
ETSI/MTS(01)009
European Telecommunications Standards Institute
MTS#33
24 to 25 October 2001
Sophia-Antipolis

Source: STF188

Title: REG/MTS-00072 'Guidelines for the use of SDL as
a descriptive tool' (incomplete draft)

Date: 12 October 2001

Document for: Discussion

Agenda item: 5.5

Page 2

Page 3

REG/MTS-00072 V1.1.2 (October 2001)
ETSI Guide

Methods for Testing and Specification (MTS);
Guidelines for the use of SDL as a descriptive tool

<

ETSI

REG/MTS-00072 V1.1.2 (October 2001)4

Reference
REG/MTS-00072

Keywords
SDL, MSC, ASN.1, UML, methodology

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).

In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status /

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute yyyy.

All rights reserved.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)5

Contents

Intellectual Property Rights ..7

Foreword ..7

1 Scope ..9

2 References...9

3 Definitions and abbreviations ...9
3.1 Definitions ... 9
3.2 Abbreviations.. 10
4 Introduction...10

5 Using specification languages in protocol standards ...11
5.1 Introduction... 11
5.2 Layered protocols ... 12
5.3 Developing a protocol specification.. 12
5.3.1 Specifying requirements... 12
5.3.2 Developing a logical model... 12
5.3.3 Developing a physical model .. 12
6 Naming Conventions ..15
6.1 General ... 15
6.1.1 Case sensitivity .. 16
6.1.2 Length of names .. 16
6.1.3 Reserved words.. 16
6.2 SDL and MSC ... 17
6.2.1 Use of non-significant characters ... 17
6.2.2 Multiple use of names... 17
6.2.3 Making names meaningful... 18
6.2.3.1 Block, process and instance names ... 18
6.2.3.2 Procedure, operator and method names .. 19
6.2.3.3 Signal names ... 19
6.2.3.4 Signal List and interface names ... 19
6.2.3.5 SDL State names .. 20
6.2.3.6 Names of Variables and Constants .. 20
6.2.3.7 Timers... 20
6.3 Data types .. 20
7 Presentation and layout of diagrams ..21
7.1 The general flow of behaviour across a page.. 21
7.2 Diagrams covering more than one page... 23
7.2.1 SDL behaviour diagrams .. 23
7.2.2 UML activity diagrams ... 28
7.2.3 Symbols common to all pages... 28
7.3 Text extension symbols ... 29
7.4 Alignment and orientation of symbols .. 29
7.4.1 Alignment ... 29
7.4.2 Orientation.. 31
8 Structuring behaviour descriptions ..31

9 Using procedures, operators methods and macros...31

10Using decisions..31
11System structure, communication and addressing ...31

12Specification and use of data ..31

13Using Message Sequence Charts (MSC)..31
13.1 Introduction... 31

ETSI

REG/MTS-00072 V1.1.2 (October 2001)6

13.2 Relationship between MSC and SDL... 32
13.3 Presentation and layout.. 32
13.3.1 Annotations... 32
13.4 Naming and scope.. 33
13.5 MSC document ... 33
13.6 Structuring ... 34
13.6.1 Architecture .. 34
13.6.1.1 Instance... 34
13.6.1.2 Instance decomposition... 35
13.6.1.3 Dynamic instances.. 35
13.6.1.4 Environment .. 35
13.6.2 Behaviour.. 36
13.6.2.1 High-level MSC (HMSC)... 37
13.6.2.2 MSC reference in basic MSC... 38
13.6.2.3 Inline expression... 39
13.7 Data... 40
13.8 Message.. 40
13.8.1 Incomplete messages .. 42
13.9 Condition.. 42
13.10Action... 43
13.11Timer .. 43
13.12Control Flow... 45
13.13Time .. 45
13.14General ordering and coregion... 46

Annex A (informative): Reserved words ... 48
A.1... SDL 48
A.1.1Keywords... 48
A.1.2Predefined words.. 49
A.2...MSC 49

A.3.. ASN.1 50

A.4.. UML 50

Annex B (informative): Summary of guidelines .. 51
History..53

ETSI

REG/MTS-00072 V1.1.2 (October 2001)7

Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members , and can be found
in SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect
of ETSI standards" , which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server
(http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server)
which are, or may be, or may become, essential to the present document.

Foreword
This ETSI Guide (EG) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).

ETSI

REG/MTS-00072 V1.1.2 (October 2001)8

ETSI

REG/MTS-00072 V1.1.2 (October 2001)9

1 Scope
The present document establishes a set of guidelines for the formal use of Specification and Description Language
(SDL) for descriptive, rather than detailed design, purposes. It also provides some guidance on the use of Message
Sequence Charts (MSC), Abstract Syntax Notation 1 (ASN.1) and the Unified Modeling Language (UML) when used
in conjunction with SDL. The objective of the guidelines is to provide assistance to rapporteurs of protocol standards so
that the SDL that appears in ETSI deliverables is formally expressed, easy to read and understand and at a level of detail
consistent with other standards. The present document applies to all standards that make use of SDL to specify
protocols, services or any other type of behaviour.

Users of the present document are assumed to have a working knowledge of SDL. It should not be considered to be an
SDL tutorial and should be read in conjunction with EG 201 383[1] and EG 201 015 [2].

2 References
The following documents contain provisions which, through reference in this text, constitute provisions of the present
document.

• References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

• For a specific reference, subsequent revisions do not apply.

• For a non-specific reference, the latest version applies.

[1] EG 201 383 (V1.1): "Methods for Testing and Specification (MTS); Use of SDL in ETSI
deliverables; Guidelines for facilitating validation and the development of conformance tests".

[2] EG 201 015 (V1.2): "Methods for Testing and Specification (MTS); Specification of protocols and
Services; Validation methodology for standards using SDL; Handbook".

[3] EG 201 872 (V1.2): "Methods for Testing and Specification (MTS); Methodological approach to
the use of object-orientation in the standards making process

[4] ITU-T Recommendation Z.100 (1999): "Specification and description language (SDL)".

[5] ITU-T Recommendation Z.105 (1999): "SDL combined with ASN.1 (SDL/ASN.1)".

[6] ITU-T Recommendation Z.109 (1999): "SDL combined with UML"

[7] ITU-T Recommendation Z.120 (1999): "Messages sequence chart".

[8] ITU-T Recommendation X.680 (1997): "Information technology - Open Systems Interconnection -
Abstract Syntax Notation One (ASN.1): Specification of basic notation".

3 Definitions and abbreviations

3.1 Definitions
For the purposes of the present document, the following terms and definitions apply:

data type: set of data values with common characteristics (equivalent to the ITU-T Recommendation Z.100 [4] term
sort)

NOTE: When preceded by the word "abstract" then data type is always considered as part of the term "abstract
data type" and not as the term "data type".

implementation option: statement in a standard that may or may not be supported in an implementation

ETSI

REG/MTS-00072 V1.1.2 (October 2001)10

normative interface: physical or software interface of a product on which requirements are imposed by a standard

validation: process, with associated methods, procedures and tools, by which an evaluation is made that a standard can
be fully implemented, conforms to rules for standards, satisfies the purpose expressed in the record of requirements on
which the standard is based and that an implementation that conforms to the standard has the functionality expressed in
the record of requirements on which the standard is based

validation model: detailed version of a specification, possibly including parts of its environment, that is used to
perform formal validation

3.2 Abbreviations
For the purposes of the present document, the following abbreviations apply:

ASN.1 Abstract Syntax Notation No. 1
HMSC High-level Message Sequence Chart
MSC Message Sequence Chart
Pid Process Identity
SDL Specification and Description Language
UML Unified Modeling Language

4 Introduction
The ITU-T Specification and Description Language (SDL) defined in ITU-T Recommendation Z.100 [4] is a powerful
tool for specifying the essential requirements of standardized protocols or services. The level of formality with which
the SDL in a standard is expressed can depend on a large number of factors such as the size and complexity of the
system to be standardized and the skills and experience of the standards writers. The specification of a protocol or
service as a complete formal model enables the validation of the standard before approval and publication. However,
well-constructed, formal SDL has a valuable role to play in providing a simple illustration of the process-related aspects
of a standardized system.

SDL is mo st often found in protocol standards with some associated ASN.1 and MSC. Additionally, as the language
specifications converge, SDL is also likely to be used in conjunction with UML in standards. It is, therefore, sensible to
consider the relationships between all of these languages and notations when offering guidelines on SDL. The present
document is concerned primarily with the development of easy-to-read SDL but also provides some guidance on the use
of ASN.1, MSC and UML where this overlaps with the use of SDL.

NOTE: Although in the strictest sense SDL, MSC and UML are considered to be languages while ASN.1 is a
notation, for the sake of simplicity the term "notation" is used throughout the present document to denote
both languages and notations.

In order to gain the maximum benefit from the use of descriptive SDL, it is necessary for a consistent approach to be
taken in its specification by all rapporteurs. In the context of the present document, the term "descriptive SDL" can be
taken to mean SDL which is:

- formally expressed:

- uses only language constructs and symbols that are defined in ITU-T Recommendations Z.100 [4] and
Z.105 [5];

- complete:

- a full model with System, Block, Process and Procedure diagrams as necessary;

- has a comprehensive data specification using SDL data or, preferably, ASN.1;

- uses "correct" SDL;

- is not necessarily a simulation or validation model;

- easy to read and understand:

ETSI

REG/MTS-00072 V1.1.2 (October 2001)11

- uses meaningful names and identifiers;

- the model structure complements the specification;

- has an open layout which requires a minimum of effort to follow;

- the "how" is hidden from the "what";

- complex programming structures are avoided;

- extensive comments annotate the model;

- at a level of detail consistent with other standards:

- is not over-engineered;

- is not an implementation model;

- does not constrain implementations to methods and techniques which are beyond the scope of the standard.

By following the set of simple guidelines presented in the present document, it will be possible for the following
benefits to be realized:

- Comprehension of the specification can be improved;

- Ambiguity can be avoided in the translation of the descriptive SDL into a validation model.

Achieving consistency in the presentation and level of detail specified across a wide range of standards is one of the
keys to maintaining the perceived quality of ETSI's products.

The guidelines for the use of SDL for descriptive purposes are grouped in the present document according to the
following broad classifications:

- naming conventions;

- presentation and layout of SDL processes;

- diagram structures;

- the use of procedures and operators;

- the use of decisions;

- communications and addressing;

- the specification and use of data;

- the use of Message Sequence Charts (MSC) in association with SDL.

Each of the guidelines is highlighted within the document in bold and italic text. They are all collected together in
tabular form in Annex B.

5 Using specification languages in protocol standards

5.1 Introduction
This chapter gives some consideration to the process of standardizing communication protocols so that guidance can be
given on where SDL, ASN.1, MSC and UML can be used effectively.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)12

5.2 Layered protocols
There are numerous approaches to the design of communications protocols, each of which is valid in the situation that it
is used. Probably the most well known and well used is the ISO layered model or a derivative of it where a protocol
system is segmented into distinct logical layers with distinct responsibilities.

The communication between peer layers in this logical model never takes place directly but is achieved through the
services of the lower layer. However, this peer-level communication is often specified in a standard without
consideration of the signaling between layers. The interface between two adjacent layers is usually called the Service
Access Point (SAP) although other terms such as user access and network access are also used. Protocol standards will,
in most cases, be considerably simpler if they are restricted either to horizontal communication (peer-to-peer) or vertical
communication (inter-layer). Mixing the two can lead to a confusing specification which is difficult to understand.

5.3 Developing a protocol specification
For many years, protocol standards have been prepared using the three-stage process described in
ITU-T Recommendation I.130. Although the detailed practices specified in this document might now be considered to
be out of date and its use is not as widespread as it once was, the underlying method upon which it is based is still
relevant as good engineering design practice. Simply put, this is:

1. Specify requirements from the user's perspective;

2. Develop a logical model to meet those requirements;

3. Develop a physical specification of the protocol.

5.3.1 Specifying requirements
Specifying a protocol without first evaluating what it is intended to achieve and what constraints are to be applied to it
will almost certainly end in a poor specification. These requirements can easily be expressed using free text and some
informal diagrams but the use of UML for this purpose (as described in EG 201 872) means that this information can be
checked by automatic tools and used as input to the later stages of specification.

At this stage of the specification, there should be no need to consider the possible physical architecture of any system
implementing the protocol. Requirements should be exp ressed, as far as possible, entirely from the user's perspective
(although the "user" may be a terminal or network application acting on behalf of a human user)

5.3.2 Developing a logical model
Before considering the physical specification of a protocol, there are benefits to be gained by specifying a model based
on logical blocks so that the flow of information necessary for meeting the specified requirements can be defined
without concern for the detailed format that such information should take. The identification of possible normative
interfaces between blocks is also simpler without the constraints imposed by a specific physical architecture.

The overlap between UML and both SDL2000 and MSC2000 is such that all of these languages are suitable for this
level of specification. In fact, it is unlikely that models developed in either UML or SDL2000 with MSCs would be
appreciably different.

Once the logical model is complete, it is necessary to specify a physical model upon which "real" implementations of
the protocol standard can be based. This model should not, in most cases, be a detailed implementation model but
should be constrained to specify the minimum protocol requirements to guarantee interworking between modules from
different suppliers. A good first step towards this physical model is to define a set of legitimate scenarios for the
distribution of the logical blocks within a set of physical entities. Textual tables have traditionally been used quite
effectively for this purpose but UML deployment diagrams can provide a graphical means of presenting these
requirements.

5.3.3 Developing a physical model
If systems implementing a standardized protocol are to inter-work without problems, it is necessary to specify the
detailed content and format of signals between physical entities and the temporal relationships that must exist between

ETSI

REG/MTS-00072 V1.1.2 (October 2001)13

these signals. For this specification to be complete and accurate, it may be necessary to describe the behaviour of the
physical entities which make up the protocol system.

ASN.1 is generally accepted as the notation to be used within protocol standards for the definition of signal data
structures. Although it is not a particularly intuitive notation to use, it has the significant benefit that there are a number
of standardized sets of rules (for example, Basic Encoding Rules – BER and Packed Encoding Rules – PER) for
encoding ASN.1 structures into "concrete" data items with more or less efficiency. In those cases where even PER does
not produce a compact enough encoding, Encoding Control Notation (ECN) specified in TS 101 969 enables users to
define and use their own encoding rules in a standardized form. A further benefit of using ASN.1 is that
ITU-T Recommendation Z.105 specifies exactly how ASN.1 is used in conjunction with SDL so that data items defined
in an ASN.1 module can be used directly in the SDL associated with that module.

The following simple example uses ASN.1 to specify the structure of an address which comprises a length parameter
and the address value itself

 Address ::= SEQUENCE { length BIT STRING(SIZE(8)),
 value OCTET STRING }

Message Sequence Charts (MSCs) are an ideal notation for describing signal flows and a simple example is shown in
Figure 1

CalledUserDestinationNetworkOriginatingNetworkCallingUser

Connected

No_Connection

MSC Succsessful_Setup

CallReqestAck

CONNECTED

CallAnswer

ALERTING

CallAlerting

IncomingCall

CALL_PROCEEDING

SETUP

CallRequest

Figure 1: Example of a simple MSC

In anything but the simplest protocol, it is not possible to show all of the possible sequences of signals. It is, therefore,
quite acceptable to use MSCs to il lustrate only a representative sample of sequences. These examples should specify a
reasonable range of successful and unsuccessful situations to enable readers to make an informed judgement of what the
flows would be in other unspecified scenarios.

High level MSC (HMSC) diagrams can be used to provide an overview of the relationships between detailed sequences
of signals in more complex scenarios. The simple example in Figure 2 shows how an HMSC can be used to segregate
normal behaviour from exceptional behaviour.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)14

Normal
Behaviour

Exceptional
Behaviour

MSC Setup 1(1)

Successful_Setup

Idle

SetupFail_IllegalNumber

SetupFail_NoResponse

Connected

Idle

Figure 2: Example HSMC

In order to complete the picture of possible signal sequences, the behaviour of each physical entity needs to be specified
and SDL is an ideal graphical language for this purpose. By using SDL's language features to specify system
architecture, communication paths, signals and behaviour and using ASN.1 to define signal parameter structures, it is
possible to build a complete model. This can then be used to improve the quality of the overall specification by
simulating and testing a range of possible scenarios.

The present document offers a number of guidelines on the use of SDL with ASN.1, MSC and UML to produce
protocol standards which are easy to read and understand and which unambiguously express the requirements for an
implementation.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)15

6 Naming Conventions

6.1 General
In common with most modern programming languages, SDL, MSC, ASN.1 & UML permit the use of alphanumeric
names to identify individual entities within a specification. Examples of entities that can be identified in this way are:

- SDL

- blocks

- procedures

- signals

- variables and constants

- MSC

- instances

- messages

- timers

- conditions

- ASN.1

- type references

- identifiers

- value references

- module references

- UML

- classes & objects

- states

- events

- attributes

It is likely that protocol standards will incorporate SDL, MSC, ASN.1 or UML specifications of structure and
behaviour. Frequently, two or more of these are used in combination within the same standard and in these cases it is
certain that some entities defined in one notation will also be used in another. Examples of these are:

- ASN.1 data types which are used by SDL;

- SDL processes which are mapped to MSC instances.

Although the lexical rules in each notation are similar, they are by no means identical. Table 1 identifies the most
significant differences in the construction of identifiers within these four languages and notations.

Table 1: Significant differences in the lexical rules of SDL, MSC, ASN.1 and UML

Notation Significant differences
SDL - name may be hyphenated over more than one line

using the underscore ("_") character
- names may contain non-printing characters (which are

ignored) only if preceded by "_" (which is also ignored)
- names may contain "_" but not "-"

MSC Same as SDL
ASN.1 - names are restricted to a single line

- names may only contain printing characters
- names may contain"-" but not "_"

UML - names are restricted to a single line
- names may only contain printing characters
- the use of "_" and "-" in names is not specified and are

most likely to be tool dependant
NOTE: In practice, the lexical rules of UML are likely to

vary according to the tool used and the target software
language)

The choice of names is likely to be affected by the individual application but(62)a naming convention that can be
applied consistently to each notation used should be chosen. Taking this approach will help to avoid ambiguities when
names need to be modified to comply with conflicting lexical rules in each language and notation used. Even in those
instances where it is planned to use only one notation, consideration should also be given to the rules of the others when
specifying a naming convention as one or more of these may be used to augment the specification at a later stage

ETSI

REG/MTS-00072 V1.1.2 (October 2001)16

One of the most common such conflicts occurs between ASN.1 and SDL where the use of dash ("-") characters is
permitted in ASN.1 but not in SDL while underscores ("_") may be used in SDL but not in ASN.1.
ITU-T Recommendation Z.105 specifies that a dash character within an ASN.1 name is mapped to an underscore when
it is converted to SDL. This is a reasonable approach but it still leaves a visible difference between an ASN.1 type name
and its corresponding SDL type. For example:

Setup-contents in ASN.1 is equivalent to Setup_contents in SDL.

While it is acceptable to use the underscore character to delineate words within most SDL entity names, it is
advisable to avoid the use of the dash character in ASN.1 types and values in order to avoid conflicts and
mis-interpretation in the associated SDL

6.1.1 Case sensitivity
SDL, MSC, ASN.1 and UML are all sensitive to the case of characters within names. As an example, the name "ABC"
is not the same as "AbC" or "Abc". The ASN.1 syntax goes further by specifying that names beginning with an
upper-case letter should be interpreted as type references and that those beginning with lower-case letters should be
interpreted as value references or identifiers such as information elements in a SEQUENCE or CHOICE. Although the
case of the first character of a name does not have the same syntactical significance in either SDL or MSC, it is a useful
way of distinguishing between types and values, particularly when used in conjunction with ASN.1. However, (62)the
general use of names which differ only in character case to distinguish between entities should be avoided.

Although errors are likely to be detected by automatic syntax checking tools, (62)care should be taken to ensure the
consistent use of character case within names throughout an ASN.1, SDL, MSC or UML specification.

The capitalization of the first character of each word within a name is an acceptable method of delineation between the
component parts of the name.

Example: The procedure name, "DeliverMessageContents" can easily be interpreted to imply that the
purpose of the procedure is to "Deliver the Message Contents".

Although it works well in many cases, this method can result in names that are quite difficult to read if they contain
acronyms or larger numbers of short words. Examples of these are:

InvokeCCBSSupplementaryService;

AddOneToTheFirstItemOfOldData.

6.1.2 Length of names
The syntaxes of SDL, MSC, ASN.1 and UML place no restrictions on the number of characters that may be included in
names but, in practice, the limits associated with the target language (e.g., Java or C++) should be respected. It is also
worth noting that very long names can often be difficult to read. It is not possible impose a strict rule on the length of
names but, as a general guideline, (62)names of less than 6 characters may be too cryptic and names of more than 30
characters may be too difficult to read and assimilate.

6.1.3 Reserved words
Although SDL, MSC, ASN.1 & UML all permit great flexibility in the use of names, there are certain reserved words
which are keywords of the languages themselves and which, consequently, cannot be used as names. Lists of these
reserved words can be found in Annex A.

NOTE: SDL keywords may be either all upper-case or all lower-case. Keywords using mixed case are not
considered to be reserved words. For example, both "procedure" and "PROCEDURE" are SDL reserved
words but "Procedure" is not.

The use of reserved words from one notation can be legitimately used as names within a specification based upon
another but to avoid any conflict across specifications using multiple notations, (62)the reserved words of all notations
used within a standard should be avoided as defined names in each of the individual parts.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)17

6.2 SDL and MSC

6.2.1 Use of non-significant characters

It is permissible to split a name across more than one line by introducing an underscore followed by a sequence of
spaces and/or the carriage-return and line-feed control characters. So, the procedure name "DeliverMessageContents"
in the example above could also be expressed as:

Deliver_
Message_
Contents

This is a very convenient notation when trying to fit a long name into a graphical symbol, thus:

Deliver_
Message_
Contents

It is worth noting that the underscore character is only insignificant when used as a hyphenation symbol and that the
name:

DeliverMessage

is not the same as:

Deliver_Message

although it is identical to

 Deliver_
Message

When a name using underscores to separate words is wrapped over more than one line, it is necessary to include two
underscore characters where the hyphenation occurs, thus:

 Deliver_
_Message

(62)Readability is improved if the same convention for separating words within names is used throughout a
specification. The one case where a combination of methods is recommended is in the use of acronyms within names
that use capitalisation as the method of separation. An underscore on each side of the acronym clearly delineates it from
the remainder of the name, thus:

Invoke_CCBS_SupplementaryService

(62)In most cases an underscore character between each word removes any possibility of misinterpretation and this is
the approach that is recommended.

6.2.2 Multiple use of names
SDL permits entities belonging to different classes to be given the same name. As an example, it is syntactically correct
for a process within a block named "Dialling" also to be given the name "Dialling" (see Figure 3). In addition, because
of the scoping rules of the language, it would be possible for a process within another block in the same system to be
named "Dialling".

ETSI

REG/MTS-00072 V1.1.2 (October 2001)18

 BLOCK Dialling 1(1)

Dialling User_
_Channel

USER

[Dialling_Response] [User_Dialling]
INTERNAL

[Dialled_Numbers] [Analysis_Response]
Internal_
_Link

Figure 3: Example of a block and a process with the same name

In many protocol standards, particularly those specifying supplementary services, the system comprises a small number
of blocks, each of which contains only one process. In such situations, the use of the same name for the block and for its
single process is valid but, as SDL allows it, a better approach may be to omit the block altogether as shown in
chapter 11.

In more complex models where each block is made up of a number of processes, the use of the same name for a
block and one of its constituent processes is likely to cause confusion and should be avoided.

Similar problems can also exist in the re-use of single names for multiple entities. For example, it is possible to have
the same name for a signal list and for one of its constituent signals. As a general guideline, (62)the use of a single
name for multiple purposes should be avoided wherever possible.

6.2.3 Making names meaningful
The freedom and flexibility allowed in the construction of names can be used to great benefit in improving the
readability of a specification. If there is an entity whose function is to represent an alarm clock then it can be called
"Alarm_Clock" and there are no constraints to force the use of a more cryptic name such as "Alm_Clk". However, this
freedom can be abused and it would be quite legitimate for the alarm clock to be given the name
"The_Thing_Beside_The_Bed_That_Makes_A_Loud_Noise_In_The_Morning" which is equally as unacceptable as the
cryptic style.

Although it can appear useful during the development of a protocol standard, (62)the addition of project-specific
prefixes or suffixes can make meaningful names appear cryptic and should be used with great care.

Apart from the general recommendations above, certain specific guidelines apply to each group of identifiable entities.

6.2.3.1 Block, process and instance names
(62)By giving blocks, processes and MSC instances names that represent the overall role that they play within the
system, it is possible to distinguish process names from procedure names. If carefully chosen, they can help to link
the SDL and MSC back to the corresponding subclauses in the text description. Examples are:

originating_PINX;

Scenario_Management;

Functional_Entity_FE2;

alarm_clock.

As can be seen, these names are all nouns which indicate the general function of the process.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)19

6.2.3.2 Procedure, operator and method names

Procedures, operators and methods (SDL operations) are key elements in breaking a complex process down into
meaningful layers (see subclause 8.1). For this to be effective, (62)the name chosen for an SDL operation should
indicate the specific action taken by the operation. Examples are:

Extract_Calling_Number_From_SETUP;

get_user_profile_from_database;

Send_Response;

ring_alarm_bell.

The names chosen here are all verb phrases indicating the specific activity to be carried out by the operation.

6.2.3.3 Signal names

There are often constraints on the length of signal names as they usually have to appear in quite small spaces within
SDL symbols. It is, therefore, more difficult to arrive at meaningful names for them. However, poor naming of signals
can make SDL and MSC very difficult to read, even when most other aspects are well presented. For example, the name
"Rep_Sgl_Err" could easily be interpreted to mean:

Report Signal Error;

Report Single Error;

Repeat Signal Error;

Repeat Single Error.

The obvious approach is to express the name in full as, for example, "Report_Signal_Error" but this, again, is quite
long. The problem can be overcome by using unambiguous abbreviations or abbreviations that are in common use. In
the example above, "Err" is generally accepted as meaning "Error". Also, changing "Sgl" to "Sig" would make it much
clearer that it was an abbreviations for "Signal" not "Single". (62)If possible, it is advisable to leave at least one
significant word in the name unabbreviated as this can help to provide the context for interpreting the remaining
abbreviations. So the example above would be acceptable if expressed as "Report_Sig_Err".

6.2.3.4 Signal List and interface names

SDL provides two mechanisms for collecting signals together into named logical groups. These are signal lists and
interfaces as described in ?.?. For the purpose of defining names, these two can be treated identically.

In order to improve clarity, it is often advisable to group signals into interfaces or signal lists according to their
capabilities and, consequently ,(62) the name chosen for an interface or signal list should indicate the general function
of the grouped signals, for example:

UNI_Messages;

Mobility_Management;

user_input.

As an alternative and particularly in simple specifications (62)where all signals between one block or process and
another can be logically grouped together, signal list names can be chosen to indicate the origin and the destination
of the associated signals. Examples of this approach are as follows:

home_PINX_to_visitor_PINX;

HLRA_to_HLRB;

localExch_to_user;

between_AccessManagement_and_CallControl.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)20

6.2.3.5 SDL State names

In most protocol standards, the SDL specification includes a large number of states and it is often tempting to assign
cryptic and sequential names such as "state_5" or "N3". Taking the time to formulate meaningful names for each state
can add significantly to the readability of an SDL specification.

(62)A state name should clearly and concisely reflect the status of the process while in that state. Examples of such
names are:

Idle;

Wait_For_SETUP_Response;

Timing_Signal_Delay.

(62)If it is important to number states then this should be done in conjunction with meaningful names such as:

Releasing_01;

Timing_Response_4.

6.2.3.6 Names of Variables and Constants

It is more difficult to specify some simple guidelines for the construction of names for variables and constants as they
have widespread and diverse uses. It is still important to ensure that the name is meaningful in the context of the SDL
specification. (62)The name chosen for a variable should indicate in general terms what it should be used for. For
example:

SETUP_message_contents;

User_Input;

Alarm_Time.

(62)Names used to identify constants can be more specific by indicating the actual value assigned to the constant . For
example:

User_Not_Known;

Twenty_Five;

Characters_A_To_Z.

6.2.3.7 Timers

Although the use of meaningful timer names, such as Response_Sanity_Timer, would improve the overall readability of
a specification, it has become accepted practice to use the shorthand T1, T2, T3 etc. for timers within standards for
protocols. To avoid confusion, the "Tn" notation should be used when naming timers unless an opportunity arises to use
extended names in a completely new project where the use of the shorthand is not already established.

6.3 Data types
The definition of the ASN.1 notation, ITU-T Recommendation X.680 [?], specifies that type references must begin with
an upper-case character and that value references and identifiers must begin with a lower-case character. When using
ASN.1 in protocol standards, it has become the convention that a value reference uses the same name as its associated
type reference (except where there are more than one value references derived from the same type reference) but that
one is distinguished from the other by the case of its first character, thus:

ETSI

REG/MTS-00072 V1.1.2 (October 2001)21

-- Example of the use of identifiers with type references
 Dog ::= SEQUENCE {
 breed Breed,
 name Name }

 Breed ::= ENUMERATED {
 poodle,
 spaniel,
 alsation,
 boxer }

 Name ::= PrintableString

-- Example of the use of a value reference with a type reference
 dogID Name ::= "Rover"

For readability the name breed is preferable to bREED, even though the latter is, strictly speaking, permissible.

Although all data types associated with normative signals will usually be defined in ASN.1, other types can be specified
using SDL's own data language features. For the sake of consistency with ASN.1, (62)the names of SDL data types
should be capitalized while the names of literals and synonyms should begin with a lower-case character.

7 Presentation and layout of diagrams
The syntaxes of both SDL and UML allows great freedom in the presentation and layout of both text and graphical
symbols. Good presentation can considerably improve the readability of a specification whereas bad presentation can
render it unintelligible. It is also worth noting that a single error resulting from the misunderstanding of a poorly
presented diagram can be much more costly than all the pages of paper saved when packing symbols and diagrams
tightly.

It is in SDL behaviour descriptions and in UML activity diagrams that presentation and layout have the most impact and
the following aspects should be considered within a standard:

- the general flow of behaviour across a page;

- the spreading of diagrams over more than one page;

- the use of text extension symbols (in SDL);

- the alignment and orientation of symbols;

- the use of swimlanes (in UML).

7.1 The general flow of behaviour across a page
SDL and UML both allow the lines connecting symbols to flow in any direction across a page. As an example, the
process shown in Figure 4 is legal SDL but is quite difficult to read.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)22

PROCESS Flow_Example_1 1(1)

idle SETUP
(SetupInfo)

Analyse_Input
(Setup_Info,

Status, Cause)
Status

FAILURE_
_RESPONSE
(Cause)

idle SETUP
(SetupInfo) idleRELEASE

RELEASE_
_REJECT

idle

Failure
Success

Figure 4: Example of poor layout of legal SDL

The readability of this process is greatly improved simply by laying it out in a "top-to-bottom" form, as in Figure 5.

PROCESS Flow_Example_2 1(1)

idle

RELEASE

RELEASE_
_REJECT

idle

SETUP
(SetupInfo)

Analyse_Input
(Setup_Info,

Status, Cause)

Status

FAILURE_
_RESPONSE
(Cause)

idle

SETUP
(SetupInfo)

idle

Failure Success

Figure 5: Example of improved layout

The orientation of SDL process symbols and, to a lesser extend, UML activity symbols is such that they naturally flow
vertically and it is, thus, easier to read diagrams that follow this convention. Thus, (62)the general flow of SDL process

ETSI

REG/MTS-00072 V1.1.2 (October 2001)23

diagrams and UML statechart and activity diagrams should be from the top of the page towards the bottom.
However, in some UML instances the flow may be better expressed using a left-to-right flow across the page.

Even in class diagrams and others where there is no "flow" expressed, readability can be improved if there is a general
top-to-bottom layout on the page based on hierarchy or some other pertinent characteristic.

7.2 Diagrams covering more than one page

7.2.1 SDL behaviour diagrams

In most cases within standards it is not possible to constrain SDL process descriptions to one page. Only two options
exist for breaking a diagram across a page boundary without affecting the readability. These are:

- using the NEXTSTATE symbol;

- using a connector symbol.

If it can be accommodated within the general structure of a description, (62)the flow on a page of an SDL process
should end in a NEXTSTATE symbol rather than a connector as shown in Figure 6 and Figure 7. In general, this
makes specifications easier to read. In addition, (57)states that are entered from NEXTSTATE symbols on other pages
should always be placed at the top of the page.

PROCESS Page_example_1 1(2)

DCL
Action RequestType;
TimeNow TimeType;
AckStatus AckType;

IdleState

UserRequest
(Action) From User

Action

GetCurrentTime
(TimeNow)

SendTime
(TimeNow)
TO SENDER

WaitForAck

TestMessage
TO SENDER

IdleState

GetCurrentTime

UpdateUserLog

Send_Time Test

Figure 6: Paging using NEXTSTATE symbol (page 1)

ETSI

REG/MTS-00072 V1.1.2 (October 2001)24

PROCESS Page_example_1 2(2)

WaitForAck

UserAck
(AckStatus) From User

UpdateUserLog
(Action, TimeNow,

AckStatus)

IdleState

Figure 7: Paging using NEXTSTATE symbol (page 2)

Although it would be possible to draw the example shown in Figure 6 and Figure 7 in a single thread with the
"WaitForAck" state embedded part-way through, it is easier to locate individual states in a more complex specification
if each thread is limited to a single transition (the processing between one state and the next one). (62)Where transitions
are short and simple they can be arranged side-by-side on a single page as shown in Figure 8. However, (57)when two
or more transitions are shown on one page, there should be sufficient space between them to make their separation
clear to the reader.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)25

PROCESS Page_example_2 1(1)

DCL
Action RequestType;
TimeNow TimeType;
AckStatus AckType;

IdleState

UserRequest
(Action)

From User

Action

GetCurrentTime
(TimeNow)

SendTime
(TimeNow)
TO SENDER

WaitForAck

TestMessage
TO SENDER

IdleState

WaitForAck

UserAck
(AckStatus)

From User

UpdateUserLog
(Action, TimeNow,

AckStatus)

IdleState

GetCurrentTime

UpdateUserLog
Send_Time Test

Figure 8: Transitions aligned on a single page

When a single transition extends beyond the length of one page, a connector symbol can be used to provide a link to the
next page. An example is shown in Figure 9 and Figure 10.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)26

PROCESS Join_example_1 1(2)

DCL
UserID IDtype,
IDstatus EncryptType,
UserStatus ValidType;

TIMER T7 = 3*s;

WaitForInput

ValidateUser
(UserID) From Network

Analyse
(UserID,
IDstatus)

IDstatus

DeCrypt
(UserID)

IPproc

Analyse

DeCrypt

Validate

Encrypted Plain

Figure 9: Paging using a connector symbol (page 1)

ETSI

REG/MTS-00072 V1.1.2 (October 2001)27

PROCESS Join_example_1 2(2)

IPproc

Validate
(UserID,

UserStatus)

UserStatus

StartTimer(T7)

UserValidated
(UserID)
TO Network

WaitForInput

UserNotValidated
(UserID)
TO Network

WaitForInput

Validated Not_Validated

Figure 10: Paging using a connector symbol (page 2)

As can be seen in Figure 9 and Figure 10, the syntax of SDL allows a connector symbol to have a process flow line to it
or from it but not both. Figure 11 shows how it is possible for a connector to be attached to a symbol anywhere on a
page. These can be difficult to locate and so, to avoid confusion, (62)connector symbols should generally only be used
to provide a connection from the bottom of one page to the top of another. However, long transitions can often be
avoided by careful use of procedures (see subclause 9).

Label_5A := B + C

Update_Records
(A)

Figure 11: Example of poor use of a connector symbol

ETSI

REG/MTS-00072 V1.1.2 (October 2001)28

7.2.2 UML activity diagrams
UML does not support the concept of physical pages in its specifications but it may still be necessary to spread a
distinct element of behaviour over more than one activity diagram. In this instance, there is only one mechanism that
can be used for linking the diagrams and that is by using a state symbol. An activity diagram which terminates in a state
other than the "End" state, will be assumed to continue at a subsequent instance of the same state in another activity
diagram. In the example shown in Figure 12, the activity in the right-hand part of the diagram continues on from the
"Connected" state on the left-hand side. Particularly in those cases where the specification of behaviour is distributed
over many diagrams, (62)activity diagrams or statechart diagrams should use text boxes indicate what functions are
specified in other diagrams or in which diagram the behaviour continues.

Idle

At System Startup

Check Called
Party ID

SETUP(CalledPartyID)
[CalledPartyID Invalid] ^SETUP_REJECT

Connected

[CalledPartyID Valid] ^CALL_PROCEEDING

Activity continues in
Diagram "Setup_Page2"

Connected

Idle

RELEASE ^RELEASE_ACKNOWLEDGE

At System Shutdown

Continued from diagram
"Setup_Page1"

Figure 12: Example of UML activity diagram pages linked at a state

7.2.3 Symbols common to all pages

An SDL process description (which may exist in a system, block or process diagram) should not be considered to be
simply a "flow-chart" specifying a sequence of actions and decisions to be taken by a particular entity. In order to be
complete, a process description may include the following:

- a specification of formal parameters;

- variable, signal and data definitions;

- class and interface definitions;

- procedure references;

- class reference;

- the process graph, itself.

Symbols such as procedure references and text boxes containing DCL, TIMER and other declarative statements are
valid for all pages of the process in which they appear. The language syntax allows them to be drawn on any page but,
for easier reading, (62)all reference symbols and text boxes containing common declarations should be collected
together at a single point within the process chart. For simple processes, and where space allows, these symbols can be
placed together on the first page with the first transition, as can be seen in Figure 8 and Figure 9. In other cases, a
separate page (or pages, if necessary) can be used to collect these symbols together.

To further improve the readability of the SDL, (62)separate text box symbols should be used for each different type of
declaration (for example, variable declarations, timers, signal specifications, data type specifications and formal

ETSI

REG/MTS-00072 V1.1.2 (October 2001)29

parameters). It can also be useful to sub-divide these groupings into separate text boxes according to
application-specific criteria (for example, grouping all of the BOOLEAN SYNONYM definitions together).

7.3 Text extension symbols
The SDL symbols are not always large enough to contain all of the text necessary to specify the task represented by the
symbol and if the character size is set to a value that makes it readable, the text spills over into the area surrounding the
symbol as can be seen in Figure 13.

Figure 13: Text overflowing a symbol

This can be difficult to read and, in the strict sense of the language, is syntactically incorrect. Therefore, (62)when the
text associated with a task symbol overflows its symbol boundaries, a text extension should be used to carry the
additional information as shown in Figure 14. The syntax of SDL specifies that the text in the extension symbol is
added after the text in the task symbol. To avoid misinterpretation, care should be taken to ensure that the text extension
symbol appears to the right of or below the task symbol unless all of the text is placed in the extension symbol.
However, as a general rule the text extension symbol should not contain all of the text. For example, in the case of
signals, the signal name should be placed inside the input or output symbol.

Figure 14: Use of Text Extension symbol

Even in cases where the text does not overflow the symbol, this is a useful presentation method which can be used to
separate the signal name from the parameter list in inputs and outputs. For reasons of clarity, it is not advisable to split
the parameter list between the primary symbol and the extension.

As an alternative to the use of a text extension symbol, SDL permits the re-sizing of both a task symbol and the text
contained in it.

7.4 Alignment and orientation of symbols

7.4.1 Alignment
Neither SDL nor UML place any semantic significance on the placement and alignment of symbols but a process or
activity page that is carefully arranged and not over filled with symbols and connecting lines will always be easier to
read and interpret than one that is not.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)30

There is no particular benefit to be gained by aligning symbols of a particular type except that (62)symbols that
terminate the processing on a particular page should be aligned horizontally to make it easier for the reader to
identify all of the points where processing ceases or continues on a new page or thread. These symbols include:

- Connector symbol

- NEXTSTATE symbol

- RETURN symbol

- STOP symbol

SDL

SDL

SDL

SDL

- STATE symbol

- END STATE symbol

UML

UML

In the example shown in Figure 15, the processing on the page can end in a number of different states. The alignment of
all of the associated NEXTSTATE symbols at the bottom of the page makes it clear what all of these possibilities are.

PROCESS Alignment_example 1(1)

DCL
CallParams ReqType,
Result ResType,
Cause ErrType;

TIMER T4 := 10*ms;

IdleState

CallRequest
(CallParams) From User_1

Analyse
(CallParams,

Result)

Result

Construct_
OnwardRequest

(CallOarams)

StartTimer(T4)

CallRequest
(CallParams)
TO User_2

WaitForRequest_
Response

Construct_
ErrorSignal

(Cause)

RequestError
(Cause)
TO User_1

IdleState

RejectRequest
TO User_1

IdleState

ClearRequest
From User_1

No call in progress
so ignore request

IdleState

Analyse

Construct_
Onward_
Request

Construct_
Error_
Signal

UserKnown UserNotKnown CallerNotAuthorised

Figure 15: Example showing the alignment of NEXTSTATE symbols

ETSI

REG/MTS-00072 V1.1.2 (October 2001)31

7.4.2 Orientation
Most SDL symbols are symmetrical and, thus, cannot be shown in different orientations. INPUT and OUTPUT symbols
are different in that they can be shown either right facing or left facing, thus

SDL accepts both orientations as correct but does not assign any specific meaning to either. However, (62)in simple
systems where each process communicates with only one or two other processes, the orientation of INPUT and
OUTPUT symbols can be used to improve the readability of the SDL. However, to avoid possible specification errors
and mis-interpretation, explicit methods of identifying the source and destination of signals should be used. Symbol
orientation should not be considered to be a substitute for the use of a "From" comment on an INPUT or the TO and
VIA statements in an OUTPUT as described in subclause 11. (57)If used, the significance of the orientation of SDL
symbols should be clearly explained in the text introducing each process diagram.

8 Structuring behaviour descriptions

9 Using procedures, operators methods and macros

10 Using decisions

11 System structure, communication and addressing

12 Specification and use of data

13 Using Message Sequence Charts (MSC)

13.1 Introduction
The Message Sequence Charts (MSC) language is defined in ITU-T Recommendation Z.120.

A basic MSC describes a scenario and consists of interacting instances. An instance is an object that has the properties
of a certain entity. On an instance, the ordering of events is specified. Events can be message outputs, message inputs,
local actions and timer events.

An HMSC (High-level Message Sequence Chart) is a roadmap of scenarios, where the details are hidden and described
in basic MSCs or HMSCs that are Referenced in the HMSC.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)32

13.2 Relationship between MSC and SDL
As far as possible, entities in MSC should correspond to SDL entities. Normally, it is only useful to specify a subset of a
system's behaviour in MSC. It is also common not to reproduce the complete SDL architecture in MSC, but to represent
only the important communicating parts with MSC instances.

13.3 Presentation and layout
There should be a reasonable amount of information in an MSC diagram, making the specification easy to comprehend
but each diagram should be limited to the information that fits into one printed page. The structuring mechanisms in
MSC can be used to avoid large diagrams .(62) If splitting a scenario into several distinct MSC diagrams is not
feasible, vertical paging of diagrams might be used. However, horizontal paging should be avoided.

If vertical paging is necessary, the instance heads and the MSC diagram name should be repeated on each page. The
instance end symbols must only appear on the last page.

(62)A clear spacing between symbols in an MSC diagram should be maintained both horizontally and vertically. This
makes it easier for each instance and message to be clearly distinguished from any others.

13.3.1 Annotations

There are four different annotations in MSC:

- note

 appears between items of texts;

- comment symbol

 can be attached to events or symbols;

- text symbol

 may contain larger texts for documentary purposes;

- informal action

 may be used to informally express internal behaviour of an instance (see also 13.10).

As in any formal language, (62)Annotations help to improve the understanding of an MSC description and should be
used freely.

Another very useful practice is to annotate which scenarios (or parts of scenarios) that are normal from those that are
exceptional.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)33

Connection_
HandlerCallingParty CalledParty

This scenario shows the handling
of a second connect request.

MSC Setup_Request

The ConnectionType
parameter is optional

Connect_Accept

'check nr of
free encrypted
connections'

ConnectAck

/* CalledPartyInfo */

ConnectRequest

/*
CallingPartyInfo,
CalledPartyInfo,
ConnectionType = Encrypted
*/

Figure 16: Annotations in MSC

13.4 Naming and scope
Most MSC names are globally visible within the set of MSC and HMSC diagrams defined by one MSC document
specification. An instance kind name is visible outside of its MSC document. Gate names and MSC formal parameter
names are visible in the scope of one MSC diagram.

As far as possible, (62)names in an MSC should be the same as the names of corresponding entities in the SDL. For
example, an MSC message name should be the same as its corresponding SDL signal name, and an MSC instance
should have the same kind name as the corresponding SDL process or block.

An entity may have the same name as another visible entity if the two entities are of different classes. A message may
thus have the same name as a timer or an instance. (62)Entity names should be unique within a specification.

13.5 MSC document
An MSC document is a collection of MSCs and HMSCs (Figure 17), declaring used instances, messages, timers and
MSC References. It is also the defining document for an instance kind. An MSC document might specify an inheritance
relationship between two instances (instance kinds), allowing specialization of used scenarios (MSC References).

Since an MSC document is not needed unless instance decomposition, instance kind inheritance or the data concepts are
used, it can often be avoided in order to reduce complexity of the specification.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)34

msc document AllScenarios
inst user;
inst sys;

normal exceptional

m1 m2 m3 m4

m11

msc normal

m1

m2

msc exceptional

m3

m4

msc m1

user sys
mess

m11

Figure 17: Collection of MSC diagrams

13.6 Structuring
There are two distinctive mechanisms for structuring MSC specifications. The first is related to the logical system
architecture. The second is related to behaviour.

13.6.1 Architecture

13.6.1.1 Instance

An instance is an object of an entity specifying behaviour by means of events that are ordered on the instance axis.
More than one instance might be used to describe one entity. Every instance has a name associated with it and an
optional kind name, e.g. process name, which indicates which entity the instance is describing. In relation to SDL, the
kind name can be preceded by a kind denominator which mat be one of the reserved words system, block or process.
An instance without kind name will have its own name as an implicit kind name. (62)If there is an associated SDL
specification, each MSC instance should have a kind name and kind denominator corresponding to the name and
entity kind of the equivalent entity in SDL.

It is easy to add more and more instances to an MSC in an attempt to make it easier to understand. Unfortunately, this
can have the opposite effect by adding complexity which can be an unnecessary distraction. So, (62)the number of
instances included in an MSC should be kept low to maintain a focus on the normative interface(s) and important
entities in the logical or physical model.

The instance name (together with the optional kind name) may be placed above or inside the instance head. For the sake
of consistency, (62)if the kind name is present i n an MSC instance, the instance head symbol should contain the
instance name with the kind name placed above the symbol, as shown in Figure 18. Otherwise both names have to be
separated by a colon symbol.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)35

CallingParty
environment

Terminal

process
TerminalHandler

MSC CallTermination

instance head

instance end

kind denominator
kind name
instance name

Figure 18: Placement of instance name and kind name

13.6.1.2 Instance decomposition

Behaviour described by several instances can be composed into one instance, hiding the intra-communication between
the original instances. This means that the same part of a scenario is described in (at least) two diagrams, firstly on the
higher level and secondly on a lower level, showing the internal behaviour of the decomposed instance. Furthermore, a
decomposed instance needs a defining MSC document in which used instances, messages and MSC References are
defined. (62)Instance decomposition should be avoided in MSCs because of the complexity it might introduce.

It is however good practice to represent a higher-level SDL entity with an instance, without describing the lower-level
behaviour, if this abstraction improves the understanding of the overall behaviour.

13.6.1.3 Dynamic instances

Dynamic instances in MSC can be described by using the instance creation and instance stop concepts. Generally,
standards describe a static view of the components avoiding the more complex dynamic identity relations and so
(62)dynamic instances should be avoided in MSCs. Instance creation and instance stop should only be shown if they
are a vital part of the specification.

Note the difference between the instance end and the instance stop. The instance end terminates the description of the
behaviour of an instance within one MSC diagram, while the instance stop describes the termination of the entity that
the instance represents.

13.6.1.4 Environment

In general, one MSC specifies the possible behaviour of only a part of a certain system. Everything else is referred to as
"the environment" with which messages can be interchanged. The environment can be considered to be one or several
instances that communicate with the instances in the MSC. Graphically the environment is represented by the diagram
frame. Communication with the environment is provided by message arrows connected to the frame (see Figure 19).

Destination_
Network

Originating_
Network

MSC Successfull_Setup

CallRequestAck

CALL_PROCEEDING

CONNECTED

ALERTING
CallAnswer

CallAlerting

IncomingCall

SETUP

CallRequest

Figure 19: Messages being sent to and from the environment

ETSI

REG/MTS-00072 V1.1.2 (October 2001)36

There are situations when using the frame to represent the environment is counter-intuitive. In the example shown in
Figure 19, a natural, but not justified interpretation would be that the message CallAlerting is sent in response to
message IncomingCall. In fact, message CallAlerting might be sent before message IncomingCall, possibly from a
different entity than the receiver of message IncomingCall.

As an alternative to the environment frame, specific instances may be used to describe the interaction of the system with
the environment. When there is communication with more than one distinct environment entity, explicit instances for
the environment enable the description of ordering. and allow a concrete behaviour description of external entities that
interact with the system under consideration. (62)Instances with instance kind name "environment" should be used to
represent the environment in an MSC.

Destination_
Network

Originating_
NetworkCallingUser

Environment
CalledUser
Environment

MSC Succesfull_Setup

CALL_PROCEEDING

CONNECTED

ALERTING

SETUP

CallRequest

CallRequestAck

IncomingCall

CallAlerting

CallAnswer

Figure 20: MSC with instances representing the environment

13.6.2 Behaviour
In MSC, there is a possibility to divide complex scenarios into smaller, named descriptions. There are several reasons to
do this:

- making the specification easily readable and suitable for print-out;

- reuse of common behaviour parts, ensuring easier maintenance of the specification;

- hiding details while focussing on message exchange;

- keeping logically distinct parts separate.

This structuring of behaviour is realized by allowing expressions on MSC parts. The parts can be a group of events or
an MSC Reference. In an expression, the following relationships between the parts might be expressed:

- sequence (seq);

- alternative (alt);

- optionality (opt);

- parallelism (par);

- Repetition (loop);

- Exception (exc).

ETSI

REG/MTS-00072 V1.1.2 (October 2001)37

These expressions might be used in three different ways or contexts:

- HMSC;

- MSC references in basic MSCs;

- In-line expressions in basic MSCs.

An MSC Reference is used to refer to other MSC or HMSC diagrams by means of their MSC name. MSC References
may be used within basic MSCs or in HMSCs.

HMSCs should be used to specify a high-level view of scenarios which are defined in other MSC or HMSC
diagrams.

Generally, unrestricted use of the expressions can cause an explosion of the number of scenarios, which may cause
problems with validation.

13.6.2.1 High-level MSC (HMSC)

The composition of a set MSCs is specified by means of a High-level MSC (HMSC) which is a roadmap of the
contained MSC References. HMSCs provide a graphical way of describing the combination of Message Sequence
Charts, typically visualizing sequence, alternative and loop relationships.

Apart from MSC References, an HMSC can also contain conditions, start, stop and connection symbols.

(62)Connections should always be used when HMSC flow lines join or merge to distinguish them from simple
crossing lines.

Unlike plain MSCs, instances and messages are not shown within HMSCs which focus only on composition aspects.

Token based security No Token Support
available

MSC Network_Handover

MT_associated_with_old_AP

Association

Link_Capability

Handover_Complete

 Authentication

Encryption_StartupToken_NW_signalling

Force_Handover

Setup_Radio_Connection

Handover_Completion

Info_Transfer

Figure 21: Example of HMSC usage

The annotations, "Token based security" and "No token support available" help to provide some helpful functional
segregation within the HMSC shown in Figure 21. Such (62)annotations should be used within HMSC to explain the
purpose of different alternative branches.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)38

HMSCs are hierarchical in the sense that an MSC Reference may refer to an HMSC and, consequently support a top
down design approach very well. In order to maintain sufficient transparency and manageability, (62)References to
other HMSCs should be used within HMSCs to ensure that a logical structuring of described behaviour is achieved.
This has the added advantage of keeping to a minimum the number of symbols in any one HMSC.

An MSC Reference may contain a textual operator expression instead of a single Reference name. The textual
expression offers the same expressiveness as the graphical notation with the one exception that loop boundaries can be
given in the textual form. MSC Reference expressions are useful for a compact representation, in particular of several
alternatives, but makes the description less intuitive. To improve readability,(62) graphical HMSC expressions should
be used in preference to textual Reference expressions.

MSC StartUp_Connection

StartUp

idle

ConnectionRequest

connected idle

MSC StartUp_Connection

StartUp

idle

loop <1,4>
ConnectionRequest

connected idle

Figure 22: HMSC with graphical relations between the references
and corresponding HMSC with reference expression

13.6.2.2 MSC reference in basic MSC

Behaviour parts can also be reused or abstracted in basic MSCs by using MSC References connected to the instances. In
general, the number of MSC References should be kept low within a plain MSC in order to focus on the message
interchange.

HMSC References may be included in basic MSCs but referring to "overview" charts from detailed sequence
specifications can be confusing. Therefore, (62)Plain MSCs should not include HMSC References.

MSC References in basic MSCs should be used as a structuring means and for the reuse of scenarios. Figure 23 shows
an example of MSC References used in the specification of a test purpose preamble and postamble. As such, the MSC
Reference plays a similar role to that of a procedure in SDL. If the same scenario appears in several MSCs of an MSC
document, it should be specified as an MSC of its own.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)39

SCF CSF_SSF SigCon_A

MSC IN2_Basic

O_S2P_Preamble

Release_Call_PostAmble

InvokeReq

ResultInd

SigCon_ACSF_SSFSCF

MSC O_S2P_Preamble

ContinueReq

InvokeReq

InvokeInd

SetupInd

Figure 23: MSC references in basic MSC

13.6.2.3 Inline expression

An inline expressions can be looked upon as an expanded form of an MSC Reference expression used in a basic MSC
context. They are ideally suited to the compact description of several small variants. Typically they cover only a small
section of the complete MSC which means that the inline expression should contain only a few events.

Inline expressions are used to define concisely several different sequences that can occur at the same place in the
enclosing diagram. A diagram using an inline expression is equivalent to several diagrams where the inline expression
is replaced by each of the defined sequences in turn. Inline expressions can use the following operators on events:

- sequence;

- alternative;

- optional;

- loop;

- parallel;

- exception.

Inline expressions can be nested. Inline expressions give the benefit of conciseness at the expense of making a
specification more complex and, thus, more difficult to read. (62)The use of multiple inline expressions in a single
MSC diagram should be limited to avoid an unnecessary explosion in the number of implicit scenarios.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)40

Network_BNetwork_Auser_A

1

1

1alt

MSC Release

Fail

RespTimer

RespTimer

RespTimer

Off_line

Deactivate

Cancel

Figure 24: Usage of inline expression

In certain situations, inline expressions are the only descriptive way to illustrate a scenario. For example, after setting a
timer an alternative can be used to describe both the normal course of action and the exceptional behaviour resulting
from a timeout. A scenario with two or more alternative courses of action might either be described in an HMSC, where
the alternative is described by different MSC References on alternative paths, or in a basic MSC, where the alternative
is described by alternative inline expressions. (62)HMSCs should be used to highlight significant alternative or
optional behaviour paths but; if the differences are only minor, these could be described within an MSC using inline
expressions.

13.7 Data
When data (type information or values) can enhance the understanding of an MSC, this may be indicated informally by
notes, comments or informal actions. To formally express data in MSC can lead to an unnecessarily complex
specification that can be difficult to understand and maintain.

Data types and expressions introduce unnecessary complexity to a specification and should be avoided.

13.8 Message
An MSC message describes two asynchronous events: a sending event that is performed by the sending instance and a
receive event that is handled by the receiving instance. The receive event is optional (see 13.8.1).

Messages may cross instances that are placed between the sender and receiver . By rearranging the order of the
instances, instance crossing messages can be minimized. (62)The crossing of MSC instances by messages should be
minimised by placing frequently communicating instances close to each other wherever possible. However, the
natural and logical ordering of entities should be considered to be more important than strict adherence to this guideline.

A message arrow may be drawn either horizontally or with a downward slope. Both forms are equivalent but the
downward slope is sometimes used informally to indicate the passage of time. Since this is prone to misinterpretation,
(62)delay or the passage of time should be described by the time concepts in MSC (see 13.13).

Messages with downward slopes can also be used to describe the overtaking of messages. However, (62)the
unnecessary crossing of messages should be avoided since it obscures the meaning of an MSC .

(62)Message overtaking should be avoided, except in MSCs explicitly describing the behaviour when overtaking takes
place.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)41

In general, two or more events may not be attached to the same point or at the same level on an instance axis. There is
one exception to this rule. An incoming event and an outgoing event may be attached to the same point or at the same
height. This is interpreted as if the incoming event is drawn above the outgoing event.

Although both representations are equivalent, within a standard, (62)an MSC should show an outgoing event below the
incoming event that preceded it as this presentation gives a clearer description of the ordering relationships.

 i2 i3 i1

c d

a b
i3 i2 i1

d

c

b

a

Figure 25: Clear ordering of events

Note The two examples are semantically equivalent, but the layout of the second example makes the scenario
easier to comprehend.

MSC does not require the parameters of the message to be described. However, providing an informal type name in a
message is often useful when creating an SDL specification with an MSC model as input. In some cases, it might also
be of value to indicate that a parameter has a certain value if this improves the understanding of the scenario. In
protocol standards it is not unusual for a message to have an extensive parameter list defined and the inclusion of such
lists with all messages can make an MSC very difficult to read.

The description of MSC message parameters may differ from SDL signal parameters regarding the level of detail. In a
single scenario, it is common to highlight only the interesting aspects of the message parameters i.e.; the part that
affects the further behaviour of the scenario. This abstraction is a very useful mechanism that ensures that the scenarios
are not too detailed and complex.

MSC message parameters have a formal meaning in that they illustrate how values are transmitted together with the
message. According to the language definition, these values must conform to the corresponding parameter data type in
the message declaration. However, in the interests of clarity, (62)only those parameters that are absolutely necessary
for the understanding of the message sequence should be included with an MSC message. In order to be able to do
this while still complying with the MSC syntax, (57)if incomplete message parameter information is to be shown in an
MSC, this should be given in a note, following the message name as shown in Figure 26.

Net CalledPartyCallingParty

MSC CollectCall

ConfirmCollectCall

/* CallingPartyInfo */

CallrequestAck

/* CalledPartyInfo */

CallRequest

/*
CallingPartyInfo,
CalledPartyInfo,
CallType = CollectCall
*/

IncomingCall

OffHook

Confirmed

Figure 26: Indication of message parameter information

ETSI

REG/MTS-00072 V1.1.2 (October 2001)42

13.8.1 Incomplete messages
Besides the specification of successful transmission of messages, incomplete messages can be described in MSC. An
incomplete message communication is represented by a lost message symbol or a found message symbol. A lost
message is a message output for which the message input is unknown. A found message is a message input for which
the message output is unknown. Lost messages may be used to describe the reaction of a system in error cases such as
in case of an unreliable transmitter (see Figure 27).

(62)Lost and found message should normally not be used in MSCs because they correspond either to the behaviour of
the environment or the behaviour of the underlying system. They should not be used to describe traces of normal
behaviour of systems.

A situation where a lost message may be used is in a scenario that describes how re-sending of lost messages is handled.
Found messages may be used when a message can be sent by several possible instances, and the sending identity is not
relevant to the scenario.

In SDL, unsuccessful signal transmission can only be described in an indirect manner.

TFControlSessionHandlerUser_a

MSC Start_TF_fail

TFInd

StartFailed

Waitresp

Start_TF

TFReq

Figure 27: Lost and found message

13.9 Condition
MSC conditions can be used in two different ways:

- as setting conditions;

- as guarding conditions.

Setting conditions define the actual system state of the instance(s) that share the condition. Guarding conditions are
used to restrict the possible ways in which an MSC can continue.

Local setting conditions can be used to indicate system states corresponding to states in SDL. The number of used local
conditions should be minimized in order to not obscure the primary function described by the MSC. Local guarding
conditions may contain a boolean expression where variables are allowed. To make the description easy to understand,
(62)logical names should be used in MSC guarding conditions instead of variable expressions.

Conditions have no further meaning. They are not events and a global condition does not imply synchronization
between the shared instances.

Global conditions are attached to all instances contained in an MSC and denote global system states. For
standardization, one important use of global conditions is as connection points between different MSCs within a set of
MSCs. Conditions are used in HMSCs to indicate global system states or guards and impose restrictions on the MSCs

ETSI

REG/MTS-00072 V1.1.2 (October 2001)43

that are referenced in the HMSC. Conditions also give extra context information for the basic MSC and makes the MSC
specification model easier to maintain. An example of an MSC with a global initial condition (guard) and a global final
condition is shown in Figure 28.

MSC RadioHandover_HL

Associated_to_old

ForceHandover

RadioHandover

Associated_to_new

AP_ENVAP_RLCMT_RLCMT_ENV

Associated_to_new

1

1opt

When Associated_to_old

MSC RadioHandover

RLC_HANDOVER_REQUEST

RRC_radio_handover_cnf

RLC_RADIO_
_HANDOVER_COMPLETE

RRC_radio_handover_rsp

RRC_forward_handover_ind

RRC_forward_handover_req

RRC_handover_notify_ind

RLC_HANDOVER_NOTIFY

RRC_handover_notify_req
AP_ENVMT_ENV AP_RLCMT_RLC

Forced_Handover_Initiated

When Associated_to_old

MSC ForceHandover

RLC_FORCE_
_HANDOVER_ACK

RRC_force_handover_cnf

RRC_force_handover_req

RRC_force_handover_ind

RRC_force_handover_rsp T_force_handover

RLC_FORCE_HANDOVER

Figure 28: Global conditions used to restrict composition of MSCs

13.10 Action
In some situations, it can be useful to indicate informally the action that is performed after a message is received (see
Figure 16). This is possible by using an informal action. (62)Use of the MSC action symbol should be limited to the
informal expression of a specific aspect of behaviour which helps to clarify the surrounding message sequence and
to data assignments.

13.11 Timer
Timers may be used informally to indicate delays or time constraints on event sequences. Since there is an explicit
notation in MSC for time constraints and measurements (see 13.13), this should be used instead of timers as the notion
of a timer entity may be too precise for most standard specifications.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)44

DisplayUnit
Environment

UIControl KeyboardUnit
Environment

MSC CheckBalance

DisplaySelectService

WaitForSelection

CheckBalance

DisplayPleaseWait

DisplayDelay

DisplayCurrentBalance

Figure 29: Timer usage

Note The WaitForSelection timer is used to restrict the waiting time for a response signal. The DisplayDelay
timer is used as a delay in the execution.

In certain situations when using separated timer symbols, it is necessary to add an extra timer identifier in order to have
an unambiguous scenario.

User_bUser_a Network

1

1alt

1

1

1alt

1

MSC 2Requests

WaitResp, a

WaitResp, a

ServiceReq

InfoNeeded

Info

WaitResp, a

WaitResp, b

WaitResp, b

WaitResp, b

Info

ServiceReq

InfoNeeded

Figure 30: Separated timer symbols and timer identifier

ETSI

REG/MTS-00072 V1.1.2 (October 2001)45

13.12 Control Flow
In specifying distributed systems, all communication is normally described by asynchronous messages. It is however
often the case that communication is by signal pairs, a call message and a corresponding reply message, together
making a synchronous communication.

A logically connected signal pair might be high-lighted in an MSC specification by using the special symbols for reply,
method and suspend.

The control flow concepts are:

- method call;

- reply symbol;

- method symbol;

- suspend symbol.

A method call is represented by a message symbol with the CALL keyword before the message name. For a method
call, there must always be a corresponding reply, and vice versa.

The method symbol is used to indicate that an instance is active. The suspension symbol is used to indicate that an
instance is suspended, typically waiting for the reply of a blocking method call. The normal instance axis means that the
instance is inactive, waiting for an activating event or a task to perform.

A method call followed by a suspension region is a synchronous method call.

If MSC Instances are used to represent entities that are not independent (asynchronously parallel), then the method and
suspend symbols can be used to indicate how each active object gets the flow of control from the CPU.

Client_a
Client

Client_b
Client

Server Controller

MSC UpdateAll

Call UpdateAll

Update

UpdateAck

Update

UpdateAck

UpdateAllReply

Figure 31: Specification of synchronous communication utilizing the suspend symbol and the
method symbol.

13.13 Time
The time concepts can be used for:

- Time measurements

- Timing constraint on events

ETSI

REG/MTS-00072 V1.1.2 (October 2001)46

Time constraints are useful for stating time requirements without adding behaviour to the model (compare with the use
of timers). Using the time concepts assumes that a data type for handling time expressions is available.

Figure 32: Time constraints between events

13.14 General ordering and coregion
Although an instance describes a total order of its events, an MSC normally describes only a set of partial event orders.
This is because instances are independent, since each MSC instance is asynchronously parallel. Synchronization
between instances is normally achieved by message passing.

An MSC wi th t h r ee d i f f e r en t
par t ia l orders :

a! - a? - b! - b?
a! - b! - a ? - b?
a! - b! - b ? - a?

A to t a l ly o rde red MSC

i1 i3i2

M S C Part ia lOrders

a

b

i3i2i1

M S C To ta lOrde r

c

b

a

Figure 33: Event orders of MSCs

Coregions are useful for describing situations where two or several events might happen in an arbitrary order on one
instance. They are also commonly used on decomposed instances to relax the total ordering imposed to the contained
instances by the decomposed instance. However, large coregions, covering many events might be very hard to interpret.
Thus, (62)the number of events shown in an MSC coregion should be limited.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)47

ServerClient_a Client_b

MSC Multiple_Info_Request

Info_Req

Info

Info

Info_Req

Figure 34: Use of coregion

Note The two Info messages can be received in any order by the Server instance. However, the first Info
message must arrive after the second Info_Req is sent and the two Info_Req messages must be sent in a
specific order.

General ordering can be used within a coregion to specify partial orders in an otherwise completely unordered region.
However, (62)an inline alternative expression should be used in an MSC instead of general ordering within a
coregion.

Client_bServerClient_a

MSC Multiple_Requests

Info_Req

Info_Req

Info

Info

Client_b Server Client_a

MSC Multiple_Requests

Info_Req
Info_Req

Info

Info

Figure 35: General ordering within a coregion reduces the number of orders

Note In the first MSC, the order restrictions that existed in the example in Figure 34 are released. On the other
hand, there are a number of unwanted event orders in this MSC.

 In the second MSC, each request and response message pair is now ordered, but the two events related to
the communication with Client_a is unordered with respect to the events related to the Client_b
communication.

ETSI

REG/MTS-00072 V1.1.2 (October 2001)48

Annex A (informative):
Reserved words

A.1 SDL

A.1.1 Keywords
The following words are keywords in SDL and cannot be used as names.

NOTE: The list of keywords shows only the lower-case presentation. The upper-case equivalent of each is also an
SDL reserved word.

abstract active adding aggregation
alternative and any as
association atleast block break
call channel choice comment
composition connect connection constants
continue create dcl decision
default else endalternative endblock
endchannel endconnection enddecision endexceptionhandler
endinterface endmacro endmethod endobject
endoperator endpackage endprocedure endprocess
endselect endstate endsubstructure endsyntype
endsystem endtype endvalue env
exception exceptionhandler export exported
external fi finalized for
from gate handle if
import in inherits input
interface join literals macro
macrodefinition macroid method methods
mod nameclass nextstate nodelay
none not now object
offspring onexception operator operators
optional or ordered out
output package parent priority
private procedure protected process
provided public raise redefined
referenced rem remote reset
return save select self
sender set signal signallis t
signalset size spelling start
state stop struct substructure
synonym syntype system task
then this timer to
try type use value
via virtual with xor

ETSI

REG/MTS-00072 V1.1.2 (October 2001)49

A.1.2 Predefined words
The following words are defined in ITU-T Recommendation Z.100 [4] in the SDL package "Predefined" and should not
be redefined or used for any other purposes:

ACK Array Bag BEL
bit Bit bitstring Bitstring
Boolean BS CAN Character
Charstring chr CR DC1
DC2 DC3 DC4 del
DEL DivisionByZero DLE Duration
EM empty Empty emptystring
ENQ EOT ESC ETB
ETX extract false FF
first fix float HT
incl Integer InvalidIndex InvalidReference
IS1 IS2 IS3 IS4
last length LF make
mkstring modify NAK Natural
NoMatchingAnswer NUL num Octet
octetstring Octetstring OutOfRange power
Powerset Predefined Real remove
SI SO SOH String
STX SUB substring SYN
take Time true UndefinedField
UndefinedVariable Vector VT

A.2 MSC
The following words are keywords in MSC and cannot be used as names.

action after all alt
as before begin block
by call comment concurrent
condition connect create data
decomposed def empty end
endafter endbefore endconcurrent endexpr
endinstance endmethod endmsc endsuspension
env equalpar escape exc
expr external finalized found
from gate in inf
inherits inline inst instance
int_boundary label language loop
lost method msc mscdocument
msg nestable nonnestable offset
opt order otherwise out
par parenthesis process receive
redefined reference related replyin
replyout seq service shared
startafter startbefore starttimer stop
stoptimer suspension system text
time timeout timer to
undef using utilities variables
via virtual when wildcards

ETSI

REG/MTS-00072 V1.1.2 (October 2001)50

A.3 ASN.1
The following words are keywords in ASN.1 and cannot be used as names.

ABSENT ABSTRACT-SYNTAX ALL APPLICATION
AUTOMATIC BEGIN BIT BMPString
BOOLEAN BY CHARACTER CHOICE
CLASS COMPONENT COMPONENTS CONSTRAINED
DEFAULT DEFINITIONS EMBEDDED END
ENUMERATED EXCEPT EXPLICIT EXPORTS
EXTENSIBILITY EXTERNAL FALSE FROM
GeneralizedTime GeneralString GraphicString IA5String
IDENTIFIER IMPLICIT IMPLIED IMPORTS
INCLUDES INSTANCE INTEGER INTERSECTION
ISO646String MAX MIN MINUS-INFINITY
NULL NumericString OBJECT ObjectDescriptor
OCTET OF OPTIONAL PDV
PLUS-INFINITY PRESENT PrintableString PRIVATE
REAL SEQUENCE SET SIZE
STRING SYNTAX T61String TAGS
TeletexString TRUE TYPE-IDENTIFIER UNION
UNIQUE UNIVERSAL UniversalString UTCTime
UTF8String VideotexString VisibleString WITH

A.4 UML
The following words are keywords in UML and cannot be used as names.

«access» association «association» «become»
«call» complete «copy» «create»
«derive» derived «destroy» destroyed
«document» documentation «executable» «facade»
«file» «framework» «friend» Generalization
global «global» «implementation» «implementationClass»
implicit «import» incomplete «instantiate»
«invariant» «library» local «local»
«metaclass» «metamodel» new overlapping
parameter «parameter» persistence persistent
«postcondition» «powertype» «precondition» «process»
«realize» «refine» «require ment» «responsibility»
self «self» semantics «send»
«signalflow» «stub» «systemModel» «table»
«thread» «topLevel» «trace» transient
«type» «utility» xor

ETSI

REG/MTS-00072 V1.1.2 (October 2001)51

Annex B (informative):
Summary of guidelines
Table B.1 provides a summary of the guidelines for the use of SDL for descriptive purposes. This summary should be
read in conjunction with the main body of text in the present document.

Table B.1: Summary of guidelines

Identifier Guideline
NAMING CONVENTIONS

1 A naming convention that can be applied consistently to each notation used should be chosen
2 The general use of names which differ only in character case to distinguish between entities should be avoided.
3 Care should be taken to ensure the consistent use of character case within names throughout an ASN.1, SDL,

MSC or UML specification
4 Names of less than 6 characters m ay be too cryptic and names of more than 30 characters may be too difficult

to read and assimilate.
5 The reserved words of all notations used within a standard should be avoided as defined names in each of the

individual parts
6 Readability is improved if the same convention for separating words within names is used throughout a

specification
7 In most cases an underscore character between each word removes any possibility of misinterpretation and this

is the approach that is recommended
8 The use of a single name for multiple purposes should be avoided wherever possible
9 The addition of project?specific prefixes or suffixes can make meaningful names appear cryptic and should be

used with great care
10 By giving blocks, processes and MSC instances names that represent the overall role that they play within the

system, it is possible to distinguish process names from procedure names. If carefully chosen, they can help to
link the SDL and MSC back to the corresponding subclauses in the text description

11 The name chosen for an SDL operation should indicate the specific action taken by the operation
12 If possible, it is advisable to leave at least one significant word in the name unabbreviated as this can help to

provide the context for interpreting the remaining abbreviations
13 The name chosen for an interface or signal list should indicate the general function of the grouped signals
14 Where all signals between one block or process and another can be logically grouped together, signal list names

can be chosen to indicate the origin and the destination of the associated signals
15 A state name should clearly and concisely reflect the status of the process while in that state
16 If it is important to number states then this should be done in conjunction with meaningful names
17 The name chosen for a variable should indicate in general terms what it should be used for
18 Names used to identify constants can be more specific by indicating the actual value assigned to the constant
19 The names of SDL data types should be capitalized while the names of literals and synonyms should begin with

a lower?case character
PRESENTATION AND LAYOUT OF DIAGRAMS

20 The general flow of SDL process diagrams and UML statechart and activity diagrams should be from the top of
the page towards the bottom

21 The flow on a page of an SDL process should end in a NEXTSTATE symbol rather than a connector
22 States that are entered from NEXTSTATE symbols on other pages should always be placed at the top of the

page.
23 Where transitions are short and simple they can be arranged side?by?side on a single page
24 When two or more transitions are shown on one page, there should be sufficient space between them to make

their separation clear to the reader
25 Connector symbols should generally only be used to provide a connection from the bottom of one page to the

top of another
26 Activity diagrams or statechart diagrams should use text boxes indicate what functions are specified in other

diagrams or in which diagram the behaviour continues
27 All reference symbols and text boxes containing common declarations should be collected together at a single

point within the process chart.
28 Separate text box symbols should be used for each different type of declaration
29 When the text associated with a task symbol overflows its symbol boundaries, a text extension should be used

to carry the additional information
30 Symbols that terminate the processing on a particular page s hould be aligned horizontally
31 In simple systems where each process communicates with only one or two other processes, the orientation of

INPUT and OUTPUT symbols can be used to improve the readability of the SDL. However, to avoid possible
specification errors and mis ?interpretation, explicit methods of identifying the source and destination of signals
should be used

ETSI

REG/MTS-00072 V1.1.2 (October 2001)52

Identifier Guideline
32 If used, the significance of the orientation of SDL symbols should be clearly explained in the text introducing

each process diagram
STRUCTURING BEHAVIOUR DESCRIPTIONS
USING PROCEDURES, OPERATORS METHODS AND MACROS
USING DECISIONS
SYSTEM STRUCTURE, COMMUNICATION AND ADDRESSING
SPECIFICATION AND USE OF DATA
USING MESSAGE SEQUENCE CHARTS (MSC)

33 If splitting a scenario into several distinct MSC diagrams is not feasible, vertical paging of diagrams might be
used.

34 A clear spacing between symbols in an MSC diagram should be maintained both horizontally and vertically
35 Annotations help to improve the understanding of an MSC description and should be used freely.
36 Names in an MSC should be the same as the names of corresponding entities in the SDL
37 Entity names should be unique within a specification.
38 If there is an associated SDL specification, each MSC instance should have a kind name and kind denominator

corresponding to the name and entity kind of the equivalent entity in SDL
39 The number of instances included in an MSC should be kept low to maintain a focus on the normative

interface(s) and important entities in the logical or physical model
40 If the kind name is present in an MSC instance, the instance head symbol should contain the instance name

with the kind name placed above the symbol
41 Instance decomposition should be avoided in MSCs because of the complexity it might introduce
42 Dynamic instances should be avoided in MSCs.
43 Instances with instance kind name "environment" should be used to represent the environment in an MSC.
44 Connections should always be used when HMSC flow lines join or merge to distinguish them from simple

crossing lines.
45 Annotations should be used within HMSC to explain the purpose of different alternative branches
46 References to other HMSCs should be used within HMSCs to ensure that a logical structuring of described

behaviour is achieved.
47 Graphical HMSC expressions should be used in preference to textual Reference expressions
48 Plain MSCs should not include HMSC References
49 The use of multiple inline expressions in a single MSC diagram should be limited to avoid an unnecessary

explosion in the number of implicit scenarios
50 HMSCs should be used to highlight significant alternative or optional behaviour paths but; if the differences are

only minor, these could be described within an MSC using inline expressions
51 The crossing of MSC instances by messages should be minimised by placing frequently communicating

instances close to each other wherever possible
52 Delay or the passage of time should be described by the time concepts in MSC
53 The unnecessary crossing of messages should be avoided since it obscures the meaning of an MSC
54 Message overtaking should be avoided, except in MSCs explicitly describing the behaviour when overtaking

takes place
55 An MSC should show an outgoing event below the incoming event that preceded it
56 Only those parameters that are absolutely necessary for the understanding of the message sequence should be

included with an MSC message
57 If incomplete message parameter information is to be shown in an MSC, this should be given in a note, following

the message name
58 Lost and found message should normally not be used in MSCs
59 Logical names should be used in MSC guarding conditions instead of variable expressions
60 Use of the MSC action symbol should be limited to the informal expression of a specific aspect of behaviour

which helps to clarify the surrounding message sequence and to data assignments.
61 The number of events shown in an MSC coregion should be limited.
62 An inline alternative expression should be used in an MSC instead of general ordering within a coregion

ETSI

REG/MTS-00072 V1.1.2 (October 2001)53

History

Document history

V1.1.1 June 2001 1st draft, Scope & TOC

V1.1.2 August 2001 Addition of Naming chapter

