
Copyright © 2000 by the INTERVAL consortium.

ITM LÜBECK (D), TELELOGIC (F), SOLINET (D), ERICSSON (S),
FRANCE TELECOM R&D (F), TELETEL (GR).

IINNTTEERRVVAALL
Formal Design, Validation and Testing of Real-Time

Telecommunications Systems

 IST-1999-11557

Title : Requirements Analysis Report (v2)

Author(s) : Jean-Luc ROUX, Stefan STROMQVIST, Dieter HOGREFE, Helmut
NEUKIRCHEN, Daniel VINCENT, Alain KERBRAT, Iulian OBER,
Vangelis KOLLIAS, Vassilis VELENTZAS.

Editor : ERICSSON

Date : 9 October, 2000

Identifier : IST/11557/WP1/07.00/ERIC/D11

Document Version : 4

Status : Proposed

Confidentiality : Public

Abstract : (10 lines max.)

The purpose of this document is to describe the different aspects of real-
time systems to consider when defining timing extensions to SDL, MSC
and TTCN languages. These requirements are gathered from industrial
projects, from partners’ expertise, from the work of standardisation
bodies, and from inputs by the Interest Group. A classification is
operated so priorities can be assigned to the most important
requirements.

Project end-users present their needs with extending the emphasis to
more general real-time concerns than only in Telecom. Besides tool
providers are also expressing recommendations for tool support.

Deliverable D11 has 2 versions: First version was the document released
on 04 August, 2000; then based on discussions with the Interest Group,
a second version consolidated has been produced.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 2

Public

History

Date Version Comments
07 July 2000 1 First draft
12 July 2000 2 Updating Ericsson's parts
04 August 2000 3 Integration of partners’ contributions and comments
09 October 2000 4 Updates for the final revision

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 3

Public

Table of Contents

1. OBJECTIVES OF THIS DOCUMENT4

2. TYPES OF REAL-TIME SYSTEMS5

2.1 CHARACTERISTICS OF REAL-TIME SYSTEMS 5
2.2 SPECIFICS OF TELECOM APPLICATIONS6

3. CURRENT DEVELOPMENT PROCESS................................ 8

3.1 FRANCE TELECOM DEVELOPMENT PROCESS 8
3.2 TELETEL DEVELOPMENT PROCESS 9

3.2.1 Testing and Validation 10
3.2.2 Requirements for TTCN Testing11

3.3 ERICSSON DEVELOPMENT PROCESS 13
3.4 STANDARD ENGINEERING GUIDELINES................................ 15

4. REQUIREMENTS FOR REAL-TIME SYSTEMS DEVELOPMENT................................ 18

4.1 ANALYSIS REQUIREMENTS 18
4.1.1 MSC................................ 18
4.1.2 SDL 19

4.2 DESIGN REQUIREMENTS................................ 21
4.2.1 Interruptive Timers in SDL................................ 21
4.2.2 Timing of Signals and Processes21
4.2.3 Non-buffered Signal 22
4.2.4 Other timers problems................................ 22
4.2.5 Grouping Block/Process Instances 22
4.2.6 Atomic Transactions and Synchronisation 22

4.3 VERIFICATION AND VALIDATION REQUIREMENTS 23
4.4 PERFORMANCE AND DEPENDABILITY EVALUATION REQUIREMENTS 24
4.5 TARGETING REQUIREMENTS 25
4.6 TESTING REQUIREMENTS 26

4.6.1 Definition of the testing process26
4.6.2 General requirements for the extension of TTCN 27
4.6.3 Requirements related to the speed o f the tester 28
4.6.4 Other extensions to TTCN (for further study) 31

4.7 TOOLS REQUIREMENTS 31
4.7.1 General requirements 31
4.7.2 Edition tools 32
4.7.3 Simulation tools 32
4.7.4 Verification and validation tools33
4.7.5 CATG tools33
4.7.6 TTCN executor benchmarking 34
4.7.7 Tools integration platform 35

5. CLASSIFICATION OF REQUIREMENTS 38

6. CONCLUSIONS................................ 40

7. REFERENCES................................ 41

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 4

Public

1. Objectives of this document
The purpose of this document is to collect industrial user requirements regarding real-time in
the engineering process of reactive systems, from initial analysis down to system testing.

The study is based on industrial experience in projects where timing constraints are of the
highest relevance. Input has been contributed from:

- Inside the consortium by the telecom equipment manufacturers and the telecom operators,
as well as by the providers of engineering tools. In particular, each end-user present the
current practices in his organisation, showing important links between the notations and the
methodologies that are used.

- Outside the consortium by the members of the Interest Group who provide additional
needs eventually for non-telecom industrial applications.

Requirements have been identified from several viewpoints: specification, design, verification,
validation, testing, as the industrials have separate teams coping with the different stages of the
development process.

A large part of requirements concerns analysis and modelling, focusing on necessary concepts
to represent time progress (semantics of time), time constraints (deadlines), timing
characteristics (execution times), resources characteristics and their utilisation. These
modelling capacities are needed to perform timeliness, schedulability, performance and
resource usage analyses. In liaison with these requirements, there are requirements on analysis
techniques for timed systems, specially verification and testing.

It must be noted that this document does not address in detail the methodology and process
sides. However the increase in complexity of real-time systems, the demand for testing as
earlier as possible, and the need for a more flexible development flow impose strict
requirements on the process models, the methodologies and the tools supporting the
engineering of such systems.

Therefore it is important that a methodological approach accompanies the use of the extended
notations and the analysis techniques. Additional requirements will be considered in this
respect when designing the toolset and its application guidelines; for instance methods and
tools should provide a help to formulate timed properties that the user wants to verify, as well
as to interpret the analysis results e.g. the impact of a parameter on the system behaviour.
More generally, a development process should provide the necessary guidance on the order
(phases, increments, prototypes, etc..) in which a real-time system must be realised, defining
also completion criteria for every stage.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 5

Public

2. Types of real-time systems

The INTERVAL project aims at offering technical solutions to real-time systems designers
using Formal Description Techniques (FDTs). The needs of these designers are induced by the
different problems they have to face. Current solutions for real-time systems design provide
some answers for the design, validation and coding phases. However aspects such as:

- Verification in presence of timed constraints

- Prediction of system performance

- Dimensioning analysis of the architecture

- Refinement of timed constraints

- Research of timed schedules (limits)

are little considered in these solutions. They can only be handled with models that include
constructs for expressing behaviour, performance, reliability, scheduling etc. It should also be
noted that the definition of appropriate formalisms must be accompanied the development of
analysis and simulation techniques that can give the expected results to the user.

2.1 Characteristics of real-time systems

A real-time system is always made of 2 parts: an application and its environment. The system
must control the dynamic behaviour of the environment with response times that cannot be
neglected regarding its dynamic evolution. Characteristics of real-time applications can be
identified according to the following criteria:

- Is the system a reactive system or a transformational system?

- How many connections has the system with the environment?

- What is the physical architecture of the system: Mono- processor or Multi-processor?

- Does the system implement concurrent activities?

- With respect to timed constraints and delays, is the application:

- Hard real-time

- Soft real-time

- With respect to dependability, is the application safety critical or not?

- Does the system have high, medium or low response times?

A common element with real-time systems is the consideration of timed constraints (more
generally of the time parameter) as either:

- A logical factor of the functioning (hard real-time), or
- A performance factor of the system (soft real-time), or
- A cost factor of the architecture.

Many objectives assigned to a real-time system are translated into timed constraints. Industrial
applications usually impose response times i.e. bounded timed constraints that monitor in some
way most of the application functions: information transfer, fault tolerance, access time,
resource sharing, communication delay, clock synchronisation, emergency stop, etc..

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 6

Public

With respect to the scheduling problem i.e. the execution of a set of inter-dependent tasks
within given time and resource utilisation constraints, time is considered as a special resource
needed to realise the different tasks, and allows to decide the scheduling of tasks, the
assignment of resources to a task, and the detection of failures (reliability).

A number of complementary characteristics and constraints can be listed with respect to some
items already given:

- Reliability/Dependability: It must be possible to guarantee a minimum mean time between
failure and a useful degraded service in case of hardware failure.

- Responsiveness: The system must react to changes in its environment in a timely
predictable way on all possible situations that may occur both within the environment and
the system itself.

- Hard real-time: Some timed constraints impact strongly on the logical behaviour of the
system e.g. making the result useless or even dangerous.

- Soft real-time: Time is only a performance factor not impacting on the logical behaviour
e.g. the application is able to work under average time constraints.

- Continuous/Discrete time: Continuous time allows to manipulate time with an infinite
resolution i.e. with a unit of time as small as necessary.

- Fault detection: Fault processing in a real-time context demands special techniques to
detect them, recover them and evaluate their impact on the global behaviour of the
application.

- Functional/Non-Functional: Non-functional requirements define constraints that the system
must support while keeping on functioning. Timed constraints belong to this class of
requirements

- Cost and flexibility: A real-time application must be easy to upgrade, and as inexpensive to
produce, run and maintain as possible.

- Operating system: The performance of the application will be conditioned by the
underlying real-time operating system and the real-time primitives that are provided.

2.2 Specifics of telecom applications

Within today telecom systems, covering fixed telephony, mobile telephony, and now
converging with the Internet, a strong requirement of underlying protocols is that they must
provide the most efficient use of the bandwidth available and they must transfer large amount
of data (audio & video) in real-time. Hence end-user Quality of Service (QoS) aspects such as
high-speed transfer rate, are of prime importance in this industry. New telecom standards for
multimedia applications such as the ones that will be studied in the project should be able to
ensure real-time traffic.

Typical real-time properties of such protocols are:

- Continuous media transmission

- Detection and recovery of losses

- Security and content identification

- Timing reconstruction of transactions

Regarding the Internet, real-time communication is a major issue that limits today the benefit
from high-quality services specially due to excessive response times.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 7

Public

Industrial networks on the other side belong to the category of hard real-time systems, for
which bad response times may imply a system failure with costly consequences.

A common characteristic of telecom applications is their distributed nature. Therefore:

- Communication and synchronisation models that include timed constraints are necessary,
in order to express and validate the system execution. A distributed architecture demands
structuring and scheduling methods/tools to respect the response times given in the
requirements.

- Real-time scheduling of a distributed application becomes also far more complex to realise
than in centralised systems. In a distributed universe, the control part executes without
support of a common memory, and relies on the co-operation between the communicating
processes located in different sites. The scheduling strategy must decide when and where
the processes will execute.

As a summary, telecom systems are reactive systems that accept stimuli from their environment
and react appropriately. Usually, several concurrent activities execute in parallel in most
telecom applications; a multi-tasking mechanism is implemented to support these parallel
activities.

In order to deal with all these above problems, possible solutions range around automata
models, queuing networks, (semi-)formal specification languages, structuring and
communication mechanisms, methods for interconnecting different formalisms. In addition
support tools e.g. graphical editors, simulators, test environments etc., are required. Finally all
these possible directions for investigation must remain inside the standardisation framework
and must associate standardisation groups in the work.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 8

Public

3. Current development process

3.1 France Telecom development process
FT R&D is not meant to be a software manufacturer, but rather a designer and network
integrator of telecom systems including a big amount of software based functions. Thus the
development process used there is generally not a complete one, focusing rather on precise
phases of the software life cycle : requirements/specification, global design for the early steps,
and then system conformance or robustness testing. In the particular phases which are
described below, languages and methods around SDL or TTCN are often well suited.

Model Description and Verification for new protocols or real time applications
Depending on the level of confidence one wants to have in his model, the initial requirements
are more or less formalised, going from simple UML diagrams to completely formalised SDL.

Formalisation is especially used in the area of reliable multimedia protocols with hard real time
constraints, or complex network architectures and applications (SS7, IP, IN…). The goal here
is to produce good and unambiguous specifications that will then be used by a telecom
equipment manufacturer. This is done by intensive model checking against requirements using
SDL verification tools. We verify both if the model is correct (no deadlocks, no dead code…)
and if the specification fits the needs.
Detection of IN service interactions has for example been one domain where FT R&D has
made a big usage of these techniques.

Performance modelling and prediction
Validation of multimedia protocols require some events to happen in limited delays, and SDL
tools do not offer enough flexibility for time control and performance analysis.
One more and more attractive technique for that is, instead of using complex mathematical
modelling, to use simulation of performance models in which you describe both (simplified)
functional behaviour and network or resources characteristics.
For the moment, even if we have a complete SDL functional model, the performance model
has to be rewritten using some low-level programming language used by commercial tools
(SES Workbench, Opnet…). Some ongoing studies aim at facilitating a partial performance
model generation from an SDL model.

Conformance Testing and QoS
As said before, FT.R&D in the area of network equipment does not produce its own software,
but purchases it from telecom equipment manufacturers according to more or less complete
specifications. When these specifications are formal (by using e.g. SDL), it is then possible to
derive conformance tests to be applied to complete systems when they will be delivered by
suppliers. The ISO 9646 conformance testing method and the TTCN language are then often
used for this purpose.

Other testing like robustness or QoS testing has also to be taken into account. But at the
moment, these tests are mostly prepared and performed manually, due to lack of automation
means and methods.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 9

Public

3.2 Teletel development process

TELETEL is following a well structured software development process in all software related
projects. These are managed according to a defined life cycle, which focuses on the following
phases:
• The requirements capture and analysis phase where the customer requirements are

recorded and formally agreed. This process translates end user, marketing or customer
requirements into development requirements. This phase actually occurs through the entire
development life cycle, with requirements coming from several sources.

• As soon as the customer requirements have been defined (requirements specification) a
top-level design (Architectural design) of the system begins.

• Detailed design (of components and modules) follows ensuring that the design of the
software product is correct. Individual modules are designed using a structured approach.
Before the detailed design of components and modules proceeds, a check shall be made as
to whether suitable designs and implementations already exist.
Structured design techniques are used during the top level and detailed system design to
produce the System Specifications based on techniques defined by Yourdon, Jackson,
SSADM theory. This methodology results in a clear design representation of the system
functionality and module interaction through the use of:

• Dataflow diagrams
• Entity Relationship Diagrams
• State Transition Diagrams.

The detailed designs are produced using either standard drawing packages or SDL,
depending on the project size.

• After the system design phase the implementation phase follows. TELETEL has defined
proprietary coding standards and naming conventions that all engineers should follow
during coding. Frequent code reviews from team co-ordinators ensure the compliance to
the company standards and the ease of maintenance, portability and productivity. High
Level Languages such as C and low-level Assembler are used for the implementation of the
high level or the Embedded systems Software.

Testing and validation procedures are available and are followed during the design of the test
plans and the implementation of testing. The testing and validation approach that is followed in
TELETEL software development lifecycle is presented in the section 3.2.1 below.

REQUIREMENTS

SPECIFICATION

TOP-LEVEL

DESIGN

TESTING

VALIDATION
IMPLEMENTATION

DETAILED

DESIGN
NEW SYSTEM

SUPPORT

MAINTENANCE

Figure 1: Current status of software development procedures

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 10

Public

3.2.1 Testing and Validation

During validation the functional behaviour as specified in the requirements on one hand and the
formal description of the service and/or protocol on the other hand are being compared. It is
investigated whether the specified service or protocol is offering what was originally specified
in the requirements. The testing approach that is followed in TELETEL is based on TTCN. In
the Figure 2 below, the test environment for “in-house” protocol implementation validation
and testing is illustrated.

PCO_1

PCO_2

IUT Executable
Test suites

Message
Capturing

Figure 2: TELETEL test environment

Each implementation under test (IUT) module is integrated within the appropriate test
environment according to the test steps and procedures that have been specified during the
specification and design phases. The TTCN Execution module executes TTCN tests against
the IUT, while message exchange is also being captured. The Tree and Tabular Combined
Notation (TTCN) is a well-established notation for the specification of tests cases for OSI
protocol conformance testing. Test cases are used for ensuring that different implementations
of the same protocol specification are checked for the same set of requirements. A TTCN
environment for defining, checking, compiling and executing test cases has been established
allowing significant reduction of the testing phase effort, while in the same time ensures
stability through standards compliance.

TELETEL is also licensing TTCN tests suites for various networks including SS7, ISDN,
GSM, GPRS, ATM, etc. The test suites are also standalone products aiming at conformance
testing of third party equipment (switching, gateways, terminals, etc). Depending on the
protocol level, the TTCN test suite may be operating on top of protocol emulator layers (e.g.
MTP-3 test suites are operating on top of MTP-2 emulator Figure 3).

MTP 2

Emulator

Interface card

MTP Level 3

Test Suite

PCO

Figure 3: MTP-3 Test Architecture

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 11

Public

3.2.2 Requirements for TTCN Testing

As described before, TELETEL uses a TTCN testing environment in order to ensure that the
software implementation meets the functional requirements. Although TTCN provides a timer
mechanism which allow to set timers and to check their status, the absolute and relative timing
of events cannot be specified, particularly when the testing system is overloaded. The TTCN
timer mechanism depends on the entire system load and performance and this fact might
leverage the functional conformance of the Implementation Under Test (IUT).

The functional conformance of real time applications in many cases depends on their “in-time”
reactions, especially when severe timed constraints have been considered. These requirements
lead to the enhancement of conformance testing introducing particular extensions (real-time
extensions) to the TTCN. Telecoms protocol implementations necessitate real-time TTCN
enhancements in order to be able to be tested for conformance in any complex scenario.

A typical example of a low level telecommunications protocol layer is MTP-2. MTP-2 is a
low-level protocol in the SS7 stack responsible for the reliable PDU transfer between two
nodes. It builds on the HDLC method of PDU transfer by adding acknowledgement and re-
send procedures. The SS7 stack was designed with dimensioning, performance and reliability
in mind. The MTP-2 layer, as the lowest layer, is subject to the tightest time constraints. These
constraints are much smaller than the time constraints of higher level protocols.

The test specification for an MTP-2 protocol implementation is described in the ITU-T
Recommendation Q.781. In Figure 4 the MTP-2 test architecture that comprises a single PCO
is illustrated. The MTP2 test suite includes about 100 primary tests for Validation and
Compatibility conformance. It encompasses tests for Link State Control, Transmission failure,
SU Delimitation, Alignment, Error detection and correction, the SUERM, AERM, the
Congestion Control and the Transmission and Reception Control.

M T P 2

T est E n gin e

Interface card

M T P L evel 2

T est S u ite

A S P

Figure 4: MTP2 Test Architecture

In the following arrow diagram (Figure 5) a graphical representation of an MTP2 test case is
illustrated. The purpose of this test is to check the response to a link failure after corruption of
two FIBs – detected by reception control – while the protocol is in “in service” state. The
reception of two FISUs at A with corrupted FIBs when the data link is in-service state causes
the link to be taken out of service.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 12

Public

Tester (B) IUT (A)
FISU

FISU

(FIB+FSN = FF)

FISU corrupt FIB

(FIB+FSN = 7F)

FISU corrupt FIB

(FIB+FSN = 7F)

SIOS

Figure 5: Arrow diagram of MTP2 test case

Whilst timers for connection establishment in the network layer may be in the range of 4-20
seconds, the MTP-2 timer T5, for example, defines a response time of 80-120 ms. For complex
TTCN test scenarios (see Figure 6, with several PCOs where the ISDN, SS7 and IN interfaces
are involved simultaneously) this response time is the same order of magnitude as the
execution time needed to process a timeout in a simulator. These leads to scenarios incorrectly
failing due to the inaccuracies introduced by the timer handling.

SS7/ISUP

Switch

TESTER

ISDN

SS7/IN

Executable Test SuiteExecutable Test Suite

Test Report

Figure 6: Complex TTCN test scenario

In this regard the test requirements for low level telecom protocols fall into the category of
'Tester is not fast enough to test the IUT' or the category 'It is not known if the tester is fast
enough to test the IUT'. This is discussed in details in section 4.6.3. One requirement identified
for this category of problem in the framework of Real-time TTCN is to prioritise timers used in
the test suite.

However in the practical application this will reduce the problem by defining the timeframe
more accurately and by reducing the inaccuracies associated with the system handling of
timeouts. In this sense it provides a qualitative improvement, but does not remove the source
of the problem, which, within the scope of prioritised timers, can only be achieved by using an
infinitely powerful processor. For the test requirements described above, it is anticipated that
the timer handling overhead can be reduced sufficiently for it to be insignificant compared to
the defined time constraints.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 13

Public

3.3 Ericsson development process

Several development processes are in place at ERICSSON but most of them are only lighter
modifications of this one. This process is valid for medium and large projects. Smaller ones
often combine or remove some steps.

The basic project architecture and work flow can be seen in Figure 7. Note that it is possible to
have several levels of sub-systems in a project. It is also quite common that a project is divided
between different ERICSSON companies around the world which adds complexity on the
process.

Module
design
& test

Module
design
& test

Module
design
& test

Module
design
& test

Sub
System
I&V

Sub
System
I&V

System
I&V

System
design

Sub
System
design

Sub
System
design

Customer

Figure 7: Project architecture and work flow

All work is done in increments and as parallel as possible (see Figure 8 below), so the
described process is used several times during a project and there are also iterations inside the
work flow. This puts heavy demands on good requirements and configuration handling and
that is supported by tools.

System design Increment 1 Increment 2 Increment n

Sub-system design
designdesign

Module design

System I&V

Sub-system design
designdesign

Increment 1 Increment 2 Increment n

Increment 1 Increment 2 Increment n

Increment 1 Increment 2 Increment n

Increment 1 Increment 2 Increment n

Figure 8: Incremental development process

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 14

Public

The following sections describe each step in the development process in more detail. The
languages within brackets is the most commonly used.

System design
A system group collects system requirements in a requirements specification (English) and
makes a system design. It should be clear in this high level design (UML, SDL, MSC, English)
which sub-systems it consists of and how they interface. The requirements capture is often a
long process due to that it is rare that new communication protocol standards are in a stable
state when a project starts.

Sub-system design
Each sub-design team refines the requirements collected from the earlier phase in a new
requirement specification and describes their design in an implementation proposal. (UML,
SDL, MSC, English). Some simulations are quite often done during this phase to verify that
chosen algorithms works.

Module design & test
The sub-system design is divided into blocks, modules and functions. These are described in
implementation proposals and implemented (UML,SDL,MSC,C,C++,PLEX). The interfaces
between the separate software parts are also described in inter-work descriptions.

All implemented parts are tested by simulation or in a test environment with stubs for
interfaced software. These stubs are replaced by real software during the progress of the
project.

Sub-system I&V
A test plan and test specification (English, TTCN) are created based on sub-system
requirements and time plans. Creation of the test lab and supporting the design departments in
testability issues are also very important quite early in a project.

Integration of HW and SW starts as soon as possible and this phase includes several software
releases due to found errors.

The verification against the test specification starts as soon as the sub-system is considered
stable enough and the result is presented in a test report (English, TTCN).

System I&V
At this stage, most effort is put into verification of the total system against a test specification
and test plan even though there can be some integration problems.

Also conformance tests, load tests, stress tests (TTCN, proprietary languages) and other
system tests are done. Parts of these tests may be already done in the sub-system I&V phase.

Customer
It is quite common that several pre-releases are made to the customer before the official
release. That makes it possible for the customer to get familiar with the system and educate
own personal early.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 15

Public

3.4 Standard engineering guidelines

At ETSI, there are several kind of guidelines: the ETSI standardization process and the
methodology activities framework.

The ETSI standardization process is quite formal concerning management oriented issues.
When it comes to technical issues (steps 2,7,8 and 10), the ETSI process is very general
[MTS00065]:

No Step Description

… … …

2 Discussion within TB/WG to
determine overall/basic
requirements of the standard(s)

A smaller group within a TB (usually the Sub-Technical
Committee or Working Group where the proposal
originated) will spend time discussing the feasibility of
the proposal and will develop further the requirements
for the standard(s). These requirements are rarely
documented as part of the Work Item itself. If they are
recorded at all, it is more usual for them to be presented
in a Technical Report as the results of a pre-normative
study. Once published, the link between these detailed
requirements and the resultant standards can get lost. It
would be very unusual for the study report to be used as
the basis for subsequent validation of the standard(s).

At this stage, there will be tacit agreement on the
objectives of the standardization work but a consensus
commitment is not normally sought.

… … …

7 Start of work The serious work of developing the standard can now
begin. This will either take place at ETSI within a STF or
by volunteers working at their home offices.

8 Ongoing development of draft
content

The draft content of a standard may contain text, tables,
diagrams, formal specifications such as SDL, TTCN,
MSC and ASN.1 or, more often, a combination of a
number of these. Draft inputs are often produced by a
number of contributors and the process may take many
months to complete.

9 Regular reviews of drafts by
WG meetings or by e-mail

An important part of the standard development process
is to have the draft contents reviewed by interested and
knowledgeable but reasonably independent individuals to
ensure that the original requirements are being met and
that the draft would be usable as a standard.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 16

Public

10 Formal validation if possible
and desirable

Where formal notations are being used within a standard
(even if they are not the normative part), tool-based
validation of the specification model can be carried out.
This can require the provision of time and other
resources by the members of the responsible WG.

… … …

More detailed guidelines are available at the methodology activities framework [ETR298]:
There exist six activities:

• requirements collection: to verify that all the requirements collected respect quality
attributes. This is to check that these requirements are reasonably described;

• classification: to get a first understanding, structuring the informal specification, and
to re-express it in terms of concepts of the application domain;

• draft design: to increase such understanding; the standard developer can analyze
different perspectives of the system, using one or more models that describe the system
partially;

• formalization: once he has obtained a thorough understanding of the problem, the
standard developer actually writes down the formal specification using the formal
technique of ITU-T Recommendation Z.100;

• derivation of the validation model: once the specification has been formalized, the
standard developer provides a detailed and an executable (by the support of tools)
version of the specification;

• documentation: from a formalized specification, the standard developer formats this
according to standard rules used at ETSI (in CEN/CENELEC Internal Regulations).

As shown in the Figure 9 below, the result of performing an activity (requirements collection,
classification, draft design, formalization, derivation of a validation model, or documentation)
is a specification (collected requirements, classified specification, draft design specification,
formal specification, validation model, ETS), consisting of a set of descriptions containing the
knowledge acquired during the specification production.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 17

Public

Figure 9: ETSI methodology activities framework

[ETR298] and other documents say nothing about how to handle time requirements during the
methodology activities. An example, how an individual STF handles time requirements is the
following:

“Generally speaking, the existing SET, RESET and timer input concepts in SDL are sufficient
for most purposes. Response timers are specified using a guard (e.g. if CALL_PROCEEDING
must be received within 100ms of SETUP being sent, the SETUP will be sent, a
SET(NOW+100) will be executed and a new state entered to wait for either the
CALL_PROCEEDING to arrive or the timeout to occur causing an error condition). Any
other timing constraints that could not be expressed in current SDL would be specified in text
outside the SDL model.”

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 18

Public

4. Requirements for real-time systems development

Three levels of abstraction can be identified in the construction of a real-time application:

- At the conceptual level, the application is analysed and specified, the different entities and
their interactions as well as the constraints over these interactions. Constraints can be of
type: coherence, synchronisation, tolerance, deadline, protection etc..

- At the architectural level, the entities in the application are distributed over different places
and communication channels are established. Constraints can be of type: modularity,
reusability, delays, scheduling, fault detection, reconfiguration etc.. Initial verification of
the design should take place at this stage.

- At the operational level, the actual physical implementation is realised according to the
architecture. The different functions must be generated and integrated on the processors,
communications must be optimised, and timed constraints must be validated and tested.

The next sections review for each development stage the needs for modelling and processing
timed constraints in real-time applications.

4.1 Analysis requirements

Existing real-time analysis methodologies use several types of models for representing timing
requirements and timing information for systems analysis: timing (timeline) diagrams, time
annotated MSCs, informal English, formal timing annotations on functional models (e.g.
duration, frequency, delay jitters, skew).

Regarding the underlying semantics of the formal extensions proposed for SDL, the basis can
be taken from the timed automata theory [ACD90] and from timed automata with urgencies
[BS97], [BST97], a high-level formalism for modelling temporal properties of reactive
systems. This research provides a framework for studying timed extensions to SDL, as they are
investigated in the IF technology project [IF99].

Finally another direction for integrating real-time requirements within an SDL-MSC
specification is expressing them in terms of some extended temporal logic [SL95], [MMG92];
the method can be applied to analyse delay bounds, delay jitters, and various QoS constraints.
In the context of our project, this approach will not be further studied as we concentrate on
timed extensions directly operated in the formalisms SDL, MSC and TTCN.

As far as the target technologies of the project are concerned, in the analysis phase, MSC and
SDL with some extensions should offer sufficient support for capturing most timing
requirements and expressing timing information available for a real-time system.

4.1.1 MSC
MSC’2000 gives the possibility to express timing requirements in an MSC. Requirements are
given by intervals of time elapsing between any two events in an MSC. This facility offers a
first means to express timed constraints, and must be assessed before proposing further
extensions to the MSC language.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 19

Public

4.1.2 SDL
SDL is rich in programming constructs for manipulating time (timers, the system clock now),
but expressing high-level timing requirements or timing information with these constructs is
difficult. Examples of information that cannot be captured in SDL are:

- “it is required that the system responds to signal A within 500 to 700 ns”

- “performing the action a takes between 200 and 500 ns”

- “signal A comes from the environment with a nominal frequency of 6,4µs, and a jitter of
±20%”.

Such information may be essential:

- for the completeness of the specification of the system per se,

- for verification of certain properties,

- for the generation of sound test cases with respect to the timely behaviour of the system.

Currently, there are two reasons for which the SDL language cannot capture such information:

- language constructs (e.g. assertions, guards) for expressing certain conditions are missing,

- the semantics of existing SDL constructs is too relaxed with respect to time.

The subsequent sections discuss these two problems, and settle guidelines for the solutions
which should be developed within the project.

4.1.2.1 Assumptions on moments and duration

Motivation

Currently, all high-level time specifications have to be modelled in SDL using programming
features like timers. However, specifications with timers are imperative, and they do not match
the intended semantics of assertions on moments and duration (which are just logical
constraints). The drawbacks of using timers for expressing constraints are twofold:

- The description is cluttered.

For instance, for expressing the duration of an action by means of a timer, several elements
must be introduced in the model artificially: a timer, a timeout transition for expressing the
minimal action execution time as a timeout-waiting time, another timeout transition leading
to an invalid state for expressing the maximal action execution time.

All these additional elements are spread throughout the model, and it may be difficult to
see their relation to the initial action whose execution time they are expressing. It may also
be difficult to distinguish between normal usage of SDL timers and this special usage.

- Tools subsequently using the SDL specification must distinguish between normal and
special usage of timers. E.g. code generators must not generate code for the timer and the
timeout transitions describing action duration. Simulation and verification tools must
handle differently the invalid state used to express the maximal action duration.

For action duration in particular, several extensions to SDL were already proposed. The
ObjectGEODE Simulator [OBG99] uses a syntactic extension by which one can associate an
execution time (interval) to an action. Queuing SDL [MTMC99] uses a more elaborated

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 20

Public

approach in which execution times are dynamically calculated with the help of queuing
machines, so that they are depending on the amount of work and on the charge of the system.

Requirements

An extension to SDL encompassing both solutions mentioned above is needed and should be
studied in the project. The extension must be sufficiently general so that a large class of timing
constraints could be expressed with it, without hard-coding a pre-selected number of constraint
types. The types of timing constraints that must be expressible with the proposed SDL
extensions should include: action/communication duration, frequency of an action or of a
signal (output/input), jitter conditions, inter-signal skew, etc..

4.1.2.2 Semantics with controllable time

Motivation

The current SDL semantics does not prescribe any limitations with respect to the way time
passes during the execution of an SDL system (except that the value of now is not decreasing
throughout the execution). The formal semantics contained in Z.100 maintains that an
undefined amount of time may pass while a process is in a state, before the process starts
executing the next fireable transition. Z.100 also specifies that “an undefined amount of time
may pass while an action is interpreted”.

Such a semantics is valid in the sense that actual implementations of the system conform to it.
However, for simulation and verification purposes, this semantics is impractical for at least two
reasons:

- Reasonable assumptions about the verified system, such as that a timer set for 10ms will be
consumed before a timer set for 100ms (timers set at the same moment, by concurrent
agents which are idle in the meantime), are not enforced by the formal semantics. As a
consequence, execution paths which are valid regarding formal semantics but have no
interest for the user will be explored by simulation and verification tools.

- The introduction of several non-realistic behaviours (execution paths) will lead to false
negative verification results.

The semantics implemented in commercial SDL simulation and verification tools is different
from the standard semantics in the way it handles time. Tools always make simplifying
assumptions such as: action duration is 0, transitions are triggered as soon as they are enabled,
etc..

Requirements

The project should investigate a modified semantics for SDL, which would handle time in a
way that:

- some flexibility is allowed for modelling the responsiveness of the system and duration of
actions.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 21

Public

- powerful analysis methods exist for the modified SDL semantics. Simulation and model
checking (and, in particular, model checking of temporal properties) should be available for
the modified semantics.

The second goal is essential, since one of the main advantages of SDL over other real-time
modelling techniques is the availability of powerful simulation and verification tools.

4.2 Design requirements

The low-level design and programming constructs often employed in the construction of real-
time systems represent a fairly stable and sufficient set of mechanisms. This section revisits
existing concepts from the point of view of SDL, emphasising some lacks of SDL.

SDL has a good coverage of the programming mechanisms often used in real-time systems
construction. Hierarchical structuring of systems and sub-systems, asynchronous
communication, and timers are some of the positive real-time design and programming features
of SDL. There are however several recurring real-time programming patterns that cannot be
described natively in SDL.

4.2.1 Interruptive Timers in SDL

Motivation

Time dependent behaviour may be expressed in SDL using: the system clock (the implicit
variable now), and timers (which can be set, waited upon, or received asynchronously).

SDL timer timeouts are always received as asynchronous messages. For general-purpose time
dependent code this is usually fine, but it is difficult to write real timeout emergency
procedures using timers. To ensure that a piece of code is executed immediately as a
consequence of a timeout, the SDL programmer must first make sure that the agent handling
the timer is idle when the timer is received. If this is not the case, then the process may
consume the asynchronous timer message from the message queue only when it finishes its
current job, which may be too late.

Requirements

The extension of SDL with a notion of emergency timer is to be studied in this project. An
emergency timer is a timer whose expiration is taken immediately into account by the receiving
agent. This notion would create a link between the exception mechanism from SDL’2000 and
the system time, so that time passage may raise an exception.

4.2.2 Timing of Signals and Processes

There are usually less processors in an execution platform than SDL processes running in
parallel. In this case, the right timing of signal processing (respectively process execution) is
very important for real time systems, but there are not any possible timing methods
standardised in the SDL notation. Two alternative timing methods would be useful to solve
this problem:

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 22

Public

- The first one could be to have the possibility to order "time labels" to the signals. Using
these labels it would be possible to determine the order of signal processing from the
queues of the different processes.

- The other solution could be a method to define the execution order of the different
processes, which means that a process runs until it has any signals to be processed from it's
queue and after finishing the execution, the next process to be executed is unambiguously
defined.

4.2.3 Non-buffered Signal
Sometimes it is needed to send a signal to another process with "top priority" which should be
immediately processed. The solution using priority levels is not suitable in this case, because
other signals could have the same priority level in the queues, so the requirement of immediate
processing is not met. The only solution is to use signals that do not enter the buffer of the
processes i.e. it is immediately processed.

4.2.4 Other timers problems

NORTEL, a member of the Interest Group, has encountered 2 other timer problems on a
current project using SDL in an IP router context. The code from the SDLs will be put on a
real platform to work with existing software in the next months.

1. The timers are one-shot timers. There is currently no way of describing temporal timers
that will go off every 'n' seconds, or every 'n' seconds for 'm' time. It is needed that every
time a timer goes off it has to be set again for the next interval.

2. Passing timers as a data structure to a different process. Currently timers are a special type,
but it is not declared using the DCL construct. So it is not really a variable.

4.2.5 Grouping Block/Process Instances

It would be useful to define groups of blocks (in any hierarchic level) so that creating or
releasing an instance of these blocks happens simultaneously. And if we refer an instance of
block B in an instance of block A, it means the instance of block B created on the same time.

It is also needed some 'casting' operator to overcome strict type handling on a controlled way.
This would allow:
• to select from the individuals of a process the subset or an arbitrary instance where a

logical expression built from the process parameters holds;
• to select from the individuals of a process the subset or an arbitrary instance where a

numerical expression built from the process parameters has its extremity (min, max).

4.2.6 Atomic Transactions and Synchronisation

Atomicity and mutual exclusion may be achieved in SDL by directly inserting system calls in
the SDL code. However, inserting system calls in SDL for achieving atomicity and mutual
exclusion has severe drawbacks:

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 23

Public

1. By inserting system calls in SDL, the SDL description becomes configuration dependent.
Normally, one advantage of SDL is that it is sufficiently high level so that an SDL
description may be mapped to different physical software configurations. Commercial code
generators make use of this feature of the language.

2. External code is generally not handled well by simulation and verification tools, because
such tools need a formal description of the actions to take, description which is not
available for system calls.

With native SDL constructs for atomicity and mutual exclusion, a code generator could
generate the right synchronisation, rollback or deadlock protection code in every possible
mapping. Moreover, atomicity and mutual exclusion would be taken into account in simulation
(which is not the case when using system calls), and deadlocks or other kind of errors that they
may introduce could be detected earlier.

The same discussion stays valid for general purpose synchronisation code. General forms of
synchronisation between SDL agents may be achieved only by using external system calls (e.g.
to OS semaphore operations). In this case also, native SDL constructs would be beneficial for
the same reasons enumerated above.

Requirements

The project should propose extensions to SDL which offer native SDL synchronisation and
mutual exclusions. The extensions should:

- capture common synchronisation patterns (e.g. critical sections) in a simple way.

- be general enough to capture complicated synchronisation patterns (e.g. multiple-condition
waiting).

4.3 Verification and validation requirements

The main requirement regarding verification and validation is concerned with system
behaviour: model simulation and verification of model properties are needed as early as
possible in the development cycle. Verification usually checks for model consistency and model
correctness (safety, liveness, robustness etc.), while validation checks that the system provides
the expected outputs (service, function, performance etc.). Verification/Validation results
should be either a counter-example if a property is not satisfied, or some examples of correct
feasible scenarios. In any case, it should be possible to replay a scenario by simulation.
Considering the target technologies covered in the project, the verification and validation
phases concern MSC, SDL, and possibly other requirements specification languages.

Requirements on MSC

As mentioned before, the project will rely onto the new MSC'2000 standard. However, some
of the features of MSC’2000, which are interesting for real-time development, are not yet
implemented by tools.

One goal of the project is to study the impact of the time-related features of MSC’2000 (time
marks, time intervals, etc.) on verification and validation.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 24

Public

As far as possible, the tools produced or extended within the project should use time
annotations from MSCs:

- analysis techniques should be developed so that SDL simulation and verification tools be
capable of generating time annotated MSCs.

- model checking of properties specified by time annotated MSCs should be possible.

Requirements on SDL

The extensions proposed to SDL in order to improve the analysis and design phases (Sections
4.1.2 and 4.2.1) should be taken into account by the verification and validation tools developed
or extended within the project.

Verification of general forms of temporal properties should be possible. Properties should be
expressible through MSCs, through logic invariants, and possibly through other property
specification languages (see next paragraph).

Other requirements specification languages

Document [INT8] compares several requirements specification languages used in connection
with SDL: MSC, ObjectGEODE’s GOAL language, TELELOGIC TAU’s observer process
language. Automata-based requirements languages, such as GOAL and TAU observer
processes, are superior to MSCs in a number of respects.

The study begun by [INT8] should be pursued, in order to establish the need for such an
automata-based requirements specification language in the real-time systems development
process. If proven useful, such a language should be proposed and extended to cover timing
aspects.

4.4 Performance and dependability evaluation requirements

Performance and/or dependability evaluation is an important step in the development of most
real-time systems. Traditionally, performance and dependability evaluation has used a separate
set of models, disregarding the functional models that serve as basis for the other steps of
system development. Traditional models in performance analysis are the queuing networks, and
plain stochastic processes.

Recently, academic studies have concentrated on model-based performance evaluation, which
propose the use of the same models as for functional description, possibly with stochastic
extensions [MTMC99]. Existing studies on model-based performance evaluation concern
formalisms like: Petri nets (stochastic Petri nets), process algebra (stochastic extensions of
CCS, CSP, LOTOS, etc.)

Requirements

The opportunity of extending SDL with stochastic modelling concepts could be studied within
this project. Existing stochastic analysis methods would have to be adapted to work on SDL
descriptions. Possibility of using lower-level stochastic analysis tools by transformation of SDL
models is a direction for study. The combination of stochastic extensions with the other SDL
extensions proposed in the project (specially timed extensions) is to be considered.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 25

Public

4.5 Targeting requirements

Automated code generation is a major advantage of systems specified with SDL and this
should be preserved as much as possible, in particular for industrial purpose. The automatic
derivation of applications from models is faster and less error-prone than manual coding, while
keeping a close link to the original SDL model. When it is necessary to consider performance
aspects at the implementation stage because this has not been done earlier in the engineering
process, it is often the case that the solutions retained do not respect the system architecture,
and moreover they increase the complexity of the application [MTMC99].

Regarding performance requirements and more generally non-functional properties, most
should be expressed at the specification level by using the timed extensions to SDL and MSC.
Furthermore, performance aspects linked to implementation such as resource requirements
should be identified and formalised. These latter requirements depend on the implementation
alternatives such as how a message queue is implemented. In addition to the capacity and the
intrinsic performance of the resource, its service strategy is also important regarding the overall
system performance. For all these aspects related with final performance at implementation, it
would then be appropriate to have the possibility to quickly change and evaluate a new
alternative directly at the modelling level e.g. similarly to what tends to be done in HW-SW
partitioning; the best trade-off between different parameters could then be selected against the
cost, the performance, the reliability, etc., of the application.

In INTERVAL, the formal specification of performance requirements will be done both in
SDL itself (while describing the behaviour of blocks, channels, transitions, etc..) or in MSC
diagrams (while describing execution scenarios from a user point of view). In addition timed
TTCN specifications should complement the performance engineering process by providing
executable timed tests derived from the formal specification and that can be run on a given
implementation.

Targeting consists in transforming first the formal SDL specification into an implementation-
oriented SDL description where design decisions have been made, and then generating the final
executable code. In [MTMC99] the authors have identified a number of such decisions that
may influence the performance of the implementation: the granularity of SDL entities (e.g.
processes), the selection of the most appropriate SDL construct e.g. for an operation, dynamic
creation of processes, the algorithms to implement SDL services, the specification and
implementation of the data manipulated, etc.. Description of these characteristics should be
investigated as part of timed extensions to SDL.

In [MTMC99], the most important implementation decisions regarding system performance
have been classified in three categories:

• Software architecture

- Application specific code

- SDL run-time system

- Operating system

• Hardware architecture

• Mapping of the load on the hardware

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 26

Public

The software architecture, generally realised through a 3-layers software stack, implements the
functionality and the performance of the application. The application specific code is the one
generated from the SDL model; it interacts with the run-time system primitives to implement
the processing described in the SDL model. The run-time system layer provides the
environment needed to map the primitives for inter-process communication, process and timer
management on the corresponding primitives of the given operating system.

The hardware architecture is concerned with processors, memory, and interfaces. Performance
factors at this level include the generic services provided to implement scheduling, timers,
communication, and interrupts handling. At this level there is another important aspect to
consider regarding performance: how to map optimally the load on the hardware? This
problem is not addressed in the frame of the project and is left for further study.

In conclusion, the choice of the software architecture greatly influences the performance of the
system. A critical choice is to decide where the system functionality should be realised i.e.
either in the application specific part, or in the SDL run-time part, or at the operating system
level. An additional factor to take into account is whether the implementation will be
distributed or not.

4.6 Testing requirements
An overall requirement analysis from the point of view of testing can be found in [HDGN00].
The main aspects are given below.

4.6.1 Definition of the testing process
We are assuming the following scenario: There is an SDL specification, which serves as a basis
for an implementation. We want to use the SDL also as a basis for the development of test
cases, if possible, to derive test cases automatically. The assumption is that the system contains
some time critical features, e.g. some maximum response time is specified and has to be met by
the implementation under test.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 27

Public

Pr Pr
SDL

Implementation
Under Test (IUT)

ENV1!a

?TIMEOUT Timer

START Timer
ENV1?c

ENV1!d
ENV2?b

?TIMEOUT Timer

Behaviour Description

fail
fail
pass

Verdi

t

TTCN derive

is basis for

test Tester

is basis for

Figure 10: Testing methodology integrating SDL and TTCN

4.6.2 General requirements for the extension of TTCN

Time synchronisation
A tester may consist of many Parallel Test Components (PTCs) and a main test component
(MTC). In order to be able to test for timed behaviour spread over different PTCs, a time
synchronisation mechanism is necessary, i.e. each PTC has to be able to ask for the exact
absolute time at any moment in order to relate test events to this time.

Qualitative verdicts
In current TTCN a verdict can only have three values PASS, FAIL and INCONCLUSIVE
without further qualification. However, when it comes to time critical measurements, it may be
necessary to exploit more information. For example, if an event has to happen within a time
interval, it may be interesting to know how well it is within the interval, e.g. the time when an
event happens may be recorded in the test report. Time measurements are normally not
reproducible. Therefore, the same test case run at a different time may result in a different
verdict. In general, it is necessary to run tests repeatedly and gather some statistical results.

Architecture and PCO specification
A PCO (Point of Control and Observation) in TTCN is an asynchronous communication path,
or in TTCN-3 optionally a synchronous one. Beyond this there are no further details known or
specified for a PCO in a test suite. In particular, it is not an issue by which means the tester
accesses the IUT and how much time this connection consumes at an average. For time critical

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 28

Public

measurements we need such information. A PCO therefore has to be qualified so that the test
cases can be designed accordingly.

4.6.3 Requirements related to the speed of the tester
TTCN assumes that the tester is always fast enough to test the IUT. While this assumption is
legitimate if only time non-critical functional behaviour is tested, for real-time applications it
may not be. The processing speed of the tester may not be able to keep track with the test
events that happen at the PCOs.

We want to distinguish 3 cases:
- Assumption: the tester is fast enough to test the IUT
- No assumption can be made about the speed of the tester
- Assumption: the tester is not fast enough to test the IUT

4.6.3.1 Assumption: the tester is fast enough to test the implementation

In this case we may not need any extensions to TTCN. The normal timer mechanism should be
sufficient. The time requirements are specified with the normal MSC2000 “time interval”
concept. In the following example the time elapsed between event “a” and event “b” should be
less than 5 ms. Figure 11 shows the SDL specification, the MSC2000 time requirement
specification and the test case that results from it in TTCN-2 and TTCN-3.

Figure 11: Deriving TTCN from time constrained SDL/MSC

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 29

Public

We are assuming here that the tester is fast enough. We are assuming also implicitly that the
connection between the tester and the IUT is infinitely fast. While the first assumption may be
true, the second cannot, i.e. when the test case is designed and implemented, we have to make
sure that the timeouts are defined in such a way that message travel times are taken into
account.

4.6.3.2 No assumption can be made about the speed of the tester

In this case we have to define some time constraints for the tester, i.e. we have to require the
tester to execute the test events within a certain time interval, so that the IUT can be tested
successfully. A proposal for this has been published in [WG 97] and is called real-time TTCN,
i.e. it is an extension of TTCN by time intervals for test events.

How can these time intervals be determined?

We need to know what to test for, which implies to have a very detailed idea about the time
behaviour of the IUT. Traditionally this time information, i.e. at which times can we stimulate
and observe events, is not part of the SDL specification. If we add this time information to the
SDL specification, we have a basis for determining the time intervals needed for testing.

Various concepts for time extension have been proposed for SDL, e.g. [MTMC99],
[GMB+00a], [GMB+00b], [DBL99]. Whichever time extensions are chosen, it has to be made
sure that execution time constraints for the test events can be derived with sufficient accuracy.

Figure 12: Deriving real-time TTCN from performance SDL model

4.6.3.3 Assumption: the tester is not fast enough to test the IUT

In this case we know a priori that, in certain situations, the tester may be not fast enough for
the IUT. We have to make sure that the time critical events are handled by the tester with
higher priority than non-critical ones, without changing the test result. We have to introduce a
priority mechanism into TTCN.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 30

Public

Let us consider the example of Figure 13. We want to test for the same time requirement as
above, i.e. whether the IUT is responding to an “a” within 5 ms with a “b”. In addition we
want to test, whether process P1 will respond with a “g” after it has been stimulated with “a”
and “f”. We assume here that the tester runs two parallel test components PTC1 and PTC2.
PTC1 performs the same test as in Figure 11. The PTC2 starts it’s operation after the IUT has
been triggered with an “a” (by PTC1) and responded with a “c”.

We assume that both PTCs are running on the same tester. However, PTC2s operations are
not time critical compared with the one’s of PTC1. Therefore we may give them a lower
priority without changing the test result.

Particularly timer events, START and TIMEOUT, have to be executed at the tester with great
care for their timing.

TTCN has to be extended by priority scheduling mechanisms. Since prioritisation changes the
order of test events, we have to make sure that the test results are not changed. This problem
is similar to the partial order problem, which is tackled with partial order methods, see e.g.
[GPS96]. What this means for CATG is for further study.

IUT

ENV1

ENV2

PTC1

ENV3
PTC2

ENV1!a
START Timer

ENV1?c
etc.

ENV3!f
ENV3?g

MTC

Tester

Figure 13: A test architecture with parallel test components (PTC1 has priority)

The problem to be solved here resembles the partial order simulation problem, i.e. whether and
under which circumstances we can change the order of events without changing the result of

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 31

Public

an execution. The problem is for further study, in particular whether it can be supported by
tools and CATG.

4.6.3.4 Conclusion regarding tester speed

With the assumption that the test equipment running the TTCN test case is always much faster
than the IUT, current TTCN can be used to specify real-time tests. However, the assumption
about the speed of test equipment is an implicit requirement, and it may lead to wrong testing
results if not guaranteed.

As long as the test equipment is faster than the application, the need of a TTCN extension for
real-time testing is not mandatory. However, simple extensions such as suggested in RT-TTCN
[WG97] outline possible solutions. In particular, an annotation mechanism with time labels
might be a more obvious or more understandable way to express the already existing timing
requirements in pure conformance testing.

4.6.4 Other extensions to TTCN (for further study)
[SBR97] argue in their paper that further extensions to TTCN are necessary to be able to
specify meaningful performance tests. These extensions should allow to specify traffic load for
the IUT (see Figure 14 below). The paper proposes the appropriate TTCN concepts.
However, this is a different dimension of TTCN extensions and is for the moment not
considered in the INTERVAL project.

IUT ENV1!a
START Timer

ENV1?c
etc.

Tester

Traffic
Load

Figure 14: A test architecture with load generator (PerfTTCN example in [SBR97])

4.7 Tools requirements

4.7.1 General requirements

The prototypes and tools developed and extended within the project will be based on the
existing tools:

- TELELOGIC’s TAU and ObjectGEODE,

- SOLINET's Contessa TTCN Suite,

- VERIMAG's IF framework.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 32

Public

The tools developed in the project should implement, at a maximum extent possible, the
language extensions anticipated by the previous sections of this document.

The possibilities of existing tools such as modularity, interoperability, flexible language
implementation, etc. should be preserved whenever possible.

The new tools should be capable of handling both timed specifications (new extensions) and
standard specifications (specifications using only the present features of the languages). When
handling a timed specification, switching between a timed mode, where the extensions are
taken into account, and an "untimed" mode, where the extended information is disregarded,
should be possible.

The subsequent sections contain additional, tool-specific requirements, which complement the
requirements on tools.

4.7.2 Edition tools

The concepts and mechanisms identified as necessary extensions to the languages (SDL, MSC,
TTCN) will be submitted to the respective standardization bodies. However, in a first step, the
editors for the concerned languages may implement only lightweight forms of these extensions.
This is in order to minimize the effort spent on interface extensions, and to concentrate
resources on more important tasks such as the development of back-end tools and the work on
extensions to the standards.

Therefore, the editors will have the choice between:

1. implementing the extended versions of the languages natively. This is unlikely, due to the
reasons mentioned above, and to the fact that standardized versions of the languages will
be available late into the project lifetime.

2. using special comments which reflect timing information. All the languages support in
some way informal user comments. These comments could contain the necessary timing
annotations, and could be interpreted by the back-end tools.

3. Using a separate description of timing information. Separate description of timed aspects
requires an appropriate notation, and tools to edit, compile and integrate it with the
system’s description.

It is possible to have a combination of these three approaches as a result of the choices made
for timed extensions.

4.7.3 Simulation tools

The existing simulation tools encounter a series of problems due to the discrete-time semantics
they use, and the way they handle temporal non-determinism (esp. non-determinism of the
system environment). As a consequence, in some cases, certain execution scenarios that can
happen in a real implementation of a system do not appear during simulation.

Compared to the current simulation tools, the extended simulation tools should provide a
better coverage of the execution scenarios which can occur in a real implementation of the
simulated system. The limits of the extended simulation tools should be studied and stated
explicitly.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 33

Public

4.7.4 Verification and validation tools

The extended tools should be capable of verifying basic or more complex temporal properties,
including:

1. absence of deadlocks. Existing SDL verification tools are capable of checking this
property. However, with temporal extensions, special cases of deadlocks due to the non-
satisfaction of temporal conditions may be introduced. These types of deadlocks must be
detected by the extended verification tools.

2. invariance properties. Existing SDL verification tools are capable of checking such
properties. For timed specifications, however, verification of temporal invariants may be
necessary and should be implemented by the tools. Examples of temporal invariants
include:

- a certain event a is always handled within δ time units,

- the time span between two particular states of the system always falls within some
interval.

3. non-zenoness. For a timed specification, a zeno path is an infinite execution path during
which time does not progress beyond a finite limit. Zeno execution paths indicate an
incompletely or incorrectly modeled system, since the system is allowed to act infinitely
fast and handle an infinite amount of events within a finite duration. Zeno execution paths
should be detectable with the extended verification tools.

4. linear properties. The verification of more complicated temporal properties of systems
usually relies on a complementary formalism such as temporal logic or some form of timed
Büchi automata. The extended verification tools should be capable of verifying timed linear
properties as complex as those expressed with timed linear temporal logic formulas. There
is no restriction over the property specification language to be used. However, considering
the requirements below, the most likely candidate ObjectGEODE’s GOAL language,
suitably extended for expressing timed properties.

The verification and validation tools should also support:

- time annotations existing in MSC’2000. The tools should be capable of both:

- generating time annotated MSCs,

- using time annotated MSCs as input for verification.

- an extended version of the GOAL language, capable of capturing temporal properties of
SDL systems.

4.7.5 CATG tools

Current SDL analysis and simulation tools are able to generate test cases automatically from an
SDL specification. The main advantage in addition to faster and cheaper processing, is that
automatic test generation or Computer Aided Test Generation (CATG) guarantees consistency
between the formal specification and the test cases run on the implementation [SEG00]. For
that reason it seems important as part of the timed extensions proposed for SDL, MSC and
TTCN that CATG be still operational, certainly with some adaptations. Therefore a strong
requirement with respect to those extensions is that the three formalisms should be extended in
a related and coherent way, so that no inconsistency happens between the different

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 34

Public

specifications i.e. the formal SDL model of the system, the MSC model of test purposes and
the TTCN test cases, when they are processed together as in CATG.

It should be noted that a CATG adapted for timed extensions should be compatible with
previous timers mechanisms in the languages. In particular a number of test timers are already
used in some test generator tools such as: a timer to guard expected SUT output events, a
timer to check situations where no output is expected, a timer to check a maximum time to
execute an implicit send, or a timer to wait for the expiration of timers in the SUT.

Within current CATG techniques, it is also possible to use observer processes to help test
generation. Because an observer process has direct access to internal elements of the SDL
specification e.g. timers, it will be necessary to study the impact of timed extensions for the
observers with respect to simulation and test generation e.g. change of a timed constraint or
pruning a timed path in the state space.

Tools for computer aided test generation (CATG) have to be able to cope with real-time
requirements which are specified using time annotated SDL and MSC. Test generation may
both be based on direct translation of an MSC describing real-time requirements into TTCN
and on derivation of TTCN from an time extended SDL model. In the latter case, CATG is
based on the state space exploration techniques performed by the SDL simulation tools.
Therefore, the underlying simulator of the CATG platform has to be able to provide a time
annotated state space for subsequent representation of conforming paths using TTCN.

Output of CATG should be either TTCN-2, TTCN-3 or time extended TTCN-3 depending on
the state of the other tools which use TTCN as input.

4.7.6 TTCN executor benchmarking

The TTCN language (both versions 2 and 3) itself is suitable for describing real-time test cases.
The usage of timers and verdicts enables the checking of real-time constraints.

However, if the test executor equipment (the Means of Testing) is not fast enough, it can not
communicate with the IUT properly so the testing becomes meaningless. The most important
advantage of reactive testing in contrast to log analysis is that the tester can explicitly control
the behaviour and state transitions of IUT in order to achieve better coverage. The
performance bottleneck, for example, can be the delay between two successive send events or
the reaction time (the time between receiving a message and sending the response).

4.7.6.1 Protocol-specific benchmarking

The optimisation of the test executor's speed is out of scope of the TTCN standard. These
performance requirements depend strongly on the tested protocol, so the real-time test suites
must formalise them somehow.

In a real-time test suite a couple of test cases can check the test executor rather than the
correct behaviour of the IUT. A fail verdict of these 'benchmarking' test cases means that the
corresponding test executor is not able to run the real test cases correctly, i.e. their verdict
won't be correct. These test cases must be run with the protocol adaptation layer and with a
hardware or software loop-back (if possible). We think these preliminary measurements can be
done using standard TTCN constructs, so there is no need for language extensions.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 35

Public

An example is given below, which checks whether the test executor is fast enough to send two
consecutive messages within a duration specified by “requirement_time”, in TTCN-3:

testcase TC001() runs on mytc
{

timer t1 = 1 s;
timer t2 = 1 s - requirement_time;
t1.start;
PCO.send(message1);
PCO.send(message2);
t2.start;
alt{
[] t2.timeout { verdict.set(PASS); }
[] t1.timeout { verdict.set(FAIL); }
}

}

4.7.6.2 Protocol-independent benchmarking

Since the most of the program code of TTCN executors are generic and protocol-independent,
it won't be a good practice to measure the low level performance characteristics of the test
executor in every real-time test case. The steps of the test execution can be broken down into
atomic and independent operations (e.g. the assignment or matching of a single message field,
a timer or verdict operation, etc.). The execution time of such an operation depends on the test
executor only. If these atomic times are known, the total execution time of a complex test case
operation can be calculated.

These atomic operations must be specified and standardised. They can be measured by the tool
vendors or with special test cases. Finally, the speed characteristics of the test executor in a
given HW/SW environment can be described in a simple table. From the real-time requirements
of the test suite an another table can be derived. The comparison of two tables will decide
whether the executor can run the test suite or not.

There are still two problems with this atomic benchmarking:
• The way of performance estimation and calculation is different for compiler based and

interpreter based test executors.
• The processing time of the protocol adaptation layer was not considered.

4.7.7 Tools integration platform

The envisioned platform for timed extensions will be based partly on existing tools, partly on
tools under development. The existing tools are: TAU Suite and ObjectGEODE from
TELELOGIC, CONTESSA Suite from SOLINET and VERIMAG's IF framework.

The tools under development are part of Next Generation of TELELOGIC SDL and TTCN
tools, developed for SDL-2000 and TTCN v3.

Experiments for timed SDL simulation will at first be performed on two prototypes:

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 36

Public

- IF framework developed by VERIMAG,

- Timed extension of TELELOGIC ObjectGEODE’s simulator for SDL.

A complete picture of the prototype platform is given below:

SDL
specification

Timed
notations

ObjectGeode
SDL compiler

IF specification

ObjectGeode
Timed simulator

IF simulator and
model checker

Simulation resultsSimulation and
verification results

Figure 15: Timed SDL simulation and verification

Computer Aided test Generation will be developed gradually using TELELOGIC Next
Generation toolset. This toolset will also be open to external tools such as VERIMAG's IF.

SDL
specification

Timed
notations

TTCN test suite

Telelogic NG
SDL compiler

IF specification

IF simulator and
model checker

Telelogic NG
Test Generator

Figure 16: Computer Aided Test Generation (CATG) platform

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 37

Public

Experiments for Timed SDL-TTCN co-simulation will be first performed with the following
tools:

• TELELOGIC ObjectGEODE’s SDL simulator augmented with support for timed
extensions

• TELELOGIC TAU TTCN Suite coupled in a co-simulation backplane

The final co-simulator will be based on TELELOGIC Next Generation toolset and SOLINET
CONTESSA Campaigner for TTCN (Figure 17).

SDL
specification

Timed
notations TTCN test suite

Telelogic NG
Timed simulator

Telelogic NG
SDL compiler

Contessa
Campaigner

Co-simulation results

Figure 17: Timed SDL-TTCN co-simulation platform

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 38

Public

5. Classification of requirements

Extensions for SDL Classification

Analysis requirements
Assumptions on moments and duration
Semantics with controllable time

Design requirements
Interruptive Timers in SDL
Timing of Signals and Processes
Non-buffered Signal
Other timer problems
Grouping Block/Process Instances
Atomic Transactions and Synchronisation

Verification and validation requirements
Time-related properties expressed in SDL
Join verification with timed MSCs

Performance and dependability evaluation requirements
Extending SDL with stochastic modelling concepts

Targeting requirements

Mapping functionality to software architecture
Mapping load to hardware architecture

Desirable
Desirable
Mandatory

Desirable
Mandatory
Desirable
Desirable
Desirable
Optional
Desirable

Desirable

Desirable
Desirable

Desirable
Desirable

Optional
Optional
Optional

Extensions for MSC Classification

Analysis requirements

Implement MSC’2000 timed features

Automata-based requirements language

Verification and validation requirements

Properties expressed as timed-annotated MSCs

Generation of timed-annotated MSCs

Using time-annotated MSCs as input to timed SDL verification

Desirable

Mandatory
Optional

Desirable

Desirable
Desirable
Desirable

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 39

Public

Extensions for TTCN Classification

General requirements for the extension of TTCN
Time synchronisation
Qualitative verdicts
Architecture and PCO specification

Requirements related to the speed of the tester
Extension of TTCN by time intervals for test events
Introduction of priority scheduling mechanisms into TTCN
TTCN executor benchmarking

Other extensions to TTCN for specifying performance tests

Mandatory
Mandatory
Mandatory
Mandatory

Desirable
Desirable
Desirable
Desirable

Optional

Tools Requirements Classification

General requirements
Timed / Untimed specification mode

Edition tools (support of timed extensions)

Simulation tools

Verification and validation tools
Temporal invariant verification
Infinite execution path detection (no time progress)
CATG tools

TTCN executor
Protocol-specific benchmarking
Protocol-independent benchmarking

Tools integration platform
Connection to external tools
Timed SDL-TTCN co-simulation

Desirable
Desirable

Mandatory

Desirable

Desirable
Optional
Optional
Optional

Desirable
Optional
Optional

Desirable
Desirable
Desirable

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 40

Public

6. Conclusions

In this report, the project has examined the characteristics of real-time systems, in particular in
the Telecom domain, in order to identify the major requirements of their development process.
The emphasis has been put on time requirements, their representation and their processing. In
addition, the current development process at each user company and the ETSI standardisation
process have been described showing special needs that must be fulfilled by a new solution.
Such a solution in INTERVAL will be based on Formal Description Techniques (FDTs) that
will be improved with timed extensions.

The second part of the report expresses the requirements for real-time development in relation
with the FDTs retained in the project: SDL, MSC and TTCN. For every development stage:
analysis, design, verification and validation, performance evaluation, testing, the needs are
detailed and the lacks/limits of current notations are identified, leading to suggestions for
extensions or improvements of the notations. Extensions defined in INTERVAL should give
the user the possibility to realise a functional design that includes performance assessment
based on the non-functional parameters specified in the model.

In addition, requirements have also been studied regarding the tools that support these
notations and that will be prototyped/extended in the project. Regarding those tools
requirements, it may be noticed that there is not currently one complete tool that cover all the
functional and timing aspects addressed in INTERVAL, for the development of real-time
systems. Current tools provide separately parts of the industrial needs. It is important that tools
support standard formats for data and model exchange. On other respect, users may also want
a toolset that is customisable in order to be used in other industrial domains which have
different needs such as for automotive real-time software.

Finally a classification of the requirements is given that will serve as input to the next project
phase: specification of timed extensions and definition of tool support. All the requirements
regarding the SDL, MSC and TTCN notations as well as the tools have been reviewed in
respect of their level: mandatory, desirable or optional, taking also into account the time scale
and the resources of the project to be aware of what is attainable.

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 41

Public

7. References

[SDL96] ITU-T: Recommendation Z.100 – Specification and Description Language
(SDL), ITU, Geneva, 1996

[SDL2000] ITU-T: Recommendation Z.100 – Specification and Description Language
(SDL), ITU, Geneva, November 1999

[MSC96] ITU-T: Recommendation Z.120 – Message Sequence Chart (MSC), ITU,
Geneva, September 1996

[MSC2000] ITU-T: Recommendation Z.120 – MSC2000, ITU, Geneva, November 1999

[TTCN-v2] ISO/IEC: Information Technology – Open Systems Interconnection –
Conformance Testing Methodology and Framework – Part 3 (second edition): The Tree and
Tabular Combined Notation. International Standard 9646-3, ISO/IEC, 1997

[TTCN-v3] ETSI TC MTS: Methods for Testing and Specification (MTS); The Tree and
Tabular Combined Notation – TTCN-3 Core Language EN000063-1 (provisional), ETSI,
Sophia Antipolis, 2000

[DHIP88] D.J. Hatley, I.A. Pirbhai: Strategies for Real-Time System Specification, Dorset
House Publishing Co., New York, 1988.

[MTS00065] ETSI: Methods for Testing and Specification (MTS); Methodological approach
to the use of object-orientation within the standards making process; Initial Study,
DTR/MTS-00065 V1.0.9, Sophia Antipolis, 1999

[ETR298] ETSI: Methods for Testing and Specification (MTS); Specification of protocols
and services; Handbook for SDL, ASN.1 and MSC development, ETR 298, Sophia Antipolis,
1996

[EG 202 103] ETSI: Methods for Testing and Specification (MTS); Guide for the use of the
second edition of TTCN, EG 202 103 Sophia Antipolis, 1999

[INT8] INTERVAL Technical Report, I. Ober: Requirements Specification Languages.
A comparative Study of MSC, GOAL and TAU Observer Processes. Reference
IST/11557/WP5/07.00/VER/008, July 2000

[WG97] Th. Walter, J. Grabowski: Real-time TTCN for testing real-time and
multimedia systems. In: Testing of Communicating Systems (Editors: M. Kim, S. Kang, K.
Hong), Volume 10, Chapman & Hall, 1997. (available at http://www.itm.mu-luebeck.de/
publications/IWTCS98RT/IWTCS98-RT-TTCN.ps.gz)

[HDGN00] D. Hogrefe, Z. R. Dai, J. Grabowski, H. Neukirchen: Requirements on the time
extensions of SDL and TTCN from the point of view of testing, Technical Report to the
INTERVAL mailing-list, June 18, 2000

[MTMC99] A. Mitschele-Thiel, B. Müller-Clostermann: Performance Engineering of
SDL/MSC Systems, tutorial paper at 9th SDL-Forum, Montreal, 1999. (available at
http://www.cs.uni-essen.de/Fachgebiete/SysMod/Papers/QSDL/TutSlidesForum99.pdf)

IST/11557/WP1/07.00/ERIC/D11

Requirements Analysis Report Version 4

09 October 2000 ITM LÜBECK - TELELOGIC - SOLINET - ERICSSON - FRANCE TELECOM - TELETEL 42

Public

[GMB+00a] S. Graf, L. Mounier, M. Bozga, I. Ober, A. Kerbrat, D. Vincent: Mini-
Description of SDL & MSC Time Extensions, presented at the INTERVAL meeting in Paris,
May 02, 2000

[GMB+00b] S. Graf, L. Mounier, M. Bozga, I. Ober, A. Kerbrat, D. Vincent: SDL for real
time: What is missing?, presented at SAM 2000 in Grenoble, June 26, 2000. (available at
http://www.irisa.fr/manifestations/2000/sam2000/papers.html)

[DBL99] R. Dssouli, G.V. Bochmann, Y. Lahav (Eds.): SDL’99 – Proceedings of the 9th
SDL-Forum, Elsevier, Montreal, 1999

[SBR97] I. Schieferdecker, B. Stepien, A. Rennoch: PerfTTCN, a TTCN language
extension for performance testing. In: Testing of Communicating Systems (Editors: M. Kim,
S. Kang, K. Hong), Volume 10, Chapman & Hall, 1997. (available at
http://www.csi.uottawa.ca/~bernard/PerfTTCN.ps.gz)

[GPS96] P. Godefroid, D. Peled and M. Staskauskas: Using Partial-Order Methods in
the Formal Validation of Industrial Concurrent Programs, IEEE Transactions on SE., Vol.22,
No.7, pages 496-507, July 1996. Preliminary version in Proceedings of ACM SIGSOFT
ISSTA'96 (Int. Symp. on Software Testing and Analysis), pages 261-269, San Diego, January
1996. (available at http://www.bell-labs.com/user/god/public_psfiles/ieee-tse96.ps)

[OBG99] ObjectGEODE 4.1 Toolset Documentation, VERILOG (now TELELOGIC)
Products, 1999, http://www.csverilog.com

 [IF99] M. Bozga, J.C. Fernandez, L. Ghirvu, S. Graf, J.P. Krimm, L. Mounier, and J.
Sifakis : IF – An intermediate representation for SDL and its applications. In R. Dssouli, G.V.
Bochmann, and Y. Lahav (Eds.), Proceedings of SDL Forum’99 (see [DBL99] above),
Montreal, Canada, 1999

 [ACD90] R. Alur, C. Courcoubetis and D. Dill, Model checking for real-time systems,
5th annual IEEE Symposium on Logic in Computer Science, Philadelphia, 1990

 [BS97] S. Bornot and J. Sifakis: Relating time progress and deadlines in hybrid
systems, International Workshop HART'97

 [BST97] S. Bornot, J. Sifakis and S. Tripakis: Modeling Urgency in Timed Systems,
International Symposium: Compositionality - The Significant Difference (Holstein, Germany),
Vol. 1536 of LNCS, Springer, 1997

 [SL95] S. Leue: Specifying Real-Time Requirements for SDL Specifications – A
Temporal Logic Based Approach. In Proceedings of the Fifteenth International Symposium on
Protocol Specification, Testing, and Verification PSTV'95, Chapmann & Hall, 1995
(http://swen.uwaterloo.ca/~sleue/publications.files/pstv95.ps.Z)

[MMG92] A. Morzenti, D. Mandrioli and C. Ghezzi: A model parametric real-time logic,
in ACM transactions on Programming Languages and Systems, 14(4), 521-573, 1992

[SEG00] M. Schmitt, M. Ebner, J. Grabowski: Test generation with AutoLink and
TestComposer, in Proceedings of SAM 2000 Workshop in Grenoble, June 26, 2000.

