... asessss s sss s sssesssssssessssssssesessssssssssssnsesssssnsens
E.1.8 An encoding 0bJECt Of ClASSHBITS ...ttt ns s
E.1.9 An encoding object Of ClassSHOCTETS........cocoeervenereeineriseseseseseesesesssenenens

E.1.10 Anencoding ODjeCt Of CIASSHCHARS.........o it
E.1.11 Mapping character VAlUES IO DIt VAIUES...........cciriiieeiecer et
E.1.12 Encoding a sequencetype

E.1.13 o Y [T T (0
O 7 S N N I o 1< T TR (0 TS
E.1.15 EDM definitions

E.2 SPECialiZation EXAMPIES.......c.coiciucieiriiece ettt s bRttt s A bt s bt s st et es et b s
E.2.1 LIS oot [T 0T) =Tt = PP
E.2.2 Encoding by distributing values to an alternative encoding structure
E.2.3 Encoding by mapping ordered abstract valuesto an alternative encoding structure

E.24 Compression of NON-CONLINUOUS VBIUE FANGES..........oureeereerererenssseessesesssessessssssssessssssssssssssssssssssssssssssssssesssssessssssssesens
E.25 Compression of non-continuous val ue ranges using a transformation

E.2.6 Compression of an unevenly distributed value set by mapping ordered abstract ValUEs..........ccocveverecerecereenns A
E.2.7 An optional component's presence depends on the value of another COMpPoNENtccvereererncrnereneceneenn: A
E.2.8 The presence of an optional component depends on some external condition

E.2.9 A VANTDIE TEBNGEN TISE....oieiee e bbb
E.2.10 EQUAH TENGEN TISES ..ottt bbbt e bbbt s bbb s bt st b nens
E.2.11 Uneven choice alternative probabilities........cccocovvervevccienenecesesecee s

E.2.12 A VErSION L MESSAGE.....coiuriieererieiasteseesessessssssstetssssssesessssssesessssssssessssssssesssssesessssssssesassssssessssssssessssssssesassssssesassssssessssens
E.2.13 ELM EfINITIONS.....cocuiieeeeirieisieiree ettt eb st bbb e e bbbttt
E.2.14 ASN.1ldefinitions

E.2.15 EDM EfINITIONS. ...c.cuiteeitrictsicisie ettt bbb bbbt
E.3 LegaCy ProtOCOI EXAMPIE ..o sesessseasesessss e et s e s ssssssesssssessesesesessssssnsnssssssnssssesssesssnsnssssnsnsssesssnens
E.3.1 INEFOAUCTTION ...ttt

E.3.2 Encoding definition for the top-level MESSage SETUCTUTE ..o
E.3.3 Encoding definition fOr 8 MESSAgE SLIUCLUIE..........c..ccuieuiererieeesi et ses s
E34 Encoding for the sequence type "B ...

E.35 Encoding the octet-aligned sequence type for the legacy protocol

E.3.6 Encoding for an octet-aligned sequence-of type with alength determinantcccoocoeevevcccnncccvesenccceenenas
E.3.7 Encoding for an octet-aligned sequence-of type which continuesto the end of the PDUcccoeeeveevennnee 103
E.3.8 ELIM A NITIONS.....e ettt e bbb bbbttt
E.3.9 EDM definitions

Annex F (Informative): Support for HUffman encodingsceeeeoiiiiiiiiieiee e 104
Annex G: Additional Information on the Encoding Control (Informative) Notation (ECN)....................... 106
Annex H (Informative): Summary of the ECN NOtatioN............cccueiiiiiiiieeiiiee e 107
H.L TerMINGl SYMDOIS ...ttt et bbbt bbb bbb bR A s e bbb s bbbt s s bt e e an bt e 107

[T2 = 0 To [Te1 1 1] TS 108

6 DTS/MTS-00068 V1.1.1 (2000-10)

Intellectual Property Rights

Foreword

Introduction

This Technical Specification defines the Encoding Control Notation (ECN) used to specify encodings (of ASN.1 types)
that differ from those provided by standardized encoding rules such as the Basic Encoding Rules (BER) and the Packed

Encoding Rules (PER).

7 DTS/MTS-00068 V1.1.1 (2000-10)

1 Scope

This TS defines anotation for specifying encodings of ASN.1 types or of parts of types.
It provides several mechanisms for such specification, including:
? direct specification of the encoding using standardized notation;
? specification of the encoding by reference to standardized encoding rules;
? specification of the encoding of an ASN.1 type by reference to an encoding structure;
? specification of the encoding using a user-defined encoding-function.

It also provides the means to link the specification of encodingsto the type definitions to which they are to be applied.

2 Normative references

The following Recommendations and International Standards contain provisions which, through referencein thistext,
constitute provisions of thisTS. At the time of publication, the editions indicated were valid. All Recommendations and
International Standards are subject to revision, and parties to agreements based on this TS are encouraged to investigate
the possibility of applying the most recent edition of the Recommendations and Standards listed below. Members of IEC
and 1SO maintain registers of currently valid International Standards. The Telecommunication Standardization Bureau of
the ITU maintainsalist of currently valid ITU-T Recommendations.

2.1 Identical Recommendations | International Standards

[1] ITU-T Recommendation X.680 (1997) | ISO/IEC 8824-1:1998, "Information technology — Abstract
Syntax Notation One (ASN.1): Specification of basic notation"

[2] ITU-T Recommendation X.681 (1997) | ISO/IEC 8824-2:1998, "Information technology — Abstract
Syntax Notation One (ASN.1): Information object specification.”

[3] ITU-T Recommendation X.682 (1997) | ISO/IEC 8824-3:1998, "Information technology — Abstract
Syntax Notation One (ASN.1): Constraint specification.”

[4] ITU-T Recommendation X.683 (1997) | I SO/IEC 8824-4:1998, "Information technology — Abstract
Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications."

[5] ITU-T Recommendation X.690 (1997) | ISO/IEC 8825-1:1998, "Information technology — ASN.1

encoding Rules: Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER),
and Distinguished Encoding Rules (DER)."
[6] ITU-T Recommendation X.691 (1997) | ISO/IEC 8825-2:1998, "Information technology — ASN.1
encoding rules: Specification of Packed Encoding Rules (PER)."
NOTE Notwithstanding the SO publication date, the above specifications are normally referred to as
"ASN.1:1997".

2.2 Additional references

ISO/IEC 10646-1:1993, I nfor mation technol ogy — Universal Multiple-Octet Coded Character Set (UCS) — Part 1.
Architecture and Basic Multilingual Plane.

NOTE The abovereference shall beinterpreted as areference to 1SO/IEC 10646-1 together with all its published
amendments and technical corrigenda.

8 DTS/MTS-00068 V1.1.1 (2000-10)

3 Definitions

For the purposes of this TS, the following definitions apply.

3.1 ASN.1 Definitions

This TS usestheterms defined in 3 of ITU-T Rec. X.680 | ISO/IEC 8824-1, ITU-T Rec.X.681 | ISO/IEC 8824-2, ITU-T
Rec. X.682 | ISO/IEC 8824-3, ITU-T Rec. X.683 | ISO/IEC 8824-4, ITU-T Rec. X.690 | ISO/IEC 8825-1 and ITU-T
Rec. X.691 | ISO/IEC 8825-2.

3.2 ECN-specific definitions

alignment point: The point in an encoding (usually its start) which serves as a reference point when an encoding
specification requires alignment to some boundary.

bit-field: Contiguous bits or octets in an encoding which are decoded as awhole, and which either represent an abstract
value, or provide information (such as alength determinant for some other field) needed for successful decoding, or
both.

NOTE Itisinlegacy protocolsthat "or both" sometimes occurs.

bounds condition: A condition on the existence of bounds of an integer field (and whether they allow negative values or
not) which, if satisfied, means that specified encoding rules are to be applied.

choice determinant: A bit-field which determines which of several possible encodings (each representing different
abstract values) is present in some other bit-field.

combined encoding object set: A temporary set of encoding objects produced by the combination of two sets of
encoding objects for the purposes of applying encodings.

conditional encoding: An encoding which isto be applied only if some specified bounds condition or size range
condition is satisfied.

containing type: An ASN.1 type (or encoding structure field) where a contents constraint has been applied to the values
of that type (or to the values associated with that encoding structure field).

NOTE The ASN.1 typesto which acontents constraint can be applied arethe BIT STRING and the OCTET
STRING types.

current application point: The point in an encoding structure at which a combined encoding object set is being
applied.

differential encoding-decoding: The specification of rulesfor adecoder that require the acceptance of encodings that
cannot be produced by an encoder conforming to the current specification.

NOTE Differential encoding-decoding supportsthe specification of decoding by a decoder (conforming to an
initial version of a standard) which isintended to enable it to successfully decode encodings produced by a
later version of astandard. Thisissometimes referred to as support for extensibility.

encodable item: Those parts of an encoding (or procedures involved in encoding or decoding) that can be independently
determined using the Encoding Control Notation.

NOTE Encodableitemsincludes not only the encoding of values of ASN.1 primitive types, but also elements of
the procedures used in encoding or decoding, for example, those that are used to determine the end of
repetitions, or the presence or absence of optional elements.

encoding class: The set of all possible encoding specifications for an encodable item.

NOTE Encoding classes are defined for the encoding of primitive ASN.1 types (and for user-defined types), but
are also defined for the procedures associated with the use of "OPTIONAL" in ASN.1 type definitions and
for encoding constructors.

9 DTS/MTS-00068 V1.1.1 (2000-10)

encoding constructor : Encodable items (supported by encoding classes) that define procedures for combining,
selecting, or repeating other encodable items. (Examples arethe #ALTERNATIVES, #CHOICE,
#CONCATENATION, #SEQUENCE, etc classes).

Encoding Definition Modules (EDM): Modules that define encodings for application in the Encoding Link Module.
Encoding Link Module (ELM): The (unique, for any given application) modul e that assigns encodingsto ASN.1 types.
encoding object: The specification of an encoding for an encodable item.

encoding object set: A set of encoding objects.

NOTE Anencoding object set isnormally used in the Encoding Link Modul e to determine the encoding of all the
top-level types used in an application.

encoding-space: The number of bits (or octets or words) used to encode an abstract value into abit-field (see Figure 1).

encoding structure: The structure of an encoding, defined either from the structure of an ASN.1 type definition, or in an
EDM using primitive bit-fields and encoding constructors.

NOTE Useof an encoding structure is only one of several mechanisms (but an important one) that the Encoding
Control Notation provides for the definition of encodings for ASN.1 types.

extensibility: Notationsin an early version of a standard that are designed to maximize the interworking of
implementations of that early version with the expected implementations of alater version of that standard.

governor : A part of an ECN specification which determines the syntactic form of some other part of the ECN
specification.

NOTE A governor istypically notation that specifies an encoding class, and it determines the syntax to be used
for the definition of an encoding object (of that class). The concept isthe same as the concept of atype
definitionin ASN.1 acting as the governor for ASN.1 value notation.

identification handle: Part of the encoding of an encodable item which is the same for the encoding of all abstract
values of that encodable item, and which servesto distinguish encodings of values of that encodable item from the
encoding of values of other encodableitems.

NOTE The ASN.1 Basic Encoding Rules use tags to provide identification handlesin BER encodings.
implicit encoding class: An encoding class which isan implicit encoding structure.

implicit encoding structure: The encoding structure that isimplicitly generated and exported whenever atypeis
defined in an ASN.1 module.

incomplete combined encoding object set: A combined encoding object set that does not contain sufficient encoding
objects to determine the encoding of the type(s) to which it is applied.

initial application point: The point in an encoding structure at which any given combined encoding object set isfirst
applied (in the ELM and in EDMs).

length determinant: A bit-field that determines the length of some other bit-field.

negative integer value: A valuelessthan zero.

non-negative integer value: A value greater than or equal to zero.

non-positive integer value: A value less than or equal to zero.

optional element: A bit-field that is sometimes included (to encode an abstract value) and is sometimes omitted.
positive integer value: A value greater than zero.

presence determinant: A bit-field that determines whether an optional element is present or not.

self-delimiting encoding: An encoding for a set of abstract values such that there is no abstract value that has an
encoding that isaninitial sub-string of the encoding of any other abstract value.

NOTE Thisincludes not only fixed-length encodings of a bounded integer, but also encodings generally described
as "Huffman encodings’ (see Annex F).

10 DTS/MTS-00068 V1.1.1 (2000-10)

sizerange condition: A condition on the existence of effective size constraints on a string or repetition field (and
whether the constraint includes zero, and/or allows multiple sizes) which, if satisfied, means that specified encoding
rules areto be applied

sour ce governor (or sour ce class): The governor that determines the notation for specifying abstract val ues associated
with a source class when mapping them to atarget class.

target governor (or target class): The governor that determines the notation for specifying abstract values associated
with atarget class when mapping to them from a source class.

top-level type: Those ASN.1 typesin an application that are used by the application in ways other than to define the
components of other ASN.1 types.

NOTE 1 — Top-level types may also be used (but usually are not) as components of other ASN.1 types.

NOTE 2 — Top-level types are sometimes referred to as"the application's messages”, or "PDUS". Such types are
normally treated specially by tools, asthey form the top-level of programming language data-structures
that are presented to the application.

transformation function (or transfor mations): Encoding objects of the class #TRANSFORM which specify the
mapping of abstract values associated with some class into other abstract val ues associated with the same or a different
class.

NOTE Transformation functions can be used, for example, to specify simple arithmetic operations on integer
values, or to map integer valuesinto character or bit strings.

user -defined encoding-function: A piece of non-ECN notation (for example, natural language) that provides an
encoding specification for an encoding class.

value-encoding: The way in which an encoding-space is used to represent an abstract value (see Figure 1).

4 Abbreviations
ASN.1 Abstract Syntax Notation One
BER Basic Encoding Rules of ASN.1
DER Distinguished Encoding Rules of ASN.1
ECN Encoding Control Notation for ASN.1
EDM Encoding Definition Module
ELM Encoding Link Module
PDU Protocol Data Unit
PER Packed Encoding Rules of ASN.1

5 Definition of ECN syntax

This TS employsthe notational convention defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, clause 5, but usesthe term
"ECN lexical item" as a synonym for the term "item" used in that clause.

This TS employs the notation for information object classes defined in ITU-T Rec. X.681 | ISO/IEC 8824-2 as modified
by Annex C.

This TS references productions defined in ITU-T Rec. X.680 | ISO/IEC 8824-1 as modified by Annex B, ITU-T Rec.
X.681 | ISO/IEC 8824-2 as modified by Annex C, and ITU-T Rec. X.683 | ISO/IEC 8824-4 as modified by Annex D.

6 Encoding conventions and notation

This TS defines the value of each octet in an encoding by use of the terms "most significant bit" and " least significant
bit".

NOTE Lower layer specifications use the same notation to define the order of bit transmission on a serial line, or
the assignment of bitsto parallel channels.

11 DTS/MTS-00068 V1.1.1 (2000-10)

For the purposes of this TS, the bits of an octet are numbered from 8 to 1, where bit 8 is the "most significant bit" and bit
1the"least significant bit".

For the purposes of this TS, encodings are defined as a string of bits starting from a"leading bit" through to a"trailing
bit". Ontransmission, thefirst eight bits of this string of bits starting with the "leading bit" shall be placed in the first
transmitted octet with the leading bit as the most significant bit of that octet. The next eight bits shall be placed in the
next octet, and so on. If the encoding is not a multiple of eight bits, then the remaining bits shall be transmitted asiif they
were bits 8 downwards of a subsequent octet.

NOTE A complete ECN encoding is not necessarily always a multiple of eight bits, but an ECN specification can
determine the addition of padding to ensure this property.

When figures are shown in this TS, the "leading bit" is always shown on the left of the figure.

7 The ECN character set

Use of the term "character” throughout this document refers to the characters specified in 1SO 10646-1, and full support
for all possible ECN specifications can require the representation of all these characters.

With the exception of comment (as defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.6), user-defined
encoding-functions and character string values, ECN specifications use only the characterslistedinTable 1 .

ECN lexical items consist of a sequence of the characterslisted in Table 1.

NOTE Additional restrictions on the permitted characters for each lexical item are specified in clause 8.

Table 1 — ECN characters

AtoZ (LATIN CAPITAL LETTER A to LATIN CAPITAL LETTER 2)
atoz (LATIN SMALL LETTER A to LATIN SMALL LETTER 2Z)

0t09 (DIGIT ZERO to DIGIT 9)

: (COLON)

= (EQUALS SIGN)

, (COMMA)

{ (LEFT CURLY BRACKET)

} (RIGHT CURLY BRACKET)

(FULL STOP)

(NUMBER SIGN)

(LEFT PARENTHESIS)

(RIGHT PARENTHESIS)

- (HYPHEN-MINUS)
(APOSTROPHE)
(QUOTATION MARK)

| (VERTICAL LINE)

& (AMPERSAND)

: (SEMICOLON)

~ ~ H -

There shall be no significance placed on the typographical style, size, color, intensity, or other display characteristics.

The upper and lower-case |etters shall be regarded as distinct.

8 ECN lexical items

In addition to the ASN.1 (lexical) items specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11, this TS uses ECN lexical
items specified in the following subclauses. The general rules specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.1
apply inthis clause.

12 DTS/MTS-00068 V1.1.1 (2000-10)

NOTE Annex Hlistsall lexical items and all the productions used in the ECN Specification, identifying those that
are defined in ITU-T Rec.X.680 | ISO/IEC 8824-1, ITU-T Rec. X.681 | ISO/IEC 8824-2 and I TU-T Rec.
X.683 | ISO/IEC 8824-4.

8.1 Encoding object references

Name of item - encodingobjectreference

An "encodingobjectreference” shall consist of the sequence of characters specified for a"valuereference” in ITU-T Rec.
X.680 | ISO/IEC 8824-1, 11.4. In analyzing an instance of use of this notation, an "encodingobjectreference” is
distinguished from an "identifier" by the context in which it appears.

8.2 Encoding object set references

Name of item - encodingobjectsetreference

An "encodingobjectsetreference” shall consist of the sequence of characters specified for a"typereference” in ITU-T
Rec. X.680 | ISO/IEC 8824-1, 11.2. It shall not be one of the character sequences listed in 8.4

8.3 Encoding class references

Name of item - encodingclassreference

An "encodingclassreference” shall consist of the character "#' followed by the sequence of characters specified for a
"typereference” in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.2. It shall not be one of the character sequenceslisted in8.5
except in an EDM importslist or in an "External EncodingClassReference" production .

8.4 Reserved word items

Names of reserved word items:

ALL FALSE REFERENCE

AS Fl ELDS RENAI NDER

BEG N I F SI ZE

BER LI NK- DEFI NI TI ONS STRUCTURE

BITS MAPPI NG STRUCTURED

BY MAX TO

CER M N TRANSFCRVE
COVPLETED M NUS- | NFI NI TY TRUE

DECCDE NULL UNI ON

DER CPTI ONAL - ENCODI NG USE

DI STRI BUTI ON ORDERED USER- FUNCTI ON- BEG N
ENCCDE QUTER USER- FUNCTI ON- END
ENCODI NG- CLASS PER- basi c-al i gned VALUES

ENCCDE- DECCDE PER- basi c-unal i gned W TH

ENCODI NG- DEFI NI TI ONS PER- canoni cal -al i gned

END PER- canoni cal -unal i gned

EXCEPT PLUS | NFI NI TY

Items with the above names shall consist of the sequence of charactersin the name.

NOTE Thewords(seel TU-T Rec. X.681 | ISO/IEC 8824-2, 7.9) used in the definition of encoding classes
(withina"WITH SYNTAX" clause) in Annex A are not reserved words.

8.5 Reserved encoding class name items

Names of reserved encoding class name items:
#ALTERNATI VES #CHARS #ENUVERATED
#BI TS #CHO CE #EXTERNAL
#BI T- STRI NG #COONCATENATI ON #Cener al i zedTi me
#BMPSt ri ng #CONDI TI ONAL- | NT #Ceneral String
#BOOL #CONDI TI ONAL- REPETI TI ON #Gr aphi ¢St ri ng
#BOOLEAN #EMBEDDED- PDV #l A5String

#CHARACTER- STRI NG #ENCODI NG5 #1 NT

13 DTS/MTS-00068 V1.1.1 (2000-10;

#| NTEGER #OUTER #SET- OF

#NUL #PAD #TeletexString
#NULL #Printabl eString #TRANSFORM
#NunericString #REAL #Uni versal String
#OBJECT- | DENTI FI ER #RELATI VEQ D #UTCTi e
#OCTETS #REPETI TI ON #UTF8St ri ng
#COCTET- STRI NG #SEQUENCE #Vi deot exStri ng
#OPEN- TYPE #SEQUENCE OF #Vi sibleString
#OPTI ONAL #SET

Items with the above names shall consist of the sequence of charactersin the name.

8.6 Transparent token item

Name of item - anystringexceptuserfunctionend

An "anystringexceptuserfunctionend" shall consist of one or more characters from the SO 10646-1 character set, except
that it shall not be the character sequence "USER-FUNCTION-END" nor shall that character sequence appear within it.

9 ECN Concepts

This clause describes the main concepts underlying thisITU-T TS.

9.1 Structure of Encoding Control Notation (ECN) specifications

ECN specifications consist of one or more Encoding Definition Modules (EDMs) which define encoding rules for
ASN.1 types, and asingle Encoding Link Module (ELM) that applies those encoding rulesto ASN.1 types.

9.2 Encoding classes

An encoding classisan implicit property of all ASN.1 types, and represents the set of all possible encoding
specifications for that type. It provides areference that allows Encoding Definition Modules to define encoding rules for
the type. Encoding class names begin with the character "#".

EXAM PL E: Encoding rules for the ASN.1 type "INTEGER" are defined by reference to the encoding class #iNTEGER,
and encoding rules for auser-defined type "My-Type" are defined by reference to the encoding class #My-Type.

There are several kinds of encoding classes:

- Built-in encoding classes. There are built-in encoding classes with names such as #INTEGER and #BOOLEAN.
These enabl e the definition of special encodings for primitive ASN.1 types. There are also built-in encoding
classes for encoding constructors such as #SEQUENCE, #SEQUENCE-OF and #CHOICE, and for the definition
of encoding rules for handling optionality through #OPTIONAL. Finally, there are some built-in classes
(#OUTER, #TRANSFORM and others) that allow the definition of encoding procedures which are part of the
encoding/decoding process, but which do not directly relate to any actual bit-field or ASN.1 construct.

- Implicit encoding classes with names consisting of the character "#" followed by the "typereference" name
appearing in a"TypeAssignment” in an ASN.1 module. Such encoding classes are implicitly generated whenever
atypeisdefined in an ASN.1 module, and can be imported into an Encoding Definition Module to enable the
definition of special encodings for the corresponding ASN.1 type. These encoding classes represent the structure
of an ASN.1 encoding, and are formed from the built-in encoding classes mirroring the structure of the ASN.1
type definition.

- Structure-based encoding classes are encoding classes defined by the ECN user by specifying an encoding
structure as a structure made up of bit -fields and encoding constructors. These structure-based encoding classes
are similar to the implicit encoding classes, but the ECN user has full control of their structure. These classes
enable complex encoding rules to be defined, and are essential for the use of ASN.1 with ECN for specifying
legacy protocols, where additional bit-fields are needed in the encoding for determinants.

14 DTS/MTS-00068 V1.1.1 (2000-10)

9.3 Encoding structures

Encoding structure definitions have some similarity to ASN.1 type definitions, and are named with a name beginning
with the character "#" then an upper-case letter. Each encoding structure definition defines a new encoding class (the set
of all possible encodings of that encoding structure). Encoding structures are formed from fields which are either

built-in encoding classes or the names of other encoding structures, combined using encoding constructors (which
represent the set of all possible encoding rules that support their type of construction mechanism, and are hence called
encoding classes). (See E.2.9for an example of an encoding structure definition.)

The most basic encoding constructors are #CONCATENATION, #REPETITION, and #ALTERNATIVES,
corresponding roughly to ASN.1 sequence (and set), sequence-of (and set-of), and choice types. Thereisalso an
encoding class #OPTIONAL that represents the optional presence of encodings, corresponding roughly to ASN.1
"DEFAULT" and "OPTIONAL" markers.

An encoding structure definition defines a structure-based encoding class. Such classes cannot have the same names as
implicit encoding classes that are imported into the module in which they are defined

Encoding structure names can be exported and imported between Encoding Definition Modules and can be used
whenever an encoding class nameis required.

Values of ASN.1 types (primitive or user-defined) can be mapped to fields of an encoding structure, and encoding rules
for that structure then provide encodings of the ASN.1 type. (Values mapped to encoding structures can be further
mapped to fields of more complex encoding structures.) This provides avery powerful mechanism for defining complex
encoding rules.

9.4 Encoding objects

Encoding objects represent the specific definition of encoding rulesfor agiven encoding class. Usually therulesrelate
to the actual bitsto be produced, but can aso specify procedures related to encoding and decoding, for example the way
in which the presence or absence of optional elementsis determined.

In order to fully define the encoding of ASN.1 types (typically the top-level type(s) of an application), it is necessary to
define (or obtain from standardized encoding rules) encoding objects for al the classes that correspond to components of
those ASN.1 types and for the encoding constructors that are used.

For legacy protocols, thismay have to be done by defining a separate encoding object for every component of an ASN.1
type, but it is more commonly possible to use encoding objects defined by standardized encoding rules (such as PER).

Although BER and PER encoding specifications pre-date ECN, within the ECN model they simply define encoding
objectsfor all classes corresponding to the ASN.1 primitive types and constructors (that is, for all the built-in encoding
classes). BER and PER are also considered to provide encoding objects for encoding classes used in the definition of
encoding structures.

9.5 Encoding object sets

Encoding objects can be grouped into sets in the same way asinformation objectsin ASN.1, and it is these sets of
encoding objects that are (in an ELM) applied to an ASN.1 type to determineits encoding. (The governor used when
forming these encoding object setsisthe reserved word #ENCODINGS.) (See E.1.1for an example.)

A fundamental rule of encoding object set construction isthat any set can contain only one encoding object of agiven
encoding class. Thusthereis no ambiguity when an encoding object set is applied to atype to defineits encoding.

There are built-in encoding object setsfor all the variants of BER and PER, and these can be used to compl ete sets of
user-defined encoding objects.

9.6 Defining new encoding classes

New encoding classes can be defined as synonyms for an existing encoding class. This enables encoding objects of both
the old encoding class and the new encoding class to appear in an encoding set.

All built-in encoding classes are synonyms for one of asmall number of primitive encoding classes. Thus#SEQUENCE
and #SET are both defined from the #CONCATENATION class, #iNTEGER and #ENUMERATED are both defined

15 DTS/MTS-00068 V1.1.1 (2000-10)

from the #INT class, and the classes for the different ASN.1 character string types are all defined from the #CHARS
class. A encoding structure (for example one implicitly generated from an ASN.1 type) can contain a mix of the
different synonyms, enabling different encodings to be applied to #SEQUENCE and #SET (for example).

Primitive classes are either bit-field classes, or are one of three types of encoding constructor, or are more general
encoding procedures (see clause 13bis.3). Encoding objects can be defined for all encoding classes, but encoding
structures can only be defined using bit-field classes which are combined using encoding constructors, and the
#OPTIONAL class (representing encoding/decoding procedures for resolving optionality).

If anew encoding classis defined as a synonym for an existing encoding class, it retains the general properties of that
encoding class as being either:

a) aclasscontaining encodingsfor bit-fields; or
b) aparticular type of constructor; or
c) ageneral encoding procedure,

and has the same restrictions on its use as the primitive class from which it was defined.

9.7 Defining encoding objects

There are seven mechanisms available for defining an encoding object of agiven encoding class. (They are not all
available for all encoding classes.)

1. Thefirstisto specify it as the same as some other defined encoding object of the required class. This does
nothing more than provide a synonym for encoding objects.

2. Thesecond, available for arestricted set of primitive encoding classes, isto use adefined syntax to specify the
information needed to define an encoding object of that class. Much of the information needed is common to
all encoding classes, but some of the information always depends on the specific encoding class. (SeeE.1.2for
an example of defining an encoding object of class #BOOL EAN which contains encodings for the ASN.1 type
boolean).

3. Thethird, available for all encoding classes, isto define an encoding object as the encoding of the required class
which is contained in some existing encoding object set. Thisis mainly of use in naming an encoding object for
aparticular class that will perform BER or PER encodings for that class.

4. Thefourth isto map the abstract values associated with an encoding class ("#A", say) to abstract values
associated with another (typically more complex) encoding class ("#B", say), and to define an encoding object
for "#B" (using any of the available mechanisms). An encoding object for "#A" can now be defined as the
application to "#B" of the encoding object for "#B". (See E.2.9for an example).

NOTE Thisisthe model underlying the definition of an object for encoding an "INTEGER" typein BER. The
"INTEGER" is mapped to an encoding structure that contains atag class field, a primitive/constructor
boolean, atag number field, and avalue part that encodes the abstract values of the original "INTEGER".
In fact, the tag number field in BER is also a complex encoding structure, and requires a second mapping
to enable its complete definition.

5. Thefifth mechanism isto define an encoding object for a class (for example, one corresponding to a
user-defined ASN.1 type) by separately defining encoding objects for the components and for the encoding
constructor used in defining the type or encoding class.

6. Thesixthisto define an encoding object for differential encoding using two separate encoding objects, one of
which defines the encoder's behavior, and the other of which tells adecoder what encoding should be assumed.

7. Finally, an encoding object can be defined using a user -defined encoding-function. Thisisafacility to allow
use of any desired notation (including natural language) to define the encoding object.

9.8 Differential encoding-decoding

Differential encoding-decoding isthe term applied to a specification that requires an implementation to accept when
decoding (and to recover abstract values from) bit-patterns that are in addition to those that it is permitted to generate
when performing encoding.

16 DTS/MTS-00068 V1.1.1 (2000-10)

Differential encoding-decoding underlies all support for "extensibility" - the ability for an implementation of an earlier
version of a standard to have good interworking capability with an implementation of alater version of the standard.

The precise nature of differential encoding-decoding can be quite complex. It normally includes the requirement that a
decoder accepts (and silently ignores) padding fields (usually variable length) which later versions of a standard will use
for the transfer of information additional to that transferred in the early version communication.

Support for differential encoding-decodingin ECN is provided by syntax that enables the definition of an encoding
object (for any class) which encapsul ates two encoding objects. The first encoding object defines the rules for encoding
that class, and the second encoding object defines the rules that a decoder is required to assume that a communicating
encoder is using for encoding.

NOTE InECN, therulesfor decoding (in an early version of a standard) are always expressed by giving the rules
for encoding that it should assume its communicating partner is using. The decoding rules are not given as
explicit decoding rules. The ECN specifier will ensure that such decoding rules provide any necessary
"extensibility".

9.9 Properties of encoding objects

Encoding objects have some general properties. In most cases, they completely define an encoding, but in some cases
they are encoding constructors, that is, they define only structural aspects of the encoding, requiring encoding objects
for the encoding structure's components to complete the definition of an encoding.

Another key feature of an encoding object isthat it may require information from the environment where itsrules are
eventually applied. One aspect of the environment that is fully supported is the presence of bounds in the ASN.1 type
definition, provided they are "PER-visible" (see ITU-T Rec. X.691 | ISO/IEC 8825-2, 9.3). Another (not supported in the
current version) would be to access the value of the ASN.1 tag class and number of the component that is to be encoded.

NOTE A somewhat different (and not standardized) external dependency would be a user-defined
encoding-function for an #ALTERNATIV ES encoding class which returns the sel ected alternative based
on external data such as the channel the messageis being sent on.

A third key feature isthat an encoding object may exhibit anidentification handle. Thisisapart of all the encodings
that it produces which distinguishes its encodings from encodings of other classes displaying the same identification
handle. Identification handles have to be visible to decoders without knowledge of either the encoding class or value
that was encoded (but with knowledge of the name of the identification handle value that is being sought). This concept
models (and generalizes) the use of tagsin BER encodings: the tag value can be determined without knowledge of the
encoding class for all BER encodings, and serves to identify the encoding for resolution of optionality, ordering of sets,
and choice alternatives.

9.10 Parameterization

Aswith ASN.1 types, encoding objects, encoding object sets and encoding classes can be parameterized. Thisisjust an
extension of the normal ASN.1 mechanism.

A primary use of parameterization isin the definition of an encoding object that needs the identification of a determinant
to complete the definition of the encoding. (See E.1.12for an example of a parameterized ECN definition.)

Dummy parameters may be encoding objects, encoding object sets, encoding classes, encoding structure field references,
and values of any of the ASN.1 types used in the built-in encoding classes defined in Annex A, as specified in ITU-T
Rec. X.683 | ISO/IEC 8824-4 as modified by Annex D.

NOTE Thegovernor for adummy parameter which is avalue of atype used in the definition of abuilt-in
encoding structure uses the "EncodingClassFieldType" defined in Annex C .

9.11 Governors

The concept of agovernor and of governed notation will be familiar from ASN.1 value notation, where thereis always a
type definition that "governs' the value notation and determines its syntax and meaning.

The same concept extends to the definition of encoding objects of agiven encoding class. The syntax for defining an
encoding object of class#BOOLEAN (for example) isvery different from the syntax for defining an encoding object of

17 DTS/MTS-00068 V1.1.1 (2000-10)

class# NTEGER (for example). In all cases where an encoding object definition is required, there is some associated
notation that definesthe class of that encoding object, and "governs" the syntax to be used in its specification.

If the governed notation is areference name for an encoding object, then that object isrequired to be of "the same" class
asthegovernor. Inthe ECN standard, "the same" means that the notation used for defining the class of the governor
and for defining the class when the encoding object was defined are required to be the same sequence of lexical tokens.

9.12 General aspects of encodings

ECN provides support for a number of techniques typically used in defining encoding rules (not just those techniques
used in BER or PER). For example, it recognizes that optionality can beresolved in any of three ways: by use of a
presence determinant, by use of an identification handle or by reaching the end of alength-delimited container (or the
end of the PDU) before the optional element appears.

Similarly, it recognizes that delimitation of repetitions can be done with some form of length count, can be done by the
end of acontainer (or PDU) in which it isthe last item, can be done by use of an identification handle on each of the
repetitions and on following encodings or can be done by some pattern that can never occur in an encoding in the
repeated series. (A simple example of the latter is a null-terminated character string.) ECN supports all these
mechanisms for delimitation of repetitions, and similar mechanisms for identification of alternatives and for resolution of
optionality. Encoding structure field references and determinants

Use of an "identification handle" is another common technique. In this case, all encodings for values of the repeated
item will have the same bit -pattern (their identification) at some place in their encoding (the handle). Encodings for
anything that can follow the repetition can be interpreted by a decoder as part of the repetition, but will generate a
different identification for the handle. The concept is similar to that of using tags.

In the general case, an encoding may have several identification handles, but to terminate arepetition (or to choose
between alternatives, or to resolve optionality), all the potential encodings must exhibit the same identification handle,
and must have distinct values for the different encodableitems. Thisissimilar to the ASN.1 requirement for distinct
tags. ldentification handles have names that are required to be unique within an ECN specification.

It isimportant here to note that ECN allows the definition of encodingsin avery flexible way, but cannot guarantee that
an encoding specification is correct - that is, that a decoder can successful recover the original abstract values from an
encoding. For example, an ECN specifier could assign the same bit-pattern for boolean values true and false. This
would be an error, and in this case atool could fairly easily detect the error. Another error would be to claim that an
encoding was self-delimiting (and required no length determinant), when in fact it was not. This error also could be
detected by atool. In more subtle and complex cases, however, atool may find it very hard to diagnose an erroneous
(one that cannot always be successfully decoded) specification. The responsibility for correct specifications rests with the
ECN designer, just asit did for those who designed the encoding rules for BER and for PER.

9.13 Encoding structure field-references and determinants

A very common (but not the only) way of determining the presence of an optional field, the length of arepetition, or the
selection of an aternative isto include (somewhere in the message) a deter minant field. Determinant fields have to be
identified if this mechanism is used for determination, and this frequently requires adummy parameter of an encoding
object definition, with the actual parameter providing the encoding structure fieldname of the determinant) being
supplied when the encoding object is applied to an encodingstructure.

A new concept - an encoding structurefield reference - isintroduced to satisfy the need for adummy parameter that
references an encoding structure fieldname. The governor isthe reserved word "REFERENCE", and the allowed
notation for an actual parameter with this governor is any encoding structure fieldname within the encoding structure to
which an encoding object or encoding object set with such a parameter is being applied. (See E.1.12for an example of
references to encoding structurefieldnames.)

9.14 Mapping abstract values onto fields of encoding structures

There are six mechanisms provided for this.

Thefirst isto map individual abstract values associated with one primitive class to another primitive class. This can be
used in many ways. For example, values of acharacter string can be mapped to integer values (and hence encoded as
integer values. Values of an enumerated can be mapped to integer values, and so on. (See E.1.11for an example.)

18 DTS/MTS-00068 V1.1.1 (2000-10)

The second isto map a complete field of one encoding structure into afield of a compatible encoding structure, which
can contain additional fields- typically for use as length or choice determinants. (See E.2.9 for an example.)

Thethird isto map by transforming all the abstract values associated with one encoding class into abstract values
associated with adifferent encoding class, using atransformation function. With this mechanism, it is, for example,
possible to map an # NTEGER into a#CHAR to obtain characters that can then be encoded in whatever way is desired
(for example, Binary-Coded Decimal or ASCII). (See E.1.7 for an example.) Transformation functions are encoding
objects of the class# TRANSFORM. They can not only transform between different encoding classes, they can also be
used to define simple arithmetic functions such as multiplication by eight, subtraction of afixed value, and so on. When
applied in succession, they enable general arithmetic to be specified. (See E.1.3for an example.)

The fourth mapping mechanism is to use a defined ordering of the abstract values of certain types and constructions, and
to map according to the ordering. This provides avery powerful means of encoding abstract values associated with one
encoding class asif they were abstract values associated with awholly unrelated encoding class. (See E.1.5 for an
example.)

The fifth mechanism is to distribute the abstract values (using val ue range notation) associated with one encoding class
(typically #INTEGER) into the fields of another encoding class. (See E.2.2 for examples.)

The final mechanism allows the ECN specifier to provide an exp licit mapping from integer values (which may have been
produced by earlier mappings from, for example, an #ENUMERATED class) to the bits that are to be used to encode
those values. Thisisintended to support Huffman encodings, where the frequency of occurrence of each valueis (at
least approximately) known, and where the optimum encoding is required. Annex F describes Huffman encodingsin
more detail, and gives examples of this mechanism, together with areference to software that will generate the ECN
syntax for these mappings, given only the relative frequency with which each value of the integer is expected to be used.

9.15 Contents of Encoding Definition Modules

Encoding Definition Modules contain export and import statements exactly like ASN.1 (but can import only encoding
objects, encoding object sets, and encoding classes from other EDM modules, or from ASN.1 modulesin the case of
implicit encoding classes).

The body of an Encoding Definition Module contains:

- "EncodingObjectAssignment” statements that define and name an encoding object for some encoding class.
(There are six forms of this statement)

- "EncodingObjectSetAssignment" statements that define sets of encoding objects.

- "EncodingStructureAssignment" statements that define and name new encoding structures (new encoding
classes).

The EDM can also contain parameterized versions of these statements.

Encoding objects can be defined for built-in encoding classes within any Encoding Definition Module. Encoding objects
can be defined for implicit encoding classes only in Encoding Definition Modules that import the implicit encoding class
from the ASN.1 module that defines the corresponding type.

NOTE If animplicit encoding class happens to have a name that is the same as a built-in encoding class name, it
can still be imported into an EDM, but must be referenced in the EDM using an
"External<X>EncodingClassReference".

9.16 Contents of the Encoding Link Module

All applications of the Encoding Control Notation require the identification of a single Encoding Link Module.

The Encoding Link Module applies encoding object setsto ASN.1 types (formally, to theimplicit encoding structure
corresponding to the ASN.1 type). These encoding object sets (or their constituent encoding objects) are imported into
the Encoding Link Module from one or more Encoding Definition Modules.

There are restrictions on the application of encoding object setsto ensure that there is no ambiguity about the actual
encoding rules that are being applied. For example, it is not permitted for an ELM to apply more than one encoding
object set to aspecific ASN.1 type.

19 DTS/MTS-00068 V1.1.1 (2000-10)

Itispossiblein sinple cases for an ELM to contain just a single statement (following an imports statement) that applies
an encoding object set to the single top-level type of an application. (See E.1.13 for an example.)

Defining encodings for primitive encoding classes

Encoding rules for some primitive encoding classes can be defined using a user-friendly syntax which is specified in the
"WITH SYNTAX" clauses of encoding class definitions (see Annex A).

The encoding class definitionsin Annex A based on the information object class definition, and its syntax (and
associated semantics) is defined by referenceto ITU-T Rec. X.681 | ISO/IEC 8824-2 as modified by Annex C.

The encoding class definition specifies the information that has to be supplied in order to define encoding rules for
particular encoding classes. The set of encoding rules that can be defined in thisway is not, of course, al possiblerules,
but is believed to cover the encoding specificationsthat ECN users are likely to require.

These encoding class definitions specify a series of fields (with corresponding ASN.1 types and semantics). Encoding
rules are specified by providing values for these fields. The values of these fields are effectively providing the values of
aseries of parameters which collectively define an encoding.

NOTE Theuse of theword "parameter” above should not be confused with dummy and actual parameters of an
ASN.1 or ECN construct.

The meaning of the valuesof these fields (parameters) is specified using an encoding model (see Figure 1) where the
value of each encodable item produces avalue-encoding which is placed (left or right justified) into an encoding-space.

The encoding-space may haveits leading edge aligned to some boundary (such as an octet boundary) by encoding-space
pre-padding, and its size can be fixed or variable. The value-encoding fits within it, perhaps | eft or right justified, and
with padding around it.

Finally, the compl ete encoding-space with the value-encoding and any value pre-padding and val ue post-padding, is
mapped to bits-on-the-line with an optional specification of bit-reversal. This handles encodings that require "most
significant byte first" or "most significant byte last" for integers, or that require the bits within an octet to bein the
reverse of the normal order.

Thusthere are three broad categories of information needed:
?thefirst relates to the encoding-space in which the encoding is placed;

?the second relates to the way an abstract value is mapped to bits (value-encoding), and the positioning of those bits
within the encoding-space; and

?the third relates to any require bit-reversals..

Figure 1 shows the encoding-space (with pre-padding) and the value-encoding, (with value pre-padding and value
post-padding). Figure 1 also illustrates the specification of an encoding-space unit. The encoding-space is always an
integral multiple of this specified number of bits.

If the encoding-space is not the same size for all values encoded by an encoding object, then some additional mechanism
is needed to determine the actual encoding-space used in an instance of an encoding.

20 DTS/MTS-00068 V1.1.1 (2000-10)

: Alignment from start of encoding
Vaue pre-padding

Encoding-space

Encoding so far

Encoding-space \ 1001100200100100
10101 110I prepadding —>

\ T

/
/]
> L
= _
ﬁ Vaue post-padding
Encoding-space unit
o E/alue-encodi no
Encoding then added to bits-or-the- line,
possibly with bit, octet, etc reversal

Figure 1 - Encoding-space, val ue-encoding and padding concepts

The stepsin adefinition of an encoding for a primitive encoding class are:

Specify the alignment (if any) required for the leading edge of the encoding-space (relative to the alignment point -
normally the start of the encoding of the top-level type, that is, the type to which an encoding object set is applied
inthe ELM).

Specify the form of any necessary padding to that point (encoding-space pre-padding).
Specify the encoding of abstract valuesinto bits (value-encoding).
Specify the units of the encoding-space (the encoding-space will always be an integral multiple of these units).

Specify the size of the encoding-space in these units. This may be fixed, fixed using knowledge of integer or size
bounds associated with the abstract values to be encoded, or variable (different for each abstract value). The
specification may also (in all cases) specify the use of alength determinant that has to be encoded with the length
of thefield, and either enables decoding or provides redundant information (in the case of afixed-size
encoding-space) that a decoder can check.

Specify the alignment of the value-encoding within the encoding-space.

Specify the form of any necessary padding from the start of the encoding-space to the start of the value-encoding
(value pre-padding).

Specify the form of any necessary padding between the end of the value encoding and the end of the encoding-space
(value post-padding).

Specify any necessary bit-reversals of the encoding-space contents before adding the bits to the encoding done so far.

21 DTS/MTS-00068 V1.1.1 (2000-10)
Encoding classfields are available to support the specification of the encoding rulesfor all these steps.

Inreal cases, only some (or none!) of these fields will have unusual values, and defaults operate if they are not specified.
(See E.1.4 for an example of the definition of the encoding for an integer that is right-aligned in a fixed two octet field,
starting at an octet boundary.)

9.17 Application of encodings

Application of encodings (encoding rules) to encoding structuresis akey part of the ECN work, but is very distinct from
the definition of the encoding rules. Final application of encoding rules (to the encoding structure implicitly generated
from an ASN.1 type definition) only occurs within an Encoding Link Module, but application of encoding rulesto fields
of an encoding structure may be used in the definition of an encoding rule for alarger encoding structure.

Encoding rules are applied by reference to an encoding object set (or to asingle encoding object). Such application can
occur in the definition of the encoding objects for any class (including encoding objects for an implicit encoding class
and for a structure-based encoding class). Such application is merely the definition of more encoding objects for that
encoding class: The definitive application to an actual type occurs in the Encoding Link Module.

When a set of encoding objects (encoding rules) are being applied, they always result in a complete encoding
specification for the encoding class. If, in any given application, encodings are needed for encoding classes (used within
an encoding structure being encoded) for which there are no encoding objectsin the set being applied, then thisisan
error .

NOTE Although the specification of the encoding rules will be complete, the actual encoding (for example, the
presence or absence of encoding-space pre-padding, or use of the values of bounds referenced in the
encoding rules) can only be determined when the encoding is applied to atop-level ASN.1 type.

There are two exceptionsto this requirement. The first exception iswhen the ASN.1-like parameterization mechanism is
used to define a parameterized encoding object. In such cases the complete encoding is only defined following
instantiation with an actual parameter. The second exception is when an encoding object is defined for an encoding
constructor (#.CONCATENATION, #ALTERNATIVES, #REPETITION, #SEQUENCE, etc.). Inthislatter case, the
encoding rules associated with the encoding class simply define the rules associated with the structuring aspects. A
compl ete encoding specification for an encoding structure using these encoding classes will require rules for encoding
the components of that encoding structure.

NOTE Thereisadistinction here between encoding objects of class #SEQUENCE (an encoding constructor) and
encoding objects for an implicit encoding class "#My-Type" (which happensto be defined using the
ASN.1type"SEQUENCE"). Thelatter is not an encoding constructor, and encoding objects of this class
will provide full encoding rules for the encoding of values of "My-Type".

9.18 Combined encoding object set

In order to provide a complete encoding, the ECN user can supply a primary encoding object set, and a second encoding
object set introduced by the reserved words"COMPLETED BY".

The encoding object set that is applied is defined to be the combined encoding object set formed by adding to the first
set encoding objects for any encoding class for which the first set is lacking an encoding object and the second set
containsone . A frequent set to use with *"COMPLETED BY" isthe built-in set "PER-basic-unaligned”. (See E.1.13for
an example of the application of a combined encoding object set.)

9.19 Application point

In any given application of encodings, there is a defined starting point (for the ELM, it isthe top-level type(s) to which
encodings are being applied). Thisiscalled the "initial application point" for the type that is being encoded by the ELM.

The combined encoding object set is conceptually applied to an encoding structure corresponding to the ASN.1 type, and
itisthe encodings defined for this encoding structure that encode the abstract values of the ASN.1 type.

If there is an encoding object in the combined encoding object set that matches the encoding class (initially an implicit
encoding class) at the application point, it is applied and the process terminates. Otherwise the type at the application
pointis"expanded". There hasto be an encoding object for the class of the encoding constructor (#CHOICE,
#SEQUENCE, #SEQUENCE-OF, etc), and the application point then passes to each component (as a parallel activity).

22 DTS/MTS-00068 V1.1.1 (2000-10)

9.20 Conditional encodings

Mention has already been made of the #TRANSFORM encoding class as a means of performing simple arithmetic on
integer values. This encoding class does, however, play a more fundamental role in the specification of encodings for
some primitive fields. In general, the specification of encodings for many of the primitive typesisatwo or athree stage
process, using encoding objects of class#TRANSFORM and (for example) of class#CONDITIONAL-INT or
#CONDITIONAL-REPETITION".

The #TRANSFORM, #CONDITIONAL-INT, and #CONDITIONAL-REPETITION encoding classes are restricted in
their use. Encoding objects can only be defined for these classes using either the syntax of Annex A, or a user-defined
encoding-function, and they can only be used in the definition of other encoding objects. They cannot appear in
encoding object sets or be applied directly to encode fields of encoding structures.

Encoding specifications for #NT proceeds as follows: First, one or more #TRANSFORM encoding objects are defined
that map integer valuesinto #BITS (possibly using bounds information), producing either a variable length set of bit
strings or fixed length bit strings. These transformations can specify either two's complement or positive integer
encodings. Secondly, encodings (of the #CONDITIONAL-INT encoding class) are defined for a particular bounds
condition, specifying the container size (and how it is delimited), the transformation of the integer to bits (by reference
to a#TRANSFORM encoding object), and the way these bits fit into the container. (An example of abounds conditionis
the existence of an upper bound and a non-negative lower bound.) Thisiscalled aconditional encoding. Finally, the
#INT encoding is defined as alist of these conditional encodings, with the actual encoding to be applied in any given
circumstance being the onethat is earliest in the list whose bounds condition is satisfied.

Encoding specifications for repetitions use the #CONDITIONAL-REPETITION encoding class, which defines the way
in which the encoding-space for the repeated items is delimited and how the repeated encodings are to be placed into it,
for agivenrange condition, again producing a conditional encoding. Aswiththe#INT encoding class, thefinal
encoding isdefined as alist of conditional encodings.

Encoding specifications for the #OCTETS encoding class proceeds as follows: First, one or more
#CONDITIONAL-REPETITION encoding objects are defined to take each of the octetsin the octet string and to
concatenate theminto a delimited container. (The definition of this encoding object is not specific to encoding
#OCTETYS). Thefinal encoding of #OCTETS is defined asalist of #CONDITIONAL-REPETITION encoding objects.

Encoding specifications for #BITS proceeds as follows: First, #TRANSFORM encoding objects are defined to map a
singlebit into a bit-string, similar to the encoding of an integer into bits, but in this case the mapping of the bit must be to
aself-delimiting string. Secondly, one or more #CONDITIONAL-REPETITION encoding objects are defined for the
repetition of the bits (these could be the same encoding objects that were defined for use with #REPETITION or
#OCTETS). Finaly, the#BITS encoding is defined as alist of the #CONDITIONAL-REPETITION encoding objects,
with atransformation associated with each encoding object for the mapping of abit into a bit-string.

Encoding specifications for #CHARS proceeds as follows: First, #TRANSFORM encoding objects are defined to map a
single character to a self-delimiting bit-string, using several possible mechanisms for defining the encoding of the
character, and using the effective alphabet constraint whereit isavailable. Secondly, #CONDITIONAL-REPETITION
encoding objects are defined, and finally the #CHARS encoding is defined as alist of these with an associated
#TRANSFORM encoding object.

9.21 Changes to ASN.1 Recommendations | International
Standards

This TS references other ASN.1 Recommendations | International Standardsin order to defineits notation without
repetition. For such referencesto be correct, the semantics of the notation (for example the"IMPORTS" clause,
parameterization, and information object definition) needs to be extended to recognize the reference names of encoding
classes, encoding objects, and so on that form part of ECN.

Thereisalso aneed to extend the information object class notation to allow fields that are lists of values or objects, not
just sets, in order to allow the use of that notation in the definition of ECN syntax for the definition of encoding objects
of certain classes.

These modifications to other ASN.1 Recommendations | International Standards are specified in AnnexesB to D, and
are solely for the purposes of thisTS.

23 DTS/MTS-00068 V1.1.1 (2000-10)

10 ldentifying encoding classes, encoding objects, and
encoding sets

Many of the productions within this TS require that an encoding class, encoding object, or encoding object set be
identified.

For each of these, there are four ways in which identification can be made:
Using a simple reference name.
Using abuilt-in reference name (not applicable for encoding objects, as there are no built-in encoding objects).
Using an external reference.
Using a parameterized reference.
In-line definition.
NOTE The parameterized reference form may be based on a simple reference name or on an external reference.

There are productions (or lexical items) for all of these means of identification. There are also productions that allow all
four altematives, where applicable. Finally, there are productionsthat allow all except the last of these (in-line
definitions). Theselexical items or production names are used where appropriate in other productions, and are defined in
the remainder of this clause.

Thelexical itemsfor use of areference name are:

encodi ng cl ass "encodi ngcl assref erence"
encodi ng obj ect "encodi ngobj ect r ef erence"
encodi ng obj ect set "encodi ngobj ect setref erence"

An "encodingclassreference” is a name which is either:
a) assigned an encoding classin an "EncodingClassAssignment” or is
b) imported into an EDM from some other EDM in which it is either assigned an encoding class or isimported; or is

imported as the name of an implicit encoding class from an ASN.1 module or from an EDM module into which it
was imported.

NOTE Encoding classes cannot be imported into an ELM.

An "encodingclassreference" shall not be imported from an EDM module if the referenced module has an "EXPORTS"
clause and the" encodingclassreference” does not appear asasymbol in that "EXPORTS" clause.

NOTE If thereferenced module has no "EXPORTS' clause, thisis equivalent to exporting everything.

An implicit encoding class never appears in the "EXPORTS" clause of any ASN.1 nodule, but can always be imported
from any ASN.1 module which it is either defined or imported.

An "encodingobjectreference" isaname which is either:
a) assigned an encoding object in an "EncodingObjectAssignment” in an EDM; or is

b) imported into an EDM or an ELM from some other EDM in which it is either assigned an encoding object or is
imported.

An "encodingobjectreference” shall not be imported from an EDM or ELMif the referenced module has an "EXPORTS"
clause and the "encodingobjectreference” does not appear as asymbol in that "EXPORTS" clause.

NOTE If thereferenced module has no "EXPORTS' clause, thisis equivalent to exporting everything.
An "encodingobjectsetreference” is a name which is either:
a) assigned an encoding object set in an "EncodingObjectSetAssignment” in an EDM; or is

imported into an EDM or an ELM from some other EDM in which it is either assigned an encoding object set or is
imported.

24 DTS/MTS-00068 V1.1.1 (2000-10)

An "encodingobjectsetreference” shall not be imported from an EDM or ELM if the referenced module has an
"EXPORTS" clause and the "enodingobjectsetreference” does not appear as a symbol in that "EXPORTS" clause.

NOTE If thereferenced module has no "EXPORTS' clause, thisis equivalent to exporting everything.

The productions for use of abuilt-in reference name are:

encodi ng cl ass "Bui | ti nEncodi ngd assRef er ence”
encodi ng obj ect set "Bui | ti nEncodi ng(hj ect Set Ref er ence”

The productions for use of an external reference name are:

Ext er nal Encodi ngd assReference ::=

nmodul eref erence "." encodi ngcl assref erence |

nodul ereference "." BuiltinEncodi ngd assRef erence
Ext er nal Encodi ngObj ect Ref erence :: =

nmodul er ef erence

noon

encodi ngobj ectref erence
Ext er nal Encodi ngObj ect Set Ref erence :: =
nodul er ef erence

noon

encodi ngobj ect setref erence

The "modulereference” is defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.5, and identifies amodule which is
referenced in the imports list of the EDM or ELM.

The "External EncodingClassReference” alternative that includes a"BuiltinEncodingClassReference" shall be used in the
body of an EDM if and only if thereis an implicit encoding class (whose name isthe same as that of a
"BuiltinEncodingClassReference") which is either:

a) defined implicitly in the ASN.1 module referenced by the "modulereference”; or
b) imported into another EDM referenced by the "modulereference”.
NOTE The"BuiltinEncodingClassReference” name can appear asa"Symbol” in the"IMPORTS" clause

The productions defined above shall be used if and only if the corresponding simple reference name has been imported
from the module identified by the "modulereference”, and either:

a) identical reference names have been imported from different modules; or
b) both conditions hold.

A parameterized referenceis areference name defined in a"ParameterizedAssignment™ and supplied with an actual
parameter in accordance with the syntax specified in Annex D. The productionsinvolved are:

encodi ng cl asses " Par anet er i zedEncodi ngd assAssi gnnent "
" Par aret eri zedEncodi ngd ass"

encodi ng obj ects " Par arret eri zedEncodi ngQbj ect Assi gnnent "
" Par anet er i zedEncodi ngObj ect "

encodi ng obj ect sets " Par anet er i zedEncodi ngQbj ect Set Assi gnnment "
" Par aret eri zedEncodi ngoj ect Set "

The productions that allow all four forms of identification are:

encodi ng cl asses "Encodi ngd ass"
encodi ng obj ects "Encodi ngbj ect "
encodi ng obj ect sets " Encodi ngoj ect Set "

The productions which allow all forms except in-line definition are:

encodi ng cl asses " Def i nedEncodi ngC ass”
encodi ng obj ects " Def i nedEncodi ngtbj ect "
encodi ng obj ect sets " Def i nedEncodi ngoj ect Set "

25 DTS/MTS-00068 V1.1.1 (2000-10)

The "DefinedEncodingClass' is:

Def i nedEncodi ngd ass :: =
encodi ngcl assr ef erence |
Ext er nal Encodi ngd assRef er ence |
Bui | ti nEncodi ngd assRef erence |
Par anet eri zedEncodi ngd ass

The "DefinedEncodingObject” is:

Def i nedEncodi ngChj ect :: =
encodi ngobj ectref erence |
Ext er nal Encodi ngQbj ect |
Par anet eri zedEncodi ng(hj ect

The "DefinedEncodingObjectSet" is:

Def i nedEncodi ngObj ect Set :: =
encodi ngobj ect set r ef erence |
Ext er nal Encodi ngObj ect Set Ref er ence |
Bui | ti nEncodi ngChj ect Set Ref er ence |
Par anet eri zedEncodi ngoj ect Set

11 Encoding ASN.1 types

11.1 General

For all ASN.1 types, thereisacorresponding encoding structure. Thisencoding structure isimplicitly generated for
each ASN.1 type assignment, and is automatically exported from the ASN.1 module. (It does, however, have to be
imported into an EDM moduleif it isto be used.) The name of the corresponding encoding structure is the name of the
type preceded by a character "#". This encoding structure defines an encoding class called animplicit encoding class,
and the corresponding encoding structureis called animplicit encoding structure.

The encoding of an ASN.1 typeisformally defined as the result of encodings applied to the corresponding (implicit)
encoding structure. The encodings are applied by statementsin the ELM, using encoding objects in acombined
encoding object set.

Theimplicit encoding structure is defined by first simplifying and expanding the ASN.1 notation, and then by mapping
ASN.1 types, constructors and component names into corresponding built-in encoding classes, encoding constructors
and encoding structure fieldnames.

Each field of the implicit encoding structure has associated with it the abstract values of the corresponding type, and
constraint-related information derived from the ASN. 1 type definition .

In the present version of this TS, only the outermost tag of atypeisvisibleto ECN (that is, can be used in specifying
ECN encodings).

NOTE Theonly mechanism currently provided for using thisinformation isin the determination of a canonical
order for elements, for example for #CHOICE or #SET encodings.

This clause specifies:

a) The built-in encoding classes that are used in defining the implicit encoding structures corresponding to ASN.1
types.

NOTE - Clause 15 specifies additional classes that are used in the explicit definition of encoding structures by an
ECN user.

b) Transformations of the ASN.1 syntax (simplification and expansion).

¢) Theencoding structure that isimplicitly generated for an ASN.1 type.

26 DTS/MTS-00068 V1.1.1 (2000-10)

11.2 Built-in encoding classes used for implicit encoding
structures

The encoding classes used for implicit encoding structures, and the ASN.1 types or constructors to which they
correspond are listed in Table 2 below.

Table 2: Encoding classes for ASN.1 notation

Encoding Class

ASN.1 notation

#BIT-STRING BIT STRING
#BOOLEAN BOOLEAN
#CHARACTER-STRING CHARACTER STRING
#CHOICE CHOICE
#EMBEDDED-PDV EMBEDDED PDV
#ENUMERATED ENUMERATED
#EXTERNAL EXTERNAL
#INTEGER INTEGER

#NULL NULL

#0OBJECT-IDENTIFIER

OBJECT IDENTIFIER

#OCTET-STRING

OCTET STRING

#OPEN-TYPE OPEN-TYPE (This type is produced as a simplification of the
ASN.1 notation)
#OPTIONAL OPTIONAL
#REAL REAL
#RELATIVE-OID RELATIVE-OID
#SEQUENCE SEQUENCE
#SEQUENCE-OF SEQUENCE OF
#SET SET
#SET-OF SET OF
#GeneralizedTime GeneralizedTime
#UTCTime UTCTime
#BMPString BMPString

#GeneralString

GeneralString

#GraphicString

GraphicString

#IA5String

IA5String

#NumericString

NumericString

#PrintableString

PrintableString

#TeletexString

TeletexString

#UniversalString

UniversalString

#UTF8String UTF8String
#VideotexString VideotexString
#VisibleString VisibleString

11.3 Simplification and expansion of ASN.1 notation for encoding

purposes

ECN assumes that certain ASN.1 syntactic constructs have been expanded (or reduced) into equivalent or simpler

constructions.

NOTE Thetypes defined by the simpler constructions are capable of carrying the same set of abstract values as

the original ASN.1 syntactic structures, and those abstract values are mapped.

The expansion or simplification of ASN.1 syntactic productionsis either:

a) fully-defined below; or

b) fully-defined in Annex F of ITU-T Rec. X.680 | ISO/IEC 8824-1 and ITU-T Rec. X.680 | ISO/IEC 8824-1 with
al published amendments; or

c) fully-definedin ITU-T Rec. X.681 | ISO/IEC 8824-2 with all published amendments.

d) fully-definedin ITU-T Rec. X.683 | ISO/IEC 8824-4 with all published amendments.

The ASN.1 syntactic constructs removed by the expansions and simplifications below are not referenced further in this

TS

27 DTS/MTS-00068 V1.1.1 (2000-10)

The following expansions and simplifications shall be made:

1. Thefollowing transformations are not recursive and hence are applied only once:

Automatic allocation of valuesto enumerations (if applicable) shall be performed. The "ENUMERATED"
syntax shall be replaced by the #ENUMERATED encoding class with an upper bound and lower bound set.

NOTE — The actual names of enumerations are not visible to ECN.

All "VaueSetTypeAssignment"s shall be replaced by their equivalent " TypeAssignment”s with subtype
constraints.

The ASN.1"INSTANCE OF" construction shall be expanded into its equivalent sequence type. (defined in
Annex F of ITU-T Rec. X.680 | ISO/IEC 8824-1 and ITU-T Rec. X.680 | ISO/IEC 8824-1 with all published
amendments)

"TypeFromObject” shall be replaced with the type that is referenced. (defined in Annex F of ITU-T Rec.
X.680 | ISO/IEC 8824-1 and ITU-T Rec. X.680 | ISO/IEC 8824-1 with al published amendments)

"V alueSetFromObjects” shall be replaced with the type that is referenced. (defined in Annex F of ITU-T Rec.
X.680 | ISO/IEC 8824-1 and ITU-T Rec. X.680 | ISO/IEC 88241 with all published amendments)

. Thefollowing transformations shall be applied recursively in the specified order, until afix-point is reached:

All ASN.1 parameterization shall be fully resolved by the substitution of actual parameters for dummy
parameters. (fully-defined in ITU-T Rec. X.683 | ISO/IEC 8824-4 with all published amendments)

All "ComponentsOf"s shall be expanded to their full form.

All uses of "SelectionType" shall be resolved.

. Thefollowing simplications shall then be applied:

Named number listsin integer type definitions shall be removed. Named numbers are not visible to ECN.
ECN seesasingle "INTEGER" type.

Named bit listsin bit string definitions shall be removed. Named bits are not visible to ECN.

All non-PER-visible constraint notation (except the contents constraint) shall be discarded. PER-visible
constraints shall be resolved to provide the following values that can be referenced in the definition of
encoding rules;

i) Anupper bound on integers and enumerations;
ii) A lower bound on integers and enumerations;
iii) The PER effective alphabet and effective size constraints (see I TU-T Rec. X.691 | ISO/IEC 8825-2, 9.3).

The existence of a contents constraint, the contents type, and the presence or absence of an "ENCODED BY"
clause becomes a property associated with the abstract values of such aconstrained "OCTET STRING" or
"BIT STRING" type, and the constraint shall then be discarded.

NOTE — When specifying encodings for values with an associated contents constraint, a separate combined encoding

object set can be supplied to encode the contents type. This can be specified to over-ride or not to over-ride
any "ENCODED BY" that is present, as a designer's option.

All tagging shall beignored in the mapping to encoding structures, but (in order to model BER encodings and
PER procedures) the outermost tag of atype becomes a property of the field of the encoding structure to
which the corresponding values are mapped.

"DEFAULT Value" shall be replaced by "OPTIONAL" and the default value is associated with the field of the
structure to which the ASN.1 component is mapped.

"T61String" shall be replaced by "TeletexString".

"1SO646String” shall be replaced by "VisibleString”.

28 DTS/MTS-00068 V1.1.1 (2000-10)

- All occurrences of "ObjectClassFieldType" (fully-defined in ITU-T Rec. X.681 | ISO/IEC 8824-2 with all
published amendments) that refer to atypefield, avariable-type valuefield, or avariable-type value set field
shall be replaced by the type "OPEN-TY PE".

With these transformations, all ASN.1 type-related constructs have corresponding implicit encoding classes, listed in
Table 2, and the implicitly generated encoding structure shall be constructed by mapping from column 1 to column 2 of
Table 2.

11.4 The implicit encoding structure

Theimplicit encoding structure has the same structure as the ASN.1 type definition, with:
a) ASN.1 component identifiers mapped to encoding structure fieldnames.

b) ASN.1typesand constructorsin column 2 of Table 2 mapped to the built-in encoding classes in column 1 of
Table 2.

¢) ASN.1"DefinedType"s mapped to an encoding class name derived from the typereference by the addition of a
character "#".

d) Abstract values are mapped from the corresponding field of the type definition to the corresponding encoding
structurefield.

€) Upper and lower bounds on integer and enumerated types and all effective size constraints and effective al phabet
constraints (see ITU-T Rec. X.691 | ISO/IEC 8825-2, 9.3) are mapped from the type definition to the
corresponding field of the encoding structure.

All implicit encoding structures can be encoded by the built-in encoding object sets and will produce the same encodings
as are specified by the corresponding TS for those encodings.

12 The Encoding Link Module (ELM)

12.1 Structure of an ELM module

The"ELMDeéfinition" is:

ELMDefinition ::=
Modul el denti fier
LI NK- DEFI NI TI ONS
BEG N
ELMvbdul eBody
END

In any given application of ECN, there shall be precisely one ELM which determines the encoding of all the messages
used in that application.

NOTE TheASN.1 type(s) defining "messages" are often referred to as "top-level types'.
The production "Moduleldentifier” (and its semantics) isdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1.

The "Moduleldentifier" provides unambiguous identification of any module in the set of all ASN.1, ELM, and EDM
modules.

The"ELMModuleBody" is:

ELMVbdul eBody :: =
I nports ?
Encodi ngAppl i cati onLi st

Encodi ngAppl i cationList ::=
Encodi ngAppl i cati on
Encodi ngAppl i cati onLi st ?

29 DTS/MTS-00068 V1.1.1 (2000-10)

The production "Imports" (and its semantics) isdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1, 12.15, and 12.16,
as modified by Annex B.

The"Imports" makes available within the ELM encoding objects and encoding object sets defined in EDMs for
applicationto ASN.1 types.

The ASN.1 types to be encoded are not imported, but are referenced directly by the " AbsoluteReference” notation
defined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 14, as modified by Annex B.

The "EncodingApplicationList”" isrequired to contain at least one "EncodingApplication” as the sole function of an ELM
isto apply encodings.

The "EncodingApplication” is:

Encodi ngApplication ::=
TypeAppl i cation
Modul eAppl i cation

12.2 Encoding a type

A "TypeApplication” is:

TypeApplication ::=
ENCODE

Absol ut eRef er ence
Conbi nedEncodi ngs

A "TypeApplication" defines the encoding of an ASN.1 type whose reference nameis defined in (or imported into) an
identified ASN.1 module. It identifies the type using the "AbsoluteReference” notation defined in ITU-T Rec. X.680 |
ISO/IEC 8824-1, clause 14, as modified by Annex B. The encoding of the typeis specified by the
"CombinedEncodings" applied to the implicit encoding structure as specified in 13.2.

NOTE 1 — It will be common for an ELM to encode a single type of a single module, but where multiple typesare
encoded, ECN tool-vendors may (but need not) assume that thisimplicitly identifies top-level types
needing support in generated data-structures.

NOTE 2 - An ELM may encode types in different modules (perhaps for different environments), and may even
encode separately and differently two instances of the same typeiif it is exported/imported between
modules. Such useis not expected to be common but is not forbidden.

Encodings applied to atype within an ELM are linked solely to the use of that type as application messages. They have
no implications on the encoding of that type when referenced by other types or when exported from that module and
imported into a different module.

"TypeA pplication"s within an ELM shall all have distinct " AbsoluteReference’s.

NOTE Therules of application of encodingsmean that a" TypeApplication" completely defines the encoding of a
type unlessit contains an instance of a content constraint.

The encoding of the type in acontent constraint isthat specified by the encoding object applied to the containing
"OCTET STRING" or "BIT STRING", and can be any combined encoding object set, or can be the combined encoding
object set that was applied to the #OCTET -STRING or #BIT-STRING.

12.3 Encoding multiple types

A "ModuleApplication” is:

Modul eApplication ::=
ENCODE
Modul el denti fier
Conbi nedEncodi ngs

A "ModuleApplication" defines the encodings of all ASN.1 types whose reference names are defined in (or imported
into) the module identified by the "Moduleldentifier", and which are not referenced by other types within that module.
The effect is completely equivalent to listing each of these typesin separate "TypeApplication"s.

30 DTS/MTS-00068 V1.1.1 (2000-10)

An ECN specification shall not define the encoding of atype with a"TypeApplication" if its encoding is also defined by
a"ModuleApplication".

13 Application of encodings

13.1 General

Encodings are applied by the ELM to atype (or independently to multiple types) using a"CombinedEncodings’
definition as specified below. This clause specifies the application of "CombinedEncodings" to an encoding structure.

Inthe ELM, the application isto the encoding structure implicitly generated from the type named in the
"EncodingApplication”. Later clauses also specify the application of encodingsto all or part of an encoding structure
definition. This clauseis applicablein both cases.

The"CombinedEncodings" is:
Conbi nedEncodi ngs ::=
W TH
Pri mar yEncodi ngs
Conpl eti ond ause ?
Conpl eti ond ause :: =
COWPLETED BY
Secondar yEncodi ngs
Pri mar yEncodi ngs ::= Encodi ngloj ect Set
Secondar yEncodi ngs :: = Encodi ngQbj ect Set
A "ParameterizedEncodingObjectSet" that isinstantiated in the ELM shall not contain dummy parameters.
"EncodingObjectSet" is defined in 16.3.

The use of "CombinedEncodings" is specified in 13.2.

13.2 The combined encoding object set and its application

A combined encoding object set isformed from the "CombinedEncodings" production as follows:
If thereisno "CompletionClause", then the "PrimaryEncodings" form the combined encoding object set.

Otherwise, all encoding objectsinthe"PrimaryEncodings" are placed in the combined encoding object set, and every
encoding object in the " SecondaryEncodings' is added to the combined encoding object set if (and only if) thereisno
encoding object already in the combined encoding object set with the same encoding class.

Following the conceptual construction of the combined encoding object set, encoding commences with the
"encodingclassreference” name of the encoding structure identified (by reference to the associated type for applications
in the ELM) in the encoding application.

Where the encoding applicationsin the ELM involve several types, the rules of 12.2 and 12.3 ensure that applications are
non-overlapping. They proceed independently. Similarly, the application of encodings to encoding structuresin EDMs
are always non-overlapping. The following sub-clauses provide the rules for application to a single encoding structure.

Encoding is performed at anapplication point. The application point isinitially the "encodingclassreference” for the
implicit encoding class (when application isin the ELM or is a component of an encoding structure (when application is
inthe EDM).

Theterm "component” in the following text refers to any of the following:
a) Theaternatives of a#CHOICE or of an #ALTERNATIVES.
b) Thefield following #SEQUENCE-OF, #SET -OF or #REPETITION.
¢) The components of a#SEQUENCE, #SET or #CONCATENATION.

d)

31 DTS/MTS-00068 V1.1.1 (2000-10)

A contained type.

At later stagesin these procedures, the application point may be on any of the following:

a)

b)

d)

An encoding structure reference name. Thisis completely encodable using the specification in an encoding
object of the same classif oneis present in the combined encoding object set.

A built-in encoding class that is not an encoding constructor and isnot a#BITS, #BIT-STRING, #OCTETS, or
#OCTET-STRING class with a contained type associated with the values. Thisiscompletely encodable using the
specification in an encoding object of the same class.

An encoding constructor. The construction procedures can be determined by the specification contained in an
encoding object of the encoding constructor class, but that encoding object does not determine the encoding of the
components.

A #BITS, #BIT-STRING, #OCTETS, or #OCTET -STRING encoding class with a contained type associated with
thevalues. The encoding of the contained type depends on whether thereisan "ENCODED BY" present, and on
the specification of the encoding object being applied .

The classes #ALTERNATIVES, #CHOICE, #CONCATENATION, #SEQUENCE, #SET, #REPETITION,
#SEQUENCE-OF, #SET -OF are encoding constructors.

Encoding proceeds as follows:

If thereis an object in the combined encoding object set of the same class as the current application point, then
that encoding object is applied.

If the encoding class does not have any components then that application completely determines the encoding of
the class and terminates these procedures. Otherwise these procedures are applied recursively to each component
unlessit isacontained type.

If the component isa#BITS, #BIT-STRING, #OCTETS, or #OCTET -STRING encoding class with a contained
type associated with the values, then there are four cases that can occur:

- Thecontents constraint contains an "ENCODED BY", and the encoding object for this class either does not
contain a specification of the encoding of the contained type, or specifiesthat it should not over-ride an
"ENCODED BY". Inthiscasethe"ENCODED BY" specification shall be used for the contained type, and
the application point passes to the contained type using this encoding specification.

- The contents constraint contains an "ENCODED BY", but the encoding object for this class contains a
specification of the encoding of the contained type, and specifiesthat it should override an "ENCODED BY".
In this case, the specification in the encoding object shall be applied to the contained type, and the application
point passes to the contained type using this encoding specification.

- The contents constraint does not contain an "ENCODED BY" and the encoding object for this class contains a
specification of the encoding of the contained type. In this case, the specification in the encoding object is
applied to the contained type, and the application point passes to the contained type using this encoding
specification.

- The contents constraint does not contain an "ENCODED BY", and the encoding object for this class does not
contain a specification of the encoding of the contained type. In this case the combined encoding object set
being applied to the class shall also be applied to the contents type, and the application point passesto the
contained type using this encoding specification.

If there is no encoding object in the combined encoding object set of the same class as the current application
point, and the current application point is an encoding structure reference name, then it is de-referenced and these
procedures are applied recursively to the new encoding structure.

Otherwise the ECN specification isin error.

The above algorithm can be summarized as follows: The combined encoding object set is applied in atop-down manner.
If in this process an encoding structure reference name is encountered and there is an object in the combined encoding
object set that can encode it, that object determinesits encoding. Otherwise, the reference nameis expanded by
de-referencing. If at any stage an encoding is required (and does not exist) for an encoding class that cannot be
de-referenced, then the ECN specification isincorrect, and the combined encoding classis said to be incomplete. When
aprimitive typeisreached the encoding terminates with the encoding of that type, except that if it has a contained type,

32 DTS/MTS-00068 V1.1.1 (2000-10)

encoding proceeds to the contained type. When atype with componentsis reached, the process continues by applying
the combined encoding object set to each component.

In the encoding process, encoding objects applied to encoding constructors (and to #OPTIONAL), may require that the
encoding objects applied to their components exhibit identification handles (of a given name) to resolve alternatives or
optionality or order in a set-like concatenation. If in this case the encodings of the components do not exhibit the
required identification handles, then the ECN specificationisin error.

NOTE Thisproblemismost likely to arise if BER encoding objects are applied to encoding constructors and not
to their components, as BER is heavily reliant on identification handles. PER encoding objects make no
use of identification handles.

14 The Encoding Definition Module (EDM)

There are two top-level productionsin ECN, the "EDMDefinition" specified in this clause and the "EL M Definition™
specified in clause 12. These specify the syntax for defining EDMs and the ELM respectively.

The production "EDMDefinition" is:

EDVDefinition ::=
Modul el denti fier
ENCCDI NG- DEFI NI TI ONS
BEG N
EDM\bdul eBody
END

In any given application of ECN, there are zero, one or more EDMs which define encoding objects for application in the
ELM.

NOTE If there are zero EDMs, then only built-in object sets can be used in the ELM.
The production "Moduleldentifier” (and its semantics) isdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1.

The"Moduleldentifier" provides unambiguous identification of any module in the set of all ASN.1, ELM, and EDM
modules.

The"EDMModuleBody" is:

EDM\Vbdul eBody : :
Exports
I nports ?
EDMAssi gnment Li st ?
EDMAssi gnnent Li st :: =
EDVAssi gnnent
EDMAssi gnnent Li st ?

-~ |l

EDMAssi gnent @ : =
Encodi ngd assAssi gnnent
Encodi ngSt r uct ur eAssi gnment
Encodi ngObj ect Assi gnnent
Encodi ngChj ect Set Assi gnment
Par anet eri zedAssi gnnent

The productions "Exports" and "Imports" (and their semantics) are definedin ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1,
as modified by Annex B.

The "Exports" makes available for import into other EDMs (and the ELM) any reference name defined in or imported
into the current EDM. The"Symbol" in the "Exports" can reference any encoding class (except abuilt-in encoding
class), an encoding object, or an encoding object set. The"Symbol" shall have been defined in this EDM, or imported
intoit.

The"Imports" makes available (within the EDM) encoding classes, encoding objects and encoding object sets exported
from other EDMs or automatically exported from ASN.1 modules.

33 DTS/MTS-00068 V1.1.1 (2000-10)

All ASN.1 modules that define or import type reference names into that module automatically produce and export an
implicit encoding class of the same name preceded by the character "#". Such encoding classes can be imported into an
EDM from that ASN.1 module.

NOTE Where such names are the same as built-in encoding class names, then the external form of reference has
to be used, as specified inAnnex B.

Each "EDMAssignment” defines a reference name, and may make use of other reference names. Each reference name
used in amodule shall either be imported into that module or shall be defined precisely once within that module.

Thereisno requirement that any reference name used in one assignment be defined (in another assignment statement)
textually beforeits use.

The productionsin "EDMAssignment"” are defined in subsequent clauses as follows:

Encodi ngd assAssi gnnent d ause 15
Encodi ngQbj ect Assi gnrent Cl ause 16
Encodi ngoj ect Set Assi gnrent Cl ause 17
Par anet er i zedAssi gnnent Annex D

NOTE The"ParameterizedAssignment" allows the parameterization of an "EncodingClassAssignment”, an
"EncodingObjectAssignment”, and an "EncodingObjectSetA ssignment”.

15 Encoding class assignments

15.1 General

The "EncodingClassAssignment” is:

Encodi ngd assAssi gnnent :: =
encodi ngcl assr ef erence

Eh'c;)di ngd ass
The "EncodingClassAssignment” assigns the "EncodingClass" to the "encodingclassreference”.

Any "EncodingObject” notation that was valid with "EncodingClass" as agovernor isvalid with
"encodingclassreference” as agovernor.

An encoding classisin one of the following categories:
A hit-field class.
An alternatives class.
A concatenation class.
A repetition class.
An optionality class.
A general procedure class.

The"EncodingClass" is:
Encodi ngd ass ::=
Def i nedEncodi ngd ass |
Encodi ngStructure

Any "External EncodingClassReference" which refersto an implicit encoding classisabit-field class.

NOTE An"EncodingStructure" isawaysabit-field class.

34 DTS/MTS-00068 V1.1.1 (2000-10)

The "BuiltinEncodingClassReference" is:

Bui | ti nEncodi ngd assRef erence :: =
Bitfiel dd assRef erence
Al ternativesd assRef erence
Concat enat i onCl assRef er ence
Repetiti onC assRef erence
Optionalityd assReference
CGener al Procedur ed assRef erence

The category of these encoding classes is the category implied by the name of the production.
The "BitfieldClassReference" is:

Bitfiel dd assReference ::=
#NUL
#BOCL
#1 NT
#BI TS
#OCTETS
#CHARS
#PAD
#Bl T- STRI NG
#BOOLEAN
#CHARACTER- STRI NG
#EMBEDDED PDV
#ENUMERATED
#EXTERNAL
#| NTEGER
#NULL
#OBJECT- | DENTI FI ER
#OCTET- STRI NG
#OPEN- TYPE
#REAL
#RELATI VE A D
#Cener al i zedTi ne
#UTCTi ne
#BMPSt ri ng
#CGeneral String
#l A5String
#NunericString
#Printabl eString
#Tel etexString
#Uni versal String
#UTF8St ri ng
#Vi deot exString
#Vi si bl eString

The"AlternativesClassReference” is:

Al ternativesd assReference ::=
#ALTERNATI VES |
#CHO CE

The "ConcatenationClassReference” is:

Concat enati ond assReference ::=
#CONCATENATI ON |
#SEQUENCE |
#SET

The "RepetitionClassReference” is:

Repetitiond assReference ::=
#REPETI TI ON
#SEQUENCE CF |
#SET- CF

The"OptionalityClassReference” is:

Optionalityd assReference :: =
#COPTI ONAL

35 DTS/MTS-00068 V1.1.1 (2000-10)

The "General ProcedureClassReference” is::

Cener al Procedur ed assReference :: =
#TRANSFCRM |
#CONDI TI ONAL- | NT |
#CONDI TI ONAL- REPETI TI ON |
#OUTER

15.2 Encoding structure definition

The "EncodingStructureAssignment” is:

Encodi ngSt ruct ur eAssi gnment ;=
encodi ngcl assr ef erence

Ehéodi ngStructure
The "EncodingStructureAssignment” assigns the "EncodingStructure” to the "encodingstructurereference”.

An "EncodingStructure" defines a structure-based encoding class using the notation specified below. This notation
permits the definition of arbitrary encoding classes using built-in encoding classes and defined encoding classes (which
may be implicit encoding classes) for bit -fields and for encoding constructors. All classes defined by
"EncodingStructure" are bit-field classes. Examples of an encoding structure assignment illustrating many of the
syntactic structuresis giveninE.2.9.

The "EncodingStructure” is:

Encodi ngStructure ::=
Def i nedEncodi ngd ass |
Encodi ngSt r uct ur eDef n

The"DefinedEncodingClass" shall be abit-field class.

The"EncodingStructureField" is:

Encodi ngStructureField :: =
PrimtiveField
Conpl exFi el d

PrimtiveField ::=
#NUL
#BOOL
#1 NT Bounds?
#BI TS Si ze?
#COCTETS Si ze?
#CHARS Si ze?
#PAD

Conpl exField ::=
#Bl T- STRI NG Si ze?
#BOOLEAN
#CHARACTER- STRI NG
#EMBEDDED PDV
#ENUMERATED Bounds?
#EXTERNAL
#1 NTEGER Bounds?
#NULL
#OBJECT- | DENTI FI ER
#OCTET-STRING Si ze?
#OPEN- TYPE
#REAL
#RELATI VE A D
#Cener al i zedTi ne
#UTCTi ne
#BMPSt ri ng Si ze?
#CGeneral String Size?
#G aphicSXring Size?
#1 A5String Si ze?
#NunericString Size?
#Printabl eString Si ze?
#Tel etexString Size?
#Uni versal String Si ze?
#UTF8St ri ng Si ze?

36

#Vi deotexString Size? |
#VisibleString Size?

DTS/MTS-00068 V1.1.1 (2000-10)

The"PrimitiveField"s represent all possible bit string encodings for corresponding ASN.1 types, and can be assigned

values of those typesin avalue mapping.

The"Bounds" and "Size" specify the bounds or effective size constraint respectively on the abstract values that can be

mapped to thefield.

NOTE Effective alphabet constraints cannot be assigned in an encoding structure definition. They can only be

assigned through the value mappings of clause 18.

"Bounds" and "Size" are:

Bounds ::= "(" EffectiveRange ")"
Ef fecti veRange :: =
M nhMax |
Fi xed
Si ze co= "(" SIZE Si zeEffectiveRange ")"

Si zeEf fecti veRange :: =
"(" EffectiveRange ")" |
Ef f ecti veRange

M nMax ::=
Val uerM n

Val ueQr Max

ValueGMn ::=
Si gnedNunber |
M N

Val ueOrMax =
Si gnedNunber |
MAX

Fixed ::= Si gnedNunber

"MIN" and "MAX" specify that thereis no lower or upper bound respectively. "MIN" shall not be used in "Size".
"Fixed" meansasingle value or asinglesize. "SignedNumber" is specified in ITU-T Rec. X.680 | ISO/IEC 8824-1,
18.1. It shall be non-negative when used in "Size". "VaueOrMin" and "VaueOrMax" specify lower and upper bounds

respectively.

The "ComplexFields" represent the group of all bit string encodings for the corresponding ASN.1 type, and can be
assigned such valuesin avalue mapping. The encoding structures represented by these encoding classes are normally
structures with more than one bit-field, and differ between standardized encoding rules. The precise encoding structures

involved are not specified.

The ASN.1 values corresponding to each field are asfollows:

#NUL The null val ue
#BOCOL The bool ean val ues

#1 NT The integer val ues
#BI TS Bit string val ues
#OCTETS Cctet string val ues
#CHARS Character string val ues
#PAD None

The#PAD field shall not be assigned ASN.1 values, and is never visible outside the encoding and decoding procedures.

The "EncodingStructureDefn™ is:

Encodi ngStructurebDefn :: =
Al ternativesStructure |
RepetitionStructure |
Concat enat i onStructure

These encoding structures are defined in the following clauses:

37 DTS/MTS-00068 V1.1.1 (2000-10)

Al ternativeStructure 15.3
RepetitionStructure 15. 4
Concat enati onStructure 15.5

15.3 Alternative encoding structure

The "AlternativesStructure” is:

AlternativesStructure ::=
Al ternativesd ass

{
NanmedFi el ds
nyn

Al ternativesOass ::=
Def i nedEncodi ngd ass |
Al ternativesd assReference

NarmedFi el ds ::= NanedField "," +
NanedField ::=
identifier

Encodi ngStructure

The"AlternativesStructure” identifies the presence in an encoding of precisely one of the "EncodingStructure'sin its
"NamedFields'. The"DefinedEncodingClass" shall be an alternatives class. The mechanisms used to identify which of
the "EncodingStructure'sis present in an encoding are specified by an encoding object of the "AlternativesClass'.

The "AlternativesStructure” is an encoding constructor: when an encoding object set is applied to this structure as
specified in clause 13.2, the encoding of the "AlternativesClass" determines the selection of alternatives, and the
application point then proceedsto each of the "EncodingStructure”sin its "NamedFields".

15.4 Repetition encoding structure

The "RepetitionStructure” is:

RepetitionStructure ::=
Repetitiond ass

Encodi ngStructure
Si ze?

Repetitiond ass ::=
Def i nedEncodi ngd ass |
Repetiti ond assRef erence

The "RepetitionStructure” identifies the presence in an encoding of repeated occurrences of the "EncodingStructure” in
the production. The optional "Size" construction specifies bounds on the number of repetitions. The mechanisms used
to identify how many repetitions of the "EncodingStructure" are present in an encoding are specified by an encoding
object of the "RepetitionClass" class. The"DefinedEncodingClass' shall be arepetition class.

The "RepetitionStructure” is an encoding constructor: when an encoding object is applied to this structure as specified in
clause 13.2, the encoding of the "RepetitionClass' determines the mechanisms for determining the number of repetitions,
and the application point then proceeds to the "EncodingStructure” in the production.

15.5 Concatenation encoding structure

The "ConcatenationStructure” is:
ConcatenationStructure ::=
Concat enati ond ass

Concat Conponent s
"y

38 DTS/MTS-00068 V1.1.1 (2000-10)

Concat enationCl ass :: =
Def i nedEncodi ngd ass
Concat enat i onCl assRef er ence

Concat Conponents :: =
Concat Conponent ", " *

Concat Conponent :: =
NaredFi el d
Optional d ass ?

Optional dass ::=
Def i nedEncodi ngd ass
Optionalityd assRef erence

The "ConcatenationStructure” identifies the presence in an encoding of zero or one encodings for each of the
"EncodingStructure”sinits"NamedField's. The"DefinedEncodingClass" in the "ConcatenationClass" shall be a
concatenation class, and the " DefinedEncodingClass" in the "Optional Class" shall be an optionality class .

If "OptionalClass" is absent from a"Component”, then the "EncodingStructure” in that named field shall appear
precisely oncein the encoding.

If "OptionalClass" is present, the mechanism used to determine whether there is an encoding of the corresponding
"EncodingStructure" is specified by the encoding object which encodes the "Optional Class"..

The order in which the encodings of each "NamedField" appear in an encoding of the concatenation (and the means of
identifying which "NamedField" an encoding represents) is determined by an encoding object of the
"ConcatenationClass" class.

The "ConcatenationStructure” is an encoding constructor: when an encoding object is applied to this structure as
specified in clause 13.2 the encoding of the " ConcatenationClass" determines the concatenation procedures and the
application point then proceeds to each of the "EncodingStructure”sin its named fields.

16 Encoding object assignments

16.1 Categories of encoding object assignments

The "EncodingObjectAssignment” is:

Encodi ngthj ect Assi gnnent @ : =
encodi ngobj ect r ef erence
Encodi ngd ass
E'n.codi ngbj ect

The "EncodingObjectAssignment” defines the "encodingobjectreference” as an encoding object reference to the
"EncodingObject”, which isrequired to be a production which generates an object of the encoding class
"EncodingClass'. E.1.3, E.1.8 and E.1.9 provide examples of encoding object assignment for the different syntactic
constructions for "EncodingObject” specified below.

The"EncodingClass' is called the governor of the "EncodingObject" notation in this production.

NOTE 1 — Whenever the "EncodingObject” production appearsin ECN, thereis agovernor, and the syntax of the
governed notation depends on the encoding class of the governor.

NOTE 2 — The syntax of the governed notation has been designed so that a parser can find the end of it without
knowledge of the governor.

The "EncodingObject" is:

Encodi ngOhj ect :: =
Def i nedEncodi ngObj ect
Def i nedSynt ax
EncodeWth
EncodeByVal ueMappi ng
EncodeStructure
Di fferenti al EncodeDecode(hj ect
User Def i nedEncodi ngFunct i on

39 DTS/MTS-00068 V1.1.1 (2000-10)

"DefinedEncodingObject” identifies an encoding object. The "DefinedEncodingObject” shall be of the same encoding
class asthe governor. InthisECN TS, "the same encoding class" shall be interpreted as meaning that the notation used
for defining the two classes shall be the same encoding class reference name.

The remaining productions of "EncodingObject” are defined in the following clauses and provide alternative means of
defining encoding objects of the governor class:

Def i nedSynt ax 16. 2 nodi fi ed by Annex A
EncodeWth 16. 3
EncodeByVal ueMappi ng 16. 4
EncodeStructure 16.5
Di fferenti al EncodeDecodehj ect 16. 6
User Def i nedEncodi ngFuncti on 16.7

16.2 Encoding with a defined syntax

The "DefinedSyntax™ production is specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, 11.5, as modified by Annex C, and
is used for the definition of encoding objects with a governing encoding classes, as specified inAnnex A.

This notation for defining encoding objectsisonly available for the governing encoding classeslisted in Table 3 below.
The syntax to be used for each classisthe "DefinedSyntax" for the encoding class (specified in Annex A) with the name
listed in column 1.

NOTE Theuseof thissyntax frequently requires the inclusion of a parameter for adeterminant. Parameterized

encoding objects with such parameters are only useful for application to an encoding structure in the EDM,
they cannot be applied in the ELM.

Table 3: Classes supported by a defined syntax

Encoding Class Used also for:
#NUL #NULL
#BOOL #BOOLEAN
#INT #INTEGER and #ENUMERATED
#BITS #BIT-STRING
#OCTETS #OCTET-STRING
#CHARS #BMPString, #GeneralString, #GraphicString, #IA5String,

#NumericString, #PrintableString, #TeletexString, #UniversalString,
#UTF8String, #VideotexString, and #VisibleString

#PAD

#ALTERNATIVES #CHOICE

#REPETITION #SEQUENCE-OF and #SET-OF
#CONCATENATION #SEQUENCE and #SET
#OPTIONAL

#CONDITIONAL-INT
#CONDITIONAL-REPETITION
#TRANSFORM

#OUTER

NOTE This notation enables users to specify encoding objects which encode #SET in the way PER normally
encodes #SEQUENCE, and vice versa. Users are expected to be responsible in their use of this notation.

The "DefinedSyntax" for #CHARS can be used for any of: #BM PString, #General String, #GraphicString, #l A5String,
#NumericString, #PrintableString, #TeletexString, #Universal String, #UTF8String, #VideotexString, and #VisibleString.

The information required to specify an encoding object of one of these classes is specified by the definition of the
encoding classin Annex A.

If agovernor for avalue of one of the fields of the encoding classis needed for usein adummy parameter list, then the
notation "EncodingClassFieldType" shall be used.

The semantics associated with the encoding class definitionsin Annex A is specified for each encoding classin
clause 19.

40 DTS/MTS-00068 V1.1.1 (2000-10)

Where the syntax defined in Annex A requires the provision of a REFERENCE, this can only be supplied in this
construction by using adummy parameter of the encoding object that is being defined.

16.3 Encoding with encoding object sets

The "EncodeWith" is:

EncodeWth ::=
"{" ENCODE Conbi nedEncodi ngs "}"

"CombinedEncodings" and its application to an encoding classis specified in clause 13.

The encoding object defined by the "EncodeWith" is the application of the "CombinedEncodings" to the encoding class
that isthe governor of the "EncodeWith" notation.

It isaspecification error if this does not produce a compl ete encoding specification for the governor class.

If an encoding object set in the "CombinedEncodings' is parameterized with a parameter that isa REFERENCE, the
actual parameter supplied in this construction can only be adummy parameter of the encoding object that is being
defined.

16.4 Encoding using value mappings

The "EncodeByValueMapping" is:

EncodeByVal ueMappi ng :: =
nn
USE
Encodi ngd ass
MAPPI NG
Val ueMappi ng
W TH Encodi ngQbj ect
nyn

The production "EncodingClass" and its semanticsis defined in 15.1. It shall be abit-field class.

The production "VaueMapping" and shall be a mapping of values from the governor encoding class to the class
identified by the "EncodingClass".

The "EncodingObject” shall define an encoding object using notation governed by the class specified by the
"EncodingClass" .

The syntax for "EncodingObject” allows both in-line definition of encoding objects (recursive application of this clause)
and the use of reference names. E.2.10 gives an example of in-line definition to perform two value mappingsin asingle
assignment.

Where the "EncodingObject" requires the provision of a REFERENCE, this can only be supplied in this construction by
using adummy parameter of the encoding object that is being defined.

Where there are boundson fields of the "EncodingClass’, then values shall not be mapped to those fields that violate the
specified bounds.

16.5 Encoding an encoding structure

The "EncodeStructure” is:

EncodeStructure ::=
nye
ENCODE STRUCTURE

{
Conponent Encodi ngLi st
StructureEncodi ng ?

}
Conbi nedEncodi ngs ?
wy

41 DTS/MTS-00068 V1.1.1 (2000-10)

StructureEncoding ::=
STRUCTURED W TH
Encodi ngthj ect

The "EncodeStructure” can be used to define an encoding only if the governor encoding class (after resol ution of
references) starts with one of the following encoding structures (called the governing encoding constructor):

#ALTERNATI VES
#CHO CE
#CONCATENATI ON
#REPETI TI ON
#SEQUENCE

#SET
#SEQUENCE CF
#SET- COF

The "EncodingObject” in the " StructureEncoding", if this production is present, shall be an encoding for the governing
constructor encoding, and shall encode that encoding class. If the production is absent, the " CombinedEncodings" shall
be present, and shall contain an encoding object of the class of the governing encoding constructor, otherwise the ECN
specificationisin error. The encodings assigned to the governing constructor are those of this encoding object.

The "ComponentEncodingList" is:

Conponent Encodi ngLi st ::=
Conmponent Encoding "," *

Conponent Encoding :: =
NonQpt i onal Conponent Encodi ngSpec |
Opt i onal Conponent Encodi ngSpec

There shall be precisely one " ComponentEncoding” for each component of the governing encoding constructor. The
"ComponentEncoding"s shall bein textual order.

NOTE Theabsence (and assignment to components) of "ComponentEncoding"s can be detected by following
named fields, or by the end of the "ComponentEncodingList".

The "NonOptional ComponentEncodingSpec” shall not be used if the component is marked OPTIONAL.
The " Optional ComponentEncodingSpec” shall only be used if the component is marked OPTIONAL.

If the "ComponentEncodingList" is empty, then the " CombinedEncodings' must be present, and isrequired, on
application to the component to provide a complete encoding of that component, otherwiseit isan error in the ECN
specification.

NonQpt i onal Conponent Encodi ngSpec :: =
identifier ?
Encodi ngoj ect 1

Opt i onal Conponent Encodi ngSpec :: =
Conponent Encodi ngOhj ect |
Opt i onal Encodi ngQhj ect |
Conponent AndOpt i onal Encodi ngChj ect

Conponent Encodi ngChj ect :: =
identifier
Encodi ng(hj ect 1

Opt i onal Encodi ngChj ect :: =
identifier
COPTI ONAL - ENCODI NG
Encodi ngQhj ect 2

Component AndQpt i onal Encodi ngChj ect :: =
identifier
Encodi ng(hj ect 1
CPTI ONAL - ENCCDI NG
Encodi ngQhj ect 2

Encodi ngQbj ect 1 :: = Encodi ngChj ect
Encodi ngQhj ect 2 :: = Encodi ngObj ect

42 DTS/MTS-00068 V1.1.1 (2000-10)

The"FieldReference" shall bethe "identifier" of the component of the governor. The "identifier" in
"NonOptional ComponentEncodingSpec™ shall be omitted if and only if the governing encoding constructor is
"REPETITION", "SEQUENCE-OF", or "SET-OF".

"EncodingObject1” (if present) in the "ComponentEncoding” shall be governed by the encoding class of the component
and shall provide a complete encoding of that component. If it isabsent, then the "CombinedEncodings" shall be present
in the "EncodeStructure”, and shall provide a complete encoding of the component, otherwiseit isan error in the ECN
specification.

NOTE Useof the"ENCODE WITH" form of "EncodingObject" effectively enables an encoding object set to be
applied to the component. (See E.1.3 for an example.)

"EncodingObject2" (if present) in the " Optional ComponentEncodingSpec™ shall completely encode the #OPTIONAL
encoding class of that component. If it is absent, then the " CombinedEncodings’ must be present, and isrequired to
provide an encoding object of the class #OPTIONAL which encodes the optionality of the conponent, otherwiseiit is an
error in the ECN specification.

If aREFERENCE is needed as an actual parameter of any of the encoding objects or encoding object sets used in this
production, then it can either be supplied as a dummy parameter of the encoding object that is being defined, or it can be
supplied as any of the "encodingstructurefieldreference”s that are textually present in the construction. If the
REFERENCE isrequired to identify a container, it can also be supplied as"*" (provided the structure being encoded is
not an #ALTERNATIVES or a#CHOICE) when it refersto that structure.

NOTE Thisisthe only production in which REFERENCES can be supplied, except through the use of dummy
parameters.

16.6 Differential encoding-decoding

The "Differential EncodeDecodeObject" is:
Di fferenti al EncodeDecodehj ect :: =

{
ENCCDE- DECCDE
SpecFor Encodi ng
DECCDE AS | F
SpecFor Decoder s

}
SpecFor Encodi ng :: = Encodi ngQbj ect

SpecFor Decoders ::= Encodi ngbj ect

The "Differential EncodingObject" specifies separately rules for encoding val ues associated with the class of the
governor of this notation, and rulesto be used by decoders for recovering abstract values from encodings that are
assumed to have been produced by encoding objects of the class of the governor.

The " SpecForEncoding" shall be applied by encoders. Decoders shall decode as if the encoder had applied the
"SpecForDecoders’'.

NOTE 1 - The"SpecForDecoders" is still an encoding specification. It tells decoders to assume that encoders have
used this specification.

NOTE 2 - The behavior of decoders that decode on the assumption that an encoder has used the " SpecForDecoders”,
but detect encoding errors, is not standardized.

The SpecForEncoding and the SpecForDecoding encoding objects shall not have been defined using "ENCODE-
DECODE", nor shall any encoding objects used in their definition have been defined using "ENCODE-DECODE".

16.7 User-defined encoding-functions

The "UserDefinedEncodingFunction” is:

User Def i nedEncodi ngFunction :: =
USER FUNCTI ON- BEG N
Assi gnedl dentifier
anyst ri ngexcept user f unct i onend
USER FUNCTI ON- END

43 DTS/MTS-00068 V1.1.1 (2000-10)

The "UserDefinedEncodingFunction” shall specify an encoding object of the governor class. The notation used to do
thisis contained in "anystringexceptuserfunctionend" and is not standardized.

The production "Assignedidentifier" and its semanticsisdefined in ITU-T Rec. X.680 | ISO/IEC 8824-1, 12.1, as
modified by Annex B. It identifies the notation used in the "anystringexceptuserfunctionend” to specify the encoding.

If the "empty" alternative of "Assignedidentifier" is used, then the notation is determined by means outside of the ECN
specification.

The assignment of object identifiers to any notation for use in "anystringexceptuserfunctionend” follows the normal rules
for the assignment of object identifiers as specified inthe ITU-T Rec. X.660 | ISO/IEC 9834 series.

17 Encoding object set assignments

The "EncodingObjectSetAssignment” is:

Encodi ngOhj ect Set Assi gnnent :: =
encodi ngobj ect setref erence
#ENCODI NGS
Ehéodi ngQbj ect Set

Encodi ngQbj ect Set @ : =

Def i nedEncodi ngCbj ect Set |
Encodi ngObj ect Set Spec

The "EncodingObjectSet" notation is governed by the reserved word #ENCODINGS, and shall satisfy the conditions
given below.

"DefinedEncodingObjectSet" is defined in clause 10.

The "EncodingObjectSetSpec” is:

Encodi ngChj ect Set Spec :: =
o
Encodi ngtoj ect s Uni onMark *

Encodi ngoj ects :: =
Def i nedEncodi ngQbj ect |
Def i nedEncodi nghj ect Set

Uni onMark ::=
e
UNI ON
"EncodingObjectSetSpec” defines an encoding object set using one or more encoding objects or encoding object sets.

Encoding objects forming an encoding object set shall all be of distinct encoding classes, and shall not be of the
#TRANSFORM, #CONDITIONAL-INT, or #CONDITIONAL-REPETITION encoding classes.

NOTE Anencoding object set is used for defining other encoding object sets, for defining encoding objectsin the
EDM, and for import into the ELM for the application of encodings.

Built-in encoding obj ect sets

The "BuiltinEncodingObjectSetReference” is:

Bui | ti nEncodi ngCbj ect Set Ref erence :: =
PER- basi c- al i gned
PER- basi c- unal i gned
PER- canoni cal -al i gned
PER- canoni cal -unal i gned
BER
CER
DER

44 DTS/MTS-00068 V1.1.1 (2000-10)

These encoding object set names are the sets of encoding objects defined by ITU-T Rec. X.690 | ISO/IEC 8825-1 and
ITU-T Rec. X.691 | ISO/IEC 8825-2. The object identifiersfor the encoding rules providing these encoding object sets
aregiveninTable 4.

Table 4: Encoding object set names and associated object identifiers

PER-basic-aligned {joint-iso-itu-t(1) packed-encoding(3) basic(0) aligned(0)}
PER-basic-unaligned {joint-iso-itu-t(1) packed-encoding(3) basic(0) unaligned(1)}
PER-canonical-aligned {joint-iso-itu-t(1) packed-encoding(3) canonical(1) aligned(0)}
PER-canonical-unaligned {joint-iso-itu-t(1) packed-encoding(3) canonical(1) unaligned(1)}
BER oint-iso-itu-t(1) asn1(1) basic-encoding(1)}

CER {joint-iso-itu-t(1) asn1(1) ber-derived(2) canonical-encoding(0)}
DER {joint-iso-itu-t(1) asn1(1) ber-derived(2) distinguished-encoding(1)}

These encoding object sets are each a compl ete set of encoding objects which can be applied to any encoding structure
(either implicitly generated from an ASN.1 type or user-defined) to specify the corresponding BER or PER encodings.

All the above sets contain the same encoding objects for the classes #INT, #BOOL, #NUL, #CHARS, #OCTETS,
#BITS, #CONCATENATION, #REPETITION. They donot contain an encoding object for #ALTERNATIVES.

NOTE Useof encoding objects from the built-in encoding object sets for these classes is not expected to be
heavily used, but is defined here for completeness.

These encoding classes represent basic building blocks of encodings, and are encoded simply by all the above encoding
object sets. (Any encoding that would involve mapping to a more complex encoding structure, or would require a
determinant, was not felt appropriate for inclusion in these built-in encoding object sets.)

NOTE Thisiswhy thereisno support for #ALTERNATIVES and optional elements, or for unbounded integers,
strings, repetitions, and so on. Support for these hasto be defined explicitly by the ECN user.

The encoding objects for these classes specify encodings as follows:

1. #INT isencoded as a PER-basic-unaligned #INTEGER encoding, provided it isbounded. Itisan ECN design
error if the #INT does not have both alower and an upper bound, and this encoding object is applied to it.

2. #BOOL and #NUL are encoded as PER-basic-unaligned #BOOLEAN and #NULL respectively.

3. #CHARS, #OCTETS, and #BITS are encoded as PER-basic-unaligned "UTF8String", #OCTET -STRING, and
#BIT-STRING, respectively, provided they areasingle size. Itisan ECN design error if #CHARS, #OCTETS,
or #BITS do not have an effective size constraint restricting them to asingle size.

4. #CONCATENATION is encoded as a PER-basic-unaligned encoding of a#SEQUENCE with no optional
elements. Any optional elements have to have their optionality resolved by use of encoding objects for
#OPTIONAL, which are not present in any of these encoding object sets.

5. #REPETITION isencoded as a PER-basic-unaligned encoding of #SEQUENCE-OF provided it has a PER-
visible size constraint restricting it to a fixed number of iterations. 1t isan ECN design error if it does not have
such asize constraint.

NOTE TheBER encoding objects for #OPTIONAL, #SET and #CHOI CE require that the components display an
identification handle that isaBER tag class and number. Such identification handles can only be obtained
in the current version of ECN by using BER encoding objects to encode the components, so BER encoding
objects should be used with caution unless they are applied to encoding structuresimplicitly generated
from ASN.1 types.

18 Mapping values

18.1 General

This clause specifies the syntax for mapping values to be encoded by the fields of one encoding class (which may be an
implicit encoding class or may be any other encoding class) to the fields of another encoding class.

45 DTS/MTS-00068 V1.1.1 (2000-10)

NOTE Thepower provided in asingle use of this notation has been limited (to avoid complexity). More complex
mappings can be achieved by using multiple instances of "EncodeByVaueMapping" (see the examplein
E.1.11). These mapping mechanisms can be extended and generalized, but thiswill not be done unless
further user requirements are identified.

In specifying the "EncodeByValueMapping" notation the "EncodingClass" in the "EncodingObjectAssignment" of
whichitisapart, is called the source governor or the source encoding class (depending on context). The
"EncodingClass" in the "EncodeByVaueMapping" itself is called the target governor or the target encoding class
(depending on context).

The encodings specified for values mapped to the target encoding class become encodings of those valuesin the source
encoding class.

NOTE 1 — If the total ECN specification maps only some of the values from an ASN.1 type into encodings, that is
not an error. Itisaconstraint imposed by ECN on the values that can be used by the application. Such
constraints should normally be identified by comment in either the ASN.1 specification or in the ELM
specification.

NOTE 2 — If thetotal ECN specification maps two values into the same encoding produced by a single encoding
object, then that isan ECN specification error. Such errors can be detected by ECN tools, but rules for
their avoidance are not completein thisITU-T TS, and responsibility rests with the ECN user.

The"VaueMapping" is:

Val ueMapping ::=
Mappi ngByExpl i ci t Val ues
Mappi ngByMat chi ngFi el ds
Mappi ngBy Tr ansf or nEncodi ngQoj ect s
Mappi ngByAbst r act Val ueOr deri ng
Mappi ngByVal ueDi stri buti on
Mappi ngl nt ToBi t s

Tutorial note: All occurrences of this syntax are preceded by the reserved word "MAPPING". E.1.3, E.1.5, E.1.11, and
E.2.2and Annex G give examples of the definition of encodings using each of these value mappings.

The"ValueMapping" productions are specified asfollows:

Mappi ngByExpl i ci t Val ues 18.2
Mappi ngByMat chi ngFi el ds 18.3
Mappi ngBy Transf or nEncodi ngChj ect s 18.4
Mappi ngByAbst r act Val ueQrderi ng 18.5
Mappi ngByVal ueDi stri buti on 18. 6
Mappi ngl nt ToBi t s 18.7

NOTE Itisfrequently the casethat several of the value mappings can be used to define the same encoding, but
some will produce a more obvious or |less verbose specification than others. ECN designers should select
carefully the form of value mapping to be used.

18.2 Mapping by explicit values

This clause provides notation for specifying the mapping of values between different primitive encoding classes. E.1.11
gives an example.

This clause uses the notation for ASN.1 values (ASN.1 value notation) specified in ITU-T Rec. X.680 | ISO/IEC 8824-1
for the type which corresponds to an encoding class.

The following table specifies the encoding classes that can act as governorsfor ASN.1 value notation, and the value
notation to be used for each governor. In each case the class may or may not have an associated size or value range
constraint.

ECN supports mapping by explicit values (either to or from the encoding class) for all classes listed in column 1 of
Table 5. Column 2 of the table specifies the value notation (as either an ASN.1 production or by reference to a clause of
ITU-T Rec. X.680 | ISO/IEC 8824-1 or both) that shall be used when the encoding classin column 1 is specified as the
governor of the notation. It also specifiesthe clausein ITU-T Rec.X.680 | ISO/IEC 8824-1 that defines the value
notation.

46 DTS/MTS-00068 V1.1.1 (2000-10)

NOTE None of thefollowing ASN.1 value notations can use "DefinedValue"s (as defined in ITU-T Rec. X.680 |

ISO/IEC 8824-1, 13.1) because "valuereference"s cannot be imported nor defined in an EDM or ELM

module.

Table 5: Encoding classes (and value notation) used in mapping by explicit values

Governing encoding class

ASN.1 value notation

#BITS or #BIT-STRING

"bstring" or "hstring"
(see ITU-T Rec. X.680 | ISO/IEC 8824-1,11.9 and 11.10)

#BMPString "RestrictedCharacterStringValue"
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.7)
#BOOL or #BOOLEAN "BooleanValue"
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 17.3)
#CHARS "RestrictedCharacterStringValue"
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.7)
#ENUMERATED "SignedNumber" (present in the EnumeratedType or determined

by ITU-T Rec. X.680 | ISO/IEC 8824-1, 19.3)

#GeneralizedTime

"cstring” conforming to ITU-T Rec. X.680 | ISO/IEC 8824-1, 41.3)

#GeneralString "RestrictedCharacterStringValue"

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.7)
#GraphicString "RestrictedCharacterStringValue"

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.7)
#IA5String "RestrictedCharacterStringValue"

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.7)

#INT or #INTEGER

"SignedNumber"
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 18.1)

#NUL or #NULL "Nullvalue"
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 23.3)
#NumericString "RestrictedCharacterStringValue"

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.7)

#OBJECT-IDENTIFIER

"Definitiveldentifier" (see Annex B)

#OCTETS or #OCTET-STRING

"bstring" or "hstring"
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 11.9 and 11.10)

#PrintableString "RestrictedCharacterStringValue"
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.7)
#REAL "RealValue"

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 20.6)

#RELATIVE-OID

"RelativeOIDValue"
(see ITU-T Rec. X.680 Amd. 1 | ISO/IEC 8824-1 Amd. 1, 31bis.3)

#TeletexString

"RestrictedCharacterStringValue"
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.7)

#UniversalString

"RestrictedCharacterStringValue"
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.7)

#UTCTime "cstring” (conforming to ITU-T Rec. X.680 | ISO/IEC 8824-1, 42.3)
#UTF8String "RestrictedCharacterStringValue”
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.7)
#VideotexString "RestrictedCharacterStringValue"
(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.7)
#VisibleString "RestrictedCharacterStringValue"

(see ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.7)

The "MappingBy ExplicitValues' is:

Mappi ngByExpl i ci t Val ues ::
VALUES

{
MappedVal ues "," +

MappedVal ues :: =
MappedVal uel
TO

MappedVal ue2
MappedVal uel ::= Val ue

MappedVal ue2 ::= Val ue

47 DTS/MTS-00068 V1.1.1 (2000-10)

The"MappedValuel" shall be value notation governed by the source governor and "MappedValue2" shall be value
notation governed by the target governor . The value in the source specified by "MappedVauel" is mapped to the value
in the target specified by "MappedValue2".

There are no bounds or effective size constraints associated with the target encoding class as aresult of the
"MappingByExplicitVaues', but any already present shall not be violated.

18.3 Mapping by matching fields

Thismapping is provided primarily to enable the encoding of an ASN.1 type to be defined as the encoding of an
encoding structure that has fields corresponding to the components of the type, but also has added fields for
determinants.

The "MappingByMatchingFields" is:

Mappi ngByMat chi ngFi el ds :: =
FI ELDS

If either the source or the target encoding classes are structure-based encoding classes or implicit encoding classes, then
the references are resolved. After resolution, the source and the target encoding classes shall start withthe same
encoding constructor (#CONCATENATION, #SEQUENCE, #SET, #REPETITION, #SEQUENCE-OF, #SET - OF,
#ALTERNATIVES or #CHOICE), and the resulting encoding structures are called the source and target encoding
structures respectively.

No further resolution of references takes place during these procedures.

All fieldnames that are now visible in the source encoding structure shall be distinct. All fieldnames that are now visible
in the target encoding structure shall be distinct.

NOTE Fieldnamesin unresolved references are not visible to these procedures.

For every fieldname that is visible in the source encoding structure, there shall be a component in the target encoding
structure with the same fieldname and with the identical encoding class.

All abstract values are mapped from each of the fields in the source encoding structure to the fields with the same name
(and encoding class) in the target encoding structure. Additional fieldsin the target encoding structure do not acquire
abstract values. Inacorrect ECN specification, the value of such fields hasto be specified by reference as a determinant.

Bounds and effective size and alphabet constraints on source fields are mapped to the target fields, and replace any
bounds and effective size and permitted alphabet constraints already present on the target field.

NOTE Any bounds, effective size and permitted alphabet constraints on the target field are alwayslost in this
mapping.

18.4 Mapping by #TRANSFORM encoding objects

This mapping permits one or more transform encoding objects to be applied to produce the mapping.

Thetransform encoding classis defined in Annex A. It enables encoding objects to be specified for the following
transformations (for example):

a) Mappingsof #INT to#INT using simple numerical transformations with constant values (add 1, divide-by 2, etc)
b) Mappingsof #INT to #CHARS
c) Mappingsof #INT to #BITS

NOTE 1 — Examples of mappings defined with these transformations are givenin E.1.3and E.1.4. The examplein
E.1.7 shows the use of this production to define BCD encodings of an # NTEGER.

NOTE 2 — One of the possible uses of the #TRANSFORM class isto produce a count in bits (or octets) from a
determinant field that has a count in octets (or bits), or to offset such afield.

The "MappingByTransformEncodingObjects" is:

48 DTS/MTS-00068 V1.1.1 (2000-10)

Mappi ngByTr ansf or nEncodi ngQoj ects :: =
TRANSFORVS

Transf or nLi st

nyn

TransforniList ::= Transform™"," +

Transform:: = Encodi ngObj ect

All the "EncodingObject"sin the "TransformList" shall be governed by the encoding class #TRANSFORM. Transform
encoding objects are defined with a source encoding classand atarget encoding class specified. The source encoding
class of the first transform must be the same as the source encoding class for this mapping, and the target encoding class
of the last transform must be the same as the target encoding class of this mapping. All other transformsin the list must
have a source encoding class which is the same as the target encoding class of the previous transform and a target
encoding class which is the same class as the source encoding class of the next transform.

Abstract values are mapped through the successive application of the transforms from the first to the last (in their textual
order).

If any bounds listed for the target encoding class are violated in the mapping (by any of the abstract valuesin the source
encoding class), thisisnot an error, but such values are not mapped, and do not appear in the target encoding class.
Thus, there may be no encoding in the resulting specification for such values, and such arestriction should be identified
by comment in the ASN.1 or in the ELM.

18.5 Mapping by abstract value ordering

Thisisavery powerful form of mapping which enables abstract values associated with simple encoding classes to be
distributed into the fields of complex encoding structures, and for abstract values associated with complex encoding
structures to be mapped to simple encoding classes such as#INT. It isaso ameans of "compacting” integer values or
enumerations into a contiguous set of integer values.

The "MappingByAbstractValueOrdering" is:

Mappi ngByAbstract Val ueOrdering :: =
CRDERED VALUES

For this mapping, all encoding structure reference names are resolved (recursively), and the resulting encoding structure
shall contain only #ALTERNATIVES, #CHOICE, #NUL, #NULL, #BOOL, #BOOLEAN, #INT, #iINTEGER, #REAL,
#ENUMERATED.

An ordering of abstract valuesis defined for the following encoding classes.

#NUL and #NULL
#BOOL and #BOOLEAN
#I NT and #I NTEGER (but only if they have a | ower bound)
#REAL (but only if it is constrained

to a finite nunber of val ues)
#ENUVERATED

and any #ALTERNATIVES or #CHOICE containing alternatives all of which have a defined ordering.

#NUL and #NULL have asingle abstract value. #BOOL and #BOOLEAN are defined to have "TRUE" before
"FALSE". #INT and #iINTEGER are defined to have higher integer values following lower integer values. #REAL is
defined to have higher values following lower values. #ENUMERATED is defined to have the enumerationsin the
order of the numerical value assigned to them, higher values following lower val ues.

NOTE Thenumber of abstract valuesin #INT and #INTEGER is not necessarily finite.

Any bounds present in the source or destination shall be taken fully into account in determining the ordered set of
abstract values.

The ordering of the abstract values of an #ALTERNATIVES or #CHOICE (all of whose alternatives have a defined
ordering of abstract values) is defined to be the (ordered) abstract values from the textually first alternative, followed by
those from the textually second alternative, and so on to the textually last alternative.

49 DTS/MTS-00068 V1.1.1 (2000-10)

The mapping is defined from the abstract valuesin the first encoding class to the abstract values in the second encoding
class by their position in the above ordering.

Note that the above rules ensure that there is a defined first value in each ordering, and a defined next value. There need
not be a defined last value (either or both sets may be infinite).

If the number of abstract valuesin the destination ordering is less than the number of abstract valuesin the source
ordering, thisis not an error. However, the ECN specification will be unable to encode some of the abstract values of the
ASN.1 specification and this should be identified by comment in either the ASN.1 module or the ELM.

If the number of abstract valuesin the destination ordering exceeds those in the source ordering, then there may be some
ECN-defined encodings that have no ASN.1 abstract value, and will never be generated.

18.6 Mapping by value distribution

This mapping takes ranges of values from a# NT or #INTEGER encoding class, mapping each rangeto adifferent #INT
or #INTEGER field in a more complex encoding structure. Fieldswhich receive no abstract values shall have their
values determined by the application of determinants.

All encoding structure reference names are resolved (recursively) before the application of this mapping.
The source encoding class shall then be either #INT or #iNTEGER.

Thetarget encoding class may be any encoding structure, but all fieldnames in the entire encoding structure shall be
distinct.

The "MappingByVa ueDistribution” is:

Mappi ngByVal ueDi stribution ::=
DI STRI BUTI ON

Distribution "," +

e

Distribution ::=
Sel ect edVal ues
TO
identifier

Sel ect edVal ues :: =
Sel ect edVal ue |
D stributi onRange |
REMAI NDER

Di stributionRange ::=
Di stri buti onRangeVal uel

Df ét ri buti onRangeVal ue2

Sel ect edVal ue :: = Si gnedNunber
Di stri buti onRangeVal uel ::= Si gnedNunber
Di stri buti onRangeVal ue2 ::= Si gnedNunber

"SignedNumber" is specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 18.1.
"DistributionRangeVauel" shall be less than "DistributionRangeValue2".

The value specified by "SelectedValue" in " SelectedValues', or the set of values greater than or equal to
"DistributionRangeValuel" and lessthan or equal to "DistributionRangeValue2", are mapped to the field specified by
"identifier".

Thereserved word "REMAINDER" shall only be used once for the last " SelectedV alues", and specifies all abstract
valuesin the source encoding class that have not been distributed by earlier " SelectedValues”.

A value shall not be mapped to more than one target field, but several " SelectedValues' may have the same
"Destination”.

50 DTS/MTS-00068 V1.1.1 (2000-10)

Values shall not be mapped to the target that violate any bounds present on the target. This mapping does not affect the
bounds on the target.

18.7 Mapping integer values to bits

This mapping takes single values or ranges of valuesfrom a#INT or a#INTEGER class, mapping each integer value to
abitstring value.

NOTE Thismapping isintended to support self-delimiting encodings of integers, such as Huffman encodings.
See Annex Ffor further discussion and examples of Huffman encodings.

The source encoding class shall be either #INT or #iNTEGER, or any implicit encoding class or encoding structure that
resolvesto #INT or # NTEGER after de-referencing.

The destination encoding class shall be #BITS.
The"MappingIntToBits" is:
Mappi ngl nt ToBits :: =
TOBITS
ne
Mappedl nt ToBits "," +
Mappedl nt ToBits ::=
Si ngl el nt Val Map
I nt Val RangeMap

Each "SinglelntVaMap" maps asingle integer value to asingle bit string value.

Each "IntValRangeMap" maps arange of contiguous and increasing integer values to arange of contiguous and
increasing bit string values.

Bit string values are defined to be contiguousiif:
a) They areall the samelengthin bits.

b) When interpreted as a positive integer value, the corresponding integer values are contiguous and increasing
integer values.

Only values specified in the mapping are encodable. Other abstract values of the source are not mapped and cannot be
encoded by the encoding object defined by the encoding object assignment using this construct.

NOTE Thislimitation of the encoding should be reflected by constraints on the ASN.1 type to which it is applied,
or by comment in the ASN.1 specification or in the ELM.

The"SinglelntValMap" is:

SinglelntVal Map :: =
I nt Val ue
TO
Bi t Val ue

I nt Val ue :: = Si gnedNunber
BitValue ::=

bstring |
hstring

The "SignedNumber" is specified in ITU-T Rec. X.680 | ISO/IEC 8824-1, 18.1.

The"BitStringValue" shall be the value notation for an ASN.1 "BIT STRING" type with no named bits, as specified in
ITU-T Rec. X.680 | ISO/IEC 8824-1, 21.9.

The"SinglelntVaMap" maps the specified integer value to the specified bit string value.

The"IntValRangeMap" is:

I nt Val RangeMap :: =

51 DTS/MTS-00068 V1.1.1 (2000-10)

| nt Range
TO
Bi t Range

I nt Range :: =
I nt RangeVal uel

I nt RangeVal ue2
Bi t Range :: =

Bi t RangeVal uel

Bi t RangeVal ue2

| nt RangeVal uel :: = Si gnedNunber
| nt RangeVal ue2 :: = Si gnedNunber
Bi t RangeVal uel :: =

bstring |

hstring
Bi t RangeVal ue2 :: =

bstring |

hstring

The bit strings "BitRangeValuel" and "BitRangeValue2" shall be the same number of bits.
Thevalue "IntRangeVaue2" shall be greater than the value "IntRangeValuel".

When interpreted as a positive integer encoding (see ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.3), "BitRangeVaue2"
shall represent an integer value ("B", say) greater than that represented by "BitRangeValuel" ("A", say), and the
difference between the integer values corresponding to "BitRangeValue2' and "BitRangeValuel" ("B" - "A") shall equal
the difference between the values of "IntRangeValue2" and "IntRangeValuel".

The "BitRange" represents the ordered set of bit strings corresponding to the integer values between "A" and "B".

The"IntVaRangeMap" maps each of the integersin the specified range to the corresponding bit string valuein the
"BitRange". Annex Fgivesexamplesof an"IntVaRangeMap".

19 Built-in encoding classes supported by defined syntax

This clause describes the use of defined syntax to define encoding objects of the classeslisted inAnnex A.

19.1 General

Annex A specifies anumber of encoding classes using the information object class notation of ITU-T X.681 | ISO/IEC
8824-2 as modified by Annex C.

NOTE ThisTSusestheterm "fields of aninformation (encoding) class'. In this clause we use the term
"parameters of the encoding class" to avoid confusion with the term "field of an encoding structure". The
term "parameter” should, however, not be confused with the use of parameterized assignments.

The use of this notation is restricted to the definition within this TS of a defined syntax for the definition of encoding
objects of standardized built-in encoding classes.

NOTE Itisrecognized that tool vendors may choose to provide extensionsto their ECN support using this
notation. Such activity is deprecated, asit will reduce inter-working between tools. Where deficiencies
are found in Annex A they should be addressed in a defect report and resolved through the normal
standardization process.

The use of the defined syntax notation to define encoding objectsis specified in 16.2. The defined syntax for defining
encoding objects shall be the syntax specified by the"WITH SYNTAX" clausesin Annex A.

The"WITH SYNTAX" clauses impose constraints on the setting of some parametersin conjunction with other
parameters to enforce some (but not all) of the semantic constraints expressed in this clause. The semantic constraintsin
this clause shall be satisfied, even if not enforced by the"WITH SYNTAX".

The defined syntax for each encoding class specifies anumber of parameters which require to be supplied with val ues of
the ASN.1 typesthat are defined in Annex A (or in some cases with encoding objects) in order to provide the
information needed to specify an encoding object of that class.

52 DTS/MTS-00068 V1.1.1 (2000-10)

The parameters specified in Annex A operate together in groups. This sub-clause specifies the meaning of values of the
types used in the specification of these parameters. Sub-clause 19.3 gives the semantics of the #TRANSFORM encoding
class Sub-clauses 19.4 to 19.21 specify the semantics of the groups of parameters (and the encoding classes that use
them). Sub-clause 19.22 defines the semantics of the #OUTER encoding class. It isintended that all these clauses be
read in conjunction with the syntactic specificationsin Annex A to which they refer.

In specifying the semantics of the parameter groups, each group nameislisted in angle brackets, followed by the
encoding classes that use that group (see also Annex A), and an explanation of the semantics of any of the values of
those parameters that have not been specified in earlier text.

19.2 Common types

NOTE These common types are formally defined in Annex A. Their use in specific encoding definitionsis
specified in 19.4t0 19.21.

Thetype "Unit" specifiesaunit for alignment ("1" meaning no alignment), or for the specification of sizes, whenitis
used in conjunction with "Size". Values are acount in bits, except for "repetitions(0)", which specifies a count of the
number of repetitionsin arepetition class.

"Size" is used to specify the size of an encoding-space.

The value "uses-determination-mechanism(-3)" is used to specify that the size will vary according to the abstract value
being encoded, and that the precise means of determining the size of the encoding-space will be specified using a setting
of "Determination-Mechanism” . In this case, there shall be a setting of a parameter giving avalue of "Determination-
Mechanism".

NOTE The specification of a"Determination-Mechanism” (to determine the encoding-spacesize) is required in
this case, but the provision of adeterminant is allowed in all the other cases, to support encodings (similar
to BER) that use determinants even when they are redundant.

The value "fixed-to-max(-2)" is used to specify that the encoding-space isto be the same for the encoding of all abstract
values of the field to which the encoding object is applied, and isto be the largest size needed. If such aspecificationis
given and applied when a maximum size cannot be determined, thisis an ECN specification error.

Thevalue "variable(-1)" is not used for encoding-space sizes. It isallowed only when specifying the size of atarget
encoding within #TRANSFORM specification. It specifiesthat the target abstract value (a bitstring or character string)
will be of variable length.

The value "empty(0)" specifiesthat the encoding-space is of zero size, and hence contains no bits. It is permitted only for
the encoding of #NUL.

All positive values "x", say, specify an encoding space whichis"x" times the value of "Units".

The "DeterminationM echanism" type is used to specify the way in which the size of avariable length encoding-space is
to be determined, or the way in which alternatives are selected, or the way in which optionality is resolved.

The value "aux-determinant” specifies that there will be, within the encoding structure, afield that is used to provide the
necessary determinant, and that thisis an auxiliary field that does not carry application semantics (does not appear within
the ASN.1 specification). In this case, the specification will also include parameters that say how an encoder determines
the value of thisfield (possibly using one or more transformations) from:

- thesize of the encoding-space (in "Units"); or
- theindex of the selected alternative; or
- thepresence (identified as boolean TRUE) or absence (boolean FAL SE) of an optional element.

The value "app-determinant” specifies that there will be, within the encoding structure, afield that is used to provide the
necessary determinant, but that thisis afield which appears within the ASN.1 specification, and which carries
application semantics. In this case, the encoder does not determine the value of the field, but the ECN specification is
now required to include parameters that say how an encoder uses the value of thisfield (possibly using one or more
transformations) to determine:

a) thesize of an encoding-space (in "Units"); or

b) theindex of aselected alternative; or

53 DTS/MTS-00068 V1.1.1 (2000-10)
¢) thepresence (identified as boolean TRUE) or absence (boolean FAL SE) of an optional element.

Thevalue "container" specifiesthat the end of the encoding-space is determined by the end of some containing encoding
space. In thiscase a separate parameter will either provide areference to the containing container, or will specify it as
"end-of-encoding:NULL", meaning the end of the PDU.

The value "pattern” specifies that some specified pattern of bits will terminate the encoding space. In this case additional
parameters will require the insertion of a specified pattern by an encoder, and its detection by a decoder.

NOTE Anexampleisnull-terminated character string.

Thevalue "handle" specifiesthat determination is obtained through the use of identification handles. More details of the
use of identification handles appearsin 19.10.

The value "not-needed" specifies that the contents of the encoding-space are self-delimiting, and that, although the size
varies between different abstract values, no external determination of the length is needed.

NOTE Thisisused inthe case of aconcatenation in which optionality is not determined by the length of this
container, nor isthe length of the container used to determine the length of afinal element. Itisalso used
if the encoding of an integer is known to be variable but self-delimiting, such as a Huffman encoding.

The"Justification” type is used to specify right or left justification of the encoding of avalue within a container, with an
offset in bits from the ends of the container. The value "left:0" meansthat the value is placed with the leading bit of the
value at the leading edge of the container. The value "left:1" meansagap of 1 bit, and so on. "right:0" meansthat the
trailing bit of the value is placed at the trailing end of the container, and so on. In all cases, the setting of the bits before
or after the value encoding is determined by avalue of "Padding" and "Pattern".

"Padding" is used to specify the value of the bits in the encoding-space that are not occupied by the value-encoding. If
the value is"pattern” then the bits are set according to "Pattern” . If the value is "encoder-option”, then the bit values are
freely chosen by the encoder. A value of "zero" or of "one" specifiesthe use of zero or one bits for padding. Separate
values of "Padding" and "Pattern” can be specified for three separate forms of padding: pre-alignment of the encoding-
space to adefined boundary, pre-padding of avalue-encoding if it is right-justified in a fixed-size encoding-space, and
post-padding of avalue-encoding if it isleft-justified in a fixed-size encoding-space. A fourth use of "Padding" isto
specify the value to be used in the encoding of a#PAD class.

"Pattern” is used to specify a pattern to fill apadding field, and also to specify the pattern to be used to encode boolean
and null values.

If "Pattern” is set to the "bits" or "octets" alternative, it specifies apattern of length equal to the bit string or octet string.
If itisset to"char8", it specifies a (multiple of 8-bits) pattern where each character in the string is converted to its
ISO/IEC 10646-1 value as an 8-bit value. If itissetto "charl6", it specifies a (multiple of 16-bits) pattern where each
character in the string is converted to its ISO/IEC 10646-1 value as a 16-bit value. If it is set to "char32", it specifiesa
(multiple of 32-bits) pattern where each character in the string is converted to its 1ISO/IEC 10646-1 value as a 32-bit
value. When used in padding, the pattern specified by "Pattern" istruncated and/or replicated as necessary to provide
sufficient bitsfor the field being filled.

When "Pattern” is used to fill padding bits, the leading bits of the pattern are used first and any bits not needed are
discarded. If the padding bits are not filled when the pattern is exhausted, it repeats indefinitely.

The "other" value of type "Pattern” is excluded from most uses of thistype. When "Pattern” is used to specify the
pattern for a#BOOL value ("TRUE" say), then the value "other" can be used to specify the pattern for the other #BOOL
vaue ("FALSE" inthiscase). When used in thisway, "other" means an encoder's option for the pattern. The encoder
may use any pattern it chooses, butit shall be of the same length asthe other pattern and shall differ from it in at
least one bit position.

"RangeCondition" is used in the specification of a predicate which tests the existence and nature of boundson an integer
field. The predicate is satisfied if the bounds set for the field are in accordance with the name used in the enumeration.
The value "semi-bounded" means that the predicate is satisfied if and only if thereisalower bound, but no upper bound.

NOTE Itisnot possible for more than one predicate to be satisfied by any given set of bounds.

"SizeRangeCondition" is used to test properties of the boundsin an effective size constraint associated with afield. The
predicateis satisfied if the effective size constraint isin accordance with the name in the enumeration, where "fixed-size"
means that there is only one size permitted by the effective size constraint.

NOTE Only the"fixed-size" case overlaps with other predicates.

54 DTS/MTS-00068 V1.1.1 (2000-10)

"Reversal Specification" is used in the final transformation of bits from an encoding-space into an output buffer for
transmission (with the reverse transformation being applied for decoding). It isaways used in conjunction with avalue
of "Unit" that specifiesaunit size in bits. Itisan ECN specification error if the values "reverse-haf-units* and
"reverse-bits-in-half-units" are used when "Unit" is not an even number of bits. The enumerations specify either no
reversal of bits, or reversal of the order of half-units (without changing the order of bitsin each half unit), or reversal of
the order of bitsin each half-unit but without reversing the order of the half-units, or reversal of the order of the bitsin
each unit. Bit-reversal can be specified for the encoding of all classesthat can appear as fields of encoding structures,
except the #ALTERNATIVES encoding class, which does not use the encoding-space concept.

19.3 The #TRANSFORM encoding class

NOTE Thisencoding classisformally defined in Annex A.

19.3.1 Source class and target encoding class

The #TRANSFORM encoding class allows the specification of encoding/decoding procedures (to be associated with an
encoding object) which transform certain abstract values into different abstract values. These transforms are used in the
definition of value mappings, in the definition of encoding objects for primitive encoding classes, and in converting
values from a determinant field to the boolean or integer values needed to express presence or absence, an index for an
alternative, or presence determination.

The transformation is determined by the first word ("INT-TO-INT", "BOOL-TO-BOOL", etc) in the #TRANSFORM
encoding object definition. Thisword also determines the group of parameters of #TRANSFORM that are used in the
definition of the transformation. All parameters except those immediately following comment lines such as " --<bool-to-
bool>" in Annex A are ignored.

The first word in the encoding object definition defines the abstract values that the transformation accepts as input and
produces as output, using the notation:

"input type"-to-"output type"

The"input type" determines the allowed source encoding classes for the transformation and the "output type" determines
the allowed target encoding classes for the transformation.

When transformations are used in succession, the output type of one #TRANSFORM encoding object shall be the input
type for the next #TRANSFORM encoding object.

For thefirst and last of a chain of transformations, text in the body of this TS (or in Annex A) specifies the source
encoding class for the first transformation and the target encoding class for the | ast.

For the"int", "bool", "bits", and "chars" input or output types, the encoding classes they can be transformed from or into
are specified in Table 6

Table 6 — Permitted encoding classes for input and output types

Input or output type Permitted encoding classes
int #INT, #INTEGER, #ENUMERATED
bool #BOOL, #BOOLEAN
bits from #BITS, #BIT-STRING, #OCTET-STRING
to #BITS, #BIT-STRING
chars #CHARS, #GeneralizedTime, #UTCTime, #BMPString,

#GeneralString, #GraphicString, #1A5String, #NumericString,
#PrintableString, #TeletexString, #UniversalString, #UTF8String,
#VideotexString, #VisibleString

fixed-units to #BITS

The"char" and "bit" input or output types have no corresponding encoding class, and transformation encoding objects
that require these types (or produce these types) can only be used when specifically required in Annex A.

19.3.2 The int-to-int transforms

NOTE Examplesof thesetransformsare givenin E.1.13,

55 DTS/MTS-00068 V1.1.1 (2000-10)

A transform is defined by giving avalue of a"CHOICE", permitting any given object to specify precisely one arithmetic
operation. General arithmetic can, however, be defined by the use of alist of transforms. (Permitted wherever
transforms are allowed.)

The transforms "increment”,

decrement”, "multiply", "negate" have their normal mathematical meaning.

Thetransform "divide" is defined to have an integer result which isthe integer value that is closest to the mathematical
(real arithmetic) result, but is no further from zero than that result.

NOTE Inprogrammingterms, "divide" truncates towards zero, so avalue of -1 with "divide: 2" will give zero.

Thetransform "modul 0" is defined as follows: Let "i" be the original integer value, let the transform be "modulo : j". Let

"k" betheresult of applying "divide: j" followed by "multiply : j" to"i". Then "modulo : j" applied to "i" is defined to be

the same as applying "decrement : k" to "i".

19.3.3 The bool-to-bool transforms

Thereisonly onetransform currently defined, which converts boolean "TRUE" to "FALSE", and vice-versa.

19.3.4 The bool-to-int transforms

Thereisonly one transform currently defined, and it produces an integer value of "1" or "0". If "true-zero" is selected,
then "TRUE" produces"0" and "FALSE" produces"1". If "true-one" is selected, the reverse applies.

19.3.5 The int-to-bool transforms

There are three means of specifying these transform. The parameter group for these transformations contains three
parameters, and at most one of these can be explicitly set. If none of the parametersin the group is set, then the
transformation is determined by the default value of the "& int-to-bool" parameter, namely a mapping which transforms
zero values to boolean FAL SE, and non-zero valuesto boolean TRUE. Alternatively, the "&int-to-bool" parameter can
be explicitly set to either the default value, or to the value "zero-true" which maps zero values to TRUE and non-zero
valuestofalse. If the parameter "& Int-to-bool-true-is’ isexplicitly set (withavalueset suchas"{1|3|5}"), then al
the values specified for the parameter map into TRUE and all other values map into FALSE. If the parameter "& Int-to-
bool-falseis" is explicitly set, then all the values specified for the parameter map into FALSE and all other values map
into TRUE.

19.3.6 The int-to-chars transforms

Thereisonly onetransform currently defined. Three parameters are used in its definition, but all have default values and
can be omitted. The"&int-to-chars-size" parameter specifies either

- afixed sizein characters for the resulting size (a positive value of "Size"); or
- specifiesthat avariable length string of charactersisto be produced (avalue of "variable" for "Size"), or

- specifiesafixed-size just largest enough to contain the transformation of all abstract values in the source class (a
value of "fixed-to-max" for "Size"). It isan ECN specification error if thisis not afinite size.

Theinteger valueisfirst converted to adecimal representation with no leading zeros and with a pre-fixed
("HYPHEN-MINUS") if it is negative. If "&int-to-chars-plus" is set to true, positive valueshavea"+" ("PLUS SIGN")
pre-fixed to the digits.

The most significant digit shall be at the leading end of the chars string.
If the size specified is"variable", then thisisthe resulting string of chars.
NOTE Inthiscaseitisnot an error to specify avalue for "&int-to-chars-pad"”, but the valueisignored.

If sizeisfixed (either explicitly or by specifying "fixed-to-max"), and the resulting string (in an instance of application of
thistransform during encoding) istoo large for the fixed size, then thisisan ECN specification error.

NOTE Ingeneral it will only be possible for atool to check for this error at encode time, asrestrictions on
possible abstract values may not be formally present in the ASN. 1 specification.

56 DTS/MTS-00068 V1.1.1 (2000-10)

If the sizeisfixed, and the string is smaller than the specified size, then it has either spaces (the SO 10646 character
"SPACE") or zeros (the SO 10646 character "DIGIT ZERO"), as specified by the value of "&int-to-chars-pad” pre-fixed
to produce the specified size.

19.3.7 The int-to-bits transforms

The"&int-to-bits-encoded" parameter selects the encoding of the integer as either a 2's complement encoding or as a
positive integer encoding. The definition of these encodingsisgivenin ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.2 and
8.3.3.

The most significant bit shall be at the leading end of the bit string.
The integer shall be encoded into the minimum number of bits necessary.

NOTE Thismeansthat apositiveinteger encoding shall not have zero asthe leading bit (unlessthereisasingle
zero bit in the encoding), and a 2's complement encoding shall not have two successive leading zero or two
successive leading one bitsE.1.6.

If "positive-int" encoding is selected, and the value to be transformed is negative, thisis an ECN specification error.

NOTE Ingeneral it will only be possible for atool to check for this error at encode time, as restrictions on
possible abstract values may not be formally present in the ASN. 1 specification.

If the size specified is"variable", then thisis the resulting string of bits.
NOTE Inthiscaseitisnot an error to specify avalue for "&int-to-bits-unit”, but the valueisignored.

If the sizeisnot "variable" or "fixed-to-max", the size of the resulting bits shall be the value of " &int-to-bits-unit"
multiplied by "&int-to-bits-size". If the sizeis "fixed-to-max", then the size of the resulting bits shall be largest size
needed for any value of the class to which the transformation is applied. It isan ECN specification error if thisis not
finite.

If the resulting string (in an instance of application of this transform during encoding) istoo large for the fixed size, then
thisisan ECN specification error.

NOTE Ingenera it will only be possible for atool to check for this error at encode time, as restrictions on
possible abstract values may not be formally present in the ASN.1 specification.

If the string is smaller than the specified size, then for a positive integer encoding it shall have zero bits prefixed. If the
encoding is 2's complement, then it shall have bits prefixed equal in value to the original leading bit.

19.3.8 The bits-to-int transforms

The integer value shall be produced by interpreting the bits as 2's complement or a positive integer encoding according to
thevalue of "&bits-to-int-decode”, as specified in ITU-T Rec. X.690 | ISO/IEC 8825-1, 8.3.2 and 8.3.3.

19.3.9 The char-to-bits transforms

NOTE ECN supports only characters within the ISO/IEC 10646 character set. Where ASN.1 types such as
"GeneralString" are in use, characters outside of this character set can in theory appear. Such characters
are not supported by this transformation (or by encoding with defined syntax), although BER and PER
encoding objects are able to encode them.

Thistransform shall only be used in the "& Char-encodings" parameter of the #CHARS defined syntax, and reference to
an effective alphabet constraint below refers to the constraint on the encoding structure field to which an encoding object
of this class has been applied.

If "& char-to-bits-encode” is set to "mapped”, then the transform is specified by the values of " Char-to-bits-chars" and
"Char-to-bits-values", both of which shall be specified. They arerespectively alist of single characters and of bit string
values. These parameters areignored if "& char-to-bits-encode” is not set to "mapped”. The value of

"& char-to-bits-unit" and " & char-to-bits-size" shall be ignored.

There shall be an equal number of valuesin each list, and all character values and all bit string valuesin the list shall be
distinct. The encoding of a character in the "Chars-to-bits-chars" list is the bit string specified in the corresponding

57 DTS/MTS-00068 V1.1.1 (2000-10)

positioninthe"& Chars-to-bits-values' list. If in aninstance of application of thistransform acharacter isto be
transformed that isnot in the list, thisisan ECN specification error.

NOTE Ingeneral it will only be possible for atool to check for this error at encode time, asrestrictions on
possible abstract values may not be formally present in the ASN.1 specification.

If the value of "& char-to-bits-encode” is"is010646", then the character isfirst converted to the numerical value specified
in ISO/IEC 10646.

NOTE ISO/IEC 10646 includesthe so-called ASCII control characters, which have positionsin row 1.

Thisnumerical value isthen converted to bits as specified for "int-to-bits" in 19.3.7, using a positive integer encoding,
and with the value of "Unit" and "Size" taken from the " & char-to-bits-unit" and " & char-to-bits-size" parameters of
"char-to-bits" (which both have default valuesif not explicitly set).

If "Size" is set to "fixed-to-max", then the effective alphabet constraint associated isinspected. The"Size" for
conversion to bitsis then set to the minimum number of bits that will accommodate the encoding as a positive integer of
the value of any character in the effective alphabet constraint. (The valueis either the |SO/IEC 10646 value or the
compacted value specified below) If thereis no effective alphabet constraint the "fixed-to-max" will produce a 32-bit
encoding for all characters.

If "& char-to-bits-encode” is set to "compact”, then the effective al phabet constraint isinspected. All charactersin the
alphabet are placed in canonical order using their value, lowest value first. Thefirst inthelist isthen assigned the
numerical value zero, the next one, and so on. The resulting value isthen encoded into bits as specified in 19.3.7.

NOTE ThePER encoding of character string types uses"compact" only if the application of thisagorithm
reduces the number of bits required to encode characters (using "fixed-to-max"). This degree of control is
not possible in this version of the ECN specification.

19.3.10 The bits-to-char transforms

Thistransformation is applied by taking the bitstring in the source class and mapping it to a character.

If "is010646" is selected, then the bitstring shall be interpreted as a positive integer encoding which contains the | SO
10646 numerical value of acharacter. It isan ECN specification error if in this application the bitstring contains more
than 32 bits.

If "mapped"” is selected then the mapping defined in "& Bits-to-char-values' and " & Bits-to-char-chars" shall be applied in
asimilar way t0 9.3.9. Itisan ECN specification error if, in an application of this transform, the bitstring is not present
in the "& Bits-to-char-values".

If "compact" is selected, the bitstring isfirst converted to a numeric value, then the effective al phabet constraint
associated with the target encoding class is used to determine the character to which that value corresponds, asin 19.3.9.

19.3.11 The bhit-to-bits transforms

Thistransform shall only be used as the first of the "& Encoder-transforms” for the #B1 TS encoding of A.5.

specify the replacement of each zero bit in the bitstring being encoded with the pattern " & bit-to-bits-zero" and of each
one bit with the pattern "& bit-to-bits-one".

Itisan ECN specification error if the two patterns are the same, or if oneisan initial sub-string of the other.

19.3.12 The bits-to-hit transforms

Thistransform takes the values of abitstring and interprets them as asingle bit in accordance with the given patterns.

It isan ECN specification error if the two patterns are the same or if the transform is applied to a bitstring that does not
match either pattern.

19.3.13 The bits-to-fixed-units transform

Thistransform takes abit string and convertsit to another bit string whose size is specified by "Unit" and "Size" which
isrequired to specify a numeric size for the resulting bitstring, which actsasa"container". The source bit string is placed

58 DTS/MTS-00068 V1.1.1 (2000-10)

in this container according to "Justification". Any bitsin the container before the source bit string arefilled in
accordance with the "pre-padding” and the "pre-pattern”, and any bitsin the container after the source bit string arefilled
in accordance with the "post-padding” and the " post-pattern”.

NOTE Itisthe ECN-specifier'sresponsibility to ensure that any encoding produced in thisway is capable of being
decoded.

19.4 The pre-alignment parameters
<Pre-alignment>: #BITS, #BOOL, #CHARS, #CONCATENATION, #INT, #NUL, #OCTETS, #PAD, #REPETITION

The pre-alignment parameters use avalue of "Unit" to specify that a container isto start at amultiple of "Unit" bitsfrom
the alignment point. The alignment point is the start of the encoding of the type to which an ELM applied an encoding,
except when reset for the encoding of a contained type by the use of a#OUTER encoding object . The "Padding” and
"Pattern" parameters are used to control the bits that provide padding to the required alignment.

NOTE If "Unit" isset to one, there is no pre-alignment, and the other parameters are ignored.

19.5 The padding parameter group

<Padding>: #BOOL, #CONCATENATION, #CONDITIONAL-INT, #NUL, #CONDITIONAL-REPETITION,
#OUTER

The"<Padding >" parameter group is used to define justification and pre and post padding if avalue-encoding is smaller
than the specified encoding-space.

The padding parameter group uses "Justification" to determine the positioning of avalue within a container, and values
of "Padding" (with an optional "Pattern") to specify the padding bits before the value and those after it.

NOTE If thevalue encodingis not fixed length or self-delimiting, then the use of value padding in afixed size
container can in some circumstances make it impossible for a decoder to recover the original abstract
values. Thiswould be an ECN specification error.

19.6 The pad-padding parameter group
<Pad padding>: #PAD

The "<Pad padding>" parameter group is used to define the value to be placed into afield encoded by the #PAD
encoding class.

19.7 The bit reversal parameters

NOTE Bitreversal can be specified onindividual primitive encodings and also for the results of concatenation or
repetition. Care should be taken to ensure that one reversal does not negate the other.

<Bit reversal>: #BITS, #BOOL, #CHARS, #CONCATENATION, #INT, #NUL, #OCTETS, #PAD, #REPETITION

All encoding classes apart from #ALTERNATIVES provide for bit-reversal. This has been described in 19.2
("Reversal Specification™).

NOTE Bitreversal appliesto the contents of the container, it does not apply to pre-alignment padding.

19.8 Encoding space parameters

<Encoding space>: #NUL, #BOOL, #PAD, #CONCATENATION, #CONDITIONAL-INT,
#CONDITIONAL-REPETITION

The use of "Unit" and "Size" is described in 19.1. There are restriction on the use of these parameters for the different
classes.

59 DTS/MTS-00068 V1.1.1 (2000-10)

For #NUL, there is only a single abstract value, and only afixed "Size" can be specified (butit can be zero - no bitsin
the encoding).

For #BOOL, there are two values, which may encode to different sizes (for example, the ASCII codesfor "TRUE" and
for "FALSE"). However, the size of the container is not allowed to be zero, asit requires at |east one bit to discriminate
the two values.

For #PAD, a zero sizeis prohibited, as the purpose of #PAD isto provide a"filler".

For the other classes, the full range of values of "Unit" and "Size" are available.

19.9 Determination mechanisms

19.9.1 General

<DeterminationM echanism>: #ALTERNATIVES, #CONDITIONAL-INT, #CONCATENATION, #
CONDITIONAL-REPETITION, #OPTIONAL

There are several mechanisms available for determining the length of a container which is not of fixed length, for
selection between alternatives, and for determining optionality. These are selected by the value of

"DeterminationM echanism” . Depending on the value selected, other parameter groups are required. Some of these
groups have default values, but others do not (in particular, those requiring areference to an encoding structure
fieldname that isto be a determinant). Where there is no default specified in Annex A, avalue for the parameters of the
required group shall be specified if that mechanism is selected.

A value of "aux-determinant” or "app-determinant” requires that the "Detereminant” group be set.
A value of "container" requires that the <Run-out of container> group be set.

A value of "pattern” requires that the "<Append pattern>" group be set.

A value of "handle" requires that the "<Use handle>" group be set.

A value of "not-needed” identifies that the construction is self-delimiting, and that other parameter groups are not
required.

NOTE Although not needed, where a <Determinant> group is provided, it may still be set to indicate that an
encoder shall encode a determinant value for alength field. Encoderswill detect an encoders error if the
valuein thisfield is not consistent with the length of the encoding space that it determines.

19.9.2 Use of a length determinant

<Length determinant>: #BOOL, #CONCATENATION, #CONDITIONAL-INT, #NUL, #PAD,
#CONDITIONAL-REPETITION

This group shall be set if the "determinant” mechanism is selected.

The <Length determinant> contains a parameter which shall be set to a"REFERENCE" value, that is, areferenceto a
fieldname which will be visible when the encoding is applied. Thisvalue will always be supplied as adummy
parameter, as fieldnames are not visible when the encoding object is defined using defined syntax.

For alength determinant, the determinant is required to produce a count in encoding space units. For a presence
determinant it is required to produce a boolean value (TRUE for present, FALSE for absent). For alternative selection, it
isrequired to produce an index value, zero for the first alternative, one for the next, and so on, where "first" is
determined by the "<Ordering procedure>" parameter group . However, transforms can optionally be supplied to
determine these integer or boolean values from values of the determinant field.

If the determinant was selected by "aux-determinant”, then the transformations shall be the " & Encoder-transforms”, and
the "& Decoder-transforms” shall not be set. The "& Encoder-transforms" define the transformation from the value
required for determination to the value that an encoder isrequired to place in the determinant field.

If the determinant was selected by "app-determinant”, then the value of the determinant field is determined by the
application, and the transformations shall be the "& Decoder-transforms’, and the " & Encoder-transforms” shall not be
set. The"&Decoder-transforms” define the transformation from the value in the determinant field to the value required

60 DTS/MTS-00068 V1.1.1 (2000-10)

for determination. An encoder shall not generate encodings where the value in the determinant field isinconsistent with
the determination it is to be used for by an encoder.

For the #CONDITIONAL-REPETITION class, there is an additional parameter in this group that specifiesthe "Units"
for the determinant. In thiscase (only) avalue of "repetitions” for "Units" is permitted.

19.9.3 Unused bits determination

<Unused bits>:#CONDITIONAL-INT, #CONDITIONAL-REPETITION

Thisgroupisawaysoptional. If absent, any unused bits are always less than the granularity of variability of the value
encoding, and decoding will never be ambiguous.

NOTE Thisisthe assertion made by the ECN designer. Asin all other cases, it isthe designer's sole responsibility
to ensure that ECN specifications permit unambiguous decoding.

It isfrequently the case that the unit of length determination for a container is greater than the unit of value encoding.
(For example, the container length may be determined in octets, but the value encoding may be in units of bits or
half-octets.) In such cases the number of unused bits at the end of the container has to be determined by adecoder. The
specification of the "<Unused bits>" determinant and encoders transforms tells adecoder that it shall ignore the trailing
"n" bits of the encoding-space, where "n" is the value produced by the unused bits determinant, after reversal of specified
transformations.

19.9.4 End of container length determination

<Run-out of container >:#CONCATENATION, #CONDITIONAL-INT, #OPTIONAL, #CONDITIONAL-REPETITION

This group (of one parameter) shall be set if the corresponding mechanism is selected.

The parameter contains either a"REFERENCE" or an "end-of-encoding:NULL" specification. The"REFERENCE"
shall identify (be the fieldname of) a container within which this element is contained. A decoder will continue to
decode bits for the current encodable item until the end of the referenced container is reached.

If "end-of-encoding” is specified, then an encoder will terminate the current item only when there are no more bits left to
decode (possible modified by an "unused bits" determinant that might be present).

19.9.5 Special pattern length determination

<Append pattern>: #CONDITIONAL-REPETITION

This parameter group shall be present if the corresponding mechanism is selected.

The use of this group provides a"Pattern” that an encoder isrequired to place at the end of all repetitions. A decoder
shall match bits against this pattern whenever it islooking for another repetition.

NOTE 1 — An example would be a null-terminated list of characters, or alist of positive integers terminated by a
wqn

NOTE 2 — Itisthe ECN designer's responsibility to ensure that the specified pattern can never occur at the start of
the encoding of any value in the repetition.

NOTE 3 - Thereis no requirement that the size of repetitions and the pattern be the same, but it is an ECN specifiers
error if the encoding of arepetition can produce bits that can be decoded as the terminating pattern.

19.10 Definition of handles

<Primitive Handle information>: #BITS, #BOOL, #CHARS, #INT, #NUL, #OCTETS, #PAD
<Concatenation handleinformation>: #CONCATENATION

<Repetition handle information>: #REPETITION

These groups are used to identify the presence of an identification handle within an encoding.

61 DTS/MTS-00068 V1.1.1 (2000-10)

Anidentification handle isanamed field or set of fieldsin the encoding of an encodable item which has the same bit -
pattern for the encoding of all abstract values of that class.

In the simplest case (primitive fields), an identification handleis given a name, and a set of integer values (a subtype of
"INTEGER") which are the bit positionsin the encoding (after any pre-alignment) which form the identification handle.
The leading bit is called bit zero for this purpose.

In any application of ECN, all identification handles with the same name that are displayed by primitive types shall
specify the same set of bitsfor the location of the identification handle.

The <Concatenation handle information> enables a concatenation to display a new identification handle (handle "HXH"
say) based on alist of component numbers (zero identifies the first component). Each of these componentsis required to
exhibit an identification handle, and the list of identification handle names from these components (and the positions of
the components in the concatenation) shall be the same for all concatenations displaying the handle "HXH".

The <Repetition handle information> enables a#REPETITION to display an identification handle. Thishandle shall be
displayed by the component of the #REPETITION.

NOTE If this parameter is not specified, then any identification handles on the component are not visible outside
of the #REPETITION.

19.11 Use of handles
<Usehandle>: #ALTERNATIVES, #CONCATENATION, #OPTIONAL, #CONDITIONAL-REPETITION

The <Use handle> group shall be present if this mechanism is selected for determination of alternatives, resolution of
order in aconcatenation , determination of optionality, or for termination of a#REPETITION.

When this mechanism is used to select an alternative, all alternatives shall exhibit identification handles with the
specified name, and all shall have different bit-patterns in the fields associated with those patterns, for all abstract values
of each alternative.

When this mechanism is used to determine the order of a concatenation, then all components shall exhibit identification
handles with the specified name, and all shall have different bit-patternsin the fields associated with those patterns, for
all abstract values of each component.

When this mechanism is used to resolve optionality, then the optional component and any following componentsin this
container (up to and including the first mandatory component) shall exhibit identification handles with the specified
name. All shall have different bit-patternsin the fields associated with those patterns, for all abstract values of each
component.

When this mechanism is used to terminate a repetition, the repetition component and any possible following encodable
item isrequired to exhibit the named handle. The repetition terminates when an encoding is encountered which, when
decoded in accordance with any encoding that exhibits that handle, does not contain the value of the identification handle
for the repetition component.

19.12 Value-encoding for Nul

<Nul value-encoding>: #NUL

The value-encoding parameters for #NUL allow the specification of a"Pattern” value that will represent the NULL
abstract value.

NOTE Itisalso possibleto encode null with zero bits by setting the container sizeto zero.

19.13 Value-encoding for Bool

<Bool value-encoding>: #BOOL

The value-encoding parameters for #BOOL allow the specification of avalue for either "TRUE" or "FALSE" (or both),
and the specification of "other" for the pattern for the other value (if both are not specified).

62 DTS/MTS-00068 V1.1.1 (2000-10)

If "other" is specified, then pattern for that value shall be an encoder's option, but shall be of the same length as the
pattern specified for the other value.

The value "other" shall not be specified for both"TRUE" and "FALSE".

19.14 Value-encoding for Int

<Int value-encoding>: #INT
<Range predicate>: #CONDITIONALINT
<Cond-int value-encoding>: #CONDITIONAL-INT

NOTE There are many other parameter groups used in the specification of integer encodings. See Annex A for
full details.

The specification of integer encodings uses "<Int value-encoding>", which is either a single encoding object or an
ordered list of encoding objects of class#CONDITIONAL-INT.

Each encoding object of class#CONDITIONAL-INT can (optionally) contain a"<Range predicate>". The "<Range
predicate>" tests the bounds on the encoding class that is being encoded. The encoding that isapplied isthefirstinthe
list of conditional encodings whose predicateis satisfied. (A predicate is always satisfied if the "<Range predicate>" is
missing). If thereisno conditional encoding in the list whose predicateis satisfied for an encoding class to which the
specified encoding object is applied, thisisan ECN designer's error.

Once a conditional encoding has been selected for use, the <Cond-int value-encoding> in that conditional encoding is
applied.

19.15 The concatenation procedure parameters

<Concatenation procedure>: #CONCATENATION, #CONDITIONAL-REPETITION

The single parameter in this group specifies how encodings are to be combined in concatenations and in repetitions.
There are two choices: "simple" means that the encodings are concatenated end-to-end, and "pre- aligned" means that
any pre-alignment specified for the #CONCATENATION or #CONDITIONAL-REPETITION is also applied to the
encoding of each component before concatenation.

NOTE Alignment specifications (and any resulting padding) within a component are with respect to its position
after any alignment and padding by the container. (The only exception to thisisif the alignment point is
reset for a contained type using #OUTER)

19.16 Repetition encoding

<Repetition encoding>: #REPETITION
<Sizepredicate>: #CONDITIONAL-REPETITION

"<Repetition encoding>" is similar to integer encoding. It uses alist of encoding objects of class
#CONDITIONAL-REPETITION, each of which contains an optional <Size predicate>. The size predicate teststhe
effective size constraints on the class being encoded, and the first one that is satisfied provides the encoding for the
repetition. If thereis no size predicate, then the condition is always satisfied, and the first such encoding isapplied. If
thereisno encoding in the list whose predicate is satisfied, thisisan ECN designer's error.

Once aconditional encoding is selected, then the actual encoding for the repetition is determined by the other parameter
groups, detailed in Annex A.

19.17 Value-encoding for Bits
<Bits value-encoding>: #BITS

Thefirst parameter in the "<Bits value-encoding>" group contains an ordered list of transformations that are required to
transform asingle bit into a bit string. If the list is empty, the resulting bit string is the single source bit.

63 DTS/MTS-00068 V1.1.1 (2000-10)

These transformations shall be applied to all bitsin the #BITS value being encoded, and the resulting repeated set of bits
istreated asa#REPETITION of encodings of the original string of bits.

NOTE Itisthe ECN specifier's responsibility to ensure that the mapping of individual bitsinto abitstring is
reversible by adecoder. Thisrequiresthat the two values specified for one and zero are a self-delimiting
set of values.

The second and third parameters of this group provide either alist of conditional repetitions, or a single conditional
repetition (precisely one of these parameters shall be set). Thefirst of the conditional repetitions whose predicate is
satisfied is selected, and is used to combine the encodings of individual bitsinto the encoding that is specified by the
#BITS encoding object that is being defined.

If there is no conditional repetition whose predicate is sdtisfied, thisisan ECN designer's error.

19.18 Value-encoding for Octets

<Octet value-encoding>: #OCTETS

The two parameters of this group provide either alist of conditional repetitions, or asingle conditional repetition
(precisely one of these parameters shall be set). Thefirst of the conditional repetitions whose predicate is satisfied is
selected, and is used to combine the encodings of individual octets into the encoding that is specified by the #OCTETS
encoding object that is being defined.

If there is no conditional repetition whose predicate is satisfied, thisis an ECN designer's error.

NOTE Thisisasimplified case of the encoding for #BITS. The bitsin each octet are not transformed: thereis
simply alist of one or more conditional repetitions that determine how they are combined.

19.19 Value-encoding for Chars

<Chars value-encoding>: #CHARS

Thefirst parameter in the "<Chars value-encoding>" group contains an ordered list of transformations that are required
to transform a single character into a self -delimiting (among the set of all encodings of charactersin the al phabet) bit
string. Thelist of transforms cannot be empty.

These transformations shall be applied to all charactersin the #CHARS value being encoded, and the resulting repeated
set of bitsistreated asa#REPETITION of encodings of the original string of characters.

NOTE Itisthe ECN specifier's responsibility to ensure that the mapping of individual charactersinto abitstringis
reversible by adecoder. Thisrequiresthat the two values specified for all charactersin the effective
permitted alphabet are a self-delimiting set of values.

The second and third parameters of this group provide either alist of conditional repetitions, or a single conditional
repetition (precisely one of these parameters shall be set). Thefirst of the conditional repetitions whose predicateis
satisfied is selected, and is used to combine the encodings of individual charactersinto the encoding that is specified by
the #CHARS encoding object that is being defined.

If there is no conditional repetition whose predicate is satisfied, thisis an ECN designer's error.

NOTE Thisisidentical to the encoding for #BITS, except that it is now transformations from a character to bits
that hasto be specified.

19.20 The ordering procedure parameters

<Ordering procedure>: #ALTERNATIVES, #CONCATENATION

This parameter group is used when a canonical order is needed for components, in particular for components of an
#ALTERNATIVE if anindex is needed for a determinant that will identify an alternative, or for the ordering of the
componentsin a#CONCATENATION.

The parameter allows specification of "textual", "tag”, or "option-with-handle".

64 DTS/MTS-00068 V1.1.1 (2000-10)

A value of "textual" means that the order is based on the textual order in the encoding structure (which may be an
implicit encoding structure for an ASN.1 type) definition.

A value of "tag" meansthat the order is the canonical tag order of the outermost tag as specified in ITU-T Rec. X.680 |
ISO/IEC 8824.

A value of "option-with-handle" means that (for concatenation) the order is an encoder's option, with identification of an
aternative or acomponent being done by a specified identification handle. In this case parameters of the "<Use
handle>" group shall be set to specify an identification handle.

All components of the #CONCATENATION or alternatives of the #ALTERNATIVES shall exhibit the specified
identification handle, and shall have distinct values for the fields which make up the identification handle.

19.21 Contained type encoding
<Contained type encoding>: #BITS, #OCTETS

This parameter group is optional, and provides either one or two encoding object sets. If two are provided, they are
combined according to clause 13.2to produce a combined encoding object set.

If this encoding object is used to encode a#BITS or #OCTETS class that has a contained type, then it isthe combined
encoding object set defined by this parameter group that encodes the contained type if it has no "ENCODED BY"
construct.

If thereisan "ENCODED BY" construct, then it provides the encoding unless the " & over-ride-encoded-by" parameter is
set "TRUE", in which case the combined encoding object set in the encoding object is applied.

If the group is missing, then the contained type is encoded with the combined encoding object set that was applied to the
#BITS or #OCTETS if thereisno "ENCODED BY", otherwise the encoding is that specified by the"ENCODED BY".

19.22 The #OUTER encoding class

NOTE Thisencoding classisformally defined inAnnex A.
Encoding objects of the #OUTER class are applied to the entire encoding of atype which is encoded by either:
a) application of an encoding in the ELM; or
b) application of an encoding to a contained type.
This encoding object performs two functions:
- Thefirstisto specify that the enPadding” and "Pattern”. If "Unit" is set to one, there will be no padding.

- Thesecond function isto deter tire encoding isto be made a multiple of "Units" bits by the addition (if necessary)
of padding bits specified by "mine whether the alignment point is to be reset to the start of the contained type
encoding ("reset") when encoding of a contained type is commenced, or whether the alignment point isto be the
same as that for the containing type.

65 DTS/MTS-00068 V1.1.1 (2000-10)

Annex A (Normative):
Specification of Encoding Classes

The encoding classes defined in this Annex are used in the definition of the "DefinedSyntax" using notation specifiedin
ITU-T Rec. X.681 | ISO/IEC 8824-1, 10, as modified (for the sole purpose of this annex) by Annex C. Encoding objects
specified in accordance with 16.2 shall defined using the syntax specified by the "WITH SYNTAX" clause for their
corresponding encoding class.

A.l Commonly-used type definitions

The following types and values are used in several placesin the specification of parameters (of the encoding classes that
areto be used in the definition of encoding objects).

Thetypes and their semantics are described in clause 19.1.

NOTE All ASN.1 type definitions given here assume automatic tags and no extensibility.

Unit ::= | NTEGER
{repetitions(0), bit(1), nibble(4), octet(8),
wor d16(16), dword32(32)} (0. . 256)

-- Default is always "bit".

Size ::= | NTEGER

{ uses-determ nation-nechanisn(-3), fixed-to-max(-2), variable(-1),
enpty(0)} (-3..MAX) _
-- Default is usually "variable", else OPTI ONAL

Justification ::= CHO CE
{ -- inbits
left Si ze (0..MAX),

right Size (0..MAX)}
-- Default is always "right:0".

Paddi ng :: = ENUMERATED
{zero, one, pattern, encoder-option}
-- Default is always "zero".

Pattern ::= CHO CE
{bits BIT STRING
octets OCTET STRI NG
char8 | A5String,
char 16 BMPSt ri ng,
char 32 Uni versal String,
ot her - t han NULL }

-- Default is always "bits:'0' B"

other Pattern ::= other-than: NULL
-- Provided to nmake the value notation for Pattern nore user-friendly.

RangeCondi tion ::= ENUVERATED
{unbounded- or - no- | ower - bound,
sem -bounded-wi t h-negat i ves,
bounded-wi t h-negati ves,
sem -bounded-w t hout - negati ves,
bounded-wi t hout - negati ves }
-- Never defaulted.

Si zeRangeCondi ti on ::= ENUVERATED
{no-ub-wi t h-zero-1|b,
ub-wi th-zero-1Db,
no-ub-wi t h-non-zero-1b,
ub-wi t h-non- zero-1I b,
fixed-size}
-- Never defaulted.

Rever sal Speci ficati on :: = ENUVERATED
{no-reversal,
reverse-bits-in-units,
reverse-hal f-units,

66

reverse-bits-in-hal f-units}
- Default is always "no-reversal".

Det er m nati onMechani sm : : = ENUVERATED

{ aux- det er mi nant, app- det er m nant,

A.2 Groups of parameters

DTS/MTS-00068 V1.1.1 (2000-10)

cont ai ner, pattern, handl e, not - needed}

NOTE Many parameters are formally OPTIONAL, but are required if certain values are supplied for other
parameters. The WITH SYNTAX clause sometimes enforces this, but the rules in clause 19 always apply.

The parameter groups used in the following definitions of encoding classes are defined in clause 19:

<Append pattern>

<Bit reversal>

<Bits value-encoding>

<Bool value-encoding>

<Chars value-encoding>
<Concatenation handle information>
<Concatenation procedure>
<Cond-int value-encoding>
<Contained type encoding>
<Determination mechanism>
<Determinant>

<Encoding space>

<Int value-encoding>

<Nul value-encoding>

<Octet value-encoding>
<Ordering procedure>

<Pad padding>

<Padding>

<Pre-alignment>

<Primitive handle information>
<Range predicate>

<Repetition encoding>
<Repetition handle information>
<Run-out of container>

<Size predicate>

<Unused bits>

<Use handle>

A.3 The #TRANSFORM encoding class

This encoding class and its semanticsis described in clause 19.

#TRANSFORM : : = ENCODI NG- CLASS {
- <int-to-int>
& nt-to-int

- <bool -to-bool >
&bool -to-bool

- <bool -to-int>
&bool -to-int

CHO CE

{ increnent
decr enent
mul tiply
di vi de
negat e
nmodul o

CHO CE
{ not NULL

I NTEGER (1..
I NTEGER (1. .
I NTEGER (1. .
I NTEGER (1. .

NULL,

I NTEGER (2. .

- Ghers may be added -- } CPTIONAL,

ENUMERATED {t r ue- zer o,

DEFAULT true-one,

true-one}

-- <int-to- bool >
& nt-to- bool

ENUMERATED { zero-true,

67 DTS/MTS-00068 V1.1.1 (2000-10)

zero-fal se}

DEFAULT zero-fal se,

& nt-to-bool -true-is
&l nt-to-bool -fal se-i s

-- <int-to-chars>
& nt-to-chars-size
& nt-to-chars-plus
& nt-to-chars-pad

-- <int-to-bits>
& nt-to- bits-encoded

& nt-to-bits-unit
& nt-to-bits-size

-- <bits-to-int>
&bits-to-int-decoded

-- <char-to-bits>
&char -to-bi ts-encoded

&Char -to-bits-chars
&Char -to-bits-val ues
&char -to-bits-unit

I NTEGER CPTI ONAL,
I NTEGER OPTI ONAL,

Size (fixed-to-max | variable |
BOCOLEAN DEFAULT FALSE,
ENUMERATED

{space, zero} DEFAULT zero,

1.. MAX) DEFAULT vari abl e,

ENUVERATED

{positive-int, twos-conplenent}
DEFAULT t wos- conpl enent

Unit (1..MAX) DEFAULT bit,

Size (fixed-to-max | variable |
DEFAULT vari abl e,

1.. MAX)

ENUMVERATED
{positive-int, twos-conplenent}
DEFAULT t wos- conpl enent

ENUMERATED

{i s010646, conpact,
DEFAULT conpact,
Uni versal String (Sl ZE(1)) ORDERED OPTI ONAL,
Bl T STRI NG ORDERED OPTI ONAL,

Unit (1..MAX) DEFAULT bit,

mapped}

&char -to-bits-size Size (fixed-to-max | variable | 1..MAX)
OPTI ONAL,
-- <bits-to-char>
&bits-to-char -decoded ENUMERATED
{i s010646, conpact, napped}

&Bi ts-to-char -val ues
&Bits-to-char-chars

-- <bit-to-bits>
&bi t-to-bits-one
&bit-to-bits-zero

-- <bits-to-bit>
&bits-to-bit-one
&its-to-bit-zero

-- <bits-to-fixed-units>
&bits-to-fixed-units-unit
&bits-to-fixed-units-size

DEFAULT conpact,
Bl T STRI NG ORDERED OPTI ONAL,
Uni versal String (Sl ZE(1)) ORDERED OPTI ONAL,

Pattern DEFAULT bits:'1'B,
Pattern DEFAULT bits:'0'B,

Pattern DEFAULT bits:'1'B,
Pattern DEFAULT bits:'O0'B,

Unit(1..MAX) DEFAULT bit,
Size (1..MAX) OPTI ONAL,

&its-to-fixed-units-justification
&its-to-fixed-units-pre- paddi ng
&bits-to-fixed-units-pre-pattern

&bi ts-to-fixed-units-post-paddi ng
&bi ts-to-fixed-units-post-pattern

Justification DEFAULT right:O0,
Paddi ng DEFAULT zero,
Pattern (ALL EXCEPT ot her)
DEFAULT bits:'0'B,

Paddi ng DEFAULT zero,
Pattern (ALL EXCEPT ot her)

DEFAULT bits:'0'B }

W TH SYNTAX {
-- one and only one of the follow ng options can be set:

[INT-TOINT & nt-to-int]

[BOOL- TO-BOOL AS &bool - to-bool]

[BOOL- TO-I NT AS &bool -t 0-int]

[I NT-TO BOOL
-- zero or one of the follow ng options can be set:
[AS & nt-to-bool]
[TRUE-I S & nt -to-bool -true-is]
[FALSE-1S &l nt-to-bool-fal se-is]]

[I NT-TO CHARS
-- zero or nore of the follow ng options can be set:
[SI ZE &i nt-to-chars-size]
[PLUS- SIGN & nt-to-chars- plus]
[PADDI NG &i nt -t o-char s- pad]]

[INT-TO BITS
-- zero or nore of the followi ng options can be set:
[AS & nt -to-bits-encoded]

68 DTS/MTS-00068 V1.1.1 (2000-10)

[SIZE & nt-to-bits-size]
[MULTI PLE OF & nt-to-bits-unit]]
[BITS-TO-I NT AS &bits-to-int-decoded]
[CHAR- TO-BI TS
-- zero or nore of the follow ng options can be set:
[AS &char-t o- bi t s- encoded]
[CHAR- LI ST &Char -t o-bi t s- char s]
[BITS- LI ST &Char -t o-bi t s- val ues]
[SI ZE &char -t 0-bi t s-si ze]
[MULTI PLE OF &char-to-bits-unit]]
[BI TS TO- CHAR
-- zero or nore of the followi ng options can be set:
[AS &bi ts-to- char- decoded]
[BITS-LI ST &Bits-to-char- val ues]
[CHAR- LI ST &Bits-to-char-chars]]
[BIT-TOBITS
-- zero or nore of the follow ng options can be set:
[ZERO PATTERN &bit -to-bits-zero]
[ONE- PATTERN &bi t-to-bits-one]]
[BITS-TO-BI T
-- zero or nore of the follow ng options can be set:
[ZERO PATTERN &bi t s-t o- bi t-zer o]
[ONE- PATTERN &bi ts-to-bit-one]]
[BI TS- TO-FI XED UNI TS
-- zero or nore of the follow ng options can be set:
[SI ZE &bits-to-fixed-units-size]
[MULTI PLE OF &bits-to-fixed-units-unit]
[JUSTI FIED &bits-to-fixed-units-justification]
[PRE- PADDI NG &bi ts-to-fi xed- units-pre- paddi ng
[PATTERN &bits-to-fixed-units-pre-pattern]]
[POST- PADDI NG &bi t s-t o- fi xed-uni t s- post- paddi ng
[PATTERN &bi ts-to-fixed-units-post-pattern]]]

A4 Defining encoding objects for alternative classes

The syntax defined here can be used to define encoding objects of class#ALT ERNATIVES and #CHOICE.

#ALTERNATI VES :: = ENCODI NG CLASS {

-- <Determnation nechani sm>
&sel ecti on-nmechani sm Det er m nat i onMechani sm
(aux-determ nant | app-deternminant | handle),

-- <Ordering procedure>
&nunber i ng- or der ENUVERATED
{textual , tag}
DEFAULT textual,
-- The alternatives are nunbered from zero upwards.

- - <Det erm nant >

&al t er nati ve-det er m nant REFERENCE OPTI ONAL,

&Encoder-transf or ns #TRANSFORM ORDERED OPTI ONAL,
-- Transforns froman integer index to actual "REFERENCE".

&Decoder-transforms #TRANSFORM ORDERED OPTI ONAL,

-- Transforms fromthe actual "REFERENCE' to an integer index.
-- Allowed only if app-deterninant is set.

-- <Use handl e>
&handl e-i d Printabl eString OPTI ONAL}

W TH SYNTAX {
SELECTI ON AS &sel ection-mechani sm
[DETERM NED BY &al t er nat i ve- det er ni nant
[ENCODER- TRANSFORMS &Encoder -t r ansf or ns]
[DECCDER- TRANSFORVS &Decoder -t r ansf or ms]
[ORDER &nunberi ng- order]]
[HANDLE &handl e-i d]

A.5 Defining encoding objects for #BITS and #BIT-STRING
classes

The syntax defined here can be used to define encoding objects of classes#BITS and #BIT-STRING.

69 DTS/MTS-00068 V1.1.1 (2000-10)

#BI TS :: = ENCCODI NG- CLASS {

-- <Pre-alignnent>
&encodi ng-space- pre-al i gnment-uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pre-paddi ng Paddi ng DEFAULT zero,
&encodi ng-space- pre-pattern Pattern (ALL EXCEPT ot her)

DEFAULT bits:'0Q' B,

-- <Bits val ue-encodi ng>

&Encoder - t r ansf or s #TRANSFORM CRDERED OPTI ONAL,
-- Transforms bit to bits
&Bi t s-repetition-encodi ngs #CONDI Tl ONAL- REPETI TI ON
OPTI ONAL,
&bi ts-repetition-encodi ng #CONDI TI ONAL- REPETI TI ON
OPTI ONAL,

-- Exactly one of the above nmust be suppli ed.

-- <Cont ai ned type encodi ng>

&Pri mary- encodi ng-obj ect - set #ENCCODI NGS OPTI ONAL,
&Secondar y- encodi ng- obj ect - set #ENCODI NGS OPTI ONAL,
&over-ri de- encoded- by BOOLEAN OPTI ONAL,

-- <Primtive handl e information>
&handl e-i d Printabl eString OPTI ONAL,
&Handl e-posi ti ons I NTEGER (1..MAX) OPTI ONAL,

-- <Bit reversal >
&bi t -reversal Rever sal Speci fi cation
DEFAULT no-reversal }

W TH SYNTAX {

[ENCODI NG SPACE ALI GNED TO &encodi ng-space- pre-al i gnnent-uni t

[PADDI NG &encodi ng-space- pre-paddi ng
[PATTERN &encodi ng-space- pre-pattern]]]

[ENCODER- TRANSFORMVS &Encoder -t r ansf or ns]

[ENCODI NG &bits-repetition-encoding]

[ENCODI NGS &Bits-repetition-encodi ngs]

[CONTAI NI NG &Pri mar y- encodi ng- obj ect-set
[COWLETED BY &Secondary- encodi ng- obj ect - set]
[OVERRI DE &over - ri de- encoded- by]]

[HANDLE &handl e-id AT &Handl e- posi ti ons]

[BI T-REVERSAL &bit -reversal]

A.6 Defining encoding objects for #BOOL and #BOOLEAN
classes

The syntax defined here can be used to define encoding objects of classes #BOOL and #BOOLEAN.

#BOCOL ::= ENOCDI NG- CLASS {

-- <Pre-alignment >
&encodi ng-space- pre-al i gnment-uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pre-paddi ng Paddi ng DEFAULT zero,
&encodi ng-space- pre-pattern Pattern (ALL EXCEPT ot her)
DEFAULT bits:'0'B,

- - <Bool val ue-encodi ng>

&val ue-true-pattern Pattern DEFAULT bits:'1'B,
&val ue-fal se-pattern Pattern DEFAULT bits:'0' B,
-- <Encodi ng space>
&encodi ng-space- uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- si ze Si ze (uses-determ nation-nechanism| fixed-to-nax |

1.. MAX) OPTI ONAL,

- - <Paddi ng>
&val ue-justification Justification DEFAULT right:O,
&al ue- pr e- paddi ng Paddi ng DEFAULT zero,
&val ue-pre-pattern Pattern (ALL EXCEPT ot her)
DEFAULT bits:'0'B,
&val ue- post - paddi ng Paddi ng DEFAULT zer o,

&val ue-post -pattern Pattern (ALL EXCEPT ot her)

70 DTS/MTS-00068 V1.1.1 (2000-10)
DEFAULT bits:'0'B,

- - <Determ nant >
&encodi ng-space- | engt h- det er m nant REFERENCE OPTI ONAL,
&Encoder - t ransf or s #TRANSFORM CRDERED COPTI ONAL,
-- Transforns froma count in &ncodi ng-space-unit to actual "REFERENCE".

-- <Primtive handl e information>
&handl e-i d Printabl eString OPTI ONAL,
&Handl e-posi ti ons I NTEGER (1..MAX) OPTI ONAL,

-- <Bit reversal >
&bi t -reversal Rever sal Speci fication
DEFAULT no-reversal }

W TH SYNTAX {
[ENCODI NG SPACE
[ALI GNED TO &encodi ng- space- pre-al i gnnent-uni t
[PADDI NG &encodi ng-space- pre-paddi ng
[PATTERN &encodi ng-space- pre-pattern]]]
[SI ZE &encodi ng- space-si ze]
[MULTI PLE OF &encodi ng- space-unit]
[DETERM NED BY &encodi ng- space-| engt h- det er m nant
[ENCODER- TRANSFORVS &Encoder -t ransf orns]]]
[VALUE [TRUE- PATTERN &val ue-true-pattern]
[FALSE- PATTERN &val ue-fal se- pattern]
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pre-paddi ng
[PATTERN &val ue- pre-pattern]]
[PCST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post - pattern]]]
[HANDLE &handl e-id AT &Handl e- posi ti ons]
[BI T-REVERSAL &bit -reversal]

A7 Defining encoding objects for #CHARS and other character
string classes

The syntax defined here can be used to define encoding objects of classes #CHARS, #GeneralizedTime, #UTCTime,
#BM PString, #General String, #GraphicString, # A5String, #NumericString, #PrintableString, #TeletexString,
#Universa String, #UTF8String, #VideotexString, and #VisibleString.

#CHARS : : = ENCODI NG CLASS {

-- <Pre-alignnent>
&encodi ng- space- pre-al i gnnent-uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pre-paddi ng Paddi ng DEFAULT zer o,
&encodi ng- space- pre-pattern Pattern (ALL EXCEPT ot her)
DEFAULT bits:'0'B,

-- <Chars val ue- encodi ng>

&Encoder - t r ansf or ms #TRANSFORM ORDERED CPTI ONAL,

-- Transforns a char to a fixed-length bit string
&Char s-repetition-encodi ngs #CONDI Tl ONAL- REPETI T1 ON OPTI ONAL,
&chars-repetition-encodi ng #CONDI TI ONAL- REPETI TI ON OPTI ONAL,

-- Exactly one of the above nust be supplied.

-- <Prinmtive handl e infornmation>
&handl e-i d Printabl eString OPTI ONAL,
&Handl e-posi ti ons I NTEGER (1..MAX) OPTI ONAL,

-- <Bit reversal >
&bit -reversal Rever sal Specification
DEFAULT no-reversal }

W TH SYNTAX {
[ENCODI NG SPACE ALI GNED TO &encodi ng- space- pre-al i gnment-uni t
[PADDI NG &encodi ng-space- pre- paddi ng
[PATTERN &encodi ng-space- pre-pattern]]]
[ENCODER- TRANSFORVE &Encoder -t r ansf or nms]
[ENCODI NG &char s-repetition- encodi ng]
[ENCODI NGS &Char s- repetition-encodi ngs]
[HANDLE &handl e-id AT &Handl e- posi ti ons]
[Bl T-REVERSAL &bit -reversal]

71 DTS/MTS-00068 V1.1.1 (2000-10)

A.8 Defining encoding objects for concatenation classes

The syntax defined here can be used to define encoding objects of class#CONCATENATION, #SEQUENCE, and
#SET.

#OONCATENATI ON : : = ENCODI NG- CLASS {

-- <Pre-alignnent>
&encodi ng-space- pre-al i gnment-uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pre-paddi ng Paddi ng DEFAULT zer o,
&encodi ng-space- pre-pattern Pattern (ALL EXCEPT ot her)
DEFAULT bits:'0' B,

-- <Ordering procedure>
&concat enat i on-or der ENUVERATED
{textual,
tag,
option-wi t h-handl e}
DEFAULT textual,

-- <Use handl e>
&order -handl e-i d Printabl eString OPTI ONAL,

-- <Concat enati on procedure>
&concat enat i on- procedure ENUVERATED
{sinmple, pre-aligned}
DEFAULT si npl e,

-- <Encodi ng space>
&encodi ng-space- uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- si ze Si ze (uses-determ nation-nechanism| fixed-to-nax |
enpty | 1..MAX) OPTI ONAL,

- - <Paddi ng>
&val ue-justification Justification DEFAULT right:O0,
&val ue- pr e- paddi ng Paddi ng DEFAULT zero,
&val ue-pre-pattern Pattern (ALL EXCEPT ot her)
DEFAULT bits:'0'B,
&val ue- post - paddi ng Paddi ng DEFAULT zero,
&val ue-post -pattern Pattern (ALL EXCEPT other)

DEFAULT bits:'0' B,

-- <Deternination mechani sm
&cont ai ner- | engt h-mechani sm Det er m nat i onMechani sm
(aux-determi nant | app-determnant | container | handl e | not-needed)
DEFAULT not - needed,

- - <Det erm nant >

&encodi ng-space- | engt h- det er m nant REFERENCE OPTI ONAL,
&Encoder - t ransf or ns #TRANSFORM ORDERED CPTI ONAL,

-- Transforns froma count in &encodi ng- space-unit to actual "REFERENCE".
&Decoder - t ransf or ns #TRANSFORM ORDERED CPTI ONAL,

-- Transforms fromthe actual "REFERENCE' to a count in &encodi ng-space-unit.
-- Allowed only if app-determnant is set.

-- <Run-out of container>

&encodi ng- space- cont ai ner CHO CE
{cont ai ner REFERENCE,
end- of -encodi ng NULL}
OPTI ONAL,
-- <Concatenation handl e information>
&handl e-i d Print abl eString OPTI ONAL,
&Handl e- conponent - nunber s | NTEGER CPTI ONAL,

-- <Bit reversal >
&bit -reversal Rever sal Speci fication
DEFAULT no-reversal }

W TH SYNTAX {
[ENCODI NG SPACE
[ALI GNED TO &encodi ng- space- pre-al i gnment-uni t
[PADDI NG &encodi ng-space- pre- paddi ng
[PATTERN &encodi ng-space- pre-pattern]]]
[SI ZE &encodi ng- space-si ze]
[MULTI PLE OF &encodi ng- space-unit]

A9

72

[LENGTH AS &encodi ng- space-1 engt h-nmechani sm
[CONTAI NED I N &encodi ng-space- cont ai ner]

[DETERM NED BY &encodi ng- space- | engt h- det er mi nant

[ENCODER- TRANSFORVS &Encoder -t r ansf or ms]

[DECODER- TRANSFORVS &Decoder -transforns]]]]

[VALUE
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pr e-paddi ng
[PATTERN &val ue- pre-pattern]]
[POST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]]
[CONCAT &concat enat i on- procedur e]
[ORDER &concat enat i on-or der
[HANDLED BY &or der - handl e-i d]]
[HANDLE &handl e-id AT &Handl e- conponent - nunber s]
[Bl T-REVERSAL &bit -reversal]

DTS/MTS-00068 V1.1.1 (2000-10)

Defining encoding objects for #INT, #CONDITIONAL-INT,
#INTEGER and #ENUMERATED classes

The syntax defined here can be used to define encoding objects of classes #INT, #INTEGER and #ENUMERATED.

#INT ::= ENCODI NG CLASS {

-- <Pre-alignment>

&encodi ng-space- pre-al i gnment-uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng- space- pr e- paddi ng Paddi ng DEFAULT zer o,

&encodi ng-space- pre-pattern Pattern (ALL EXCEPT ot her)

DEFAULT bits:'0' B,

-- <Int val ue-encodi ng>

&l nt eger - encodi ngs #CONDI TI ONAL - | NT CPTI ONAL,
& nt eger - encodi ng #CONDI Tl ONAL - | NT CPTI ONAL,
-- Exactly one of the above nust be supplied.
-- <Primtive handl e information>
&handl e-i d Printabl eString OPTI ONAL,
&Handl e-posi tions | NTEGER (1..MAX) OPTI ONAL,
-- <Bit reversal >
&bit -reversal Rever sal Speci fication

DEFAULT no-reversal

W TH SYNTAX {

[ENCODI NG SPACE ALI GNED TO &encodi ng-space- pre-al i gnnent-uni t

[PADDI NG &encodi ng-space- pre-paddi ng
[PATTERN &encodi ng-space- pre-pattern]]]
[ENCODI NG &i nt eger - encodi ng]
[ENCODI NGS &l nt eger- encodi ngs]
[HANDLE &handl e-id AT &Handl e- posi ti ons]
[Bl T-REVERSAL &bit -reversal]

#CONDI TI ONAL- | NT ::= CLASS {

-- <Range predicate>

& ange-condi tion RangeCondi ti on OPTI ONAL,

-- <Cond-int val ue-encodi ng>

&Val ue-transforns #TRANSFORM CRDERED COPTI ONAL,

-- Transforns fromint to bits

-- <Encodi ng space>

&encodi ng-space- uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- si ze Si ze (uses-determ nation-nechanism| fixed-to-max |
enpty | 1..MAX) OPTI ONAL,

73 DTS/MTS-00068 V1.1.1 (2000-10)

- - <Paddi ng>
&val ue-justification Justification DEFAULT right:O0,
&val ue- pr e- paddi ng Paddi ng DEFAULT zero,
&val ue-pre-pattern Pattern (ALL EXCEPT ot her)
DEFAULT bits:'0'B,
&val ue- post - paddi ng Paddi ng DEFAULT zer o,
&al ue-post -pattern Pattern (ALL EXCEPT ot her)

DEFAULT bits:'0' B,

-- <Determ nation nechani sn»
&encodi ng- space- | engt h- nechani sm Det er m nat i onMechani sm
(aux- deterninant | app-determ nant |
contai ner | not-needed)
OPTI ONAL,

- - <Determ nant >
&encodi ng- space- | engt h- det er m nant REFERENCE CPTI ONAL,

&Encoder - t r ansf or ns #TRANSFORM ORDERED OPTI ONAL,
-- Transforns froma count in &ncodi ng- space-unit to actual "REFERENCE'.
&Decoder - transf or ns #TRANSFORM ORDERED OPTI ONAL,

-- Transforns fromthe actual "REFERENCE' to a count in &encodi ng-space-unit.
-- Allowed only if app-determinant is set.

-- <Run-out of container>

&encodi ng- space- cont ai ner CHO CE
{cont ai ner REFERENCE,
end- of - encodi ng NULL}
OPTI ONAL,
-- <Unused bits>
&Unused- space- det er mi nant REFERENCE OPTI ONAL,
&Unused- space- transforns #TRANSFORM ORDERED COPTI ONAL
-- Transforms froma count in bits to actual "REFERENCE'. -- }

W TH SYNTAX {
[1 F & ange- condi ti on] [ENCODI NG- SPACE
[SI ZE &encodi ng- space-si ze]
[MULTI PLE OF &encodi ng- space-uni t]
[LENGTH AS &encodi ng- space-| engt h-mechani sm
[CONTAI NED | N &encodi ng-space- cont ai ner]
[DETERM NED BY &encodi ng- space-| engt h- det er m nant
[ENCODER- TRANSFORVS &Encoder -t r ansf or ns]
[DECODER- TRANSFORVS &Decoder -t ransf orns]]]
[UNUSED DETERM NED BY &Unused- space- det er m nant
[ENCCDER- TRANSFORMS
&Unused- space-transforns]]]
[VALUE [ENCODER- TRANSFORVS &Val ue-t r ansf or ns]
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pre-paddi ng
[PATTERN &val ue- pre-pattern]]
[POST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]]

A.10 Defining encoding objects for #NUL and #NULL classes

The syntax defined here can be used to define encoding objects of classes #NUL and #NULL.

#NUL ::= ENCODI NG CLASS {

-- <Pre-alignnent>
&encodi ng- space- pre-al i gnment-uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pre-paddi ng Paddi ng DEFAULT zer o,
&encodi ng- space- pre-pattern Pattern (ALL EXCEPT ot her)
DEFAULT bits:'0'B,

-- <Nul val ue-encodi ng>
&val ue-pattern Pattern (ALL EXCEPT ot her)
DEFAULT bits:'0'B,

- - <Encodi ng space>

&encodi ng- space- uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng-space- si ze Sze (enpty | 1 .. NAX) OPTI ONAL,

- - <Paddi ng>
&val ue-justification Justification DEFAULT right:O0,

&al ue- pr e- paddi ng Paddi ng DEFAULT zero,

&val ue-pre-pattern

&val ue- post - paddi ng
&val ue-post -pattern

- - <Determ nant >
&encodi ng-space- | engt h- det er m nant
&Encoder - t ransf or s

74 DTS/MTS-00068 V1.1.1 (2000-10)

Pattern (ALL EXCEPT ot her)
DEFAULT bits:'0'B,

Paddi ng DEFAULT zer o,
Pattern (ALL EXCEPT ot her)
DEFAULT bits:'0'B,

REFERENCE CPTI ONAL,
#TRANSFCRM ORDERED CPTI ONAL,

-- Transforns froma count in &ncoding-space-unit to actual "REFERENCE".

-- <Primtive handl e information>
&handl e-i d
&Handl e-posi ti ons

Printabl eString OPTI ONAL,
I NTEGER (1..MAX) OPTI ONAL,

-- <Bit reversal >
&bi t -reversal Rever sal Speci fication

DEFAULT no-reversal }

W TH SYNTAX {
[ENCODI NG SPACE
[ALI GNED TO &encodi ng-space- pre-al i gnnent-uni t
[PADDI NG &encodi ng-space- pre-paddi ng
[PATTERN &encodi ng-space- pre-pattern]]]
[SI ZE &encodi ng- space- si ze]
[MULTI PLE OF &encodi ng- space-unit]
[DETERM NED BY &encodi ng- space-| engt h- det er m nant
[ENCCDER- TRANSFORMS
&Encoder -transforns]]]
[VALUE [NULL- PATTERN &val ue- pattern]
[JUSTI FI ED &val ue-justification]
[PRE- PADDI NG &val ue- pr e-paddi ng
[PATTERN &val ue- pre-pattern]]
[POST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]]
[HANDLE &handl e-id AT &Handl e- posi ti ons]
[Bl T-REVERSAL &bit -reversal]

A.11 Defining encoding objects for #OCTETS and

#OCTET-STRING classes

The syntax defined here can be used to define encoding objects of classes #OCTETS and #OCTET-STRING.

#OCTETS :: = ENCODI NG CLASS {

-- <Pre-alignment>
&encodi ng-space- pre-al i gnment-uni t
&encodi ng- space- pre-paddi ng
&encodi ng-space- pre-pattern

Unit (ALL EXCEPT repetitions) DEFAULT bit,
Paddi ng DEFAULT zer o,

Pattern (ALL EXCEPT ot her)

DEFAULT bits:'0'B,

-- <Cctet val ue- encodi ng>

& xtet -repetition-encodi ngs #CONDI TI ONAL- REPETI Tl ON
OPTI ONAL,
#CONDI Tl ONAL- REPETI Tl ON
OPTI ONAL,

-- Exactly one of the above nust be supplied.

&oct et -repetition-encodi ng

-- <Contai ned type encodi ng>
&Pri mary- encodi ng- obj ect - set
&Secondar y- encodi ng- obj ect - set
&over- ri de- encoded- by

#ENCCDI NGS OPTI ONAL,
#ENCCODI NGS OPTI ONAL,
BOOLEAN CPTI ONAL,

-- <Primtive handl e information>
&handl e-i d
&Handl| e- posi ti ons

PrintableString OPTI ONAL,
I NTEGER (1..MAX) OPTI ONAL,

-- <Bit reversal>
&bit -reversal Rever sal Speci fication

DEFAULT no-reversal }

W TH SYNTAX {
[ENCODI NG SPACE ALI GNED TO &encodi ng-space- pre-al i gnnent-uni t
[PADDI NG &encodi ng-space- pre-paddi ng
[PATTERN &encodi ng-space- pre-pattern]]]

75 DTS/MTS-00068 V1.1.1 (2000-10)

[ENCODI NG &octet-repetition-encodi ng]

[ENCODI NGS &Cctet-repetition-encodi ngs]

[CONTAI NI NG &Pri mar y- encodi ng- obj ect - set
[COWLETED BY &Secondary- encodi ng- obj ect - set]
[OVERRI DE &over - ri de- encoded- by]]

[HANDLE &handl e-id AT &Handl e- posi ti ons]

[Bl T-REVERSAL &bit -reversal]

A.12 Defining encoding objects for optionality classes

The syntax defined here can be used to define encoding objects of class#OPTIONAL.
#OPTI ONAL :: = ENCODI NG CLASS {
-- <Deternination mechani sm
&optional i ty-mechani sm Det er mi nati onMechani sm
(aux-determ nant | app-determnant | container | handle),

- - <Determ nant >

&optional i ty-presence-determ nant REFERENCE OPTI ONAL,

&Encoder - t r ansf or s #TRANSFORM CRDERED CPTI ONAL,
-- Transfornms froma boolean (TRUE if present) to actual "REFERENCE".

&Decoder - t r ansf or ns #TRANSFORM CRDERED CPTI ONAL,

-- Transforms fromthe actual "REFERENCE' to a boolean. Present if TRUE
-- Allowed only if app-determnant is set.

-- <Run-out of container>

&encodi ng- space- cont ai ner CHO CE
{cont ai ner REFERENCE,
end- of - encodi ng NULL}
OPTI ONAL,

-- <Use handl e>
&handl e-i d Printabl eString OPTI ONAL}

W TH SYNTAX {
ENCODI NG- SPACE AS &optional ity-mechani sm
[DETERM NED BY &optionality- presence-det er m nant
[ENCODER- TRANSFORMS &Encoder -t r ansf or nms]
[DECODER- TRANSFORVS &Decoder -t ransf orns]]]
[CONTAI NED | N &encodi ng- space- cont ai ner]
[HANDLE &handl e- i d]

A.13 Defining encoding objects for the #PAD class

The syntax defined here can be used to define encoding objects of class#PAD.

#PAD : : = ENCODI NG CLASS {

-- <Pre-alignnent>
&encodi ng-space- pre-al i gnment-uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pre-paddi ng Paddi ng DEFAULT zer o,
&encodi ng-space- pre-pattern Pattern (ALL EXCEPT ot her)
DEFAULT bits:'0' B,

-- <Encodi ng space>

&encodi ng-space- uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,

&encodi ng-space- si ze Si ze (uses-deternination-nechanism| 1..MAX),
-- <Pad Paddi ng>

&paddi ng Paddi ng DEFAULT zer o,

&pattern Pattern (ALL EXCEPT ot her)

DEFAULT bits:'0'B,

- - <Determ nant >
&encodi ng-space- | engt h- det er m nant REFERENCE OPTI ONAL,
&Encoder - t r ansf or s #TRANSFORM CRDERED CPTI ONAL,
-- Transforns froma count in &ncodi ng-space-unit to actual "REFERENCE".

-- <Primtive handl e infornation>
&handl e-i d Printabl eString OPTI ONAL,
&Handl e-posi ti ons | NTEGER (1..MAX) OPTI ONAL,

76 DTS/MTS-00068 V1.1.1 (2000-10)

-- <Bit reversal >
&bit -reversal Rever sal Speci fication
DEFAULT no-reversal}

W TH SYNTAX {
ENCCODI NG- SPACE
[ALI GNED TO &encodi ng-space- pre-al i gnnent-uni t
[PADDI NG &encodi ng-space- pre- paddi ng
[PATTERN &encodi ng-space- pre-pattern]]]
S| ZE &encodi ng- space- si ze
[MULTI PLE OF &encodi ng- space-unit]
[DETERM NED BY &encodi ng- space-| engt h- det er m nant
[ENCCDER- TRANSFORMS
&Encoder -t ransf ornms] |
[VALUE PADDI NG &paddi ng
[PATTERN &pattern]]
[HANDLE &handl e-id AT &Handl e- posi ti ons]
[Bl T-REVERSAL &bit -reversal]

A.14 Defining #REPETITION, #CONDITIONAL-REPETITION,
#SEQUENCE-OF, #SET-OF class encodings

The syntax defined here can be used to define encoding objects of class#REPETITION, #SEQUENCE-OF, and
#SET -OF.

#REPETI TI ON : : = ENCODI NG CLASS {

-- <Pre-alignment>
&encodi ng-space- pre-al i gnment-uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng- space- pre-paddi ng Paddi ng DEFAULT zero,
&encodi ng-space- pre-pattern Pattern (ALL EXCEPT ot her)
DEFAULT bits:'0' B,

-- <Repetition-encodi ng>

&Repetition-encodi ngs #CONDI TI ONAL - REPETI Tl ON CPTI ONAL,
& epetition-encodi ng #CONDI Tl ONAL - REPETI TI ON OPTI ONAL,
-- Exactly one of the above nust be supplied.
-- <Repetition handl e information>
&handl e-i d Printabl eString OPTI ONAL,
-- <Bit reversal >
&bit -reversal Rever sal Specification
DEFAULT no-reversal }
W TH SYNTAX {
[ENCODI NG SPACE ALI GNED TO &encodi ng-space- pre-al i gnnent-uni t
[PADDI NG &encodi ng-space- pre-paddi ng
[PATTERN &encodi ng-space- pre-pattern]]]
[ENCODI NG &r epetition-encodi ng]
[ENCODI NGS &Repeti ti on- encodi ngs]
[HANDLE &handl e- i d]
[Bl T-REVERSAL &bit -reversal]
}
#CONDI Tl ONAL- REPETI TI ON : : = ENCODI NG CLASS {
-- <Size predicate>
&si ze-range-condi tion Si zeRangeCondi tion OPTI ONAL,
- - <Concat enati on procedure>
&concat enat i on-procedure ENUMERATED
{sinmple, pre-aligned}
DEFAULT si npl e,
- - <Encodi ng space>
&encodi ng- space- uni t Unit (ALL EXCEPT repetitions) DEFAULT bit,
&encodi ng-space- si ze Si ze (uses-deternination-nechanism| fixed-to-max |
enpty | 1..MAX) OPTI ONAL,
- - <Paddi ng>
&val ue-justification Justification DEFAULT right:O,
&val ue- pr e- paddi ng Paddi ng DEFAULT zero,
&val ue-pre-pattern Pattern (ALL EXCEPT ot her)

DEFAULT bits:'0'B,

77 DTS/MTS-00068 V1.1.1 (2000-10)

&val ue- post - paddi ng Paddi ng DEFAULT zero,
&val ue-post -pattern Pattern (ALL EXCEPT ot her)
DEFAULT bits:'0'B,

-- <Determ nation nechani snm>
& epetition-I|ength-nmechani sm Det er mi nat i onMechani sm
(aux-determ nant | app-determnant | container | pattern | handle),

- - <Det erm nant >

& epetition-|ength-deterni nant REFERENCE OPTI ONAL,
& epetition-Ilength-unit Unit DEFAULT bit,
&Encoder - t r ansf or ms #TRANSFORM ORDERED OPTI ONAL,
-- Transforns fromcount of &epetition-length-unit to actual "REFERENCE".
&Decoder - t ransf or s #TRANSFORM ORDERED OPTI ONAL,

-- Transfornms fromthe actual "REFERENCE' to a count in &epitition-length-unit.
-- Allowed only if app-deternminant is set.

-- <Run-out of container>

&encodi ng- space- cont ai ner CHO CE
{cont ai ner REFERENCE,
end- of - encodi ng NULL}
OPTI ONAL,
-- <Unused bits>
&Unused- space- det er m nant REFERENCE OPTI ONAL,
&Unused- space- transforns #TRANSFORM ORDERED OPTI ONAL,

-- Transfornms froma count in bits to actual "REFERENCE".

-- <Append pattern>
& erm nation-pattern BI T STRI NG OPTI ONAL,

-- <Use handl e>
&handl e-i d Printabl eString OPTI ONAL
}

W TH SYNTAX {
[F &size-range- condition]
ENCODI NG- SPACE AS &r epeti tion- | engt h-nechani sm
[SI ZE &encodi ng- space-si ze]
[MULTI PLE OF &encodi ng- space-unit]
[CONTAI NED | N &encodi ng- space- cont ai ner]
[DETERM NED BY &repetition-1ength-determ nant
[ENCODER- TRANSFORMS ~ &Encoder - t r ansf or nms]
[DECODER- TRANSFORMS ~ &Decoder - t r ansf or ms] |
[COUNT &repetition-length-unit]
[TERM NATOR &t erm nati on- pattern]
[UNUSED DETERM NED BY &Unused- space- det er m nant
[ENCODER- TRANSFORVS
&Unused- space-transforns]]
[VALUE JUSTI FI ED &val ue-justification
[PRE- PADDI NG &val ue- pre-paddi ng
[PATTERN &val ue- pre-pattern]]
[POST- PADDI NG &val ue- post - paddi ng
[PATTERN &val ue- post-pattern]]]
[CONCAT &concat enat i on- procedur e]
[HANDLE &handl e-i d]

A.15 Defining encoding objects for #OUTER class

Thisencoding class and its semanticsis described in clause 19.

#OUTER : : = ENCODI NG CLASS {
-- <Paddi ng>
&post - paddi ng-uni t Unit (1..MAX) DEFAULT bit,
&post - paddi ng Paddi ng DEFAULT zero,
&post - paddi ng-pattern Pattern (ALL EXCEPT ot her)
DEFAULT bits:'0'B,
&al i gnment - poi nt ENUVERATED

{unchanged, reset } DEFAULT reset }
W TH SYNTAX {
[ALI GNMENT &al i gnnent - poi nt]
[MULTI PLE OF &post - paddi ng-uni t]
[POST- PADDI NG &post - paddi ng
[PATTERN &post - paddi ng- pattern]]

78 DTS/MTS-00068 V1.1.1 (2000-10)

Annex B (Normative):
Addendum to ITU-T Rec. X.680 | ISO/IEC 8824-1

This annex specifies the modifications that are to be applied when productions and/or clauses from ITU-T Rec.
X.680 | ISO/IEC 8824-1 are referenced inthis TS.

B.1 Exports and imports statements

The productions " Assignedldentifier”, " Symbol" and "Reference” of 12.1, aswell as sub-clauses 12.12, 12.15, and 12.19
of ITU-T Rec. X.680 | ISO/IEC 8824-1 are modified as follows:

Assignedldentifier ::= Definitiveldentifier

Synbol ::=
Ref er ence |
Bui | ti nEncodi ngd assReference |
Par aret er i zedRef er ence

Reference :: =
typer ef erence
val uer ef erence
encodi ngcl assr ef erence
encodi ngobj ectref erence
encodi ngobj ect setref erence

NOTE 1 — The production "Assignedl dentifier" is changed because "valuereference"s can neither be defined nor
imported into ELM or EDM modules.

NOTE 2 — "valuereference"s and "typereference”s cannot appear as"Symbol"sin an import or export clause. They
arevalid as"Symbol"s only when "Symbol" is used to represent adummy parameter.

When the " Symbol sExported” alternative of "Exports” is selected, then each "Symbol™ in " Symbol sExported” shall
satisfy one and only one of the following conditions:

a) itisdefined in the module from which it is being exported; or

b) it appears exactly oncein the " Symbolsimported” alternative of "Imports" in the module from which it is being
exported;

When the " Symbolslmported" alternative of "Imports" is selected:
Each "Symbol" in "SymbolsFromModule" shall either
be defined in the body of the module denoted by the " Global M oduleReference™ in " Symbol sFromModule”, or

be present precisely onceinthe"IMPORTS" clause of the module denoted by the " Global M oduleReference” in
"SymbolsFromModule”.

NOTE — This does not prohibit the same symbol name defined in two different modules from being imported into another module.

However, if the same "Symbol" name appears more than once in the "IMPORTS" clause of module "A", that "Symbol" name cannot
be exported from "A" for import to another module "B".

b) All the"SymbolsFromModule" in the " SymbolsFromModuleList" shall include occurrences of
"GlobalModuleReference” such that:

i) the"modulereference” inthem are all different from each other (whether they are ASN.1, ELM or EDM
modules) and from the "modul ereference” associated with the referencing module; and

ii) the"Assignedidentifier", when non-empty, denotes object identifier values which are all different from each
other and from the object identifier value (if any) associated with the referencing module.
B.2 Absolute reference

B.2.1 ITU-T Rec. X.680 | ISO/IEC 8824-1, 14.3, and ITU-T Rec. X.680 Corr. 2 | ISO/IEC 8824-1 Corr. 2, clause 4, are
modified asfollows:

79 DTS/MTS-00068 V1.1.1 (2000-10)

Absol ut eRef erence :: =
Modul el denti fier

| t enBpec
ItenSpec :: =
typeref erence |
val uer ef erence

B.3 Addition of "REFERENCE"

NOTE Thismodification isintroduced for the sole purpose of Annex A.
"Type" in ITU-T Rec. X.680 | ISO/IEC 8824-1, 16.1, isamended as follows:

Type :: =
BuiltinType |
Ref erencedType |
Const rai nedType |
REFERENCE

B.4 Notation for character string values

B.4.1 The production "CharsDefn" of ITU-T Rec. X.680 | ISO/IEC 8824-1, 36.7, is modified as follows:

CharsDefn ::=
cstring |

Quadruple |
Tupl e |
Absol ut eRef erence

B.4.2 The"AbsoluteReference” references a character string value (of type |A5String or BMPString) defined in the
ASN1-CHARACTER-MODULE (see ITU-T Rec. X.680 | ISO/IEC 8824-1, 37.1).

80 DTS/MTS-00068 V1.1.1 (2000-10)

Annex C (Normative):
Addendum to ITU-T Rec. X.681 | ISO/IEC 8824-2

This annex specifies the modifications that are to be applied when productions and/or clauses from ITU-T Rec.
X.681 | ISO/IEC 8824-2 arereferenced in this TS.

C.1 Definitions

The following definitions are added to ITU-T Rec. X.681 | ISO/IEC 8824-2, 3.4:
encoding classfield type: A type specified by reference to some field of an encoding object class.
encoding object field: A field which contains an encoding object of some specified encoding class.

encoding object list field: A field which contains an (ordered) list of encoding objects of some specified encoding
class.

encoding object set field A field which contains a set of encoding objects of some specified encoding class.

C.2 Additional lexical items

NOTE Thismodification isintroduced for the sole purpose of Annex A.
Thefollowing definition isadded to ITU-T Rec. X.681 | ISO/IEC 8824-2, 7.
7.8bis Encoding object list field references
Name of item — encodingobjectlistfieldreference

An "encodingobjectlistfieldreference” shall consist of an ampersand ("&") immediately followed by a sequence of
characters as specified for an "objectsetreference” in ITU-T Rec. X.681 | I SO/IEC 8824-2, 7.3.

C.3 Addition of "ENCODING-CLASS"

NOTE Thismodification isintroduced for the sole purpose of Annex A.

For the purpose of Annex A only, replace the reserved word "CLASS' with "ENCODING-CLASS" in ITU-T Rec. X.681 |
ISO/IEC 8824-2, 9.3.

C4a FieldSpec additions

NOTE Thismodification isintroduced for the sole purpose of Annex A.

ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.4, isamended as follows:

Fi el dSpec :: =
Fi xedTypeVal ueFi el dSpec |
Fi xedTypeVal ueSet Fi el dSpec |
Encodi ngOhj ect Fi el dSpec |
Encodi ngQbj ect Set Fi el dSpec |
Encodi ngObj ect Li st Fi el dSpec

C.5 Encoding object field spec

NOTE Thismodification isintroduced for the sole purpose of Annex A.

An "EncodingObjectFieldSpec" specifiesthat the field is an encoding object field :

Encodi ngOhj ect Fi el dSpec :: =
obj ectfiel dreference
Def i nedEncodi ngd ass
Encodi ngChj ect Opt i onal i t ySpec?

81 DTS/MTS-00068 V1.1.1 (2000-10)

Encodi ngCbj ect Optional itySpec ::= OPTIONAL | DEFAULT Encodi hg(hj ect

The name of thefield is"objectfieldreference”. The "DefinedEncodingClass" references the encoding class of the
encoding object contained in the field (which may be the "EncodingObjectClass" currently being defined). The
"EncodingObjectOptionalitySpec”, if present, specifies that the field may be unspecified in an encoding object
definition, or, inthe"DEFAULT" case, that omission produces the following "EncodingObject"which shall be of the
"DefinedObjectClass’.

C.6 Encoding object set field spec

NOTE Thismodification isintroduced for the sole purpose of Annex A.

An "EncodingObjectSetFieldSpec" specifiesthat thefield is an encoding object set field :
Encodi ngOhj ect Set Fi el dSpec :: =
obj ectsetfiel dreference
Def i nedEncodi ngd ass
Encodi nghj ect Set Opt i onal i t ySpec?

Encodi ngQbj ect Set Optional i tySpec ::= OPTIONAL | DEFAULT Encodi ngQhj ect Set

The name of thefield is"objectsetfieldreference”. The "DefinedEncodingClass' references the class of the encoding
objects contained in the field. The "EncodingObjectSetOptionalitySpec”, if present, specifies that the field may be
unspecified in an encoding object definition, or, in the "DEFAULT" case, that omission produces the following
"EncodingObjectSet", all of whose objects shall be of "DefinedEncodingClass".

C.7 Encoding object list field spec

NOTE Thismodification isintroduced for the sole purpose of Annex A.

An "EncodingObjectListFieldSpec” specifies that the field is an encoding object list field :
Encodi ngQbj ect Li st Fi el dSpec :: =
encodi ngobj ectlistfieldreference
Def i nedEncodi ngd ass
ORDERED
Encodi ngQbj ect Li st Opti onal i t ySpec?
Encodi ngQoj ect Li st Opti onal i tySpec ::= OPTIONAL | DEFAULT Encodi ngObj ect Li st

The name of thefield is "objectlistfieldreference”. The "DefinedEncodingClass" references the class of the encoding
objects contained in the field. The "EncodingObjectListOptionalitySpec”, if present, specifiesthat the field may be
unspecified in an encoding object definition, or, in the "DEFAULT" case, that omission produces the following
"EncodingObjectList" all of whose objects shall be of "DefinedEncodingClass".

C.8 Encoding object list notation
Encodi nghj ectList ::= "{" Encodi nglbject "," * "}"

The "EncodingObjectList" isan ordered list of encoding objects, and may contain multiple encoding objects. It isused
when the application applies semantics to the order of valuesin thelist.

EXAMPLE: A list of #TRANSFORM encoding objectsis applied in the stated order.

NOTE AsASN.1 hasno concept of object list reference names or assignments, an object list can only be specified
by in-line notation when governed by an object list field type of an encoding class.

C.9 Primitive field names

ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.13, is amended as follows:

The construct "PrimitiveFieldName" is used to identify afield relative to the encoding class containing its specification:

PrimtiveFi el dNane :: =
val uefi el dref erence |

82 DTS/MTS-00068 V1.1.1 (2000-10)

val ueset fi el drefer ence
val uel i stfiel dreference

C.10 Additional reserved words

ITU-T Rec. X.681 | ISO/IEC 8824-2, 10.6, is amended as follows:

106 A "word" lexical item used asa"Literal" not be one of the following:

ALL END PER- canoni cal -unal i gned
BEGA N FALSE PLUS | NFI NI TY

BER M NUS- I NFI NI TY TRUE

CER NULL UNI ON

DER PER-basi c-al i gned USE

ENCODE PER- basi c-unal i gned USER FUNCTI ON- BEG N
ENCCDE- DECCDE PER- canoni cal -al i gned

NOTE 2 Thislist comprises only those ASN.1 reserved words which can appear asthefirst item of a"Value",
"EncodingObject", "EncodingObjectSet" or "EncodingClass", and also the reserved word "END". Use of
other ECN reserved words does not cause ambiguity and is permitted. Where the defined syntax isused in
an environment in which a"word" is also an "encodingobjectsetreference”, the use as a"word" takes
precedence.

C.11 Definition of encoding objects
Therestriction imposed by ITU-T Rec. X.681 | ISO/IEC 8824-2, 10.12.d, is removed.

NOTE Thisonly affects the defined syntax for defining an encoding object of class #TRANSFORM (see A.3). It
means, for example, that, for a defined syntax such as:

[BOOL-TO-INT [AS &booal -to-int]]
you are allowed to write:

BOOL-TO-INT

when defining an encoding object of thisclass. In such a case, the "DEFAULT" value associated with the parameter
"&bool-to-int" (i.e., "falsezero") is used in the definition of the transformation "BOOL-TO-BOOL".

C.12 Additions to "Setting"
ITU-T Rec. X.681 | ISO/IEC 8824-2, 11.6, is amended as follows:

A "Setting" specifies the setting of some field within an encoding object being defined:
Setting ::=
Val ue |
Val ueSet |
Encodi nghj ect |
Encodi ngQbj ect Set |
Encodi ngbj ect Li st
If thefieldis:
- avauefield, the"Value" alternative;
- avauesetfield, the"ValueSet" alternative;
- anencoding object field, the "EncodingObject” alternative;
- anencoding object set field, the "EncodingObjectSet" alternative;
- anencoding object list field, the "EncodingObjectList" alternative;

shall be selected.

83 DTS/MTS-00068 V1.1.1 (2000-10)

NOTE Thesettingisfurther restricted asdescribed in ITU-T Rec. X.681 | ISO/IEC 8824-2,9.5t09.12, and 11.7
to11.8.

C.13 Encoding class field type

Thetypethat is referenced by this notation depends on the category of the field name. For the different categories of
field names.

The notation for an encoding class field type shall be "EncodingClassFieldType":

Encodi ngd assFi el dType :: =
Def i nedEncodi ngd ass

Fi el dName

where the "FieldName" is as specified in ITU-T Rec. X.681 | ISO/IEC 8824-2, 9.14, relative to the classidentified by the
"DefinedEncodingClass".

For afixed-type value or afixed type value set field, the notation denotes the "Type" that appears in the specification of
that field in the definition of the encoding object class.

This notation is not permitted if the field is an encoding object, an encoding object set or an encoding object list field.

The notation for defining a value of thistype shall be "FixedTypeFieldVal" asdefined in ITU-T Rec. X.681 | ISO/IEC
8825-2, 14.6.

84 DTS/MTS-00068 V1.1.1 (2000-10)

Annex D (Normative):
Addendum to ITU-T Rec. X.683 | ISO/IEC 8824-4

This annex specifies the modifications that need to be applied when productions and/or clauses from ITU-T Rec.
X.683 | ISO/IEC 8824-4 arereferenced in this TS.

D.1 Parameterized assignments
Clauses 8.1 and 8.3 of ITU-T Rec. X.683 | ISO/IEC 8824-4 are modified as follows:

8.1 There are parameterized assignment statements corresponding to each of the assignment statements specified in this
TS. The "ParameterizedAssignment” construct is:

Par armet eri zedAssi gnnent :: =
Par anet er i zedEncodi ngObj ect Assi gnnent |
Par anet er i zedEncodi ngd assAssi gnnent |
Par anet er i zedEncodi ngChj ect Set Assi gnnent
ParaneterList ::= "{<" Paraneter "," + ">}"
Covernor ::=
Def i nedEncodi ngd ass |

Encodi ngQd assFi el dType |
REFERENCE

A "DummyReference” in "Parameter" may stand for:
a) an encoding class, in which case there shall be no "ParamGovernor";

an ASN.1 value, in which case the "ParamGovernor" shall be present asa"Governor" that is atype extracted from an
encoding class ("EncodingClassFieldType");

an "identifier", in which case the "ParamGovernor" shall be present as a"Governor"” that is"REFERENCE";

an "EncodingObject" in which case the "ParamGovernor" shall be present asa"Governor" that is an encoding class
("EncodingClass");

an "EncodingObjectSet”, in which case the "ParamGovernor"” shall be present asa"Governor" that is
"#ENCODINGS".

NOTE "DummyGovernor"s are not allowed in ECN.

D.2 Parameterized encoding assignments

The following productions are added to I TU-T Rec. X.683 | | SO/IEC 8824-4, 8.2:

Par anet er i zedEncodi ngd assAssi gnnent :: =
encodi ngcl assref erence
Par anet er Li st
Ehéodi ngd ass

Par anet eri zedEncodi ngQoj ect Assi gnnent : : =
encodi ngobj ect ref erence
Par anet er Li st
Encodi ngd ass
Encodi ngObj ect

Par aret er i zedEncodi ngQbj ect Set Assi gnnent :: =
Par anet er Li st
#ENCODI NGS

Eﬁéodi ngQbj ect Set

85 DTS/MTS-00068 V1.1.1 (2000-10)

D.3 Referencing parameterized definitions

The production "ParameterizedReference” of ITU-T Rec. X.683 | ISO/IEC 8824-4, 9.1, is modified as follows:

Par anet eri zedRef erence :: =
Ref er ence
Ref erence "{<" >

Thefollowing productions are added to ITU-T Rec. X.683 | ISO/IEC 8824-4, 9.2:

Par amet eri zedEncodi ngQbj ect :: =
Si npl eDef i nedEncodi ngObj ect
Act ual Par aret er Li st

Si npl eDef i nedEncodi ngChj ect :: =
Ext er nal Encodi ngoj ect Ref erence |
Encodi ngobj ect r ef erence

Par anet eri zedEncodi ngQbj ect Set :: =
Si npl eDef i nedEncodi ng(hj ect Set
Act ual Par aret er Li st

Si npl eDef i nedEncodi ngChj ect Set :: =
Ext er nal Encodi ngQbj ect Set Ref erence |
Encodi ngobj ectset ref erence

Par anet eri zedEncodi ngC ass :: =
Si npl eDef i nedEncodi ngd ass
Act ual Par anet er Li st

Si npl eDef i nedEncodi ngd ass :: =
Ext er nal Encodi ngd assRef erence |
encodi ngcl assr ef erence

D.4 Actual parameter list

ITU-T Rec. X.683| ISO/IEC 8824-4, 9.5, is modified as follows:
The "Actual ParameterList" is:

Act ual ParaneterList ::=
"{<" Actual Paraneter "," + ">}"

Actual Paraneter ::=
Val ue
Val ueSet
Encodi nghj ect
Encodi ngQbj ect Set
Encodi ngbj ect Li st
identifier
QUTER

86 DTS/MTS-00068 V1.1.1 (2000-10)

Annex E (Informative):
Examples

This annex contains examples of the use of ECN. The examples are divided into three groups:
General examples, which show the |ook-and-feel of ECN definitions (E.1).

Specialization examples. These examples show how to modify some parts of a standard encoding. Each example has a
description of the requirements for the encoding and a description of the selected solution and possible alternative
solutions. (E.2)

Legacy protocol examples. These examples show how to construct ECN definitions for a protocol whose message
encodings have been specified using atabular notation (E.3)

E.l General examples

The examples described in E.1.2to E.1.12 are part of a complete ECN specification whose ELM, ASN.1, and EDM
modules are given in outlinein E.1.13, E.1.14 and E.1.15are given completely in acopy of this Annex which is
available from the web-site cited in Annex G.

E.1.1 Anencoding object set

Exanpl elEncodi ngs #ENCCODI NGS :: = {
mar ri edEncodi ng |
evenPosi ti vel nt eger Encodi ng |
evenNegat i vel nt eger Encodi ng |
posi ti vel nt eger Encodi ng |
negat i vel nt eger Encodi ng |
i nt eger Ri ght Al i gnedEncodi ng |
i nt eger Wt hHol eEncodi ng |
posi ti vel nt eger BCDEncodi ng |
bi t St ri ngEncodi ng |
octet StringEncodi ng |
char act er Stri ngEncodi ng |
charact er Stri ngToBi t Encodi ng |
sequencelEncodi ng }

This encoding object set contains encoding definitions for some types specified in the ASN.1 module named " Examplel-
ASN1-Module".

E.1.2 Anencoding object for a boolean type

The ASN.1 assignment is:
Married ::= BOOLEAN
The encoding object assignment is:

marri edEncodi ng-1 #Married ::= {
ENCODI NG- SPACE
Sl ZE 1
MULTI PLE COF bi t
VALUE
TRUE- PATTERN '"1'B
FALSE- PATTERN '0'B }

There is no pre-alignment, and the encoding spaceis one"bit", so "Married" isabit-field of length 1. Patternsfor
"TRUE" and "FALSE" values (in this case asingle hit) are '1'B and '0'B respectively.

The values used above are the values that would be set by default if the settings were omitted, so the same encoding can
be achieved with less verbosity by :

marri edEncodi ng-2 #Married ::= {
ENCODI NG- SPACE
SIZE 1}

87 DTS/MTS-00068 V1.1.1 (2000-10)

This encoding for aboolean is, of course, just what PER provides, and another alternative isto specify the encoding
using the PER encoding object for boolean by using the syntax of 16.3.

marri edEncodi ng- 3 #Married ::= {
ENCODE W TH PER- basi c-unal i gned }

As these examples show, there are often cases where ECN provides multiple ways to define an encoding. It isup to the
user to decide which alternative to use, balancing verbosity (stating explicitly values that can be defaulted) against
readability and clarity.

E.1.3 An encoding object for an integer type

The ASN.1 assignments are:
EvenPosi tivel nteger ::= | NTEGER (1..MAX) (CONSTRAINED BY {-- Mist be even --})

EvenNegati vel nteger ::= INTEGER (M N . -1) (CONSTRAI NED BY {-- Miust be even --})

The encoding object assignments are;

evenPosi ti vel nt eger Encodi ng #EvenPositivelnteger ::= {
USE # NT (0. . MAX)
MAPPI NG TRANSFORVB { {I NT-TO-I NT divide: 2} }
W TH { ENCODE W TH PER basi c-unal i gned }}

evenNegat i vel nt eger Encodi ng #EvenNegati vel nteger ::= {
USE # NT (M N..0)
MAPPI NG TRANSFORMB { {I NT-TO-I NT di vi de: 2
-- Note: -1/ 2 =0 - see clause 19 -- } }
W TH { ENCODE W TH PER basi c-unal i gned }}

An even valueisdivided by two, then encoded using standard PER basic unaligned encoding rules for positive and
negative integer types.

E.1.4 Another encoding object for an integer type

Here we assume the requirement to define an encoding object which encodes an integer right-aligned in a fixed two-octet
field starting at an octet boundary.

The ASN.1 assignment is:

I nt eger Ri ght Ali gned :: = | NTEGER(0. . 65535)

The Encoding object assignment is:

i nt eger Ri ght Al i gnedEncodi ng #l ntegerRi ght Aligned ::= {
ENCCODI NG- SPACE
ALI GNED TO oct et
ENCODI NG {
ENCODI NG- SPACE
S| ZE 16
VALUE
JUSTIFIED right: 0} }

E.1.5 Encodings of values of integer types with holes

The ASN.1 assignment is:

IntegerWthHol e ::= I NTEGER (- 256..-1 | 32..1056)

The encoding object assignment is:

i nt eger Wt hHol eEncodi ng #l ntegerWthHole ::= {
USE #I NT (0..1280)
MAPPI NG ORDERED VALUES
W TH {ENCCDE W TH PER- basi c- unal i gned }}

"IntegerWithHole" is encoded as a positive integer. Valuesin the range -256..- 1 are mapped to values 0..255 and values
in the range 32..1056 are mapped to 256..1280.

88 DTS/MTS-00068 V1.1.1 (2000-10)

E.1.6 A more complex encoding object for an integer type

The ASN.1 assignmentsare
Posi tivelnteger ::= | NTEGER (1..MAX)
Negativelnteger ::= INTEGER (MN..-1)
The encoding object assignments are:

posi tivel nt eger Encodi ng #Posi tivelnteger ::=
i nt eger Encodi ng

negat i vel nt eger Encodi ng #Negati vel nteger ::
i nt eger Encodi ng

Values of "Positivelnteger" and "Negativel nteger" types are encoded as a positive integer or as atwos-complement
integer respectively, by the encoding object "integerEncoding”. Thisis defined below, and provides different encodings
depending on the bounds of the typeto which it is applied.

The "integerEncoding" encoding object defined hereis very powerful, but quite complex. It contains five encoding
objects of the class#CONDITIONAL-INT; the encoding of all of theseisoctet-aligned. When the integer values being
encoded are bounded, the number of bitsisfixed; when the values are not bounded, the typeisrequired to bethelastina
PDU, and the value isright justified in the remaining octets of the PDU. The definition of the encoding object is:

i nt eger Encodi ng #I NT ::= { ENCODI NGS {
{ | F unbounded-or - no- | ower-bound
ENCCODI NG- SPACE
S| ZE cont ai ner-nechani sm
MULTI PLE OF octet
LENGTH AS cont ai ner
CONTAI NED | N end- of - encodi ng: NULL
VALUE
ENCODER TRANSFORVS { {I NT-TO-BI TS AS t wos-conpl enent} } } |
{ | F bounded-wi t h- negatives
ENCCODI NG- SPACE
Sl ZE fi xed- t 0- max
VALUE
ENCODER TRANSFORMB { {INT-TO-BI TS AS twos-conpl enent} } } |
{ | F semi-bounded-w t h- negati ves
ENCODI NG- SPACE
S| ZE cont ai ner-nechani sm
MJLTI PLE OF octet
LENGTH AS cont ai ner
CONTAI NED | N end- of - encodi ng: NULL
VALUE
ENCODER TRANSFORVB { {INT-TO-BI TS AS twos-conpl enent} } } |
{ | F sem -bounded- wi t hout - negati ves
ENCCODI NG- SPACE
S| ZE cont ai ner-nechani sm
MULTI PLE OF oct et
LENGTH AS cont ai ner
CONTAI NED | N end- of - encodi ng: NULL
VALUE
ENCODER TRANSFORMS { {INT-TO-BI TS AS positive-int} } } |
{ | F bounded- wi t hout - negati ves
ENCCODI NG- SPACE
S| ZE fi xed- t 0o- max
VALUE
ENCODER TRANSFORMB { {INT-TO-BI TS AS positive-int} } } } }

E.1.7 Positive integers encoded in BCD

This example shows how to encode a positive integer in BCD by successive transformations. from integer to character
string then from character string to bit string.

The ASN.1 assignment is:
Posi ti vel nt eger BCD :: = | NTEGER(0. . MAX)
The encoding object assignments:
posi tivel nt eger BCDEncodi ng #Posi ti vel ntegerBCD :: = {

USE #CHARS
MAPPI NG TRANSFORVS{ {

89 DTS/MTS-00068 V1.1.1 (2000-10)

| NT- TO- CHARS
-- Here we convert to characters, so for exanple, the integer value 42
-- becones the character string "42" and encode the characters
-- with the encodi ng object "nuneric-chars-to-bcdEncodi ng"
Sl ZE vari abl e
PLUS-SIGN FALSE}}
W TH nurmeri c- chars-to-bcdEncodi ng }

nuneri c- chars-to-bcdEncodi ng #CHARS :: = {
ENCCDI NG- SPACE
ALI GNED TO ni bbl e
VALUE
ENCODER TRANSFORMS { {
CHAR TGO BI TS
-- Here we convert each character to a bit string, so, for exanple,
-- the character "4" becones '0100'B and "2" becomes ' 0010'B
AS nmapped
CHAR LIST { "O","1","2","3",
4", "5t e, T,
"8","9" }
BITS LIST { '0000'B, '0001'B, '0010'B, '0011'B,
' 0100' B, '0101'B, '0110'B, '0111'B,
'1000' B, '1001'B}

1}
ENOCDI NG {

ENCCODI NG- SPACE
-- Here we deternine the concatenation of the bit strings for the
-- characters and add a ternminator, so here
-- '0100'B + '0010' B becores '0100 0010 1111'B
AS pattern
TERM NATOR '1111'B } }

The positive number isfirst transformed into a character string by the int-to-chars transformation using the options
variable length and no plus sign, and in addition the default option of no padding, giving a string containing characters
"0" to "9". Then the character string is encoded such that each character is transformed into a bit pattern, ‘0000'B for "0",
'0001'B for "1", ... '1001'B for "9". The bit string is aligned on a nibble boundary and terminates with a specific pattern
'1111'B.

A more complex alternative, not shown here, but commonly used, would be to embed the BCD encoding in an octet
string, with an external boolean identifying whether there is an unused nibble at the end or not.

E.1.8 Anencoding object of class #BITS

This example defines an encoding object (of class#BITS) for abit string that isto be octet-aligned, using padding with
0, and isterminated by an 8-bit field containing '00000000'B (it is assumed that the abstract value never contains eight
SUCCessive zeros):

The ASN.1 assignment is:
BitString ::= Bl T STRING CONSTRAI NED BY {-- nust not contain eight successive zero bits --})

The encoding object assignment is:

bitStringEncoding #BitString ::= {
ENCODI NG- SPACE
ALI GNED TO oct et
ENCODI NG {
ENCODI NG- SPACE
AS pattern
TERM NATOR ' 00000000'B } }

The encoding object of the class#BITS contains an embedded encoding object of the class#CONDITIONAL-
REPETITION which specifies the mechanism and the termination pattern.

Aswith many of the examplesin this Annex, there is heavy reliance here on the defaults provided in Annex A, and
advantage istaken of the ability to define encoding objectsin-line rather than separately assigning them to reference
names which are then used in other assignments.

90 DTS/MTS-00068 V1.1.1 (2000-10)

E.1.9 An encoding object of class #OCTETS

The ASN.1 assignment is:
CctetString ::= OCTET STRI NG

The encoding object assignment is:

octet StringEncodi ng #CctetString ::= {
ENCCODI NG- SPACE ALI GNED TO oct et
PADDI NG one
ENCODI NG {
ENCODI NG- SPACE
AS cont ai ner
CONTAI NED I N end-of -encodi ng: NULL } }

Thevalueis octet-aligned using padding with "1"s and terminates with the end of the PDU.

E.1.10 An encoding object of class #CHARS

The ASN.1 assignment is:

CharacterString ::= Printabl eString
The encoding object assignment is:

character StringEncodi ng #CharacterString ::= {
ENCODI NG- SPACE
ALI GNED TO oct et
VALUE
ENCODER TRANSFORMS { {CHAR TO BI TS AS conpact} }
ENCODI NG {
ENCCDI NG- SPACE
AS cont ai ner
CONTAI NED | N end-of-encodi ng: NULL } }

The string is octet-aligned using padding with "0" and terminates with the end of the PDU; the character-encoding is
specified as " compact”, so each character is encoded in 7 bits using zero for thefirst ASCII character in PrintableString,
one for the next, and so on.

E.1.11 Mapping character values to bit values

The ASN.1 assignment is:

CharacterStringToBit ::= IA5String ("FIRST" | "SECOND' | "TH RD")
The encoding object assignment is:
Char act er Stri ngToBi t Encodi ng #CharacterStringToBit ::= {

USE #I NT (0. .2)
MAPPI NG VALUES {

"FI RST" TO 0,
" SECOND" TO 1,
"THRD' TO 2 }

W TH i nt eger Encodi ng }

The three possible abstract values are mapped to three integer numbers and then those numbers are encoded in atwo-bit
field.

E.1.12 Encoding a sequence type

Here we encode a sequence type that has afield "a" which carries application semantics (is visible to the application),
but we also want to use it as a presence determinant for a second (optional)) integer field "b". Thereisthen an octet
string that is octet-aligned, and delimited by the end the PDU. We need to give specialized encodings for the optionality
of b, and we use the specialized encoding defined in E.1.9 (by reference to "octetStringEncoding”) for the octet string
"c". Wewant to encode everything else with PER-basic-unaligned.

The ASN.1 assignment is:

Sequencel ::= SEQUENCE{
a BOOLEAN,

91 DTS/MTS-00068 V1.1.1 (2000-10)

b I NTEGER OPTI ONAL,
c OCTET STRING }

The ECN assighments are:
sequencelEncodi ng #Sequencel ::= {
ENCODE STRUCTURE {
b OPTI ONAL- ENCODI NG par anet eri zedPr esenceEncodi ng {< a >},
c octet StringEncodi ng}
W TH {ENCCDE W TH PER-basi c-unaligned } }
par anet eri zedPr esenceEncodi ng {< REFERENCE: ref erence >} #OPTIONAL :: = {
ENCCDI NG- SPACE
AS app-det er m nant

DETERM NED BY ref erence}

Note that we did not need to provide any "DECODERS-TRANSFORMS'" in the " parameterizedPresenceEncoding”,
because "a' wasaBOOLEAN, and it is assumed that "TRUE" meant that "b" was present. If, however, "a" had been an
integer field, or if the application value of "TRUE" for "a" actually meant that "b" was absent, then we would have
included a"DECODER-TRANSFORMS" specification asin E.2.7.

E.1.13 ELM definitions

The following ELM encodes the ASN.1 module defined in E.1.14, using objects specified in the EDM defined in E.1.15.
Exanpl e1- ELM LI NK- DEFI NI TI ONS

{ joint-iso-itu-t(1) asnl(1l) ecn(4) exanpl es(5) nodul e(l) }
BEG N
| MPORTS Exanpl elEncodi ngs FROM Exanpl e- EDM
{ joint-iso-itu-t(1) asnl(1l) ecn(4) exanples(5) nodul e(3) };
ENCODE Exanpl el- ASNL- Mbdule { joint-iso-itu-t(1) asnl(1) ecn(4) exanples(5) nodul e(2) }
W TH Exanpl elEncodi ngs
COVPLETED BY PER-basi c- unal i gned

END

E.1.14 ASN.1 definitions

This ASN.1 module contains a collection of type definitions for which there are encoding definitions in a separate EDM.
The ASN.1 module groups al the ASN.1 definitionsfrom E.1.2 to E.1.12together They will be encoded according to the
encoding objects defined in the EDM of E.1.15, together with the PER basic unaligned encoding rules.

Exanpl el- ASNL- Modul e
{ joint-iso-itu-t(1) asnl(1l) ecn(4) exanples(5) nodule(2) }
DEFI NI TI ONS AUTOVATI C TAGS @ : =
BEGA N
Married ::= BOOLEAN
- etc.

END

92 DTS/MTS-00068 V1.1.1 (2000-10)

E.1.15 EDM definitions
Exanpl el- EDM
{ joint-iso-itu-t(1) asnl(1) ecn(4) exanpl es(5) nodul e(3) }

ENCCDI NG-DEFINI TIONS :: =

BEG N

EXPORTS Exanpl elEncodi ngs;

| MPORTS #Marri ed, #EvenPosi ti vel nt eger, #EvenNegat i vel nt eger , #Posi ti vel nt eger, #Negat i vel nt eger,
#l nt eger R ght Al i gned, #l nt eger Wt hHol e, #Posi ti vel nt eger BCD, #Bi t Stri ng,
#Qct et String, #Char act er St ri ng, #Char acter Stri ngToBi t, #Sequencel
FROM Exanpl e1l-ASNL-Mdul e { joint-iso-itu-t(1) asnl(1l) ecn(4) exanples(5) nodul e(2) };

Exanpl elEncodi ngs #ENCODI NGS :: = {
bool eanEncodi ng |
-- etc
sequencelEncodi ng }

- etc

END

E.2 Specialization examples

The examplesin this clause show how to modify selected parts of an encoding for given typesin order to minimize the
size of encoded messages. PER basic unaligned encodings normally produce as compact encodings as are possible.
However, there are some cases when specialized encodings might be desired:

- Thereare some special semantics associated with message components that make it possible to remove some of
the PER-generated auxiliary fields

- Theuser wants different encodings for PER-generated auxiliary fields that are generated by default, such as
variable-width determinant fields.

The examples are presented using the following format:
- The ASN.1 assignment. This showsthe original ASN.1 type definition.
- Therequirement. Thisliststhe requirement and the problem with the encoding provided by PER basic unaligned.
- The encoding object assignment. This shows the resulting encoding specification.

- Discussion. This discusses how the specialization has been achieved, and other options that might be used.

E.2.1 The encoding object set

Exanpl e2Encodi ngs #ENCODI NGS : : = {
nor mal | ySmal | Val uesEncodi ng
spar seEvenl yDi stri but edVal ueSet Encodi ng
spar seUnevenl yDi stri but edVal ueSet Encodi ng
condi ti onal PresenceOnVal ueEncodi ng
condi ti onal PresenceOnExt er nal Condi ti onEncodi ng
condi ti onal Conponent Val ueSet Encodi ng
encl osi ngSt ruct ur eFor Li st Encodi ng
equal LenghLi st sEncodi ng
encl osi ngSt ruct ur eFor Choi ceEncodi ng
ext ensi bl el nt eger Encodi ng
ext ensi bl eEnurrer at edEncodi ng
ext ensi bl eTopLevel MessageEncodi ng }

This encoding object set contains encoding definitions for some of the types specified in "Example2-ASN1-Module" (the
rest are encoded using PER basic unaligned).

E.2.2 Encoding by distributing values to an alternative encoding structure

The ASN.1 assignment is:

Nor mal | ySmal | Val ues :: = | NTEGER (0. .1024)
- Usually values are in the range 0..63, but sonetines the whol e val ue range is used.

93 DTS/MTS-00068 V1.1.1 (2000-10)

Therequirement is. PER would encode the type using 10 bits.. We wish to minimize the size of the encoding such that
the normal case is encoded using as few bits as possible.

NOTE - In this example we take a simple direct approach. A more sophisticated approach using Huffman encodingsis
given later.

The encoding object assignment is:

nor nal | ySmal | Val uesEncodi ng #Nornal | ySnal | Val ues :: = {
USE #Nor mal | ySmal | Val uesSt r uct
MAPPI NG DI STRI BUTI ON {
0..63 TO smal |,

REMAINDER TO |l arge }
W TH { ENCODE W TH PER basi c-unal i gned }}

The encoding structure assignment is:

#Nor mal | ySmal | Val uesStruct ::= #CHO CE {
small #INT (0..63),
large #I NT (64..1024) }

Vaueswhich are normally used are encoded using the "small" field and the ones used only occasionally are encoded
using the "large” field. The selection between the two is done by a one-bit PER-generated selector fieldThe length of the
"small" field is 6 bits and the length of the "large" field is 10 bits, so the normal case is encoded using 7 bits and the rare
case using 11 bits.

This mapping and the encoding is quite straight-forward, but some further gains can be obtained by mapping values 64
upwardsinto values zero upwards of "large" (whose lower bound would then be zero), or by transforming values of large
by a subtraction of 64 before encoding it. Both these options, however, would be more difficult for areader of the
specification to understand and would give only marginal further gains.

E.2.3 Encoding by mapping ordered abstract values to an alternative
encoding structure

The example in E.2.2 used explicit definition of how value ranges are mapped to fields of the encoding structure. The
same effect can be achieved more simply by using "mapping by ordered abstract values". However, asillustration, we
here also modify the requirement: arbitrarily large values may occasionally occur, and the ASN.1 assignment is assumed
to have its constraint removed.

The encoding object assignment is:

nor mal | ySmal | Val uesEncodi ng- 2 #Nornmal | ySnal | Val ues ::= {
USE #Nor mal | ySmal | Val uesSt ruct2
MAPPI NG ORDERED VALUES
W TH { ENCODE W TH PER basi c-unal i gned }}

The encoding structure assignment is:

#Normal | ySnal | Val uesStruct2 :: = #CHJ CE {
snal | # NT (0..63),
| arge #INT }

Theresult isvery similar to E.2.2, but now the values above 64 that are mapped to "large" are encoded from zero
upwards. Another differencein this example from E.2.2isthat "large” is left unbounded, so the encoding object can
encode arbitrarily large integers, but with the cost of alength field in the "large” case. Thisexample can also be used if
there is no upper-bound on the values that might occasionally occur ("large” is not bounded in the replacement
structure). Thisagain illustrates the flexbility availableto ECN specifiersto design encodings to suite their particular
reguirements.

E.2.4 Compression of non-continuous value ranges

This example also uses a mapping of ordered abstract values. In this case the mapping is used to compress sparse values
in abase ASN.1 specification. The compression could also have been achieved by defining the ASN.1 abstract value "x"
to have the application semantics of "2x", then using asimpler constraint on the ASN.1 integer type. The assumptionin
thisexample, however, isthat the ASN.1 designer chose not to do that, and we are required to apply the compression
during the mapping from abstract values to encodings.

94 DTS/MTS-00068 V1.1.1 (2000-10)

The ASN.1 assignment is:
SparseEvenl yDi stributedvValueSet ::= INTEGER (0O | 2 | 4| 6| 8| 10| 12 | 14)

The requirement: PER basic unaligned takes only lower bounds and upper bounds into account when determining the
number of bits needed to encode an integer. Thisresultsin unused bit patternsin the encoding. The encoding can be
compressed such that unused bit patterns are omitted, and each value is encoded using the minimum number of bits.

The encoding object assignment is:

spar seEvenl yD stri but edVal ueSet Encodi ng #Spar seEvenl yDi stri but edVal ueSet ::= {
USE #INT (0..7)
MAPPI NG ORDERED VALUES
W TH { ENCODE W TH PER basi c-unal i gned }}

The eight possible abstract val ues have been mapped to the range 0..7 and will be encoded in afield of three bits.

E.2.5 Compression of non-continuous value ranges using a transformation

The example E.2.4 used mapping of ordered abstract values. The same effect can be achieved by using the
#TRANSFORM class.

The encoding object assignment is:

spar seEvenl yDi st ri but edVal ueSet Encodi ng- 2 #Spar seEvenl yD stri but edVal ueSet ::= {
USE #INT (0..7)
MAPPI NG TRANSFORMS { {I NT-TO-INT divide: 2} }
W TH { ENCODE W TH PER basi c-unal i gned }}

Again, the eight possible abstract values are mapped to the range 0..7 and encoded in afield of three bits.

E.2.6 Compression of an unevenly distributed value set by mapping
ordered abstract values

The ASN.1 assignment is:
Spar seUnevenl yDi stri but edVal ueSet ::= | NTEGER (0| 3| 5| 6| 8] 11)

Therequirement is that the encoding should be such that there are no holes in the encoding patterns used.

The encoding object assignment is:

spar seUnevenl yDi stri but edVal ueSet Encodi ng #Spar seUnevenl yDi stri but edVal ueSet ::= {
USE #I NT (0..5)
MAPPI NG ORDERED VALUES
W TH { ENCODE W TH PER basi c-unal i gned }}

The six possible abstract values are mapped to the range 0..5 and encoded in afield of three bits. The mapping is as
follows: 0? 0,3? 1,57 2,6? 3,8? 4,and11? 5.

E.2.7 An optional component's presence depends on the value of another
component

The ASN.1 assignment is:

Condi ti onal PresenceOnVal ue :: = SEQUENCE {
a I NTEGER (0..4),
b INTEGER (1..10),
c BOOLEAN OPTI ONAL
-- Condition: "c" is present if "a" is 0, otherwise "c" is absent --,
d BOOLEAN OPTI ONAL
- Condition: "d" is absent if "a" is 1, otherwise "d" is present --}
- Note the inplied presence constraints in coments.
- Note also that the integer field "a" carries application semantics and has val ues
- has value 1, both "c¢" and "d" are mssing. |If "a" has values 3 or 4, "c" is absent
- and "d" is present These conditions are very hard to express formally using ASN. 1 al one.

95 DTS/MTS-00068 V1.1.1 (2000-10)

Requirement: The component "a" acts as the presence determinant for both of components*c" and "d", but a PER
encoding would produce two auxiliary bits for the optional components. We require an encoding in which these auxiliary
bits are absent.

The encoding object assignment is:

condi ti onal PresenceOnVal ueEncodi ng #Condi ti onal PresenceOnVal ue ::= {
ENCODE STRUCTURE {
c OPTI ONAL-ENCCDI NG i s-c-present{< a >},
d OPTIONAL-ENCODI NG i s-d-present{< a >}

}
W TH { ENCODE W TH PER- basi c- unal i gned }}

i s-c-present {< REFERENCE : a >} #OPTIONAL :: = {
ENCCDI NG- SPACE
AS app- det er m nant
DETERM NED BY a
DECODER TRANSFORMB { {INT-TO-BOOL TRUEIS{ 0} } } }
i s-d-present {< REFERENCE : a >} #OPTIONAL ::= {
ENCCDI NG- SPACE
AS app-det er m nant
DETERM NED BY a

DECODER TRANSFORMS { {I NT-TO-BOOL TRUE-1S {0]2|3|4} } } }

Here we have asimple, formal, and clear specification of the presence conditionson "c" and "d" which can be
understood by encoder-decoder tools. The ASN.1 comments cannot be handled by tools. The provision of optionality
encoding for "c" and "d" means that the PER encoding for OPTIONAL is not used in this case, and there are no auxiliary
bits.

The parameterized encoding objects "is-c-present” and "is-d-present” specify how presence of the componentsis
determined during decoding. Note that no transformation is needed (nor permitted) for encoding because the determinant
has application semantics- it isvisible in the ASN.1 type definition. However, agood encoding tool will police the
setting of "a" by the application, to ensure that its valueis consistent with the presence or absence of "c" and "d" that the
application code has determined.

E.2.8 The presence of an optional component depends on some external
condition

The ASN.1 assignment is:

Condi tional PresenceOnExt ernal Condi tion ::= SEQUENCE {
a BOOLEAN OPTI ONAL
-- Condition: "a" is present if the external condition "C' holds,
-- otherwise "a" absent -- }
-- Note that the presence constraint can only be supplied in coment.

Requirement: The application code for both a sender and areceiver can evaluate the condition "C" from some
information outside the message. We wish toolsto invoke such code to determine the presence of "a", rather than using
ahit in the encoding.

The encoding object assignment is:

condi ti onal PresenceOnExt er nal Condi ti onEncodi ng #Condi ti onal PresenceOnExt ernal Condition ::= {
ENCODE STRUCTURE {
a OPTI ONAL- ENCODI NG i s- a- present,

}
W TH { ENCODE W TH PER basi c-unal i gned }}

i s-a-present #OPTIONAL :: =
USER FUNCTI ON- BEG N
/* "a" is present if the external condition "C' is true, otherw se absent. */
is_a_present = (channel ==
USER FUNCTI ON- END

Because the condition is external to the message, the encoding object for determining presence of the component "a" can
only be specified as a user-defined function. However, whilst this saves on bit on-the-line, many designers would
consider it better to include the bit in the message to reduce the possibility of error, and to make testing and monitoring
easier. Such choices are for the ECN specifier.

96 DTS/MTS-00068 V1.1.1 (2000-10)

E.2.9 Avariable length list

The ASN.1 assignmentis:

Encl osi ngSt ruct ur eFor Li st :: = SEQUENCE {
Iist Vari abl eLengt hLi st }

Var i abl eLengt hLi st ::= SEQUENCE (SIZE (0..1023)) OF I NTECER (1..2)
-- Normally the list contains only a few el enents (0..31), but it night contain nany.

The requirement: PER basic unaligned encodes the length of the list using 10 bits even if normally the lengthisin the
range 0..31. The requirement is to minimize the size of the encoding of the length determinant in the normal case whilst
still allowing values which rarely occur.

The encoding object assignment is:

encl osi ngStruct ureEncodi ng #Encl osi ngStructureForList ::= {
USE #Encl osi ngSt r uct ur eFor Li st St ruct
VAPPI NG FI ELDS
W TH {
ENCODE STRUCTURE {
aux-length |ist-1engthEncoding,
list {
ENCODI NG {
ENCODI NG- SPACE AS aux- det er mi nant
DETERM NED BY aux-length} } } }
-- First mapping: use an encoding structure with an explicit |length determ nant.

| i st-1engthEncodi ng #AuxVari abl eLi stLength ::= {
USE #AuxVar i abl eLi st Lengt hStruct
VAPPI NG ORDERED VALUES
W TH { ENCODE W TH PER basi c-unal i gned }}
-- Second napping: list length is encoded as a choi ce between a short form"nornally"
-- and a long form"sonetines".

The encoding structure assignments are;
#Encl osi ngStruct ur eFor Li st Struct ::= #CONCATENATI ON {
aux-length #AuxVari abl eLi st Lengt h,
list #Vari abl eLengt Li st }
#AuxVari abl eLi stLength ::= # NT (0..1023)
#AuxVari abl eLi st Lengt hStruct ::= #ALTERNATI VES {

normal |y #I NT (0..31),
sonetinmes # NT (32..1023) }

The length determinant for the component "list" is variable. The length determinant for short list valuesis encoded using
1 bit for the selection determinant and 5 bits for the length determinant. The ength determinant for long list valuesis
encoded using 1 bit for the selection determinant and 10 bits for the length determinant.

E.2.10 Equal length lists

The ASN.1 assignment is:

Equal Lengt hLi sts ::= SEQUENCE {

listl List1,

list2 List2 }

-- "listl" and "list2" always have the same nunber of el enents.
Listl ::= SEQUENCE (SIZE (0..1023)) OF BOOLEAN

List2 ::= SEQUENCE (Sl ZE (0..1023)) OF I NTEGER (1..2)

Therequirement is: "list1" and "list2" have the same number of elements, and we wish to use asingle length determinant
for both lists. (PER would encode length fields for both components.

The encoding object assignment is:

equal Lengt hLi st sEncodi ng #Equal Lengt hLi sts ::= {
USE #Equal Lengt hLi st sStruct
MAPPI NG FI ELDS
W TH {
ENCODE STRUCTURE {
listl list-wth-determ nant Encodi ng{< aux-length >},

97 DTS/MTS-00068 V1.1.1 (2000-10)

list2 list-wth-determ nant Encodi ng{< aux-length >} }
W TH PER- basi c-unal i gned } }
|'i st-with-determ nant Encodi ng {< REFERENCE : | ength-determ nant >} ::= #REPETI TI ON {
ENCODI NG {

ENCCODI NG- SPACE AS aux-det er mi nant
DETERM NED BY |length-determnant } }

The encoding structure assignments are:

#Equal Lengt hLi st sStruct ::= #CONCATENATI ON {
aux-l ength #AuxLi st Length,
listl #List1,
list2 #lList2 }

#AuxLi st Lengt h ::= #I NT (0..1023)

E.2.11 Uneven choice alternative probabilities
The ASN.1 assignment is:

Encl osi ngSt r uct ur eFor Choi ce ::= SEQUENCE {
cho UnevenChoi ceProbability }

UnevenChoi ceProbability ::= CHO CE {
frequentl INTEGER (1..2),
frequent2 BOOLEAN,
commonl | NTEGER (1..2),
comon2 BOOLEAN,
conmmon3 BOCOLEAN,

rarel BOOLEAN,
rare2 I NTEGER (1..2),
rare3 | NTEGER (1..2) }

The alternatives of the choice type have different selection probabilities. There are alternatives which appear very
frequently ("frequent1" and "frequent2"), or are fairly common (*commonl”, “common2" and “common3") or appear
only rarely ("rarel”, "rare2" and "rare3"). The encoding for the alternative determinant should be such that those
alternatives that appear frequently have shorter determinant fields than those appearing rarely.

The encoding structure assignments are:

#Encl osi ngSt ruct ur eFor Choi ceStruct :: = #CONCATENATI ON {
aux-sel ect or #AuxSel ect or,
cho UnevenChoi ceProbability }

-- Explicit auxiliary alternative determ nant for "cho".

#AuxSel ector ::= #INT (0..7)

The encoding object assignment is:

encl osi ngSt r uct ur eFor Choi ceEncodi ng #Encl osi ngSt ruct ur eFor Choi ce :: = {
USE #Encl osi ngSt r uct ur eFor Choi ceSt ruct
MAPPI NG FI ELDS
W TH {
ENCODE STRUCTURE {
aux-sel ect or auxSel ect or Encodi ng,
cho {
SELECTI ON AS aux - det er ni nant

DETERM NED BY aux-selector } }

W TH { ENCODE W TH PER basi c-unal i gned} } }
-- First mapping: insert an explicit auxiliary alternative determ nant.
-- This encoding obj ect specifies that an auxiliary deternminant is used as
-- alternative determ nant.

auxSel ect or Encodi ng #AuxSel ector ::= {
USE #BI TS
-- ECN Huf f nan
-- RANCGE (0..7)
--(0..1) 1S 60%
-- (2..4) 1S 30%
-- (5..7) 1S 10%
-- End Definition

98 DTS/MTS-00068 V1.1.1 (2000-10)

- - Mappi ngs produced by "ECN Public Dormain Software for Huffrman encodings, version 1"
MAPPI NG TO BI TS {

(0.. 1) TO('10B .. '11'B) ,
(2.. 4) TO('001'B.. '011'B)

5 TO '0001'B,
(6.. 7) TO('00000'B .. '00001' B)

}-- Second napping: Map determ nant indexes to bit strings

In the above, we quantified "frequent" and "common" and "rare" as 60%, 30%, and 10%, and used the public domain
ECN Huffman generator (see Annex F) at the web-site cited in Annex G to determine the optimal bit-patterns to be used
for each category.

The aboveisin amathematical sense optimal, but how much difference it makes as a percentage of total traffic depends
on what the other parts of the protocol consist of. Whilst (provided tools are used) it costs nothing in implementation
effort to produce and use optimal encodings, the ultimate gains may not be significant.

E.2.12 Aversion 1 message

ASN.1 assignment:

Ver si onlMessage ::= SEQUENCE {
ie-1 BOOLEAN,
ie2 I NTEGER (0. .20)}

Requirement: We want to use PER basic unaligned, but intend to add further fields in version 2, and wish to specify that
version 1 systems should accept and ignore any additional material in the PDU.

We use two encoding structures to encode the message: oneis the implicit encoding structure containing only the version
1 fields, and the second is a structure that we define containing the version 1 fields plus a variable-length padding field
that extends to the end of the PDU. The version 1 system usesthe first structure for encoding, and the second for
decoding. Apart from this approach to extensibility, all encodings are PER basic unaligned. The version1 decoding
structureis:

#Ver si onlDecodi ngSt ruct ure :: = #CONCATENATI ON {
ie-1 #BOAL,
ie2 #I NT (0..20),

future-additions #PAD }

The encoding object assignments are then:

ver si onlMessageEncodi ng #Ver si onlMessage ::= {
ENCODE- DECCDE
{ENCCDE W TH PER- basi c- unal i gned }
DECODE AS | F
decodi ngSpeci fication

}

decodi ngSpeci fi cati on #Versi onlMessage ::= {
USE #Ver si onlDecodi ngSt ruct ure
MAPPI NG FI ELDS
W TH {
ENCODE STRUCTURE {
future-additions addi ti onsEncodi ng

}
{ENCCDE W TH PER-basi c-unaligned } }
addi ti onsEncodi ng #PAD :: = {
ENCCDI NG- SPACE
S| ZE uses-det er ni nati on- mechani sm
DETERM NED BY cont ai ner
CONTAI NED | N end- of - encodi ng: NULL
VALUE PADDI NG encoder -option }

E.2.13 ELM definitions

The following ELM is associated with the ASN.1 module defined in E.2.14, and the EDM defined in E.2.15.
Exanpl e2- ELM
{ joint-iso-itu-t(1) asnl(1l) ecn(4) exanpl es(5) nodul e(5) }

LINK-DEFINITIONS :: =
BEG N

99 DTS/MTS-00068 V1.1.1 (2000-10)

| MPORTS Exanpl e2Encodi ngs FROM Exanpl e- EDM
{ joint-iso-itu-t(1) asnl(1l) ecn(4) exanples(5) modul e(7) };

ENCODE Exanpl e2- ASNL- Modul e

{ joint-iso-itu-t(1) asnl(1l) ecn(4) exanples(5) nodul e(6) }
W TH Exanpl e2Encodi ngs
COWPLETED BY PER-basi c- unal i gned

END

E.2.14 ASN.1 definitions

This modul e groups together all the ASN.1 definitionsfrom E.2.1 to E.2.12that will be encoded according to the
encoding objects defined in the EDM, and also lists the other ASN.1 definitions that will be encoded with the PER basic
unaligned encoding rules.

Exanpl e2- ASNL- Modul e

{ joint-iso-itu-t(1) asnl(1l) ecn(4) exanpl es(5) nodul e(6) }
DEFI NI TI ONS AUTOMATI C TAGS : : =

BEGA N

Nor mal | ySnal | Val ues :: = | NTEGER (0. .1024)

-- etc

END

E.2.15 EDM definitions

E.3

E3.1

Exanpl e2- EDM ENOCDI NG-DEFINITIONS :: =

{ joint-iso-itu-t(1) asnl(1l) ecn(4) exanples(5) nodule(7) }

BEG N

EXPORTS Exanpl e2Encodi ngs;

| MPORTS #Nor nal | ySnal | Val ues, #Spar seEvenl yDi st ri but edVal ueSet
#Spar seUnevenl yDi st ri but edVal ueSet, #Condi ti onal PresenceOnVal ueSet ,
#Condi t i onal PresenceOnExt er nal Condi ti on, #Condi t i onal Conponent Val ueSet ,
#Encl osur eSt ruct ur eFor Li st , #Equal Lengt hLi st s, #Encl osi ngSt r uct ur eFor Choi ce,
#Ext ensi bl el nt eger, #Ext ensi bl eEnuner at ed, #Ext ensi bl eTopLevel Message,
#Ext ensi bl eMessage
FROM Exanpl el- ASNL- Mdul e

{ joint-iso-itu-t(1) asnl(1l) ecn(4) exanpl es(5) nodul e(6) };

Exanpl e2Encodi ngs #ENCCODI NGS :: = {
nor mal | ySnal | Val uesEncodi ng |
-- etc
ext ensi bl eMessageEncodi ng}

-- etc

END

Legacy protocol example

Introduction

The purpose of the examplein this clause isto show how to construct ECN definitions for a protocol whose message
encodings have been specified using tabular notation. The following tables contain the contents of the messages (only
Messagel has been shown completely):

Message 1:
8 | 7 | 6 | 5 | 4 [3 | 2 | 1
Octet 1 Message id
Octet 2 a b-flag c-len | reserved
Octet X bl | b2 reserved | b3 | reserved
Octet Y cl c2
Octet Y+1 | c3 | reserved

OctetZ [di [d2 [d3 [reserved

100 DTS/MTS-00068 V1.1.1 (2000-10)

Message 2:

8 | 7 | 6 | 5 | 4 | 3 | 2 | 1

Octet 1 Message id

Octet M Something

Message 3:

8 | 7 | 6 [5 | 4 1 3 [2 [1

Octet 1 Message id

Octet M something

All the messages have a common heading part (shown in gray in the tables). In this exampleit is used only for message
identification.

Message 1 has three kinds of fields:

- mandatory fields ("a")

- mandatory fields that are determinants for other fields ("b-flag", "c-len")
- optional fields ("b", "c", and "d")

Thefields"b", "c" and "d" are composed of sub-fields. In addition fields"c" and "d" may appear multiple times.
Optional fields are octet-aligned.

Presence of an optional component isindicated using different methods
- thefield"b" is present if the value of the "b-flag" field is 1.
- thefield"c" ispresent if the value of the "c-len" field is greater than O
- thefield"d" ispresent if there are octets left in the message
Thelength of afield that can appear multiple timesis determined using different methods:
- multiplicity of thefield "c" is governed by the determinant field "c-len"
- multiplicity of thefield "d" is determined by the end of message

The following ASN.1 module contains definitions for the message structures presented above. The following design
decisions have been made:

- thereisone encapsulating type which contains the common definitions for all the messages

- auxiliary determinant fields in messages are visible at the ASN.1 level. Note, thisisdone for simplicity of
exposition in this example, but it should be normal practice to keep such fields out of the ASN.1 definition unless
they carry real application semantics.

- extensibility isexpressed in the form of comments.
- padding isnot visible
The ASN.1 moduleis:
LegacyPr ot ocol - ASN1- Modul e
{ joint-iso-itu-t(1) asnl(1) ecn(4) exanpl es(5) nodul e(8) }

DEFI NI TI ONS AUTOVATI C TAGS :: =
BEG N

LegacyPr ot ocol Messages :: = SEQUENCE {
nessage-id ENUMERATED { nessagel, nessage2, nessage3 },
nmessages CHO CE {
nmessagel Messagel,
nmessage2 Message2,
nmessage3 Message3 } }
-- The CHO CE is constrai ned by the val ue of nessage-id.

101 DTS/MTS-00068 V1.1.1 (2000-10)

Messagel ::= SEQUENCE {

a A,

b-flag BOOLEAN,

c-len | NTEGER (O..nax-c-1en),

b B OPTI ONAL, -- determned by "b-flag"

c C OPTI ONAL, -- determned by "c-l1en"

d D OPTIONAL } -- determined by end of PDU
A ::= INTEGER (0..7) -- Values 5..7 are reserved for future use. Version 1 systens shoul d
B ::= SEQUENCE {

bl ENUMERATED { e0, el, e2, e3},

b2 BOCOLEAN,

b3 INTEGER (0..3) }

C::

SEQUENCE (Sl ZE (1..nmax-c-len)) OF Gelem
C-el em :: = SEQUENCE {
cl BIT STRING (SIZE (4)),
c2 |INTEGER (0..1024) }
D ::= SEQUENCE (SIZE (0..nax-d-len)) OF Delem
D-el em :: = SEQUENCE {
dl BOOLEAN,
d2 ENUMERATED { foO, f1, f2, 3, f4, f5, 6, 7},
d3 INTEGER (0..7) }
max-c-len INTEGER ::= 7

max-d- |l en | NTEGER :: = 20

Message2 ::= SEQUENCE {
-- sonething -- }
Message3 ::= SEQUENCE {
-- sonething -- }
END

The EDM module in E.3.1 contains encoding definitions for the messages specified in the
"LegacyProtocol-ASN 1-Module" ASN.1 module. The following design decisions have been made:

- padding within octetsis explicitly specified as padding fields
- alignment padding is not specified as explicit padding fields

E.3.2 Encoding definition for the top-level message structure

The encoding object "legacyProtocol M essagesEncoding” specifies how the common parts of the legacy protocol
messages are encoded. The message identifier is specified in ASN.1 as an enumerated type. PER basic unaligned
encodes "message-id" using the minimum number of bits, i.e. 2, but here we would like to have it encoded using 8 bits.
In addition, we haveto specify that "message-id" isto be used as a determinant for "messages".

The "legacyProtocolMessagesEncoding" is:

| egacyPr ot ocol MessagesEncodi ng #LegacyPr ot ocol Messages :: = {
ENCODE STRUCTURE {
message-id int8Encoding,
nmessages {
SELECTI ON AS app-det er m nant
DETERM NED BY nessage-id } }
W TH { ENCODE W TH PER basi c-unal i gned } }

i nt 8Encodi ng #I NT ::= {
USE #I NT (0. .255)
MAPPI NG VALUES
W TH { ENCODE W TH PER basi c-unal i gned } }

E.3.3 Encoding definition for a message structure
The encoding object "messagelEncoding" specifies how values of "Messagel" are to be encoded:

- Thefield "b" ispresent if thefield "b-flag" containsvalue 1.

102 DTS/MTS-00068 V1.1.1 (2000-10)

- Thefield"c" ispresent if thefield "c-len" does not contain value 0. "c-len" also governs the number of elements

in"c".
- Thefield "d" ispresent if there are still octetsin an encoding for the message.

The encoding object for "Messagel"” is:

nessagelEncodi ng #Messagel :: = {
ENCODE STRUCTURE {
b b-encodi ng
CPTI ONAL - ENCODI NG {
ENCCDI NG- SPACE AS app-det er mi nant
DETERM NED BY b-flag },
c octet-aligned-seg-of-with-ext-determnant{< c-len >}
CPTI ONAL - ENCODI NG {
ENCCDI NG- SPACE AS app- det er mi nant
DETERM NED BY c-len
DECODER TRANSFORVS { is-c-present } },
d octet - al i gned-seqg- of - unti | -end- of - cont ai ner
OPTI ONAL - ENCODI NG {
ENCODI NG- SPACE AS contai ner } }
W TH { ENCODE W TH PER basi c-unal i gned } }

i s-c-present #TRANSFORM :: = {
| NT- TO- BOOL FALSE-IS {0} }

E.3.4 Encoding for the sequence type "B"
Padding of one bit isinserted between thefields "b2" and "b3" ("aux-reserved"). The encoding of "B" is octet-aligned.

The encoding for "B" is:

b-encoding #B ::= {
USE #BSt r uct
MAPPI NG FI ELDS
W TH {
ENCCODE STRUCTURE {
aux-reserved reserved- 1- bi t Encodi ng
STRUCTURED W TH octet-aligned-seqEncoding } } }
#BStruct ::= #CONCATENATI ON {
b1 #I NT (0..3),
b2 #BOOL,
aux-reserved #PAD,
b3 #I NT (0..3) }

reserved-1- bi t Encoding #PAD :: = {
ENCODI NG- SPACE
S| ZE 1
VALUE
PADDI NG zero }

E.3.5 Encoding the octet-aligned sequence type for the legacy protocol
The encoding isto be octet-aligned. Any needed padding uses O as filler bits.

The encoding object definition for the #SEQUENCE constructor is:

oct et - al i gned-seqEncodi ng #SEQUENCE : : = {
ENCODI NG- SPACE
ALI GNED TO octet
PADDI NG zero }

E.3.6 Encoding for an octet-aligned sequence-of type with a length
determinant

One of the sequence-of types used in the legacy protocol has an explicit length determinant.

The encoding is octet-aligned. The number of elements count is determined by thefield "len".

octet-aligned-seg-of-wi th-ext-determ nant {< REFERENCE : |en >} #SEQUENCE-OF ::= {
ENCODI NG- SPACE
ALI GNED TO octet
PADDI NG zer o

103 DTS/MTS-00068 V1.1.1 (2000-10)
ENCCODI NG {
ENCODI NG- SPACE

AS app-det er m nant
DETERM NED BY len } }

E.3.7 Encoding for an octet-aligned sequence-of type which continues to
the end of the PDU

The encoding is octet-aligned. The number of elementsis determined by the end of the PDU.

The encoding object is:

octet-aligned-seg- of -until-end-of -contai ner #SEQUENCE-CF :: = {
ENCCDI NG- SPACE
ALI GNED TO oct et

PADDI NG zer o
ENCODI NG {
ENCODI NG- SPACE
AS cont ai ner
CONTAI NED I N end-of -container: NULL } }

E.3.8 ELM definitions

The ELM for the legacy protocol is:
LegacyPr ot ocol - ELM- Modul e
{ joint-iso-itu-t(1l) asnl(1l) ecn(4) exanples(5) nodul e(10) }

LINK-DEFINITIONS :: =
BEG N
| MPORTS
LegacyPr ot ocol Encodi ngs;
FROM LegacyPr ot ocol - EDM Modul e
{ joint-iso-itu-t(1) asnl(1l) ecn(4) exanpl es(5) nodul e(8) };
ENCODE LegacyPr ot ocol - ASN1- Modul e. LegacyPr ot ocol Messages
W TH LegacyPr ot ocol Encodi ngs
COWPLETED W TH PER- basi c-unal i gned
END

E.3.9 EDM definitions

The EDM definitions are:

LegacyPr ot ocol - EDM- Modul e
{ joint-iso-itu-t(1) asnl(1) ecn(4) exanpl es(5) nodul e(8) }
ENCCODI NG-DEFI NI TIONS :: =
BEG N
EXPORTS
LegacyPr ot ocol Encodi ngs;
| MPORTS
#LegacyPr ot ocol Messages
FROM LegacyPr ot ocol - ASN1- Mbdul e
{ joint-iso-itu-t(1) asnl(1l) ecn(4) exanples(5) nodule(7) };
LegacyPr ot ocol Encodi ngs #ENCODI NGS : : = {
| egacyPr ot ocol MessagesEncodi ng |
messagelEncodi ng }

-- etc

END

104 DTS/MTS-00068 V1.1.1 (2000-10)

Annex F (Informative):
Support for Huffman encodings

Huffman encodings are the optimum encodings for afinite set of integer values, where the frequency with which each
value will be transmitted is known.

The encodings are self-delimiting (no length-determinant is needed) and use a small number of bits for frequent values
and alarger number of hitsfor less frequent values.

There are many possible Huffman encodings. For example, given any such encoding, simply change all "1"sto "0"sand
vice versa, and you have adifferent (but just as efficient) Huffman encoding. More subtle changes can also be made to
produce other Huffman encodings that are equally efficient.

For Huffman encodings to be efficient for decoders, it is desirable that where successive integer values encode into the
same number of bits, those bits should define successive integer values when interpreted as a positive integer encoding.

An ECN Huffman encoding has been defined that has this property, and a Microsoft Word 97 macro has been produced
that will generate the syntax for a"MappinglntToBits" mapping which is both optimal and easy to decode.

A version of this Annex is available which contains a macro button that will take a specification of the integer valuesto
be encoded and their frequency, and will generate in-line the formal mapping specification conforming to the ECN
notation. (The version of this Annex with the associated macro can be obtained from the Web site cited in Annex G).

The following text contains three examples of ECN Huffman specification.

In the version with the macro, double clicking the button below:

[ECN FuTTman |
will add the ECN Huffman mapping specifications to the text.

The user of the version with the macro may wish to modify the specification of the values to be mapped and their
frequencies to see the encodings that are produced in different cases.

NOTE Intheversion with macros, once encoding specifications have been produced, they can be deleted, the
ECN Huffman specification changed, and the macro button again clicked.

Theinformal syntax for an ECN Huffman specification should be clear from the following examples. All lines start with
an ASN.1 comment marker ("--").

Thefirst line (if the macro isto be used) must contain exactly "ECN Huffman" preceded by two hyphens and a space,
but following lines are not case sensitive and may contain more or |ess spaces.

The second lineisrequired, and specifies the lowest and highest values that are to be mapped. The range (upper bound
minus lower bound) is limited to 1000, but can include negative values. Not all valuesin the range need to be mapped.

Percentages are given for either single values or for ranges of values. It isnot necessary for percentagesto add up to
100%, but awarning is given if they do not.

The"REST" lineisoptional, and provides frequencies for any valuesin the range not explicitly listed. If missing, then
the mapped values will only be those explicitly specified.

Thefinal line is mandatory, and must contain "End Definition" (in upper or lower case). The formal ECN encoding
specification isinserted (by the macro) after thisline.

Thefirst exampleis:

ny-int -encodi ngl #M/- Special -1 ::=
{ USE #BITS

-- EON Huf f man

- RANGE (- 1..10)

-- =118 20%

-- 11S 25%

-- 01S 15%

-- (3..6) 1S 10%

-- Rest IS 2%

- End Definition

105 DTS/MTS-00068 V1.1.1 (2000-10)

-- Mappi ngs produced by "ECN Public Donmain Software for Huffman encodi ngs, version 1"
MAPPI NG TO BI TS {

-1 TO'11'B,
0.. 1) TOo('0I'B.. '10B) ,
2 TO ' 0000001' B ,
3.. 5) TO('0001'B.. '0011'B) ,
6 TO ' 00001' B ,
(7.. 8) TO('0000010'B .. '0000011'B) ,
(9.. 10) TO('00000000'B .. '00000001' B)

}
WTH ny-self-delimbits-encoding }

The second exampleis:

my- i nt -encodi ng2 #W- Special -2 ::=
{ USE #BITS
- - ECN Huf f man
-- RANGE (-10..10)
-- -10 1S 20%
-- 11S 25%
-- 51S 15%
-- (7..10) is 10%
-- End Definition
-- Mappi ngs produced by "ECN Public Donain Software for Huffrman encodi ngs, version 1"
MAPPI NG TO BI TS {
-10 TO'11'B ,
1 TO'10'B,
5TO'01'B,
(7.. 10) TO('0000'B .. '0011'B)

}
W TH ny- sel f- del i mbi ts-encodi ng }

The third exampleis:

ny-int -encodi ng3 #M- Special -3 :: =

{ USE #BITS

- - ECN Huf f man

-- RANGE (0..1000)

-- (0..63) IS 100%

-- REST IS 0%

-- End Definition

- - Mappi ngs produced by "ECN Public Domain Software for Huffrman encodi ngs"
MAPPI NG TO BI TS {

0.. 62) TO('o000OO1'B .. '111111'B) ,
63 TO ' 0000001'B ,
(64 .. 150) TO ('0000000110101001'B .. '0000000111111111'B) ,
(151 .. 1000) TO('00000000000000000'B .. '00000001101010001'B)

}
W TH my- sel f- del i mbi ts-encodi ng }

106 DTS/MTS-00068 V1.1.1 (2000-10)

Annex G:
Additional Information on the Encoding Control
(Informative) Notation (ECN)

Additional information and links on the Encoding Control Notation can be found on the following Web site:

http://asnl.elibel .tm.fr/ecn

107 DTS/MTS-00068 V1.1.1 (2000-10)

Annex H (Informative):
Summary of the ECN notation

H.1 Terminal symbols

The following terminal symbols are used inthisTS

Thefollowing items are defined in clause 8:

anyst ri ngexcept user f uncti onend END

encodi ngobj ectref erence FI ELDS

encodi ngobj ect set r ef erence I F

encodi ngcl assr ef erence LI NK- DEFI NI TI ONS
"o e MAPPI NG

" M N

"3 OPTI ONAL - ENCODI NG
" CRDERED

" QUTER

PER- basi c-al i gned
PER- basi c-unal i gned
" PER- canoni cal -al i gned

AS PER- canoni cal -unal i gned
BEG N REMAI NDER

BER S| ZE

BI TS STRUCTURE

BY STRUCTURED

CER TO

COVPLETED TRANSFORVS

DECCDE UNI ON

DER USE

DI STRI BUTI ON USER FUNCTI ON- BEG N
ENCCDE USER FUNCTI ON- END
ENCODI NG- CLASS VALUES

ENCCDE- DECCDE W TH

ENCCDI NG- DEFI NI TI ONS

The following item is defined in Annex B:

REFERENCE

Thefollowing items are defined in ITU-T Rec. X.680 | ISO/IEC 8824-1:

bstring
cstring
hstring
identifier
nodul er ef erence
nunber
typereference

ALL

EXCEPT

EXPORTS

FALSE

FROM

I MPORTS

M NUS- I NFI NI TY
NULL

PLUS I NFINI TY
TRUE

108 DTS/MTS-00068 V1.1.1 (2000-10)

Thefollowing items are defined in ITU-T Rec. X.681 | ISO/IEC 8824-2 :

wor d
val uefi el dr ef erence
val uesetfi el dreference

Thefollowing items are defined in ITU-T Rec. X.683 | ISO/IEC 8824-4:

{<
A

H.2 Productions

The following productions are used in this TS, with the items defined inH.1 as terminal symbols:

ELMDefinition ::=
Modul el denti fier
LI NK- DEFI NI TI ONS
BEGA N
ELMvbdul eBody
END

ELMVbdul eBody :: =
I mports ?
Encodi ngAppl i cati onLi st

Encodi ngAppl i cationList ::=
Encodi ngAppl i cati on
Encodi ngAppl i cati onLi st ?

Encodi ngApplication ::=
TypeAppl i cati on |
Mbdul eAppl i cati on

TypeApplication ::=
ENCCDE

Absol ut eRef er ence
Conbi nedEncodi ngs

Modul eApplication ::=
ENCCDE
Modul el denti fier
Conbi nedEncodi ngs

Conbi nedEncodi ngs :: =
W TH
Pri mar yEncodi ngs
Conpl eti ond ause ?

Conpl eti ond ause :: =
COVPLETED BY
Secondar yEncodi ngs

Pri mar yEncodi ngs ::= Encodi ngbj ect Set
Secondar yEncodi ngs :: = Encodi ngbj ect Set

EDMDefinition ::=
Modul el denti fier
ENCCDI NG- DEFI NI TI ONS

BEG N
EDMMVbdul eBody
END

EDWM\Vbdul eBody : : =
Exports ?
I mports ?
EDMAssi gnnent Li st ?

EDVAssi gnment Li st :: =

EDVAssi gnnent
EDMAssi gnment Li st ?

ETSI

109

EDMAssi gnnent @ : =

Encodi ngd assAssi gnnent
Encodi ngSt r uct ur eAssi gnnment
Encodi ngObj ect Assi gnnent
Encodi ngObj ect Set Assi gnnent
Par anet eri zedAssi gnnent

Encodi ngd assAssi gnrment :: =
encodi ngcl assreference

E'ni:odi ngd ass

Encodi ngd ass :: =
Def i nedEncodi ngd ass |
Encodi ngStructure

Encodi ngSt ruct ur eAssi gnnent :: =
encodi ngcl assreference

E-n;:odi ngStructure

Encodi ngQbj ect Assi gnnent @ @ =
encodi ngobj ect r ef erence
Encodi ngd ass

Ehi:odi ngoj ect

Encodi ngQbj ect Set Assi gnent @ : =
encodi ngobj ect setr ef erence
#ENCODI NGS

Ehi:odi ngQObj ect Set
Encodi ngStructure ::=

Def i nedEncodi ngd ass
Encodi ngSt ruct ur eDef n

Encodi ngStructurebDefn ::=
Al ternativesStructure |
RepetitionStructure |
Concat enati onStructure

AlternativeStructure ::=
Al ternativesd ass

L
NanedFi el ds
nyn

Al ternativesCass ::=

Def i nedEncodi ngd ass |
Al ternativesd assRef erence

NanedFi el ds ::= NanedField "," +

NarmedField ::=
identifier
Encodi ngStructure

RepetitionStructure ::=
Repetitiond ass

Encodi ngStructure
Si ze?

RepetitionC ass ::=
Def i nedEncodi ngd ass
Repetiti ond assRef erence

Concat enationStructure ::=
Concat enati onC ass
g
Concat Conponent s
wyn
Concat enationd ass ::=

Def i nedEncodi ngd ass
Concat enat i onC assRef erence

ETSI

DTS/MTS-00068 V1.1.1 (2000-10)

110

Concat enati ond assReference ::=
#CONCATENATI ON |
#SEQUENCE |
#SET

Concat Conponents :: =
Concat Conponent ", " *

Concat Conponent :: =
NarredFi el d
Optional dass ?

onalCass ::=
Def i nedEncodi ngd ass
Optional i tyd assRef erence

opt

Def

nedEncodi ngC ass :: =

encodi ngcl assreference |

Ext er nal Encodi ngd assRef erence |
Bui | ti nEncodi ngd assReference |
Par amet eri zedEncodi ngQd ass

Def

nedEncodi ngChj ect :: =

encodi ngobj ect r ef erence |
Ext er nal Encodi ngbj ect |
Par anet eri zedEncodi nglbj ect

Def

nedEncodi ngCbj ect Set :: =

encodi ngobj ect setref erence |
Ext er nal Encodi ngQoj ect Set Ref er ence |
Bui | ti nEncodi ngbj ect Set Ref er ence |
Par anet er i zedEncodi ngChj ect Set

Bui | ti nEncodi ngbj ect Set Ref erence :: =
PER- basi c-al i gned |
PER- basi c-unal i gned |
PER- canoni cal -al i gned |
PER- canoni cal -unal i gned |
BER |
CER |

DER

Ext er nal Encodi ngd assReference :: =

nmodul ereference "." encodi ngcl assreference |
nmodul eref erence "." BuiltinEncodi ngd assRef erence

Ext er nal Encodi ngbj ect Ref erence :: =
nmodul er ef er ence

encodi ngobj ect ref erence

Ext er nal Encodi ngOhj ect Set Ref erence :: =
nmodul er ef erence

encodi ngobj ect setr ef erence

Encodi ngthj ect Set :: =
Def i nedEncodi ngQbj ect Set |
Encodi ngbj ect Set Spec

Encodi ngObj ect Set Spec :: =

{
Encodi ngChj ect s Uni onMark *

Encodi ngQbj ects :: =
Encodi ngbj ect |
Def i nedEncodi ngbj ect Set

Uni onMark ::=
o
UNI ON
Encodi ngChj ect :: =
Def i nedEncodi nghj ect

Def i nedSynt ax |
EncodeWth |

ETSI

DTS/MTS-00068 V1.1.1 (2000-10)

111 DTS/MTS-00068 V1.1.1 (2000-10)

EncodeByVal ueMappi ng |

EncodeStructure |
Di fferenti al EncodeDecodeChj ect |

User Def i nedEncodi ngFuncti on

EncodeWth ::= "{" ENCCDE Conbi nedEncodi ngs "}"

EncodeByVal ueMappi ng :: =
wn
USE
Encodi ngd ass
MAPPI NG
Val ueMappi ng
W TH
Encodi ngbj ect

Di fferential EncodeDecode(bj ect ::=
ENCCDE- DECCDE
SpecFor Encodi ng

DECCODE AS | F

SpecFor Decoder s

"y
SpecFor Encodi ng :: = Encodi nglbj ect
SpecFor Decoders ::= Encodi nglbj ect

User Def i nedEncodi ngFunction :: =
USER- FUNCTI ON- BEG N
Assi gnedl denti fier
anyst ri ngexcept user f uncti onend
USER FUNCTI ON- END

EncodeStructure ::=
wn
ENCODE STRUCTURE

Conponent Encodi ngLi st
St ruct ureEncoding ?

Conbi nedEncodi ngs ?
"y

StructureEncoding ::=
STRUCTURED W TH
Encodi ngbj ect

Conponent Encodi ngLi st ::=
Conponent Encoding ", " *

Conponent Encoding :: =
NonOpt i onal Conponent Encodi ngSpec
Opt i onal Conponent Encodi ngSpec

NonQOpt i onal Conponent Encodi ngSpec :: =
identifier ?
Encodi ngoj ect 1

Opt i onal Conponent Encodi ngSpec :: =
Conponent Encodi ngObj ect |
Opt i onal Encodi ngQbj ect |
Conponent AndOpt i onal Encodi ngQhj ect

Conponent Encodi ngtbj ect :: =
identifier
Encodi ngthj ect 1

Opt i onal Encodi nglbj ect :: =
identifier
OPTI ONAL - ENCODI NG
Encodi ngthj ect 2

Conponent AndOpt i onal Encodi ngQbj ect
identifier
Encodi ngthj ect 1
OPTI ONAL - ENCODI NG

ETSI

112 DTS/MTS-00068 V1.1.1 (2000-10)

Encodi ngthj ect 2

Encodi ngOhj ect1 ::
Encodi ngtbj ect2 ::

= Encodi nghj ect

= Encodi ngbj ect

Bui | ti nEncodi ngd assReference ::=
Bitfiel dd assRef erence
Al ternativesCd assRef erence
Concat enat i ond assRef erence
Repetitiond assRef erence
OptionalityCd assRef erence
Gener al Procedur ed assRef erence

Bitfieldd assReference ::=
#NUL
#BOCOL
#1 NT
#BI TS
#OCTETS
#CHARS
#PAD
#BI T- STRI NG
#BOOLEAN
#CHARACTER- STR NG
#ENVBEDDED PDV
#ENUVERATED
#EXTERNAL
#| NTEGER
#NULL
#OBJECT- | DENTI FI ER
#OCTET- STRI NG
#OPEN- TYPE
#REAL
#RELATI VE A D
#Ceneral i zedTi me
#UTCTi e
#BMPSt ri ng
#General String
#l A5String
#Numeri cString
#Printabl eString
#Tel etexString
#Uni versal String
#UTF8Stri ng
#Vi deot exStri ng
#Vi si bl eString

Optionalityd assReference :: =
#OPTI ONAL

Gener al Procedur ed assReference :: =
#TRANSFORM |
#CONDI TI ONAL- | NT |
#CONDI TI ONAL- REPETI TI ON |
#OUTER

Encodi ngStructureField ::=
PrimtiveField |
Conpl exFi el d

PrimtiveField ::=
#NUL
#BOCOL
#1 NT Bounds?
#BI TS Si ze?
#OCTETS Si ze?
#CHARS Si ze?
#PAD

Conpl exField ::=
#BI T- STRI NG Si ze?
#BOOLEAN
#CHARACTER- STRI NG
#EMBEDDED PDV
#ENUVERATED Bounds?
#EXTERNAL
#1 NTEGER Bounds?
#NULL

ETSI

113

#OBJECT- | DENTI FI ER
#OCTET-STRING Si ze?
#OPEN- TYPE

#REAL

#RELATI VEQ D

#General i zedTi e

#UTCTi e

#BMPString Size?
#GCGeneral String Size?

#Q aphicString Size?

A5String Size?
#NurericString Size?
#Printabl eString Si ze?
#Tel etexString Size?
#Uni versal String Si ze?
#UTF8String Size?

#Vi deot exString Size?
#VisibleString Size?

Bounds ::= "(" EffectiveRange ")"
Ef fecti veRange :: =
M nMax |
Fi xed
Size ::="(" SIZE Si zeEffectiveRange ")"

Si zeEf fecti veRange :: =
"(" EffectiveRange ")" |
Ef f ecti veRange

M nhMax :: =
Val ueOrM n

VéI. ueQr Max

ValueOMn ::=
Si gnedNunber |
M N

Val ueOr Max ::=
Si gnedNunber |
MAX

Fi xed ::= Si gnedNunber

Val ueMapping ::=
Mappi ngByExpl i ci t Val ues
Mappi ngByMat chi ngFi el ds
Mappi ngBy Tr ansf or nEncodi ngbj ect s
Mappi ngByAbst r act Val ueOr deri ng
Mappi ngByVal ueDi stri bution
Mappi ngl nt ToBi t s

Mappi ngByExplicitVal ues :: =
VALUES
wn
MappedVal ues "," +

MappedVal ues :: =
MappedVal uel
TO
MappedVal ue2

MappedVal uel :: = Val ue
MappedVal ue2 :: = Val ue
Mappi ngByMat chi ngFi el ds :: = FI ELDS
Mappi ngByTr ansf or nEncodi ngQhj ects :: =
TRANSFORMVB
Transf ornili st
nyn
TransfornList ::=
Transform"," +
Transform :: = Encodi ngQbj ect

ETSI

DTS/MTS-00068 V1.1.1 (2000-10)

Mappi ngByAbstract Val ueOrdering :: =
ORDERED VALUES

Mappi ngByVal ueDi stribution ::=
DI STRI BUTI ON
D stribution "," +

e

Distribution ::=
Sel ect edVal ues
TO
identifier

Sel ectedVal ues :: =
Sel ect edVal ue |
Di stri buti onRange |
REMAI NDER

Di stributionRange ::=
Di stri buti onRangeVal uel

Di. étri but i onRangeVal ue2
Sel ect edVal ue ::= Si gnedNunber

Di stri buti onRangeVal uel ::
D stri buti onRangeVal ue2 ::

Si gnedNunber
Si gnedNunber

Mappi ngl nt ToBits :: =
TO BITS

Mappedl nt ToBits "," +
wyn

Mappedl nt ToBits :: =
Si ngl el nt Val Map
I nt Val RangeMap

SinglelntVal Map ::=
I nt Val ue
TO
Bi t Val ue

I nt Val ue ::= Si gnedNunber

BitValue ::=
bstring |
hstring

I nt Val RangeMap :: =
I nt Range
TO
Bi t Range

I nt Range :: =
I nt RangeVal uel

| nt RangeVal ue2

Bi t Range ::=
Bi t RangeVal uel

Bi t RangeVal ue2

I nt RangeVal uel :: = Si gnedNunber
I nt RangeVal ue2 :: = Si gnedNunber
Bi t RangeVal uel :: =

bstring |

hstring
Bi t RangeVal ue2 :: =

bstring |

hstring

114

ETSI

DTS/MTS-00068 V1.1.1 (2000-10)

115 DTS/MTS-00068 V1.1.1 (2000-10)

Thefollowing productions are defined ITU-T Rec. X.680 | ISO/IEC 8824-1, as modified by Annex B, with the items
defined in H.1asterminal symbols:

NOTE Struck productions are not allowed in ECN.

Modul el dentifier ::=
nodul er ef erence
Definitiveldentifier ?

Definitiveldentifier ::=
"{" DefinitiveObjldConponentList "}"

DefinitiveQhj!dConmponentList ::=
Definiti veoj | dConponent |
Defini tiveCbj | dConponent DefinitiveChj | dConponentLi st

DefinitiveQhj | dConponent ::=
NaneFor m |
Def i ni ti veNurber For m |
Def i ni ti veNameAndNunber For m

NameForm :: = identifier

DefinitiveNunber Form ::= nunber

Defini ti veNameAndNurber Form :: = identifier "(" DefinitiveNunberForm")"
Exports ::= EXPORTS Synbol sExport ed? ;"

Synbol sExported ::= Synbol Li st

I nports ::= | MPORTS Synbol sl nported? ;"

Synbol sl nmported ::= Synbol sFronmbdul eLi st

Synbol sFromvbdul eLi st :: =
Synbol sFromvbdul e |
Synbol sFrom\bdul eLi st Synbol sFronhbdul e

Synbol sFronMbdul e :: =
Synbol Li st
FROM
d obal Modul eRef er ence

d obal Modul eRef erence :: =
nmodul er ef erence Assignedl dentifier

Assignedldentifier ::= Definitiveldentifier

Synbol List ::=
Synbol |
Synbol List "," Synbol

Synbol ::=
Ref er ence
Par anet eri zedRef er ence

Reference ::=
val uer ef erence |
typer ef erence |
identifier |
encodi ngcl assr ef erence |
encodi ngobj ect r ef erence |
encodi ngobj ect setr ef erence

Absol ut eReference :: =
Modul el denti fier

Iienﬁpec
ItenSpec :: =

t yper ef erence

Itemd "." Conponentld
Itemd ::= ItenSpec

Component |l d :: =
identifier

ETSI

wxn

Value ::=
Bui | ti nVal ue

BuiltinValue ::=
Bit StringVal ue
Bool eanVal ue
Character StringVal ue
Choi ceVal ue
EnbeddedPDwVal ue
Enuner at edVal ue
Ext er nal Val ue
I nst anceX Val ue
I nt eger Val ue
Nul | Val ue
bj ectl denti fierVal ue
Cct et StringVal ue
Real Val ue
SequenceVal ue
SequenceO Val ue
Set Val ue
Set O Val ue

BitStringValue ::=
bstring
hstring

Bool eanVal ue ::=
TRUE |
FALSE

CharacterStringValue ::=

Restrict edCharact er StringVal ue |
UnrestrictedCharacterStringVal ue

cstring

Char act er StringLi st
Quadrupl e

Tupl e

CharacterStringList ::=

CharSyms @ :=

Char sDef n |

Char Synms ", " CharsDefn
CharsDefn ::=

cstring |
Quadrupl e |
Tupl e |
Absol ut eRef er ence
Quadr upl e ="{" QGoup
G oup = nunber
Pl ane = nunber
Row ;1= nunber
Cel | = nunber
Tuple ::="{" Tabl eCol um "
Tabl eCol um .1 = nunber
Tabl eRow .= nunber

UnrestrictedCharacter StringVal ue ::

1

RestrictedCharacterStringVal ue ::

Pl ane

Choi ceValue ::= identifier ":" Val ue
EnbeddedPDWal ue :: = SequenceVal ue
Enurer at edVal ue ::=identifier
Ext er nal Val ue :: = SequenceVal ue
I ntegerValue ::=

Si gnedNunber
Si gnedNunber ::=

116

Char Syns "}"

' Tabl eRow "}"

ETSI

Row

= SequenceVal ue

Cel |

DTS/MTS-00068 V1.1.1 (2000-10)

117

nunber |
"-" nunber

Nul | Val ue ::= NULL

Obj ectldentifierValue ::=
"{" oj | dConponentList "}"

oj | dConponent List ::=
Obj | dConponent |
bj | dConponent (bj | dConponent Li st

oj | dComponent :: =
NaneFor m |
Nunber Form |
NameAndNunber For m

NameForm :: = identifier
Nunber Form : : =
nunber

NaneAndNunber Form :: = identifier "(" NumberForm")'

CctetStringValue :: =
bstring |
hstring

Real Val ue :: =
Nuner i cReal Val ue |
Speci al Real Val ue

Nuneri cReal Val ue ::=
0 |
SequenceVal ue

Speci al Real Val ue :: =
PLUS | NFI NI TY |
M NUS- | NFI NI TY

SequenceVal ue :: =
"{" Conponent Val ueLi st "}" |
win wyn

Conponent Val ueLi st ::=
NarredVal ue |
Conponent Val uelLi st "," NanmedVal ue

NanedVal ue :: =

identifier Value |
Val ue

SequenceCf Val ue :: =
"{" Val ueList "}" |
nin wyw

Val uelLi st ::=
Val ue |
Val ueList "," Val ue

SetValue ::=
"{" Conponent Val ueLi st "}" |

wpr oy

Set0fValue :: =
"{" Val ueList "}" |
win wyw

Val ueSet ::= "{" El enent Set Specs "}"
El enent Set Specs :: =

Root El enent Set Spec
Root El enent Set Spec ::= El ement Set Spec
El enent Set Spec :: =

Uni ons |

ALL Excl usi ons

Excl usi ons ::= EXCEPT E enents

ETSI

DTS/MTS-00068 V1.1.1 (2000-10)

118

Unions ::=

I nt ersections |

UEl ens Uni onMark | ntersections
UEl ems ::= Unions

Intersections ::=
I ntersectionEl enents

IntersectionEl enents ::= E enents
Uni onMark ::=

e

UNI ON
El ements ::=

Subt ypeEl erment s

"(" El ement Set Spec ")"

Subt ypeEl ements :: =
Si ngl eVal ue

Si ngl eVal ue ::= Val ue

DefinedSyntax ::= "{" DefinedSyntaxList ? "}"

Def i nedSynt axLi st ::= Defi nedSynt axToken Defi nedSyntaxLi st

Def i nedSynt axToken :: =
Literal |
Setting

Literal ::=
wor d |

Setting ::=
Val ue |
Val ueSet |
Encodi ngbj ect |
Encodi ngoj ect Set |
Encodi nghj ect Li st

Encodi ngbj ectList ::="{" Encodi nglbj ect "," * "

I nst anceO Val ue ::= Val ue
Encodi ngd assFi el dType :: =
Def i nedEncodi ngd ass

Fi el dNane

FieldName ::= PrimtiveFi el dName "." +
PrimtiveFieldNane ::=

val uefi el dref erence |

val ueset fi el dreference

Par anet eri zedAssi gnnent :: =
Par aret er i zedEncodi ngQhj ect Assi gnnent
Par anet er i zedEncodi ngSt r uct ur eAssi gnnent
Par anet er i zedEncodi ngOhj ect Set Assi gnnent

Par anmet er i zedEncodi ngQbj ect Assi gnnent :: =
encodi ngobj ect r ef erence
Par anet er Li st
Def i nedEncodi ngd ass
Ehi:odi ngoj ect

Par anet eri zedEncodi ngStruct ur eAssi gnnment :: =
encodi ngcl assref erence

ETSI

}r

DTS/MTS-00068 V1.1.1 (2000-10)

Thefollowing productions are defined ITU-T Rec. X.681 | ISO/IEC 8824-2, as modified by Annex C, with the items
defined in H.1asterminal symboals:

Thefollowing productions are defined ITU-T Rec. X.683 | ISO/IEC 8824-4 as modified by Annex D, with the items
defined in H.1asterminal symbols:

119

Par anet er Li st

Encodi ngStructure

Par anet eri zedEncodi ngQhj ect Set Assi gnnment @ : =

encodi ngobj ect setref erence
Par anet er Li st
Def i nedEncodi ngd ass

E.n.codi ngQbj ect Set
ParaneterList ::="{" Paraneter "," + "}"

Paraneter ::=
Par anGovernor ":" DummyRef erence |
DunmyRef er ence

Par antover nor ::=
Gover nor |
Dunmy Gover nor

Governor ::=
Def i nedEncodi ngd ass |
Encodi ngC assFi el dType |
REFERENCE

DumyGover nor ::= DummyRef erence
DummyRef erence :: = Reference

Par anet eri zedRef erence :: =
Ref erence |
Ref erence "{" "}"

Par anmet eri zedEncodi ngQbj ect :: =
Si npl eDef i nedEncodi ngOhj ect
Act ual Par anet er Li st

Si npl eDef i nedEncodi ngQhj ect :: =
Ext er nal Encodi ngQbj ect Ref er ence |
encodi ngobj ect ref erence

Par anet eri zedEncodi ngQbj ect Set : : =
Si npl eDef i nedEncodi ngOhj ect Set
Act ual Par amet er Li st

Si npl eDef i nedEncodi ngChj ect Set :: =
Ext er nal Encodi ngQbj ect Set Ref erence |
encodi ngobj ect set ref erence

Par anmet eri zedEncodi ngStructure :: =
Si npl eDef i nedEncodi ngStructure
Act ual Par anet er Li st

Si npl eDef i nedEncodi ngStructure :: =
Ext er nal Encodi ngd assRef erence |
encodi ngcl assr ef erence

Act ual ParaneterList ::="{" Actual Paraneter

Act ual Paraneter ::=
Val ue
Val ueSet
Encodi ngbj ect
Encodi ngoj ect Set
Encodi nghj ect Li st
Absol ut eRef er ence

ETSI

DTS/MTS-00068 V1.1.1 (2000-10)

