ETSI/MTS(34)005
European Telecommunications Standards Institute

MTS#34

10" to 12" April 2002

Rome
Title: RTS/MTS-00072: Guidelines for the use of SDL for descriptive purposes (2" Edition)
Sour ce: STF188
Date: 27 February 2002

Document for: Approval

REG/MTS-00072 v1.1.7 (march 2002)

ETSI Guide

Methods for Testing and Specification (MTS);
Guidelines for the use of SDL as a descriptive tool

ETSI %

2 REG/MTS-00072 V1.1.7 (March 2002)

Reference
REG/MTS-00072

Keywords
SDL, MSC, ASN.1, UML, methodology

ETSI

650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.:+3349294 4200 Fax:+334936547 16
Siret N° 348 623 562 00017 - NAF 742 C

Association & but non lucratif enregistrée a la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org

The present document may be made available in more than one electronic version or in print. In any case of existing or
perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF).
In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive
within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status.
Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status /

If you find errors in the present document, send your comment to:
editor@etsi.fr

Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute yyyy.
All rights reserved.

ETSI

3 REG/MTS-00072 V1.1.7 (March 2002)

Contents

INtelleCtual Property RIGNEScii it e e e e e st e e e et e e e e st e e e e ennseeeeeenaeeeeaannaneeeennes 6
0] Yo o SRR 6
1 S o100, PP PP PP PR 8
2 = 1= 1= SRR 8
3 Definitions and aDDreViationS............cueiiiiieiii s 9
31 DIEFINITIONS ... ettt bbb s s h s R R bbbt 9
3.2 A DDIEVIALIONS...... ettt R bbbt 9
4 10T (11 oo TSR SUURRORRS 9
5 Using specification languages in protocol Standardsccveeeeiiiiiieeciciieee e 11
51 (1o [FTex o o PO O T OO oS TESTTT TP 11
5.2 I Y= £ o o001) OO 11
5.3 Developing aprotoCol SPECITICALION......c.cviieceerrereeereseeie st s s s s s s s sns et sesesnsssseesssessens 11
531 Specifying requirements

532 Developing @ l0giCal MOGE ...t s 11
533 Developing aPhySiCal MOTE ..ot s 12
6 NBMING CONVEIEIONS ...ttt ettt e ettt sab e e s st e e ase e e e ase e e abe e e asseeeabeeeeabeeesabeeeanneeeanneeeanes
6.1 (T 0T - TR
6.1.1 Case sensitivity

6.1.2 Length of names

6.1.3 Reserved words...........

6.2 SDL @NO MSC ...ttt st ssssstssssssessssssssssssssssssssssassassessens

6.2.1 Use Of NON-SIGNIfICANT CRAIBCLENScuoviececesecce ettt a st 17
6.2.2 MUILIPIE USE Of NAMEScvvieceetreecie sttt st e st s sttt b e an st s et e
6.2.3 Making names meaningful

6.2.3.1 Block, process and iNSLANCE NAIMIES.cvrureerieirerisreeisesesssssessssssssesessssssssessssssssesssssessssssssesssssssssssssssssessssenss
6.2.3.2 Procedure, operator and MEtNOO NAIMESccceueiririerieiririseeresesee sttt ssessssssssesssssessssens
6.2.3.3 SIgNEl NAIMES.......cciieiieirer e

6.2.34 Signal List and interface Names...........ccovveernecrneeneeneeenessenenns

6.2.3.5 SDL SEALE NAMES.......cerereeererereririrereeisire et sees

6.2.3.6 Names of Variables and Constantscceveeeeeeereneeererenseeenenenes

6.2.3.7 THMELS et e ettt

6.3 D2 11T 7<= OSSO

7 Presentation and 1ayout Of QIagramSooueieeeiiiiiee e e e e e e e e nees 21
7.1 The general flow of DENAVIOUN aCTOSS A PAGE. ...ttt 21
7.2 Behaviour covering more than one page.

721 ST I o= g Yo 0T 0 1o = (TR
722 Definitions in behaviour diagrams ...t
723 UML actiVity diagramscccccceevereeinnensesnesesssessssssssssssssessessssseens

7.3 Text eXtension SYMDOIS ...

7.4 Alignment and orientation of SymboOIS..........cccceceevvenrennennenneeenenenes

74.1 ATIGNMENT ..o

74.2 L@ 7= 0170 o 1SR

7.5 Structuring DENAVIOUF GESCIIPLIONS.......c.cuieeiieereeeeererer et e
751 BasiC StrUCTUINTNG PrINCIPIES ...ttt e
752 Structuring using Procedures and OPEIBLIONS...........cccuerierriermriereti e ss s sssenaees 32
753 Emphasizing the difference between normal and exceptional behaviour floOwscccovvveenveccccevccienne, 32
8 Using procedures, OperationS a@nd MBCTOS........c.eiivreeeeiiieieeeaiieeeeesieeeeesssseeeesansseeeessnseeeeessnsseeessnnses
8.1 0o L1 =S OOV
8.1.1 Using procedures to replace informal tasks

8.1.2 Procedure signature (parameters and returned VAlUES).........c.cucccecicsinescsieesesse st sesssssessssssssssnns 37
8.1.3 L0014 = oo | TP 39

ETSI

8.1.4
8.1.5
8.2
8.3

9
9.1
9.1.1
9.1.2
9.1.3
9.1.4
9141
9.15
9.1.6
9.1.7
9.1.8
9.1.9
9.2
9.3

10
10.1
10.2
10.3
1031
10.3.2
104
10.5
1051
1052
10.6
10.7
10.7.1
10.7.2
10.7.3
10.7.4
10.7.5
10.7.6
10.8
10.9
1091
10.9.2
10.9.3
1094
10.9.5

11
111
1111
1112
1113
112
1121
1122
11.2.3

12
121
12.2
12.3
1231
124
125

4 REG/MTS-00072 V1.1.7 (March 2002)

AVOITING SIHE-EFFECES.....c.cvuteeetret e
Naming of procedures
OpErations..........cocrreerreerrecereenns
USING MBCIOS....evueeerateersereesessesessesessesesstssestssestssessesesssssse s aes s s e s b b e e e eee bbb b et

(S T To 0 o 1= T SRR
DT o =T 0] TSRS
Naming of identifiers used with decisions
Using decisionsto Structure a SPECITiCatiON........c.ccvcucieiiecee et 49
USe Of tEXE SEHNGS 1N AECISIONS.......ccucviiiececie ettt et a bbb s et s et s st b
Use of enumerated typesin decisions
USE OF ELSE ...ttt bbb bbb bbbttt
Using SYNTYPES to limit the range of valueSin deCiSIONS.......cccovcveirirenisieenesessesssie s ssesesssssessssessens 51
Use of symbolic namesin decision outcomes
Use Of range eXpreSSiONS iN AECISIONSc.cueeereuerireeeeeeer st ssss s ses s ess e eese s nesenas
USE Of ProCeUIES iN DECISIONS......c.cucuririiereeereeeerereessisesesessssesesesssssesessssssssessssssssessssssssesssssesssssnssesesssnssnssessssseseens
Use of ANY indecisions
Use of 0ptionS rather than GECISIONS. ..ot s
FIOW CONLIOl SEBLEIMENTS..... ..ottt resas st b se e bbb £ s bbb e e b e e bt ee e e bt esrenas

System structure, communication and addrESSINGcccveeeeiiiire e
SYSLEIM SITUCTUIE. ...t e
Minimising the SDL model
Avoiding repetition by uSINg SDL tYPES.....cccoeeecevercciersenee s

Defining the same behaviour at both ends of a protocol
Static instances to represent repeated functionalityccccceeeeevveenenen,

INEEITACES. ...ttt

Diagrams showing relationshiPsS........coccverenneseenesessesssessssesssessssssssesssssens
Use of associations between class symbols.........coovevvenrennenncnneneens
Use of aclass symbol for an INTERFACE definition.........c.ccceeevveneae

Structure diagrams using interfaces between agents..........ccocveeeevrenecenenn.

CommuNi CatiON AN AQAIESSINQ......curveerereeerreeerrere et ses bbb e e
Use of INTERFACE and SIGNALLIST defiNitiONS.......coerrrerreceerrereeeeeseeeee et sesssesesessessens
Indicating the use of signalsin inputs and outputs
Directing messages t0 the QN PrOCESS ..ot ettt bbbt s asae b
DiffErentialing MESSAGES.c.ccoceureeriteteiri ettt bbb s st s s ss bbb s b b et s s bt et ss e bbb s et et s s aetes s e antetanas
Multiple outputs
Transitionstriggered by aSet Of SIGNAIS ..ot s e

Gates and iIMPlICIT CNANNELSc.cuececcc e et s st s s nnsee

Other structuring mechanisms
ProCESSES WIthin @ PIOCESS.....cceeereeeceeirireiesie st sesssessasesssssesessse s se s snsessesssssssesesnsesssesnsessssesnsnssenesssnsens

Hiding and re-using parts of astate
USING PBCKAGES. ... vureereeerreeetseseesessesss et ss e s et e b bbbttt
EXCEPLTION NANAIING ...vveveteeee sttt e bbbt

SPeCifiCation NG USE OF QaLAL.........ceoiieieiiie e

SPECIHTYING MESSAYES........cevrieeerieresterestesesseseee s ses s ses s s st s e e e ae e R e e bbbt E bbb naes
SITUCKUING MESSAJEScvveucereateiaseeeeatseseresses s s sese bR bbb s bbbt n s

Ordering MeSSage ParaMELErS........cocvueeerrereiesersesesie e sssesesssssesessssssesens
Transposing other message formats........ococevecceinneccesesesee e
Specifying datathat isinternal to the SDL model...........cccovvvecrrercrcrnnne,
Use of SymbBoliC NAMES ...
Usingdata TYPE and SYNTYPE......coersesee v
USING OBJECT TY PE ...ttt s

Using Message Sequence ChartS (IMSC)vvvi oottt e e e e e

(1o [FTox o o FOU OO T OO OSSP TP
Relationship DEIWEEN MSC AN SDLc.oviecieirirereeiresesie et sesssssesssss et ssssssssesssssssessssssssesesssssessssssssesssssnss
Presentation @N0 TAYOUL..........cciiererereieresseee s esesessss e e ssss e ssesssessesessssssssesssssessssssssessssssssessssssssesssssssesssssssessssenss

Annotations
NBIMING QNG SCOPE......cevuereaerierreses et sts e ts st e s eae s res e bR bbb bbbt 80
IV SC AOCUIMENT ...ttt eeas et st e sssse e e s s s s e see e se e seseese e s s s e s e b e e e e e sn s et ee e seb e s e sesnbebeeaennseseernnnsesesenss 80

ETSI

5 REG/MTS-00072 V1.1.7 (March 2002)

12.6 SETUCTUFTNIQ ¢ttt bbb AR bbbt
126.1 Architecture..................

12611 Instance.........ccocoeeeerececnnn

12.6.1.2 I nstance decomposition....

126.1.3 Dynamic instances............

12.6.1.4 Environment

12.6.2 BBNAVIOUF ...ttt bbb Rt b bbbttt
126.2.1 HIgh-1€VEl MSC (HMSC) ...ttt se sttt bttt s et ss st ssnns
12.6.2.2 MSC referencein basic MSC

12.6.2.3 IN[INE EXPrESSION.....ecveveceeerericiete st sssssessessssesens

12.7 (DT 7= IS

12.8 MESSgE.......cermemerrereenererrenens

1281 Incompl ete messages

129 (@0 0T 111 o o PO TP
12.10 N ox 1] o TSP
12.11

12.12

12.13

12.14 General ordering and COreQioN........cccvvvrereereeeeeeressee s saes

12.15 Relationship between M SC and UML Sequence Diagrams

Annex A (informative): RESEIVED WOI TSceiiiiiiiee e eciee e st e e et e e et e e e e e e e e s naeeaeessnnaeeeanns 97
R I | 97
Al1l KIBYWOITS......c.veeeeiete ettt bR s bbbttt 97
A.l2 PrEdEfiNEA WOTTS.ceceieeecee sttt a et se ettt e e e s et eesennbeb s renis 98
N |V s 98
R T N N 9
N O | P 9
Annex B (informative): Summary of QUIAEIINES...........ccuoiiiiiiiii e 100
L 11 T O PPPPPPRRTPR 104

ETSI

6 REG/MTS-00072 V1.1.7 (March 2002)

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. Theinformation
pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found
in SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETS in respect
of ETSl standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server
(http://www.etsi.org/ipr).

Pursuant to the ETSI PR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee
can be given as to the existence of other IPRs not referenced in SR 000 314 (or the updates on the ETSI Web server)
which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Guide (EG) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).

ETSI

7 REG/MTS-00072 V1.1.7 (March 2002)

ETSI

8 REG/MTS-00072 V1.1.7 (March 2002)

1 Scope

The present document establishesa set of guidelines for the formal use of Specification and Description Language
(SDL) for descriptive, rather than detailed design, purposes. It also provides some guidance on the use of Message
Sequence Charts (MSC), Abstract Syntax Notation 1 (ASN.1) and the Unified Modeling Language (UML) when used
in conjunction with SDL. The objective of the guidelinesisto provide assistance to rapporteurs of protocol standards so
that the SDL that appearsin ETSI deliverablesisformally expressed, easy to read and understand and at alevel of detail
consistent with other standards. The present document appliesto all standards that make use of SDL to specify
protocols, services or any other type of behaviour.

Users of the present document are assumed to have aworking knowledge of SDL and, where necessary, MSC, ASN.1
and UML. It should not be considered to be atutorial in any of these notations and should be read in conjunction with
EG 201 383 [1], EG 201 015[2] and EG 201 872 [3].

2 References

The following documents contain provisions which, through reference in thistext, constitute provisions of the present
document.

References are either specific (identified by date of publication, edition number, version number, etc.) or
non-specific.

For a specific reference, subsequent revisions do not apply.

For anon-specific reference, the latest version applies.

[1] EG 201 383 (V1.1): "Methods for Testing and Specification (MTS); Use of SDL in ETSI
deliverables; Guidelines for facilitating validation and the development of conformance tests".

[2] EG 201 015 (V1.2): "Methods for Testing and Specification (MTS); Specification of protocols and
Services, Validation methodology for standards using SDL ; Handbook".

[3] EG 201 872 (V1.2): "Methods for Testing and Specification (MTS); Methodological approach to
the use of object-orientation in the standards making process

[4] ITU-T Recommendation Z.100: " Specification and description language (SDL) with
corrigendum 1",

[5] ITU-T Recommendation Z.105: "SDL combined with ASN.1 (SDL/ASN.1)".

[6] ITU-T Recommendation Z.109: "SDL combined with UML"

[7] ITU-T Recommendation Z.120: "M essages sequence chart with corrigendum 1".

[8] ITU-T Recommendation X.680: "Information technology - Open Systems Interconnection -

Abstract Syntax Notation One (ASN.1): Specification of basic notation”.

[9] ITU-T Recommendation X.681: "Information technology - Open Systems I nterconnection—
Abstract Syntax Notation One (ASN.1): Information object specification”.

[10] ITU-T Recommendation X.682: : "Information technol ogy - Open Systems I nterconnection—
Abstract Syntax Notation One (ASN.1): Constraint specification”.

[17] ITU-T Recommendation X.683: : "Information technol ogy - Open Systems I nterconnection—
Abstract Syntax Notation One (ASN.1): Parameterization of ASN.1 specifications'.

[12] ITU-T Recommendation X.690: "Information technology — ASN.1 encoding Rules: Specification
of Basic Encoding Rules (BER), Canonical Encoding Rules (CER), and Distinguished Encoding
Rules (DER)".

ETSI

9 REG/MTS-00072 V1.1.7 (March 2002)

[13] ITU-T Recommendation X.691: "Information technology — ASN.1 encoding rules: Specification
of Packed Encoding Rules (PER)".

[14] ITU-T Recommendation X.692: "Information technology - Open Systems I nterconnection—
Abstract Syntax Notation One (ASN.1) encoding rules; Specification of Encoding Control
Notation (ECN)".

3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:

datatype: set of data values with common characteristics (equivalent to the ITU-T Recommendation Z.100 [4] term
sort)

implementation option: statement in a standard that may or may not be supported in an implementation
nor mative interface: physical or software interface of a product on which requirements are imposed by a standard

polymor phic: the ability of an operation (SDL method or operator) to have its behaviour specified by a descendant
object type

validation: process, with associated methods, procedures and tools, by which an evaluation is made that a standard can
be fully implemented, conforms to rules for standards, satisfies the purpose expressed in the record of requirementson
which the standard is based and that an implementation that conforms to the standard has the functionality expressed in
the record of requirements on which the standard is based

validation model: detailed version of a specification, possibly including parts of its environment, that is used to
perform formal validation

3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

ASN.1 Abstract Syntax Notation No. 1
HMSC High-level Message Sequence Chart
MSC M essage Sequence Chart
Pd Process identity
SDL Specification and Description Language
UML Unified Modeling Language

4 Introduction

The ITU-T Specification and Description Language (SDL) defined in ITU-T Recommendation Z.100 [4] is a powerful
tool for specifying the essential requirements of standardized protocols or services. The level of formality with which
the SDL in astandard is expressed can depend on alarge number of factors such as the size and complexity of the
system to be standardized and the skills and experience of the standards writers. The specification of aprotocol or
service as acomplete formal model enables the validation of the standard before approval and publication. However,
well-constructed, formal SDL has avaluablerole to play in providing asimpleillustration of the process-rel ated aspects
of astandardized system.

SDL ismost often found in protocol standards with some associated ASN.1 and MSC. Additionally, as the language
specifications converge, SDL isalso likely to be used in conjunction with UML in standards. It is, therefore, sensible to
consider the relationships between all of these languages and notations when offering guidelines on SDL. The present
document is concerned primarily with the development of easy-to-read SDL but also provides some guidance on the use
of ASN.1, MSC and UML where this overlaps with the use of SDL.

ETSI

NOTE:

10 REG/MTS-00072 V1.1.7 (March 2002)

Althoughin the strictest sense SDL, MSC and UML are considered to be languageswhile ASN.1lisa
notation, the terms "language" and "notation” are used interchangeably throughout the present document.

In order to gain the maximum benefit from the use of descriptive SDL, it is necessary for a consistent approach to be
taken in its specification by all rapporteurs. In the context of the present document, the term "descriptive SDL" can be
taken to mean SDL whichis:

formally expressed:

uses only constructs and symbols that are defined in ITU-T Recommendations Z.100 [4] and Z.105 [5];

complete:

is specified as afull model with System, Block, Process and Procedure diagrams as necessary;
has a comprehensive data specification using SDL dataor, preferably, ASN.1,
uses "correct" SDL;

is not necessarily asimulation or validation model;

easy to read and understand:

uses meaningful names and identifiers;

the model structure complements the specification;

has an open layout which requires a minimum of effort to follow;
the "how" is hidden from the "what";

complex programming structures are avoided;

extensive comments annotate the model;

at alevel of detail consistent with other standards:

is not over-engineered,;
is not an implementation model;

does not constrain implementations to methods and techniques which are beyond the scope of the standard.

By following the set of simple guidelines presented in the present document, it will be possible for the following
benefitsto be realized:

Comprehension of the specification can be improved;

Ambiguity can be avoided in the translation of the descriptive SDL into a validation model.

Achieving consistency in the presentation and level of detail specified across awide range of standardsis one of the
keysto maintaining the perceived quality of ETSI's products.

The guidelines for the use of SDL for descriptive purposes are grouped in the present document according to the
following broad classifications:

naming conventions;

presentation and layout of SDL processes;

the use of procedures, operations and macros;

the use of decisions;

system structure, communications and addressing;

the specification and use of data;

ETSI

11 REG/MTS-00072 V1.1.7 (March 2002)

- theuse of Message Sequence Charts (M SC) in association with SDL.

Each of the guidelinesis highlighted within the document inbold and italic text. They are all collected together in
tabular form in Annex B.

5 Using specification languages in protocol standards

51 Introduction

This chapter gives some consideration to the process of standardizing communication protocols so that guidance can be
given on where SDL, ASN.1, MSC and UML can be used effectively.

5.2 Layered protocols

There are numerous approaches to the design of communications protocols, each of which isvalid in the situation that it
isused. Probably the most well known and well used isthe SO layered model or aderivative of it where a protocol
system is segmented into distinct logical layers with distinct responsibilities.

The communication between peer layersin thislogical model never takes place directly but is achieved through the
services of the lower layer. However, this peer-level communication is often specified in a standard without
consideration of the signaling between layers. The interface between two adjacent layersis usually called the Service
Access Point (SAP) although other terms such as user access and network access are also used. Protocol standards will,
in most cases, be considerably smpler if they are restricted either to horizontal communication (peer-to-peer) or vertical
communication (inter-layer). Mixing the two can lead to a confusing specification which is difficult to understand.

5.3 Developing a protocol specification

For many years, protocol standards have been prepared using the three-stage process described in

ITU-T Recommendation 1.130. Although the detailed practices specified in this document might now be considered to
be out of date and its use is not as widespread as it once was, the underlying method upon which it is based is still
relevant as good engineering design practice. Simply put, thisis:

1. Specify requirements from the user's perspective;
2. Develop alogical model to meet those requirements;

3. Develop aphysical specification of the protocol.

5.3.1 Specifying requirements

Specifying a protocol without first evaluating what it isintended to achieve and what constraints are to be applied to it
will almost certainly end in a poor specification. These requirements can easily be expressed using free text and some
informal diagrams but the use of UML for this purpose (as described in EG 201 872) means that this information can be
checked by automatic tools and used asinput to the later stages of specification.

At this stage of the specification, there should be no need to consider the possible physical architecture of any system
implementing the protocol. Requirements should be expressed, as far as possible, entirely from the user's perspective
(although the "user" may be aterminal or network application acting on behalf of a human user)

5.3.2 Developing a logical model

Before considering the physical specification of aprotocol, there are benefits to be gained by specifying a model based
on logical blocks so that the flow of information necessary for meeting the specified requirements can be defined
without concern for the detailed format that such information should take. The identification of possible normative
interfaces between blocksis aso simpler without the constraints imposed by a specific physical architecture.

ETSI

12 REG/MTS-00072 V1.1.7 (March 2002)

The overlap between UML and both SDL 2000 and M SC2000 is such that all of these languages are suitable for this
level of specification. In fact, it is unlikely that models developed in either UML or SDL 2000 with M SCswould be
appreciably different.

Oncethe logical model is complete, it is necessary to specify a physical model upon which "real" implementations of
the protocol standard can be based. This model should not, in most cases, be a detailed implementation model but
should be constrained to specify the minimum protocol requirementsto guarantee inter-working between modules from
different suppliers. A good first step towards this physical model is to define a set of legitimate scenarios for the
distribution of the logical blocks within a set of physical entities. Textual tables have traditionally been used quite
effectively for this purpose but UML deployment diagrams can provide a graphical means of presenting these
requirements.

5.3.3 Developing a physical model

If systemsimplementing a standardized protocol are to inter-work without problems, it is necessary to specify the
detailed content and format of signals between physical entities and the temporal relationships that must exist between
these signals. For this specification to be complete and accurate, it may be necessary to describe the behaviour of the
physical entities which make up the protocol system.

ASN.1 is generally accepted as the notation to be used within protocol standards for the definition of signal data
structures. Although it is not a particularly intuitive notation to use, it has the significant benefit that there are anumber
of standardized sets of rules (for example, Basic Encoding Rules— BER [12]and Packed Encoding Rules— PER [13])
for encoding ASN.1 structuresinto "concrete" dataitems with more or less efficiency. In those cases where even PER
does not produce acomp act enough encoding, Encoding Control Notation (ECN) specified in ITU-T

Recommendation X.692 [14] enables usersto define and use their own encoding rulesin a standardized form. A further
benefit of using ASN.1isthat ITU-T Recommendation Z.105 [5] specifies exactly how ASN.1 isused in conjunction
with SDL so that data items defined in an ASN.1 module can be used directly in the SDL associated with that module.

The following simple example uses ASN.1 to specify the structure of an address which comprises alength parameter
and the address value itsel f

Address ::= SEQUENCE { length BI T STRI NG Sl ZE(8)),
val ue OCTET STRING }

M essage Sequence Charts (MSCs) are an ideal notation for describing signal flows and a simple exampleis shownin
Figure 1

ETSI

13 REG/MTS-00072 V1.1.7 (March 2002)

msc Successful_Setup

CallingUser | OriginatingNetwork DestinationNetwork CalledUser
< No_Connection >

CallRequest
>
—— SETUP
CALL_PROCEEDING
B IncomingCall
» CallAlerting
P ALERTING |
» CallAnswer
CONNECTED

A

CallRegestAck

s S
— — —

Figure 1. Example of a simple MSC

In anything but the simplest protocoal, it is not possible to show all of the possible sequences of signals. It is, therefore,
quite acceptable to use MSCsto illustrate only arepresentative sample of sequences. These examples should specify a
reasonable range of successful and unsuccessful situations to enable readers to make an informed judgement of what the
flows would be in other unspecified scenarios.

High level MSC (HM SC) diagrams can be used to provide an overview of the relationships between detailed sequences
of signalsin more complex scenarios. The simp le example in Figure 2 shows how an HM SC can be used to segregate
normal behaviour from exceptional behaviour.

ETSI

14 REG/MTS-00072 V1.1.7 (March 2002)

msc SetupHMSC V4

Normal Exceptional
Behaviour Behaviour

Y ~ Y 1

[Sucessful_Setup] SetupFaiI_IIIegaINumber] [SetupFaiI_NoResponsej

A

Connected o

Figure 2: Example HSMC

In order to complete the picture of possible signal sequences, the behaviour of each physical entity needs to be specified
and SDL isan ideal graphical language for this purpose. By using SDL's language features to specify system
architecture, communication paths, signals and behaviour and using ASN.1 to define signal parameter structures, itis
possible to build a complete model. This can then be used to improve the quality of the overall specification by
simulating and testing a range of possible scenarios.

The present document offers a number of guidelines on the use of SDL with ASN.1, MSC and UML to produce
protocol standards that are easy to read and understand and which unambiguously express the requirements for an
implementation.

6 Naming Conventions

6.1 General

In common with most modern programming languages, SDL, MSC, ASN.1 & UML permit the use of a phanumeric
names to identify individual entities within a specification. Examples of entities that can be identified in thisway are:

ETSI

15 REG/MTS-00072 V1.1.7 (March 2002)

- SDL - ASN.1
- blocks - typereferences
- procedures - identifiers
- signas - valuereferences

- variables and constants

module references

- MSC - UML
- instances - classes & objects
- messages - states
- timers - events
- conditions - attributes

Itislikely that protocol standards will incorporate SDL, MSC, ASN.1 or UML specifications of structure and
behaviour. Frequently, two or more of these are used in combination within the same standard and in these cases it is
certain that some entities defined in one notation will aso be used in another. Examples of these are:

- ASN.1datatypeswhich are used by SDL;
- SDL processes which are mapped to MSC instances.

Although the lexical rulesin each notation are similar, they are by no meansidentical. Table 1 identifies the most
significant dif ferences in the construction of identifiers within these four languages and notations.

Table 1: Significant differences in the lexical rules of SDL, MSC, ASN.1 and UML

Notation Significant differences
SDL - name may be hyphenated over more than one line
using the underscore ("_") character
- names may contain non-printing characters (which are
ignored) only if preceded by "_" (which is also ignored)
- names may contain "_" but not "-"
MSC Same as SDL
ASN.1 - names are restricted to a single line
- names may only contain printing characters
- names may contain™-" butnot" "
UML - names are restricted to a single line
- names may only contain printing characters
- theuseof"_"and "-"in names is not specified and are
most likely to be tool dependant
NOTE: In practice, the lexical rules of UML are likely to
vary according to the tool used and the target software
language)

The choice of namesis likely to be affected by the individual application but Ya naming convention that can be
applied consistently to each notation used should be chosen. Taking this approach will help to avoid ambiguities when
names need to be modified to comply with conflicting lexical rulesin each notation used. Even in those instances where
itisplanned to use only one notation, consideration should also be given to the rules of the others when specifying a
naming convention as one or more of these may be used to augment the specification at alater stage

One of the most commo n such conflicts occurs between ASN.1 and SDL where the use of dash ("-") charactersis
permitted in ASN.1 but not in SDL while underscores (*_") may be used in SDL but not in ASN.1.

ITU-T Recommendation Z.105 specifies that a dash character within an ASN. 1 name is mapped to an underscore when
itisconverted to SDL. Thisis areasonable approach but it still leaves avisible difference between an ASN.1 type name
and its corresponding SDL type. For example:

Set up-cont ent s in ASN.1 isequivalent to Setup_contents inSDL.

ETSI

16 REG/MTS-00072 V1.1.7 (March 2002)

@whileit is acceptable to use the underscore character to delineate words within most SDL entity names, it is
advisable to avoid the use of the dash character in ASN.1 types and valuesin order to avoid conflicts and
misinterpretation in the associated SDL.

6.1.1 Case sensitivity

SDL, MSC, ASN.1 and UML areall sensitive to the case of characters within names. As an example, the name ABC is
not the same asAbC or Abc. The ASN.1 syntax goes further by specifying that names beginning with an upper-case
letter should beinterpreted as type references and that those beginning with lower-case | etters should be interpreted as
value references or identifiers such as information elementsin a SEQUENCE or CHOICE. Although the case of the

first character of a name does not have the same syntactical significancein either SDL or MSC, it is a useful way of
distinguishing between types and values, particularly when used in conjunction with ASN.1. However, ®the general
use of names which differ only in character case to distinguish between entities should be avoided.

Although errors are likely to be detected by automatic syntax checking tools, “care should be taken to ensure the
consistent use of character case within names throughout an ASN.1, SDL, MSC or UML specification.

The capitalization of the first character of each word within anameis an acceptable method of delineation between the
component parts of the name.

Example: The procedure name, Del i ver MessageCont ent s can easily be interpreted to imply that the
purpose of the procedureisto deliver the message contents.

Although it workswell in many cases, this method can result in names that are quite difficult to read if they contain
acronyms or larger numbers of short words. Examples of these are:

| nvokeCCBSSuppl enent ar ySer vi ce;
AddOneToTheFi rstltenOf A dDat a.

6.1.2 Length of names

The syntaxes of SDL, MSC, ASN.1 and UML place no restrictions on the number of characters that may be included in
names although, in practice, there may be limitsimposed by the software tools used. It is a so worth noting that very
long names can often be difficult to read. It is not possible impose a strict rule on the length of names but, as a general
guideline, ®names of less than 6 characters may be too cryptic and names of more than 30 characters may be too
difficult to read and assimilate.

6.1.3 Reserved words

Although SDL, MSC, ASN.1 & UML all permit great flexibility in the use of nhames, there are certain reserved words
which are keywords of the languages themselves and which, consequently, cannot be used as names. Lists of these
reserved words can be found in Annex A.

NOTE: SDL keywords may be either all upper-case or all lower-case. Keywords using mixed case are not
considered to be reserved words. For example, both "procedure” and "PROCEDURE" are SDL reserved
words but "Procedure” is not.

The use of reserved wordsfrom one notation can be legitimately used as names within a specification based upon
another but to avoid any conflict across specifications using muitiple notations, ©the reserved words of all notations
used within a standard should be avoided as defined namesin each of theindividual parts.

ETSI

17 REG/MTS-00072 V1.1.7 (March 2002)

6.2 SDL and MSC

6.2.1 Use of non-significant characters

It ispermissible to split a name across more than one line by introducing an underscore followed by a sequence of
spaces and/or the carriage-return and line-feed control characters. So, the procedure name
Del i ver MessageCont ent s inthe example above could also be expressed as:

Del i ver _
Message_
Contents

Thisisavery convenient notation when trying to fit along name into a graphical symbol, thus:

Del i ver _
Message_
Cont ent

It isworth noting that the underscore character is only insignificant when used as a hyphenation symbol and that the
name;

Del i ver Message
isnot the same as:

Del i ver _Message
athoughitisidentical to

Del i ver _
Message

When a name using underscores to separate words is wrapped over more than oneline, it is necessary to include two
underscore characters where the hyphenation occurs, thus:

Del i ver _
_Message

(NReadability isimproved if the same convention for separating words within names is used throughout a
specification. The one case where a combination of methods is recommended isin the use of acronyms within names

that use capitalisation as the method of separation. An underscore on each side of the acronym clearly delineatesit from
the remainder of the name, thus:

I nvoke CCBS_Suppl ement aryServi ce

@) n most cases an underscore character between each word removes any possibility of misinterpretation and thisis
the approach that is recommended.

6.2.2 Multiple use of names

SDL permits entities belonging to different classes to be given the same name. As an example, it is syntactically correct
for aprocesswithin ablock named Di al | i ng alsoto begiventhenameDi al | i ng (see Figure 3). In addition,
because of the scoping rules of the language, it would be possible for a process within another block in the same system
tobenamedDi al | i ng.

ETSI

18 REG/MTS-00072 V1.1.7 (March 2002)

BLOCK Dialling 1(1)

User_ USER - INTERNAL Internal_
_Channel Dialling Link
[Dialling_Response] [User_Dialling] [Analysis_Response] [Dialled_Numbers] -

Figure 3: Example of a block and a process with the same name

In many protocol standards, particularly those specifying supplementary services, the system comprises a small nhumber
of blocks, each of which contains only one process. In such situations, the use of the same name for the block and for its
single processisvalid but, as SDL allowsit, a better approach may be to omit the block altogether as shown in

chapter 10.

©1n more complex models where each block is made up of a number of processes, the use of the same name for a
block and one of its constituent processesislikely to cause confusion and should be avoided.

Similar problems can also exist in the re-use of single names for multiple entities. For examg)l g, itispossible to have
the same name for asignal list and for one of its constituent signals. As ageneral guideline, “%the use of a single name
for multiple purposes should be avoided wherever possible.

6.2.3 Making names meaningful

The freedom and flexibility allowed in the construction of names can be used to great benefit in improving the
readability of a specification. If thereis an entity whose function is to represent an alarm clock then it can be called

Al ar m_Cl ock and there are no constraints to force the use of a more cryptic name such asAl m_Cl k. However, this
freedom can be abused and it would be quite legitimate for the alarm clock to be given the name

The_Thi ng_Besi de_The_Bed_That _Makes_A Loud_Noi se_I n_The_Mbr ni ng whichisequally as
unacceptable as the cryptic style.

Although it can appear useful during the development of a protocol standard, ™Pthe addition of project-specific
prefixes or suffixes can make meaningful names appear cryptic and should be used with great care.

Apart from the general recommendations above, certain specific guidelines apply to each group of identifiable entities.

6.2.3.1 Block, process and instance names

(lz)By giving blocks, processes and M SC instances names that represent the overall role that they play within the
system, it is possible to distinguish process names from procedure names. | f carefully chosen, they can help to link
the SDL and M SC back to the corresponding subclausesin the text description. Examples are:

ori gi nati ng_PI NX;
Scenari o_Managenent ;
Functional _Entity_ FE2;
al arm cl ock.

As can be seen, these names are all nouns which indicate the general function of the process.

ETSI

19 REG/MTS-00072 V1.1.7 (March 2002)

6.2.3.2 Procedure, operator and method names

Procedures, operators and methods (SDL operations) are key elements in breaking a complex process down into
meaningful layers (see subclause 8.1). For thisto be effective, *®the name chosen for an SDL operation should

indicate the specific action taken by the operation. Examples are:
Extract _Cal | i ng_Nunber _From SETUP;
get _user_profile_from database;
Send_Response;
ring_al armbell.

The names chosen here are all verb phrases indicating the specific activity to be carried out by the operation.

6.2.3.3 Signal names

There are often constraints on the length of signal names as they usually have to appear in quite small spaceswithin
SDL symbols. It is, therefore, more difficult to arrive at meaningful names for them. However, poor naming of signals
can make SDL and M SC very difficult to read, even when most other aspects are well presented. For example, the name
Rep_Sgl _Err could easily beinterpreted to mean:

Report Signal Error;
Report Single Error;
Repeat Signal Error;
Repeat Single Error.

The obvious approach isto expressthe namein full as, for example, Report _Si gnal _Err or but this, again, is
quite long. The problem can be overcome by using unambiguous abbreviations or abbreviations that are in common use.
In the example above, Er r is generally accepted as meaning "Error". Also, changing Sgl to Si g would make it much
clearer that it was an abbreviations for "Signal" not "Single". Sl possible, it isadvisable to leave at |east one
significant word in the name unabbreviated as this can help to provide the context for interpreting the remaining
abbreviations. So the example above would be acceptableif expressed asReport _Sig _Err.

6.2.3.4 Signal List and interface names

SDL provides two mechanisms for collecting signals together into named logical groups. These are SIGNALLISTSand
INTERFACES as described in clause 10. For the purpose of defining names, these two can be treated identically.

In order to improve clarity, it is often advisable to group SIGNALS into INTERFACES or SIGNALLISTSaccording to
their capabilities and, consequently > the name chosen for an interface or signal list should indicate the general
function of the grouped signals, for example:

UNI _Messages;

Mobi lity Managenent;

user _i nput.

As an alternative and particularly in simple specifications ®where all signals between one block or process and
another can belogically grouped together, signal list names can be chosen to indicate the origin and the destination
of the associated signals. Examples of this approach are as follows:

home_PI NX_t o_vi sitor_PI NX;
HLRA t o_HLRB;
| ocal Exch_t o_user;

bet ween_AccessManagenent _and_Cal | Control .

ETSI

20 REG/MTS-00072 V1.1.7 (March 2002)

6.2.3.5 SDL State names

In most protocol standards, the SDL specification includes alarge number of states and it is often tempting to assign
cryptic and sequential names such asst at e_5 or N3. Taking the time to formulate meaningful names for each state

can add significantly to the readability of an SDL specification.

(74 state name should cl early and concisely reflect the status of the process while in that state. Examples of such
names are:

I dl e;
Wait _For SETUP_Response;
Ti m ng_Si gnal _Del ay.
19 jt isimportant to number states then this should be done in conjunction with meaningful namessuch as:
Rel easi ng_01;

Ti m ng_Response_4.

6.2.3.6 Names of Variables and Constants

It ismore difficult to specify some simple guidelines for the construction of names for variables and constants as they
have widespread and diverse uses. It is still important to ensure that the name is meaningful in the context of the SDL
specification. (19The name chosen for a variable should indicatein general termswhat it should be used for. For

example:
SETUP_nessage_cont ents;
User _I nput ;
Al arm Ti ne.

@9Names used to identify constants can be more specific by indicating the actual value assigned to the constant. For
example:

User _Not _Known;
Twenty_ Five;

Characters_A To_Z.

6.2.3.7 Timers

Although the use of meaningful timer names, such asResponse_Sani ty_Ti ner, would improve the overall
readability of a specification, it has become accepted practice to use the shorthand T1, T2, T3 etc. for timers within
standards for protocols. To avoid confusion, the Tn notation should be used when naming timers unless an opportunity
arises to use extended names in a completely new project where the use of the shorthand is not already established.

6.3 Data types

The definition of the ASN.1 notation, ITU-T Recommendation X.680 [8], specifies that type references must begin with
an upper-case character and that value references and identifiers must begin with alower-case character. When using
ASN.1in protocol standards, it has become the convention that a value reference uses the same name as its associated
type reference (except where there are more than one val ue references derived from the same type reference) but that
oneisdistinguished from the other by the case of itsfirst character, thus:

ETSI

21 REG/MTS-00072 V1.1.7 (March 2002)

- Exanple of the use of identifiers with type references
Dog 1= SEQUENCE {
br eed Br eed,
nane Nare }

Breed ENUMERATED {
poodl e,
spani el ,
al sation,
boxer }

Narme ::= PrintableString

- Exanple of the use of a value reference with a type reference
dogl D Name ::= "Rover"

For readability the name br eed is preferable to bREED, even though the latter is, strictly speaking, permissible.

Although all datatypes associated with normative signalswill usually be defined in ASN.1, other types can be specified
using SDL's own data language features. For the sake of consistency with ASN.1, @Dthe names of SDL data types
should be capitalized while the names of literals and synonyms should begin with a lower-case character.

7 Presentation and layout of diagrams

The syntaxes of both SDL and UML allows great freedom in the presentation and layout of both text and graphical
symbols. Good presentation can considerably improve the readability of a specification whereas bad presentation can
render it unintelligible. It is also worth noting that a single error resulting from the misunderstanding of a poorly
presented diagram can be much more costly than all the pages of paper saved when packing symbols and diagrams
tightly.

Itisin SDL behaviour descriptions and in UML activity diagrams that presentation and layout have the most impact and
the following aspects should be considered within a standard:

the general flow of behaviour across a page;

the spreading of diagrams over more than one page;

the use of text extension symbols (in SDL);

the alignment and orientation of symbols;

the use of swimlanes (in UML — see EG 201 872 [3]).

7.1 The general flow of behaviour across a page

SDL and UML both allow the lines connecting symbols to flow in any direction across apage. As an example, the
process shown inFigure 4islegal SDL but is quite difficult to read.

ETSI

22 REG/MTS-00072 V1.1.7 (March 2002)

PROCESS Flow_Example_1 2(4)

]]
Analyse_Inpuf]
SETUP Inf (Setup_Info, Status REE?@%.EI.—
(Setupinfo Status, Caudg) !
| I | I
Success
Failure
]
FAILURE_
_RESPONSE RELEASE SET:P Inf
(Cause) (Setupinfo)
L | L |

Figure 4: Example of poor layout of legal SDL

The readability of this processis greatly improved simply by laying it out in a"top-to-bottom" form, asin Figure 5.

ETSI

23 REG/MTS-00072 V1.1.7 (March 2002)

PROCESS Flow_Example_ 2 2(5)

RELEASE < SETUP

Analyse_Inpy
(Setup_Info,
Status, Causq)

Failure Success

FAILURE_
_RESPONSE
(Cause)

RELEASE_
_REJECT

SETUP
(Setuplnfo)

Figure 5: Example of improved layout

The orientation of flow between symbolsin SDL and, to alesser extent, in UML is naturally vertical and it is, therefore,
easier to read diagrams that follow this convention. Thus, @2the general flow of SDL behaviour diagramsand UML

statechart and activity diagrams should be from the top of the page towards the bottom. However, in some UML
instances the flow may be better expressed using aleft-to-right flow across the page.

Evenin class diagrams and others where there is no "flow" expressed, readability can beimproved if thereisageneral
top-to-bottom layout on the page based on hierarchy or some other pertinent characteristic.

7.2 Behaviour covering more than one page

7.2.1 SDL behaviour diagrams

In most cases within standardsit is not possible to constrain SDL process descriptions to one page. Only two options
exist for breaking a diagram across a page boundary without affecting the readability. These are:

- usingthe NEXTSTATE symbol;
- using aconnector symbol.

If it can be accommodated within the general structure of a description, ®the flow on a page of an SDL process
should end in a NEXTSTATE symbol rather than a connector as shown in Figure 6 and Figure 7. In general, this
makes specifications easier to read. In addition, @¥states that are entered from NEXTSTATE symbols on other pages
should always be placed at the top of the page.

ETSI

24 REG/MTS-00072 V1.1.7 (March 2002)

PROCESS Page_example_1 1(2)
G ﬁ
Action Request Type;
Ti neNow Ti neType;
AckSt at us AckType;
GetCurrentTime
léig;?i%gesl/ From User
@ UpdateUserLog
Send_Time Test
Get_
CurrentTime
(TimeNow)
SendTime
- TestMessage
N
(JimeNowy TO SENDER
Figure 6: Paging using NEXTSTATE symbol (page 1)
22

PROCESS Page_example_1

WaitForAck
UserAck F U
(AckStatus)\ rom User
Update_ (Action, TimeNow,
UserlLog AckStatus)

IdleState

Figure 7: Paging using NEXTSTATE symbol (page 2)

Although it would be possible to draw the example shown in Figure 6 and Figure 7 in asingle thread with the

Wai t For Ack state embedded part-way through, it is easier to locate individual statesin amore complex specification
if each thread islimited to a single transition (the processing between one state and the next one). @)\Wheretransitions
are short and simple they can be arranged side-by-side on a single page as shown inFigure 8. However, Zwhen two
or moretransitions are shown on one page, there should be sufficient space between them to make their separation

clear to thereader.

ETSI

25 REG/MTS-00072 V1.1.7 (March 2002)

PROCESS Alignment_example 1(3)
DCL
Cal | Parans ReqTypé;
Resul t ResType,
Cause ErrType: Construct_ Analyse
ErrorSignal
TIMER T4 := 10*ns;
Construct_
OnwardRequest
IdleState
[]
CallReques}/ Clear From User_1
(Call_ From User_1 Request
Params) d No call in
progress
! so ignore
request
Analyse [-— (Cal lParams, Result)
Result caller_
Not
UserKnown UserNotKnown Authorised
Construct_ Construct_ Reject_
Onward_ I-— (CallParams) ErrorSignal Request
Request (Cause) TO User_1
M Request_
%%2;ﬂlmer Error TO User_1
(Cause)
Call_
Request TO User_2
(CallParams
WaitFor_
Request_ IdleState IdleState IdleState
Response

Figure 8: Transitions aligned on a single page

When a single transition extends beyond the length of one page, a connector symbol can be used to provide alink to the
next page. An exampleis shown inFigure 9 and Figure 10.

ETSI

REG/MTS-00072 V1.1.7 (March 2002)

PROCESS Join_example_ 1

.

From Network

Analyse
WaitForinput
Validate_
DeCrypt User
(UserlD)
Analyse
(UserlD,
= IDstatus
Validate)
@‘
DL Encrypted
User| D | Dt ype,
| Dst at us Encrypt Type,
User St at us Val i dType
DeCrypt
(UserlID)
TIMER T7 : = 3*sec;|l‘
1Pproc

Plain

14

Figure 9: Paging using a connector symbol (page 1)

ETSI

27 REG/MTS-00072 V1.1.7 (March 2002)

PROCESS Join_example_ 1 2(4)

Validate

(UserlD,
UserStatus)

UserStatus

Validated Not_Validated

StartTimer
an

User_
VIA Network NotVal idated VIA Network
(UserlD)

User_
Validated
(UserlID)

WaitForlinput

WaitForlinput

Figure 10: Paging using a connector symbol (page 2)

As can be seen in Figure 9 and Figure 10, the syntax of SDL allows a connector symbol to have a process flow line to it
or from it but not both. Figure 11 shows how it is possible for a connector to be attached to a symbol anywhere on a
page. These can be difficult to locate and so, to avoid confusion, @Mconnector symbols should generally only be used
to provide a connection from the bottom of one page to the top of another. However, long transitions can often be

avoided by careful use of procedures (see subclause 8.1).

A=B+C @

Update_Records
G

Figure 11. Example of poor use of a connector symbol

7.2.2 Definitions in behaviour diagrams

An SDL process description (which may exist in asystem, block or process diagram) should not be considered to be
simply a"flow-chart" specifying a sequence of actions and decisions to be taken by a particular entity. In order to be
complete, a process description may include the following:

- aspecification of formal parameters;
- variable, signal and data definitions;

- class and interface definitions;

ETSI

28 REG/MTS-00072 V1.1.7 (March 2002)

- procedure references;
- classreference;
- theprocessgraph, itself.

Symbols such as procedure references and text boxes containing DCL, TIMER and other declarative statements are
valid for all pa%es of the processin which they appear. The SDL syntax allows them to be drawn on any page but, for
easier reading, ®all reference symbols and text boxes containing common declarations should be collected together

at a single point within the process diagrams. For simple processes, and where space allows, these symbols can be
placed together on the first page with the first transition, as can be seen inFigure 8 and Figure 9. In other cases, a
separate page (or pages, if necessary) can be used to collect these symbols together.

To further improve the readability of the SDL, (zg)separate text box symbols should be used for each different type of
declaration (for example, variable declarations, timers, signal specifications, data type specifications and formal
parameters). It can also be useful to sub-divide these groupings into separate text boxes according to
application-specific criteria (for example, grouping all of the BOOLEAN SYNONY M definitions together).

7.2.3 UML activity diagrams

UML does not support the concept of physical pagesin its specifications but it may still be necessary to spread a
distinct element of behaviour over more than one activity diagram. Inthisinstance, thereisonly one mechanism that
can be used for linking the diagrams and that is by using a state symbol. An activity diagram which terminatesin a state
other than the "End" state, will be assumed to continue at a subsequent instance of the same state in another activity
diagram. In the example shown in Figure 12, the activity in the right-hand part of the diagram continues on from the
"Connected” state on theleft-hand side. Particularly in those cases where the specification of behaviour is distributed
over many diagrams, ®¥activity diagrams or statechart diagrams should use text boxes indicate what functions are
specified in other diagramsor in which diagram the behaviour continues.

At System Startup Continued from diagram Connected
"Setup_Pagel"
Idle
SETUP(CalledPartylD) RELEASE|"RELEASE_ACKNOWLEDGE
[CalledPartyID Invalid] PSETUP_REJECT
Check Called
Party ID Idle
[CalledPartyID Valid] fCALL_PROCEEDING At System Shutdown

Connected Activity continues in
Diagram "Setup_Page2"

Figure 12: Example of UML activity diagram pages linked at a state

7.3 Text extension symbols

The SDL symbols are not always large enough to contain all of the text necessary to specify the task represented by the
symbol and if the character size is set to avalue that makesit readable, the text spills over into the area surrounding the
symbol as can be seen in Figure 13.

ETSI

29 REG/MTS-00072 V1.1.7 (March 2002)

UserErrorRep
(UserID, Failure€ode,

TO Network

Figure 13: Text overflowing a symbol

This can be difficult to read and, in the strict sense of the language, is syntactically incorrect. Therefore, ©Dwhen the
text associated with a task symbol overflowsits symbol boundaries, a text extension should be used to carry the
additional information as shown in Figure 14. The syntax of SDL specifies that the text in the extension symbol is
added after the text in the task symbol. To avoid misinterpretation, care should be taken to ensure that the text extension
symbol appearsto the right of or below the task symbol unless all of the text is placed in the extension symbol.
However, as ageneral rule the text extension symbol should not contain all of the text. For example, in the case of
signals, the signal name should be placed inside the input or output symbol.

(UserlID, FailureCode,
UserErrorRep SupplementaryInfo)
TO Network

Figure 14: Use of Text Extension symbol

Even in cases where the text does not overflow the symbol, thisis a useful presentation method which can be used to
separate the signal name from the parameter list in inputs and outputs. For reasons of clarity, it is not advisable to split
the parameter list between the primary symb ol and the extension.

Asan alternative to the use of atext extension symbol, SDL permitsthe re-sizing of both atask symbol and the text
contained init.

7.4 Alignment and orientation of symbols

7.4.1 Alignment

Neither SDL nor UM L place any semantic significance on the placement and alignment of symbols but a process or
activity pagethat is carefully arranged and not over filled with symbols and connecting lines will always be easier to
read and interpret than one that is not.

ETSI

30 REG/MTS-00072 V1.1.7 (March 2002)

Thereisno particular benefit to be gained by aligning symbols of a particular type except that (32)symbols that
terminate the processing on a particular page should be aligned horizontally to make it easier for the reader to
identify all of the points where processing ceases or continues on anew page or thread. These symbolsinclude:

() owswems [
- SDL Connector symbol O - UML END STATE symbol @

- SDL NEXTSTATE symbol

SDL RETURN symbol

SDL STOP symbol >|<

In the example shown in Figure 15, the processing on the page can end in a number of different states. The alignment of
all of the associated NEXTSTATE symbols at the bottom of the page makesit clear what all of these possibilities are.

PROCESS Alignment_example 1(3)
DaL
Cal | Parans ReqTypé;
Resul t ResType,
Cause ErrType. Construct_ Analyse
ErrorSignal
TIMER T4 := 10*ms;
Construct_
OnwardRequest
IdleState
[]
CallReques}/ Clear From User_1
(Call_ From User_1 Reguest
Params) a No call in
progress
! SO ignore
request
Analyse 1 (CallParams, Result)
Result caller
Not_
UserKnown UserNotKnown Authorised
Construct_ Construct_ Reject_
Onward_ I-— (CallParams) ErrorSignal Request
Request (Cause) TO User_1
M Request_
??i;ﬂlmer Error TO User_1
(Cause)
Call_
Request TO User_2
(CallParams
WaitFor_
Request_ IdleState IdleState IdleState
Response

Figure 15: Example showing the alignment of NEXTSTATE symbols

ETSI

31 REG/MTS-00072 V1.1.7 (March 2002)

7.4.2 Orientation

Most SDL symbols are symmetrical and, thus, cannot be shown in different orientations. INPUT and OUTPUT symbols
aredifferent in that they can be shown either right facing or left facing, thus

o= [<=>__

SDL accepts both orientations as correct but does not assign any specific meaning to either. However, ©in simple
systems where each process communicates with only one or two other processes, the orientation of INPUT and
OUTPUT symbols can be used to improve the readability of the SDL. However, to avoid possible specification errors
and misinterpretation, explicit methods of identifying the source and destination of signals should be used. Symbol
orientation should not be considered to be a substitute for the use of a"From" comment on an INPUT or the TO and
VIA statementsin an OUTPUT as described in subclause 10. ®?If used, the significance of the orientation of SDL
symbols should be clearly explained in the text introducing each process diagram.

7.5 Structuring behaviour descriptions

The behaviour of an SDL system is mainly described in process diagrams which represent the topmost layer of the
behaviour specification. Partial behaviour descriptions can also be described in procedures, methods and operators. For
readability it isimportant that the behaviour specification is organized and presented in such away that each reader can
easily find information of particular interest. It isimportant to bear in mind that a standard is often read in different
contexts at different times. For example, at onetime it may be used to gain an overall understanding of the
specification while at another time it may be read in order to extract some specific details.

7.5.1 Basic structuring principles

The key structure within a protocol or service behaviour description is the relationship between a process state, the
eventsthat trigger some form of process reaction, the actions that are taken and the resulting state, Process graphs
should be structured in such away that these rel ationships are easy to see, as shown inFigure 16. @A state, input and

the associated transition to the next state should be contained within a single SDL page.

ETSI

32 REG/MTS-00072 V1.1.7 (March 2002)

PROCESS Setup 2(3)

Call_
Established

Release
(callID)

Release_

Response >

From Called Party

via NetworkLink

Release
(Callld)

Release_NW_

_resources
Ccallld)

via UserLink

WaitFor_

Release_
Response

Figure 16: Simple transition

7.5.2 Structuring using procedures and operations

Within astandard, the most important actions taken between process states are the generation of output signals. If the
flow of control leading from one process state through input and outputs to the next state cannot be contained within a
single SDL page, some of the detail should be hidden using procedures and operations, as described in clause 8 or
composite states as described in clause 10.

7.5.3 Emphasizing the difference between normal and exceptional
behaviour flows

Within their textual descriptions, standards often make the distinction between normal and exceptional cases. This
distinction can also be used effectively in the SDL. Figure 17 shows an example where the analysis result splits the flow
into normal behaviour which is specified on the same page and error handling which is specified on another page. This
allows the reader to concentrate on the normal behaviour and to look at the various error handling situations if and when
that is required.

ETSI

33 REG/MTS-00072 V1.1.7 (March 2002)

PROCESS DestinationNode 2(8)

Setup

(Call_ From TransitNode
Parameters)

Analyse_ (Cal lParameters,
Parameters Result)

Result

ValidParameters

Normal Setup_ _ R
Behaviour Response >——~V|a TransitNetwork

WaitFor_
Connection

Else

rror Excep;ional
Case Behaviour
ase described on Page 5

Figure 17: Part of process diagram showing only normal behaviour flow

The separation of normal and exceptional behaviour may also bring benefits to the standard devel opment process, so
that specification of normal behaviour becomes stable before error handling issues are addressed. Wherever it is
appropriate and convenient, ®®process diagrams should segregate normal behaviour from exceptional behaviour. In

such cases, it isalso useful to use atext symbol to identify each page of a process as either "Normal Behaviour" or
"Exceptional Behaviour", as shown in Figure 18:

ETSI

34 REG/MTS-00072 V1.1.7 (March 2002)

PROCESS Setup 3(3)

/** Nor nal
Behavi our **/

WaitFor_

Release_
Response

Release_

Response from Calling Party

Release_
Terminal_ — (Callld)
Resources

Figure 18: Labelled page of normal behaviour

8 Using procedures, operations and macros

8.1 Procedures

In common with most programming languages, SDL procedures provide a mechanism for the modular specification of
behaviour that can be used in different contexts.

An important aspect from the point of view of a standards specification is that procedures can be usedto hide
distracting detail. By moving detail to procedures, the reader is presented with a clear and concise overview of the
required behaviour even though the detail can be viewed if it is required. ”The use of procedures to modularise
specifications and to 'hide' detail is strongly recommended.

As an example, there may be arequirement in a standard that the contents of an incoming message are analysed and that
subsequent processing be based on the results of the analysis. The method of analysisis not an issue for the standard
and, as can be seen in Figure 19,such detail can distract from the main purpose of the process. If, asis shown in

Figure 20, the detail isremoved to a procedure, the reader is left with the information that the message is to be analysed
but without the distraction of how the analysisis undertaken.

ETSI

35 REG/MTS-00072 V1.1.7 (March 2002)

PROCESS Example_1 2(4)

Wait_For_
_CONNECTED

CONNECTED
(Setup_
_Result)

Status :=

Setup_Result!
Call_Status

Status
Failure
Success
Destination := ErrorCause :=
Setup_Result! Setup_Result!
called_Party ErrorCause
rror_
Cause
UserNotKnown NoNWResponse
NoRouteToUser IncompatibleServices
Cause := Cause := Cause := Cause :=
UserError NetworkError UserError NetworkError
[2 |
FAILURE
S (Destination) _RESPONSE
- (Cause)
Connected

Figure 19: Message analysis example without the use of a procedure

ETSI

36 REG/MTS-00072 V1.1.7 (March 2002)

PROCESS Example_2 3(6)

Wait_For_
_CONNECTED

Analyse_Input

CONNECTED
(Setup_
_Result)

ATalyie_ | [(Setup_Result, Status,
—Inpu Cause, Destination)

Success Failure

FAILURE

(Destination) _RESPONSE
(Cause)

SUCCESS_
_RESPONSE

‘lIiHHHHHHEH|'

Figure 20: Message analysis example using a procedure

8.1.1 Using procedures to replace informal tasks

In existing standards, it is common to see informal text included in an SDL task box as an item of useful, and often
normative, information. For example:

Stimulate the and Get user address
release of the from the database
basic call

NOTE: Although the text shown in the task symbols above is shown exactly asit most often appearsin existing
standards, it isimportant to recognize that without single quotation marks around it (*..") it isillegal SDL.

This notation isvery easy to understand but it is not possible simulate or validate the action in the symbol. According to

the strict definition of SDL, the text, " Stimulate the release of the basic call”, isinterpreted as a name at the start of an
incomplete, and therefore incorrect, assignment statement. To make such expressions formal and executable, ***convert
informal text descriptions of actionsinto procedure calls and replace the task symbolswith a procedure symbols,

thus:

Stimulate_ and Get_UserAddress_|
_Release _of _ From_Database
BasicCall (Userld,UserAddr)

Note that in converting such text into a procedure call it may be necessary to add parametersto fully formalize the
interface to the procedure.

ETSI

37 REG/MTS-00072 V1.1.7 (March 2002)

8.1.2 Procedure signature (parameters and returned values)

A procedure interface specification identifies a set of parameters for the procedure and defines how these parameters are
passed to and from the procedure. ©9All data relevant to the real behaviour represented by a procedure should be
specified in the parameter list and returned value (if any). This meansthat a signature is specified which allows the
contents of the procedure to be updated at alater stage without affecting the other parts of the specification.

The specification for aprocedure signature can include

dataitemsthat are to be passed to the procedure (IN parameters);

dataitemsthat are to be passed back to the calling process. These can be specified as either IN/OUT parameters
which are passed to the procedure and modified within it or OUT parameters which can only be passed from a

procedure but not to it. These returned parameters can be specified as:

- alist of one or more items which appear in the calling statement. An example of acall to such aprocedureis

asfollows:
Procedure call Procedure signature
Get Position(identifier, X Coord, Y Coord);
Get _Position
Output parameter (IN i dentifier,
Modifiable input parameter INOUT X Coord,
ot Y_Coor d)

Input parameter

- A single value associated with the procedure name itself. The following is an example of acall toaprocedure
of thistype:

Procedure call Procedure signature

Calling_Party := Extract_Originator(Setup_Data);

] Extract _Ori gi nator
Input parameter (I'N Setup_Data) -> Party_Nunber

Result

Figure 21 and Figure 22 show simple examples of each of these procedure types while Figure 23 shows how the
procedures could be called.

PROCEDURE Convert_To_degF 1(D)

(IN degC Temperature) -> RETURNS Temperature;

DCL degF Tenperaturgj

degF :=
((degC * 9)/5) + 32

degF

Figure 21: Example of a value-returning procedure

ETSI

38

REG/MTS-00072 V1.1.7 (March 2002)

PROCEDURE Convert_Abs To F _and_C 1D
CIN degA Temperature,
OUT degF Temperature,
OUT degC Temperature);
degC :=
degA + 273
degF =
((degC * 9)/5) + 32
Figure 22: Example of a procedure returning values in the parameter list
PROCESS ProcCallExample_1 203)

Wait_For_
Thermometer_
_Reading

Convert_To_degF

Convert_Abs_
_To_F_and_C

Receives Thermometer reading

in Centigrade, converts to
Fahrenheit and sends it out

Wait_For_ Receives thermometer reading
Absolute in Absolute, converts to both
_Temperature Centigrade and Fahrenheit and

Temp_F :=

CALL Convert_|
_To_degF

(Temp_C)

SEND_THERM
(Temp_F)

Wait_For_
_Acknowledge

sends them out

Convert_Abs_|

To_F_and_C (Abs, Fahr,Cent)

Wait_For_
_Acknowledge

Figure 23: Examples of procedure calls

Procedures which return a val ue associated with the procedure call itself (Figure 21) can be used in place of variablesin
decisions, assignments, and output parameter lists to hide some of the detailed processing which is not essential to the
in most casesit is preferable to use operationsinstead of value-returning

understanding of astandard. However“®

procedures.

ETSI

39 REG/MTS-00072 V1.1.7 (March 2002)

Procedures defined within the scope of the process calling them can access the variabl es belonging to that process.
Accessing datain this way, particularly writing to a process variable from within a procedure, can result in a confusing
specification. In order to avoid the possibility of this confusion and any other unexpected side-effects “Yprocedures

should only read and write to variables that are passed to the procedurein the parameter list or are declared within
the procedureitself.

8.1.3 Procedure body

The behaviour specified within a procedure can be more or less complex depending on the application. In the example
shown in Figure 20, the Anal yse_I| nput procedure should be completed so that automatic tools can be used to check
the syntax and semantics of the SDL. The following methods can be used:

1. providea"dummy" procedure that does nothing (Figure 24);

thisis adequate where the detail ed behaviour of the procedure is not considered to be normative even though
the overall function of the procedure may be. Figure 20 above is an example of this. It isimportant to include
the dummy procedure in the standard as its formal parameters and results statements serve to define what, in
afull implementation, the interface should be between the calling process and the function expected of the
procedure.

2. provide aprocedurethat usesan ANY decision to arbitrarily return one of the possible values without actually
specifying how the value is determined (Figure 25);

thisisan ideal approach if the SDL model isto be validated by an automatic tool asit ensures that all
possible result values are evaluated during the validation process.

3. provide aprocedure that specifiesin detail the behaviour expected (Figure 26).

thisisthe best approach in cases where the procedure has been used to hide complex behaviour but that
behaviour is considered an important and normative part of the standard. It would also be advisable to use
this approach when simulating the full behaviour of the model.

Whichever method is chosen'“? procedures should specify a level of detail that is suitable for the particular purpose
of the standard. At a minimum, the procedure should express the requirementsit is modelling, even if thisissimply a
comment or areference.

PROCEDURE Analyse_Input_Example_1 1(1)

CIN Conn ConnectType,
OUT Cause RespErrType,
OUT Dest PartyNumber);

I B

The true purpose of this procedure

woul d be to anal yse the contents of -
a CONNECT nessage, extracting and Durmmy p_r°_°ed”re W'_th
no specified behaviour

returning the address of the called
party if the call was successful or
the error cause (UserError or
Networ kError) if unsuccessful.
Refer to Subclause 6.4.5 for a
detai |l ed description.

*/

Figure 24: Example "Dummy" procedure

ETSI

40 REG/MTS-00072 V1.1.7 (March 2002)

PROCEDURE Analyse_Input_Example_2 1D

CIN Conn ConnectType,
OUT Cause RespErrType,

OUT Dest PartyNumber);

Dummy procedure which
— generates output parameter
/*Define a synonymto represent any values suitable for validation

party nunber. Only one val ue (1234)
is generated.*/
Test Part yNunmber = 1234; —
Decision would normally be based
ANY on "Cause” which has the literal
values, "NoError", "UserError" and
“NetworkError"
/*NoError*/ /*UserError*/ /*NetworkError*/
Dest :=
Test_
PartyNumber
Cause := Cause := Cause :=
NoError UserError NetworkError
I N2]

Figure 25: Example of a simple procedure suitable for validation purposes

ETSI

41 REG/MTS-00072 V1.1.7 (March 2002)

PROCEDURE Analyse_Input_Example_3 1D
C IN Conn ConnectType,

OUT Cause RespErrType,

OUT Dest PartyNumber);

DL
St at us Cal | St at usType, Procet_jure specifying particular
ErrCause ConnError Type; behaviour

Status :=
Conn!Call_Status

Status
Success Failure
Dest := ErrCause :=
Conn!called_party Conn!ErrorCause

ErrCause

UserNotKnown NoNWResponse
NoRouteToUser IncompatibleServices

Cause := Cause := Cause := Cause :=

UserError NetworkError UserError NetworkError

0

Figure 26: Example detailed procedure

8.1.4 Avoiding side-effects

Each procedure should have alimited and clearly identifiable purpose which should fall into one of the following two
categories:

1. Proceduresthat either analyse something or cal culate something from input parameters and return avalue that
represents the result of the activity.

Some programming languages refer to this use of a procedure as a function. “?A functional procedure
should fulfil its specified role and do nothing that could be considered to be a side-effect. For example, a
procedure that analyses the parameters received with a message should return avalue that determinesthe
future behaviour of the calling process. That behaviour may include sending of signals. “The processing of
signalsisone of the most important activities shown in the SDL of a protocol standard and should
normally bevisiblein the calling process rather than the called procedure. Equally so, if the purpose of a

procedureisto calculate something, it should do that and nothing el se.
2. Procedures that generally do not return any value but have alimited sequence of actionsto perform.

These actions are worth putting in the procedure provided that the same sequence of actionsis repeated in

many situations. In this case it may be appropriate that one or more related signalsis sent from within a
procedure. However, @it isi mportant that procedures that specify a limited sequence of actions should be
given namesthat reflect asfully as possible the activity performed by aprocedure.

ETSI

42 REG/MTS-00072 V1.1.7 (March 2002)

In either case, “®behaviour that could be considered a side-effect to its defined purposes, should not be specifiedin a
procedure.

The specification of states within procedures obscures the processing of inputs and the overall synchronization of the
calling process. Although not generally recommended, it is reasonable in some exceptional cases for a procedureto
include the specification of states. Such situations are rare but an example would be a procedure which starts a 500ms
timer and excludes all other processing until the timer expires. In this case, a state is necessary in order to receive the
timer expiry

“Mn the exceptional casethat a procedure includes the specification of one or more states, it isimportant to ensure
that all signalswhich are not directly processed within the procedure are correctly handled for subsequent
processing. This can be accomplished in one of the following ways:

- explicitly receiving all possible input signalsin all statesin the procedure;

- usingthe"SAVEall inputs* symbol which ensures that all signalsthat are not explicitly processed in the state
are maintained as inputs until the next state is reached (see the exampleinFigure 27).

A simple example of a procedure containing a state symbol is shown inFigure 27.

PROCEDURE Delay500ms 1D

/* The tiner T500 is defin
in the calling process as
foll ows:

TI MER T500 : = 500*nsec; |
StartTimer A macro which is used to

*l (T500) start the timer.

Wait_
_For_Timeout

]
T500 - Save all other inputs to be
/*Expiry*, received in the calling process

Figure 27: Example of a procedure containing a state

8.1.5 Naming of procedures

Procedure names should follow the naming conventions described in clause 5 and should attempt to clearly reflect the
purpose of the procedure without requiring detailed knowledge of the contents of the procedure (e.g.,

Anal yse_SETUP). “®The names of procedures having multiple effects should reflect each intended effect either
individually or collectively. For example, aprocedure that builds and then transmits a SETUP message might be named
"Bui | dAndSend_SETUP".

ETSI

43 REG/MTS-00072 V1.1.7 (March 2002)

8.2 Operations

In many situations operations represent a viable alternative to procedures. There are, however, some useful differences
between them:

operations are not permitted to have states;

operations are not permitted to send signals;

operations are permitted to access only parameters and variables declared inside the operation;

operations may be used wherever procedures are valid but, unlike procedures, they can also be used in
continuoussignals.

Thus, operations inherently have many of the desired characteristics of value-returning procedures described in
subclause8.1.4.

An operation is one of two kinds indicated by the keyword in the signature:
OPERATOR with alist of parameters. Must return aresult and is used as an expression;

METHOD with alist of parameters. Has an optional result and must be applied to an expression (usually avariable
but it can, for example, be a method application) by means of the dot notation (see Figure 31).

No general recommendation can be made on the choice of whether to use an operator or a method. If an object-oriented
style were preferred, methods would probably be used, whereas for a more functional style operators would probably be
used. In most cases a mixture of operators and methods could be used.

An OPERATOR may be thought most appropriate if the operation just uses values (all the parametersare IN
parameters) to determine the result. An operator can be defined in any appropriate datatype.

A METHOD may be thought most appropriate if the main purpose of the operation is to change the contents of a
variable that it is applied to.

One of the simplest but most effective uses of operationsisto improve the readability of expressions that contain data
elements that need to be extracted from a complex datatype. For example, consider the extraction of an OPTIONAL
item of afield of a CHOICE datatype, defined inASN.1 as:

UnitData ::= CHO CE
{ calllnfo Cal | Dat a,
packet I nfo PacketData

}
Cal | Data ::= SEQUENCE
{ callingParty Part yAddr ess,
cal I i ngSubaddress PartySubAddress CPTI ONAL,
cal |l edParty Part yAddr ess,

cal | edSubaddr ess Par t ySubAddr ess OPTI ONAL
}

An assignment of the sub-address of avariableuni t dat a of this data type structure may look like this:

t heSubAdd : =
I'F cal || nfoPresent (unitdata)
THEN | F cal | edSubAddr essPresent (uni tdat a. cal | | nfo)
THEN uni t dat a. cal | i nfo. cal | edSubAddr ess
ELSE noSubAddress Fl
ELSE noSubAddress Fl;

Aswell as being long to write, the statement also showsin detail how the element is accessed and the handling of a
missing sub-address which is probably not relevant in the context of the function of the process.

The example in Figure 28 shows how an operator can be added to an inherited ASN.1 complex datatype to perform the
necessary extraction of the data element.

NOTE: Although most datatypes are specified in protocol standards using the ASN.1 notation defined in ITU-T
Recommendation X.680 [8], operations can only be added in an SDL datatype definition.

ETSI

44 REG/MTS-00072 V1.1.7 (March 2002)

USE
ExampleASN1;

PACKAGE DataExample _ _ N1(2)
VALUE TYPE UnitDataType INHERITS UnitData

ADDING
OPERATORS
called_subaddress_from (IN UnitData_Type) > PartySubAddress;
OPERATOR called_subaddress_from;
(data UnitData_Type) -> PartySubAddress;
{ IF callinfoPresent(data) = false THEN
RETURN noSubAddress;
IF calledSubAddressPresent(data.callinfo) = false
RETURN noSubAddress;
RETURN calledSubAddressPresent(data.calllnfo);

}
ENDVALUE TYPE UnitDataType;

Figure 28: SDL package where new data type containing an operation is specified

An operation is defined as part of the datatype to which it belongs and has interface and body specifications similar to
those defined for procedures. There is also asignature specification that introduces the operation name and specifiesthe
types of parametersthat it receives and returns.

Having defined the operator, the assignment statement can now be re-expressed as:

t heSubAdd : = cal | ed_subaddress_fron{unitdata)

Thisassignment is shorter than the original, and it now shows the most useful information of what is extracted and
where it originates.

“IThetextual syntax of SDL can be used to define simple operations such as the one shown in Figure 28. More
®9¢complex operations should be specified as operator or method diagrams which are referenced from the relevant
data type specification.

An example of where an operation could be very useful isin the management of acircular counter that is permitted to
have only arestricted range of values. Each time the value of the counter isincremented, there needsto be a check to
determine whether the upper limit has been reached and, if so, counting needs to be restarted from the lowest allowed
value. Instead of specifying it repeatedly in process diagrams, an operation can be used for this purpose. Figure 29
shows the necessary data type specification and includes the operator diagram reference. Figure 30 shows the operator
diagram itself.

BLOCK BlockWithMethod 2(2)
VALUE TYPE Counter_1t020 N

INHERITS INTEGER
ADDING
METHODS
incr -> Counter_1t010;
METHOD incr-> Counter_1t020 REFERENCED);
CONSTANTS 1:max20;
ENDVALUE TYPE Counter_1t020;

SYNONYM max20 Counter_1t020 = 20;

Figure 29: Data type containing the signature specification of a method

ETSI

45 REG/MTS-00072 V1.1.7 (March 2002)

METHOD incr — — 1(1)
() I* A method this simple, does not really jUS'[Ifylﬁ

; . the use of a digram - it would be simpler as
> Counter_1t020; text in the data type. */

which the method is applied

1
|
g

max20 ELSE

THIS:=

THIS:=1 THIS+1

THIS

Figure 30: Method diagram

The method defined in Figure 30 can usefully be applied to avariablein aloop asgivenin

PROCEDURE DotNotationExample 1D

DCL i Counter 1t ozo;lﬁ

i=1

freecircuit

Q)

method incr
applied to

i with dot

notation ELSE

Figure 31: Application of method from Figure 30 with the dot notation

Figure 32 shows how operators can be used to achieve the same effect as the procedure call shown inFigure 20. Three
operators are used to extract status, error cause and destination address information from the Set up_Resul t
parameter of the CONNECTED message. The intermediate Anal yse_| nput st ep isremoved and, by choosing
names for the operators carefully (St at us_from Cause_from andDest i nati on_f r om), the readability of the
SDL isimproved.

ETSI

46

REG/MTS-00072 V1.1.7 (March 2002)

PROCESS Example_OperatorUse

Wait_For_
_Connected

CONNECTED
(Setup,
Result)

FROM CalledUser

StatusFrom

(SetupResult)

Failure

Success

23

DestinationFrom
Success ¢

- (SetupResult))
—Response : VIA UserLink

Failure_
_Response

(CauseFrom
(SetupResult))
VIA UserLink

Figure 32: Examples of operator invocation

The operator signature specification, with references to appropriate operator diagrams, for the above example is shown
in Figure 33. The operator diagram for CauseFr omis shown as an example in Figure 34.

BLOCK exWithOperators

14

NEWIYPE Set up_Resul t_Type

CPERATCRS

ENDNEWT'YPE Set up_Resul t _Type;

/* only parts related to operator definition are shown */

Status_from Setup_Resul _Type -> StatusType;
Destinati on_from Setup_Resul _Type -> DestinationType;
Cause_from Setup_Resul _Type -> CauseType;
OPERATCOR St atus_from REFERENCED,

OPERATCOR Desti nation_from REFERENCED;

COPERATOR Cause_from REFERENCED,

Figure 33: Example of data type definition containing operator signature specification

ETSI

47 REG/MTS-00072 V1.1.7 (March 2002)

OPERATOR CauseFrom 1D

(IN Conn SetupResultType) -> Cause CauseType;

Dol
ErrCause ConnError Type; Operator specifying in detail
the derivation of connection
failure cause

ErrCause :=
Conn!ErrorCause

@

UserNotKnown NoRouteToUser Incompatible_ NoNWResponse
Services
- cause := - Cause :=
Cagggré;for Network Caﬁggré;ror Network_
Error Error

&

Figure 34: Example of detailed operator diagram

8.3 Using macros

SDL provides afacility for specifying behavioural macros (i.e., a shorthand notation for functions which are repeated at
several pointswithin a specification). Macros may only be specified in atextual form and can be dangerous constructs
which, if not used with extreme care, are likely to make a specification difficult to interpret and understand, particularly
where the macro specifies a complex function. Thus, ®Dthe use of macros should be limited to those cases where the
macro can be contained within one printed page.

Thereis one particular circumstance where macros can be used to add clarity and readability to a standard. In most
protocol standards, SDL timers are controlled using the informal terms such as" Start Tn" and " Stop Tn". Unfortunately,
SDL usesthe keyword SET to start atimer and RESET to stop it. To avoid the use of SET and RESET (which is often
misinterpreted to mean "re-start the timer") it is possibl e to define two macros for this purpose. SDL already usesthe
keywords START and STOP and so, in Figure 35 the macros have been named St art _Ti ner and St op_Ti ner.

PACKAGE Timer_Start_and_Stop 1(1)

MACRODEFINITION Start_Timer (theTimer);B
SET (theTimer);
ENDMACRO Start_Timer;

MACRODEFINITION Stop_Timer (theTimer);B
RESET (theTimer);
ENDMACRO Stop_Timer;

Figure 35: Macro definitions for starting and stopping a timer

ETSI

48 REG/MTS-00072 V1.1.7 (March 2002)

The example in Figure 36 shows how these macros can be used in practice. Note that the expiry of atimer in SDL is

shown as an INPUT symbol simply containing the identifier of the timer. In this example, the word "Expiry" has been
added as acomment for clarification.

PROCESS Dialling Setup(2)

TI MER T300 : = 300*mse% Get_Setup_Parameters

Call_
Request \\{ From User
io

(Destinat

Get_Setup_ (Desination,
_Parameters Params)

%E;Est) >~ VIA NetworkLink

Start_Timer
(T300) I Macro Call

WaitFor_

call
Proceeding

CALL_ T300
PROCEEDING From Network /*Expi ry*/<

Stop_Timer - _
Macro Call 1| (T300) CallFalIur>~ VIA UserLink
WaitFor_
Connection

Figure 36: Process illustrating the use of macros

9 Using decisions

Conditional and optional requirements expressed in the textual version of a standard can often be represented in SDL as
decisions or options. Decisions are used when the behaviour depends on current values of variable or expressions
(subclause9.1). Options are used when the behaviour is fixed by the implementation (or non-implementation) of
optional requirements (subclause9.2). Additionally, SDL algorithmic expressions permit the use of arange of
conditional and looping statements for the control of textually-expressed behaviour (subclause 9.3).

ETSI

49 REG/MTS-00072 V1.1.7 (March 2002)

9.1 Decisions

A decision symbol may contain:
- informal text;
- anexpression that evaluatesto avalue of acertain datatype, for example:
- avariable;
- aPROCEDURE call;
- an OPERATOR or METHOD application.

The use of informal text in decisionsis described in subclause 9.1.3. The remaining cases have the following in
common:

- thedatatype of the expression contained in the decision precisely determines the range of valuesthat are
acceptable;

- each branch that follows a decision begins with the specification of an answer that determines the range of
values for which that particular branch isto be taken. Such values can only be static and, thus, are not permitted
to contain expressions that depend on variables or procedure calls.

42t is essential that the complete range of values of the data type contained in the decision is covered by ranges of
valuesin the answerswithout any overlap. In thisway it is possible to ensure that a unique execution branch is
availablefor all possible results of adecision. The following errors can occur in the specification of adecision and
should be avoided:

- part of the rangeis not covered by an appropriate answer. This means that there is no path through the decision
for such values and so further behaviour is unspecified,;

- theranges of one or more answers overlap. In this case, more than one branch can be taken for a particular value
and thiswould lead to is ambiguity;

- therange of values specified in the answers s larger than the range of values of the datatype contained in the
decision. Asaresult, some branches may never be executed. Thisislikely to be confusing and would hamper
readability.

9.1.1 Naming of identifiers used with decisions

Sensible use of identifiers should ensure that a decision has a clear correspondence to the various alternatives expressed
in the text. In addition to following the naming conventions expressed in clause5 ®?identifiers used in decisions
should clearly reflect to a reader the'question’ and 'answer' nature of the conditions being expressed.

9.1.2 Using decisions to structure a specification

Decisions can be used effectively to divide a specification into separate parts, each dealing with a particular aspect of
behaviour. For example, it is quite effective to use a decision to segregate the normal expected behaviour from the
exceptional behaviour. This approach can improve the readability of a standard and isillustrated further in

subclause 7.5.3.

It is sometimes the case that a standard needs to specify a complex decision tree based on anumber of different
parameters. An example of this might be the determination of an error cause based on a message received and the status
of someinternal dataitems. In most cases, particularly where the decision process is considered to be normative, it is
not possible to simplify the presentation of the decision process by using alternative SDL constructs without losing
clarity. Summarizing the decisions in atable before attempting to write the SDL can be helpful. Each decision should
then be specified explicitly in the SDL and not hidden in a procedure or operator.

ETSI

50 REG/MTS-00072 V1.1.7 (March 2002)

9.1.3 Use of text strings in decisions

The simplest way of expressing the basis of adecision isto useinformal text. This method is often chosen by specifiers
for itsreadability. However, it is proneto errors asit gives no precisely defined relationship between the range of values
acceptable in a decision and the range of values expressed in the answers.

In the example shown inFigure 37, the implication is that the question is of abinary nature. Unfortunately, asthat is not
specified explicitly, other values, such as 'Minor error', could exist as part of the range results. The reader cannot be
helped by automatic tools which are unabl e to detect such problems.

'‘CRC Error?.

'ErrorDetected’ 'NoErrorDetected'

Figure 37: Use of informal text in a decision

NOTE: Inasimulation environment the user would be prompted at run-time to choose a particular outcome.
While this allows flexibility, it can make simulation cumbersome by requiring excessive interactive input.

Asmore possible outcomes are included in a decision expressed using informal text, thereis an increased likelihood of
an ambiguousinterpretation of the result which automatic tools would be unable to resolve. Thus, ®9the use of

informal text in decision statements should be limited, preferably to those cases where the decision is obviously
binaryin nature.

Itiscommon in SDL specifications to omit the quotes (' ") around the text string. Thisis syntactically incorrect as the
quotes should always be present.

9.14 Use of enumerated types in decisions

The use of enumerated types resultsin a style which is similar in appearance to the example in Figure 37 but which has
the additional and important benefit that a relationship between the question and answersis explicitly and precisely
defined. The reader is made aware that there are no more than two possible outcomes. Furthermore, atool can check
that:

- the contents of the decision symbol and the outcomes are compatible;
- thevalue expressed for each outcome is within the enumerated range;

- that al itemsin the enumeration have a possible outcome.

ASN. 1 specified in a separate nodul e

Error Codes ::= ENUMERATED
{ ErrorDetected,
NoError Det ected }

DCL
CRC _Error ErrorCodes;

ErrorDetected NoErrorDetected

Figure 38: Use of enumerated types in a decision

ETSI

51 REG/MTS-00072 V1.1.7 (March 2002)

NOTE: Inthisexample asimulator would take one branch or the other depending on the actual value of
CRC Error.

While this approach requires slightly more effort to declare the enumerated types and the associated variables, it

produces a specification which isfar less prone to error and aids understanding by allowing the grouping of related
components such as error codes, service options and status values. ®9|n most cases, enumerated typesrather than text

strings should be used to express decisions.

9.14.1 Use of ELSE

The use of the SDL built-in value ELSE is useful in completing ranges of outcomes. In the example shown in Figure 39,
separate branches are specified for 7200bps, 9600bps and 14400bp while 28800bps and 33600bps are both covered by

the ELSE.

ASN. 1 specified in a separate nodul e

Bi t Rat es ::= ENUMERATED
{ 7200bps,
9600bps,
14400bps, N
28800bps, DCL
33600bps } Avai l abl eBi t Rate Bit Rates;
Available_
BitRate
7200bps 9600bps 14400bps ELSE

Figure 39: Use of ELSE in a decision

Note that a precise interpretation of the EL SE construct isonly possibleif the range of valuesin adecision is defined by
adatatype (beit ENUMERATED or any other type).

®9E| SE should be used as a decision outcome value to disti nguish between one or more specific outcomes and all
other possibilities.

9.1.5 Using SYNTYPES to limit the range of values in decisions

It is often necessary to limit the range of values a particular datatype can have. Thisis especially important in decisions
where EL SE is used since it limits the range of values that lead to an EL SE branch. In most cases, the SDL concept of
SYNTY PE or the ASN.1 constraint can be used to define atype that is basically the same as an existing type but which
has alimited range. In the following ASN.1 and SDL examples, the type 'Digit' has all properties of 'Integer’ but cannot
take valuesthat are less than zero or greater than 9.

ASN.1
Digit ::= INTEGER(O..9)
SDL
SYNTYPE Digit = |Integer CONSTANTS (O0..9);

Thus, ®ASN.1 constraint or SDL SYNTYPE constructs should be used to limit the range of values represented by
an EL SE branch in a decision.

ETSI

52 REG/MTS-00072 V1.1.7 (March 2002)

9.1.6 Use of symbolic names in decision outcomes

In many cases the content of the decision will be a boolean data type, which means that the values of true and false
should be given in answers. ®®SDL SYNONYMs should be used to define meaningful alternatives to the Boolean

values of true and falseif this aids clarity. Figure 40 shows examples of the specification of Boolean SYNONY Ms.

SYNONYM Yes Bool ean = true;
SYNONYM No Bool ean = fal se;
NotAvailable)
SYNONYM Avai | abl e Bool ean = true;
SYNONYM Not Avai | abl e Bool ean = fal se;
Available SYNONYM Success Bool ean = true;
SYNONYM Fai |l ure Bool ean = fal se;
Number_
Present :
DCL
Nunber Pr esent Bool ean,
| nput Dat a Bool ean,
Updat eDB Bool ean;
Fai UpdateDB

Figure 40: Examples of the specification and use of SYNONYMs with decisions
9.1.7 Use of range expressions in decisions

In some cases, as shown in Figure 41, it is more meaningful to use comparisons to identify the possible outcomes from
adecision.

<10 =10 > 10

Figure 41: Use of range expressions in a decision

ETSI

53 REG/MTS-00072 V1.1.7 (March 2002)

Although this explicit expression of outcome valuesis unambiguous, it lacks resilience to change. For example, if the
value '10"' was the maximum value that Ack_Count er should reach and it is used in numerous decisions throughout
the specification, it would be very time-consuming to modify all relevant instances of 10 in the event that the
reguirement for the maximum value of Ack_Count er changes. For the purposes of flexibility and as described in
subclause 6.2.3.6, symbolic names rather than explicit values should be used to express decision outcome conditions.
This approach is shown in Figure 42.

9.1.8

ASN. 1 specified in a separate nodul e

maxAckCount Count Type ::= 10

Ack_Counter

<maxAckCount =maxAckCount >maxAckCount

Figure 42: Use of symbolic names rather than explicit values

Use of Procedures in Decisions

It is possible to use proceduresin conjunction with decisions both to simplify the SDL and to improve its syntax
without impairing its readability. As an example, the informal description shown in Figure 43 could bere-writtenin
three ways using a procedure with the decision.

Note:

'Get User Name
From Database
Using User Number'

'‘Name
Valid?'

'No'

Figure 43: Informal task and decision

Thetext in each of the boxes in Figure 43is shown in single quotes. These have often been omitted in
SDL diagrams within standards. Thisisillegal rather than informal SDL.

Thefirst alternativeisto call avalue procedure directly from the decision, asin Figure 44. The procedure User Name
extracts from the database the user's name associated with User No.

ETSI

54 REG/MTS-00072 V1.1.7 (March 2002)

ASN. 1 specified in a separate nodul e

bl ank 1 A5String ::="" DCL
User No PartyNunber;

UserNameFromDatabase J

UserNameFrom>
Database
(UserNo)

ELSE

Figure 44: Procedure called from within a decision

The advantages of this method are that it is concise and, in many cases, highlights only those aspects of the
specification that are important to the standard.

It may be considered to be a disadvantage of this approach that in some instancesit istoo concise and hides normative
reguirements in the procedure.

The second alternative is to assign the result of the value procedure to a variabl e before making the decision based on
the contents of the variable as shown in Figure 45.

ASN. 1 specified in a separate nodul e

bl ank I A5String ::=""

DCL
Name := Name | A5Stri ng,
UserNameFrom_ User No PartyNunber;
Database (UserNo)

UserNameFromDatabase

N

blank ELSE

Figure 45: Decision based on a variable assigned from a value procedure

The advantage of this method isthat it can make clearer the individual stepsinvolved.

The disadvantages are that an additional variable (Nane) needs be specified and the assignment statement is less
descriptive than the informal text.

In Figure 44 and Figure 45 the use of a PROCEDURE could equally well be replaced by an OPERATOR or METHOD
application. Further details on the use of PROCEDURES, OPERATORS and METHODS can be found in clause 8.

ETSI

55 REG/MTS-00072 V1.1.7 (March 2002)

Thefinal aternativeisto call aprocedure which returns avalue as a parameter which is then used as the basis for the
subsequent decision, as shown inFigure 46.

ASN. 1 specified in a separate nodul e

bl ank 1 A5String ::=""

DCL
Get_UserName_ Nane | A5String
_From_DataBase UserNo Part vNunber:
(UserNo, Name)

Get_UserName_From_Database

blank ELSE

Figure 46: Decision based on a parameter returned from a procedure

The main advantage of this approach isthat by careful choice of the name of the procedure, the SDL can be quite easy
to read and understand.

The disadvantages are the same as those for the second alternative with the additional factor that returning the decision
variable in a parameter can mask errorsin the specification. As an example, if the procedure

Get _User Narme_Fr om DB did not determine and return avalue in the Nanme parameter, this may not be detected by
automatic tools and the decision would be based on whatever value had previously been assigned toNane.

All of the three alternatives above are valid methods and it is a matter for the rapporteur to decide which is the most
appropriate on a case-by-case basis. Whichever oneis selected, ®“procedure calls should be used in conjunction with
decisions to eliminate the use of informal text.

9.1.9 Use of ANY in decisions

For validation purposes, it may be necessary to re-specify decisions using the non-deterministic ANY expression.
However ©the ANY expression should not appear in the SDL specificationsin standards except whereit isincluded
to show the behaviour of an entity (such asa user) that is not the subject of the standard.

9.2 Use of options rather than decisions

The dynamic nature of decisionsis not well suited to the expression of the implementation options which are often to be
found in protocol standards. Fortunately, SDL includes a symbol (Figure 47) specifically for this purpose. The
processing path through thissymbol is evaluated at system generation time based on the static value provided for the
optional item. This path is then fixed until the system is re-generated with a different value of the optional item.

©Dwhere mutually exclusive implementation options are to be expressed, the option symbol should be used rather
than a decision.

The most effective way of labelling the paths |eading from an option symbol isto define appropriate synonyms.

ETSI

56 REG/MTS-00072 V1.1.7 (March 2002)

SYNONYM | npl enment ed Bool ean = true;
SYNONYM Not | npl emrent ed Bool ean = fal se;

SYNONYM Ml ti pl exi ngCapabi lity

Bool ean = I nplenmented /* or Notlnplenented */;
ultiplexing™
Capability

Implemented Notimplemented

Figure 47: Use of SYNONYMs with options

NOTE: A practical problem can occur with a specification model that has many options and which isto be used
for validation purposes. In such cases the 'hardwired' nature of SDL options makes this cumb ersome as
each new combination will require a new compilation of the executable model. Decisions together with
some form of parameterization would provide a more flexible approach.

9.3 Flow control statements

There are some specification tasks for which the SDL graphical symbols are not ideally suited. One example of such a
task isthe calculation of the polynomials required by authentication procedures. For these casesit is possible to use
SDL algorithmic expressions which are based on a structured textual language. Within this language there are a number
of flow control statements, thus:

- |F statement
equivalenttoan"IF...THEN...ELSE" construct;

DECISION statement

equivalent to a"CASE" construct;

LOOP and CONTINUE statements

equivalent to a"WHILE" construct but can also beuseasa"FOR....STEP....NEXT";
"BREAK" and "LABEL" statements

equivalentto a"GOTO label" statement.

These statements are very powerful but, for obvious reasons, lack the clear presentation of the graphical form. However,
they are generally more compact and easier to interpret in the specification of either very simple tasks or more complex
algorithmic computations. ®?SDL algorithmic flow control expressions should be restricted to situations where the
required behaviour involves only the processing of data but not the sending of signals and not the control of timers.
When thereis agood reason for using them, the clarity of a specification can beimproved by defining algorithmic
expressions in procedures with meaningful names indicating the function(s) performed by them (see clause 8).

Figure 48 shows an extract of an SDL process diagram which takes avalue received in the User QoSRequest signa
and callsthe Det er mi ne_RVal ue procedureto obtain values of Request ed_Rval andAvail ability_Type.
The text procedure specification in Figure 49 extracts QS_Cl ass from the IN parameter and uses that as the control
variablein a DECISION statement which assignsvaluestoRval Req and Av_Type.

ETSI

57

REG/MTS-00072 V1.1.7 (March 2002)

PROCESS FE1

User_

QoSRequest
(R_Request)

From Calling User

2(3)

Determine_
_Rvalue

(R_Request, Requested_Rval,
[| Availability_Type)

Availability_

Type

Normal_
Behaviour

NotGuaranteed

Exceptional_
Behaviour

Figure 48: SDL calling an algorithmic expression in a procedure

PROCEDURE Det er mi ne_Rval ue

(IN ReqR gosd ass,
aut Rval Req rVal,
aut Av_type qosAvailability)
{ DCL
QS _d ass cl assNo;
QS _C ass : = O assNunber_From RegR);
DECI SI ON (QoS_d ass)
{ (best) { RvalReq : =
Av_Type : =
(hi gh) { RvalReq : =
Av_Type : =
(medi um :{ RvalReq : =
Av_Type : =
(Accept abl e) { RvalReq : =
Av_Type : =
(best _effort) { RvalReq : =
Av_Type : =
(user _defined) { RvalReq : =
Av_Type : =
}
RETURN,
}

200;

guar ant eed;
80;

guar ant eed;
70;

guar ant eed;
50;

guar ant eed;
50;

not _guar ant eed; }
MaxR_From(R_Req) ;

guar ant eed;

}
}
}
}

}

Figure 49: Text procedure using DECISION statement

ETSI

58 REG/MTS-00072 V1.1.7 (March 2002)

10 System structure, communication and addressing

Although one of the principle aimswhen using SDL in a descriptive manner is to provide a readable specification that
concentrates on describing what the system is supposed to do (requirements) rather than on the detail of how the system
isto beimplemented, SDL has some inherent structure. The simplest model needs to identify communication with the
environment, the pieces that make up the SDL and the addressing of communication. A useful technique for hiding
detail at various levels of complexity isthe layering of information (sometimes called data hiding) where pieces of the
SDL contain other pieces, the details of which are hidden from the highest level. An SDL system description therefore
defines the structure of the visible system pieces, and each of these in turn can contain structure and behaviour.

NOTE: The structure and readability of an SDL specification with respect to its graphical layout is considered in
clause 7.5 and the use of datafor signalsin clause 11.

10.1 System structure

SDL allows the layered specification of systems such as protocols or servicesin ahierarchical manner through the use
of agents: system blocks and processes. Usually the system and block agents define the static architecture of the system,
whereas process agents that are contained in a block or system define its dynamic behaviour. Although ablock can be
defined to have a state machine, if state machine descriptions are restricted to agents that are processes, the block and
process symbols then give a clear indication of which agents have their own behaviour and which do not. A very simple
system may consist of a system agent containing a single process.

The SDL system and block structuring give an unambiguous description of the system architecture. It is usual that
architectural aspects are described elsewherein astandard (or even in other standards) often using non-SDL figures. If
this is the case then ®the SDL version of the architecture of a protocol or service shoul d be consistent with and
complementary to other (non-SDL) descriptive diagrams. Thisis particularly important in relation to naming, which
facilitates the easy identification of system components. In addition, ®comments should be used to convey to the
reader the relationship of the SDL architecture to therelevant non-SDL parts of the standard. If the structure of the
system is specified in SDL, informal drawings that duplicate structural information given by the SDL diagrams should
not be used. This may mean including SDL system diagrams in the parts of the document where structure and
architecture are discussed.

The major advantage of SDL structure diagrams isthat their meaning is well defined, so that the document does not rely
on intuitive understanding of an informal drawing or introduce an explanation of the notation used. Of course, many
issues (such as physical attributes of equipment) cannot be described in SDL, and other well -defined notations may also
be used.

An SDL specification isincompleteif it includes behaviour descriptions in agent diagrams but does not include the
associated structure diagrams. For example, a system diagram containing agents and the channels connected to the
agents defines the structure of the system. Even in the case of asimple protocol or service® the SDL specification
within a standard should comprise one system composed of at |least one agent. Thisis not simply a case of ‘ getting the
SDL right’ for the sake of it. The SDL architecture provides useful information for the reader such as what entities and
communication paths exist within the system. There is usually more than one connection with the environment and
different channels connected to the frame in the SY STEM diagram show this. The communication paths have an
important role in the addressing of messages from one behavioural part to another®® SDL should be used to show the
structure of a system aswell asits behaviour.

NOTE: SDL block and process agents define the functional partitioning of the system. Using SDL does not imply
that areal system need implement a standard exactly as defined by the SDL, only that the implementation
should exhibit external behaviour over the normative interfaces that is equivalent to the behaviour defined
by the SDL model.

In acomplex standard it is possible that the SDL description only covers part of the system. It may also be necessary to
include sub-structuring that is only implied inthe text but which is needed to give a coherent and complete SDL model.
It is not possibleto give strict guidelines on how to structure a specification, as thiswill depend on the subject matter of
the standard. However, although the careful use of sub-structures can make a complex specification easier to
understand, the overuse of sub-structures can render them unreadable. ¢”’SDL sub-structuring should be used to
simplify complex SDL models but should not be used excessively.

ETSI

59 REG/MTS-00072 V1.1.7 (March 2002)

10.2 Minimising the SDL model

The example in Figure 50 shows a situation where there are alarge number of identical user terminals communicating
with one of several identical local concentrators, which are all connected to a single common network.

concentrator

W concentrator concentrator

Figure 50: A hypothetical network

Since the terminals all have the same behaviour, it would be possible to describe the system by providing asingle
description for aterminal that is replicated several times. Similarly the concentrators could be replicated and the
corresponding SDL model for an implementation might be as shown in Figure 51. Note that Figure 51 shows only the
first page of the SYSTEM diagram and the interface definitions (for t oUser ,f r onUser , t oConc, f r onConc,

t oNet wor k andf r omNet wor k) and synonym definitions (for Nunber Of Ter m nal s and

Nunber Of Concent r at or s) are defined on the second page (not shown here). In general, while Figure 51 is
perfectly acceptable for the specification of an operational system, it isunnecessarily complex for describing protocols
and servicesin standards. What needs to be captured in a standard is the minimum that implementations should conform
to, and a standard needs to make clear the role of each entity involved.

SYSTEM Networklmplementation 1(2)
Terminal TerminalType
[toUser] User (NumberOfTerminals)
<> fu :TerminalType
[fromUser :I C ¢ ConcentratorType
tc [fromConc]
fromConc
toConc
t [fromNetwork]
—»— ft Concentrator fn —<—
[c] (NumberOfConcentrators)
foCone :ConcentratorType fromNW
tn
toNW
— > Network
[toNetwork:I

Figure 51: An SDL system model appropriate for implementation of the network in Figure 50

ETSI

60 REG/MTS-00072 V1.1.7 (March 2002)

In the example, it would be sufficient to describe the protocol in terms of an origination terminal, a destination terminal,
an origination concentrator, a destination concentrator and the network as shown inFigure 52. Each block represents a
particular role and the unnecessary complexity of multiple instances shown in Figure 51 is removed® Multiple

instances of SDL blocks and processes should be avoided if possible.

SYSTEM Protocoll 1(2)
UserA S Awire L
-« Origination_ «— Origination_
to_ | | trom_ Terminal from_| [to_ Concentrator
Orig Orig_ Orig_ Orig_
User User Conc Conc A [OrigFromNW] [m———————
Y 4 NORMATIVE
v [origtonw] R
Network
A [DestTon] fmmmm——
Blink [==-===---z---- -i NORMATIVE
\ 4 [DestFromNW] _________
A Bwir N
Destination_ € Destination_ UserB
Concentrator < > Terminal <

to_ from_ from_ to_
Dest_| | Dest_ Dest_ Dest_|
Conc | |Conc User User

Figure 52: A simplified SDL system model for the network in Figure 50

Sometimes informative blocks and processes (such asOr i gi nati onTer mi nal andDesti nati onTer ni nal in
Figure 52) are needed to aid the understanding of a standard, and to describe the behaviour of entities surrounding the
functions that are the subject of the standard. If the terminal and network behaviour is not needed for the
concentrator-to-concentrator example, an SDL system such asFigure 53 with only the different end functions can be
used. @I nformative blocks or processes that are not needed to aid understanding should be omitted, because such
detail will obscure the minimum requirements expressed by the standard.

SYSTEM ConcProtocol3 1(2)

Bwire

Origination_ Destination_

Concentrator | Concentrator
from_ to_ | to_ from_
Orig_ | |Orig_ I [D‘?St_] |:O”9_:| Dest_| |Dest_
Conc | |Conc | [Orig Dest Conc | |Conc

Figure 53: A minimal SDL model for the concentrator protocol standard example (distinct ends)

Protocols can be modelled effectively by showing the functionality of the ends separately as shown in Figure 53. This
has the advantage that the description can be simplified so that only the functionality essential to the protocol is defined.
It isassumed that in this case each concentrator is sufficiently simplethat it can be modelled by just one process. It is
more likely that blocks with contained processes will be needed, as shown in subsequent diagrams. When a block
contains only one process, replacing the block by the contained process reduces the complexity of the SDL. A diagram
can contain both blocks and processes.

10.3 Avoiding repetition by using SDL types

In some speuﬂcanons there may be structure and behaviour that is replicated in more than one block or process. To
avoid repetition, (9% the same block or processisrequired at morethan one place within an SDL specification, a

BLOCK TYPE or PROCESS TYPE should be defined from which instances can be derived.

ETSI

61

REG/MTS-00072 V1.1.7 (March 2002)

10.3.1 Defining the same behaviour at both ends of a protocol

The use of SDL typesis particularly useful for standards that specify the behaviour of both ends (such as origination
and destination) of a protocol communication as a single, multi-purpose entity as in Figure 54. With this approach, the
function of each end of the protocol is not so distinctly separated but actual functional behaviour is specified only once
(inthe BLOCK TYPE Concent r at or inthe example).

SYSTEM ConcProtocol4 1(2)
Concentrator
Awire Blink Bwire
< 1 4 t n ! < 1 4 n t <)
fromm . Origination_ u[DeSt__] [0“9_] Destination_ to_ from_
orig_ | |orig Concentrator | ;L0019 | [ToDest Concentrator | |28t |Dest.
Conc Conc :Concentrator |' | :Concentrator
’ I_ .4 NORMATIVE)
I
e e e e e — -

Figure 54: A minimal SDL model for the example where the same function is used at each end

10.3.2 Static instances to represent repeated functionality

In some cases, a standard may suggest that process instances need to be dynamically created. Dynamic creation of
entities usually adds unnecessary complexity in the addressing of entities and should only be used in the (rare)
occasionsthat it is essential. If, for example, thereis a multi-link concentrator standard, one origination concentrator
and two destination concentrators, as shown inFigure 55, may be sufficient. In this case, it is appropriate to use the
BLOCK TYPEDest Conc because the two destination concentrators have the same functional itym) Wherever
possible, a minimal number of static instances should be used instead of dynamically created SDL processes.

SYSTEM MultiConcProtocol5 1(2)
DestConc
Awire Origination_ Blink ggzggﬁ?r%?&B Bwire
< »— ConcentratorS +—> N - DestConc < >
[) to_ from_
from_ to_ Dest_ | | | Orig_ Dest Dest
Orig_ Orig_ [ToOrig] :[ToDest] :‘ """"" [Conc_:l [Conc_]
Conc Conc L 4 NORMATIVE
DestToOrig] R
---------- 1 A Clink —
! Destination .
| I —
NORMATIVEJ R ConcentratorC ‘CW|re R
""""" _ N :DestConc = 4
[OrlgToDest] to_ from_
Dest_ Dest_
Conc Conc
Figure 55: Static SDL model for a multi-link scenario
10.4 Interfaces

An SDL interface is atype that defines a set of communication items (signal's, remote procedures and remote variables)

realised by an agent or at one gate of an agent. The interface name can be used wherever asignal list isrequired (for

ETSI

62 REG/MTS-00072 V1.1.7 (March 2002)

example on achannel or in an input) and the communication itemsincluded in the interface are then used as the signal
list. In this respect an INTERFACE definition and a SIGNALLIST definition are equivalent.

All the communication items of an interface can be defined inside the INTERFACE definition as part of the interface.
By contrast, communication items used in a SIGNALLIST have to be defined separately. AnINTERFACE definition
can therefore more clearly identify and group together the relevant items.

It is preferable to use an interface definition rather than asignallist definition to give an identity to a set of
communication items (signals, remote procedures and remote variables).

An INTERFACE definition has additional properties compared with a SIGNALLIST:

1) Aninterface caninherit other interfaces (and unlike other typesin SDL can inherit more than one interface) for
example:

| NTERFACE cal | Handl i ng | NHERI TS set upPDUs, terni nati onPDUs;

Inthiscasecal | Handl i ng inherits all the items defined inset upPDUs aswell as all those defined in

t erm nati onPDUs. For any item, suchasaSIGNAL named Set up, definedinset upPDUs thereisa
corresponding item defined incal | Handl i ng. The SIGNAL named Set up incal | Handl i ng is distinct
from that defined inset upPDUs and if necessary they can be distinguished by a qualifier asin:

<<I NTERFACE cal | Handl i ng>> Set up

By comparison when one SIGNALLIST definition includes the name of another SIGNALLIST definition as an
element, there is no re-definition of the included signal.

2) Every agent and agent type has an associated implicit interface (with the same name) that realizes the
communication items of the agent or agent type; that is, all signals, remotes procedures or remote variables
handled by the agent or agent type.

3) Aninterface definition name can be used to name a (uni-directional) gate, which defines that the gate has the
communication items of theinterface asitssignal list, for example asin Figure 56 where Doc Ser vi ce is used
for interface gate definitions.

INTERFACE DocService .
INHERITS Database Admin
<DocType, Docld>;

ADDING{SIGNAL Backup;]

DocService DocService
DocUserType [——p I DocServerType

Figure 56: BLOCK TYPE using an INTERFACE realized by another BLOCK TYPE

NOTE 1 Any block typethat inheritsDoc Ser ver Type also realizesthe Doc Ser vi ce interface.

NOTE 2 Agent typesthat are completely unrelated to Doc Ser ver Type might also implement the Doc Ser vi ce
interface.

ETSI

63 REG/MTS-00072 V1.1.7 (March 2002)

DocUser (2): > DocService Admin <
' i Admin
DocUserType [DocService] MainServer: [)
DocServerType
AdminUser
> . DocService Admin <
[DocService] [Admin]
BackupServer:
DocServerType

Figure 57: BLOCKSs using interfaces realized by two other type-based BLOCKs

Because an interface gate has the name of the interface and the list of communication items of an interface canalso be
denoted by the interface name, it is common for the same name to appear as asignal list on a channel and the gate at
receiving and of the channel. Figure 57 shows instance sets based in the types defined in Figure 56. Unnamed channels
convey the signals of the INTERFACE Doc Ser vi ce to gatesthat are also named Doc Ser vi ce.

10.5 Diagrams showing relationships

For more complex systems it may be useful to include a specification area diagram to give an overview of what is
included in the system. 72 specification area diagram (if used) should include the most important packages shown
asreference symbols with dependency shown on the diagram. For example the Doc Sy s depends on the packages
DocPack and Ser vPack, which both depend onFi | ePack. The diagram shows what packages are needed in
addition to the SYSTEM Doc Sys. If any of the packages is defined in another document, this can be shown by
annotation or by the name of the package.

FilePack

/ \
s

DocPack ServPack

N N

\ 1
" SYSTEM
DocSys

Figure 58: A specification area diagram giving an overview of packages included in a system

Types used within the system are either defined within a package or within an agent diagram of the system and the
rel ationshi ps between types can be shown in these diagrams together with package dependency of types.

The partitioned symbol shown inFigure 59 is used to refer to aclassin UML or atypein SDL. In the following the
UML terminology “class symbol” is used. The class symbolsinclude apartial (possibly empty) specification of attribute
and behaviour properties that must be consistent with the full specification given where the entity is defined.

Class symbolsfor typesdefined in different scopes can be collected together on the same diagram, so that a model
showing relationships between the types can be drawn.

NOTE: classsymbolsthat reference non-local types have no impact on the meaning of the SDL, so can be
included or omitted as needed. A non-local reference is by a qualified identifier rather than a name.

ETSI

64 REG/MTS-00072 V1.1.7 (March 2002)

«BLOCK»
Concentrator

type reference heading

Concld;

attribute properties area

setupreq;
releasereq;

behaviour properties area

Figure 59: Partitioned “class” symbol — used to refer to an SDL type

10.5.1 Use of associations between class symbols

Associations can show relationships between class symbols items. Inheritance, dependency, and context
parameterisation can also be shown. Typically an association that is not inheritance or dependency is realised by
communication between interfaces. For example, in Figure 60thesubscri pti on association could be realised by

the blocks communicating using the Cal | i ng and Cal | ed interfaces, though this does not have to be the case.

«BLOCK»

« BLOCK »

Usertype

Nettype

subscription

Figure 60: A named association between two block types

Associations need not be related to any direct interface connection between the types, asillustrated by Figure 61 where
there is arelationship between definitions based on the User t ype and definitions based on the Managet ype.

«BLOCK»
Nodetype

I

«BLOCK» | client manager | « BLOCK »

I

Usertype 1:mgtmax 1 Managetype

grouping

Figure 61: Class symbols with inheritance and a named association

Class symbols are always references to a more compl ete definition that is given elsewhere. There can be one or more
class symbolsfor the same type and the amount of detail about the type can differ in each case. This avoids the problem
of trying to show everything about a typein a unique class symbol for the type. Figure 60, Figure 61, Figure 62 and
Figure 63, could all be part of one SDL diagram, though it is most likely that each would be on a different page because

they cover different issues.

NOTE: Thearrowheads on associations are open, compared with filled arrowheads on gates and channels.

ETSI

65

REG/MTS-00072 V1.1.7 (March 2002)

10.5.2 Use of a class symbol for an INTERFACE definition

«INTERFACE»
Calling

«INTERFACE»
Called

«INTERFACE»
Mgtlf

USE Setup(Setuptype);
Clear;

USE Answer;
Clear;

USE manage(sub);

Figure 62: References for interfaces

Although the properties of an interface can be shown in aclass symbol asin Figure 62, there still needsto be a separate
definition of the interface in atext symbol. The class symbol and the corresponding definition must be consistent. The
class symbol for an interface can be used to highlight the most important items of the interface, and enables associations

of the interface with types to be shown graphically (see 10.5.1).

Class symbolsin diagrams could be used to show interfaces graphically together with the agent types that can
communicate by the interfaces. The interfaces may be shown asinterface gatessuch asCal | ed, Cal | i ng and
Mgt | f onNet t ype in Figure 63. The symbolsin Figure 62 and those in Figure 63 could be conveniently placed on

the same page of adiagram.

Calling Calling
«BLOCK» R R «BLOCK» Mgtlf Mgtlf «BLOCK»
Usertype < Nettype <«— <«—| Managetype
Called Called

Figure 63: Interface gates using the interfaces referenced in Figure 62

10.6

As can be seen above, class symbols can be used in SDL diagramsin asimilar way to UML class diagrams. One of the
magjor differences between SDL diagrams and UML class diagramsis the definition of astructurein atype. The
structure shows the communication paths between agent definitions in the type and bounds on the number of instances.
The structure defined in atypeis used in definitions based on the type and in sub-types. In Figure 64 the types from the
class symbolsin Figure 60, Figure 61, Figure 62 and Figure 63 are used for the type based block definitions. A channel
has been drawn betweenUser and Net to define the communication link instances. This channel is connected to the
outgoing interface gate Cal | i ng and to the incoming interface gate Cal | ed inUser . Similarly the channel is
connected to the interface gatesCal | ed andCal | i ng inNet . The signals conveyed by the channel are shown by the
use of the INTERFACE namesCal | i ng and Cal | ed associated with the arrowheads of the channel, though these
could have been omitted because they can be derived from the channel connections (as has been shown for the unnamed
channel for theinterfaceMgt | f) .

Structure diagrams using interfaces between agents

BLOCK TYPE domain

User(2:max) Net(1,1)
:Usertype ‘Nettype
YPEicalled] [Calling] o yP Matif
Calling, |« p Lalled,
' : Mgtlf |[&——€¢——
Called| subscriberLink | €alling J

Figure 64: A type containing structure with instances of other types

ETSI

66 REG/MTS-00072 V1.1.7 (March 2002)

10.7 Communication and Addressing

Using signal's on channel s effects communication between (block and process) agentsin an SDL system and with the
environment. A signal is conveyed from the connection at one end of the channel to the connection at the other end,
wherethe signal is either delivered to another channel or to the state In simple models, there will only be one agent
instance or connection with the environment that a particular signal can reach from the state machine that outputsit, and
no further addressing is needed. Similarly, in simple systemsfor a particular signal arriving from the environment on a
channel there will just one agent instance that can consume the signal.

At least one channel should represent the normative interface(s) of the system being specified and "®all normative
channels (interfaces) should be clearly marked as being normative (using a comments box), with the assumption that
channels not marked as normative are informative and that they have been introduced into the SDL for clarity and
completeness only.

SDL processes are concurrent (usually — but see 10.9.1), so it is possible that signals from different processes on the
same communication path could be interleaved. If there are two different paths from a sending process to areceiving
process, it is possible for messages to arrive in a different order from the order in which they were sent. To avoid this ™
there should be no more than one communication path specified in each direction between one entity and another.
This makes the communication clearer, and also avoids the possibility of asignal sent on one path overtaking asignal
sent on another path.

Although SDL supports other forms of communication (remote procedures, import/export and shared data— see 10.9.2),
it is better to use these only in exceptional cases, for example using remote procedures may reduce complex intermnal
signal interchanges. These constructsimply that the calling process waits and passes control to the called process. Such
amechanism cannot be supported easily across a normative interface. (™)Remote procedures, import/export, or shared
data should not be used to exchange information between blocks and processes.

10.7.1 Use of INTERFACE and SIGNALLIST definitions

Usually there are too many signal names for them all to be listed with a channel or gate, and as well as grouping related
signals together in an INTERFA CE definition (see 10.4), the interface name can be used to represent the list of signals
in several places. For example, in Figure 55thelistOr i gToDest is used twice. Thiscan be defined at the system level

as:

| NTERFACE Ori gToDest {
SI GNAL Set upReq(Set upType),
Rel easeReq(Rel easeType),
Dat aReq (Dat al nfo);
USE | NTERFACE Fai |l ures; }

where Fai | ur es is another interface name. The optional INTERFACE keyword before the name clearly identifies
that Fai | ur es isaninterface and not asignal, PROCEDURE or REMOTE variable. A signal list definition could be
used instead to define such alist, but without the advantages of an interface definition. For example:

SI GNAL Set upReq(Set upType),
Rel easeReq(Rel easeType),
Dat aReq (Dat al nfo);
/* Note: thses SIGNAL definitions could be separate fromthe SIGNALLI ST */
SIGNALLI ST Oi gToDest = Set upReq,
Rel easeReq,
Dat aReq,
(failures);

wheref ai | ur es isanother signal list - denoted by the parentheses around the name.

To aid readability the number of signal list items on a gate or channel should be minimised. ("®A small number of
interface names (preferably one) should be used to identify the signals on a particular channel or gate rather than
listing all signals explicitly. The keyword INTERFACE before the interface name would usually be omitted for reasons
of economy of space on the diagram. A list of signal names could be used if there are only one or two signalsto list.

Communication paths show the links between sending and receiving entities. The list of signals conveyed in each

direction is associated with the direction arrow on the path. These lists are optional if they can be derived from other
information but, for clarity, Mall channels and gates should be shown with the associated interface names, signal
list names or signals. This provides the information where the reader needsit.

ETSI

67 REG/MTS-00072 V1.1.7 (March 2002)

10.7.2 Indicating the use of signals in inputs and outputs

A signal instance sent directly from one SDL agent to another will have the same name at both ends of the
communication. To indicate the different use of signalsin inputs and outputs (for example a Set up considered asa

request at the sending side, and as an indication at the receiving side), the following approaches may be used:
1) giving the signal acomposite name (for example, Set upReql nd, Set upRespConf);

2) acontext dependent suffix attached to the signal name as a comment (see Figure 65).

DMode/*ind*/

Figure 65: A comment used as a sighal name suffix

10.7.3 Directing messages to the right process

SDL allows the specification of acommunication path or recipient agent to be part of an output. Although there is often
no ambiguity asthe signal can only take one path to one consuming agent, adding this information can make it easier to
understand the system (see examples in Figure 66). The TO construct can also be used in some cases to identify an
agent but, in the example, acomment has been used to clarify that route Cl i nk isconnected to aconcentrator. The TO
construct cannot be used in this particular case because neither isthe Pi d value known, nor is the process name visible.
When there is more than one possible recipient of an output, TO or VIA will be used in order to be unambiguous™® TO
or VIA should be used in an output symbol to indicate therecipient clearly if thisis not obvious from the structure of
the SDL system.

When a process sends a signal that it can also receive asan input, it is essential to use TO or VIA to avoid the
possibility (unlessintentional) that the sending process receives the signal. This situation is common for signals that are
"passed on" to another process.

JS— |

1
j fo the Setupind
“E concentrator (sr) P TO CallAgent
| process
| J

AudioMode
VIA Clink

Py S

Figure 66: Examples of the use of TO and VIA

SDL also provides amethod for directing reply signals using the TO construct and the Pi d value of the sender. If the
reply is generated before any other signal isreceived, TO SENDER can be attached to the output statement. If,

however, the reply has to be sent after receiving subsequent signals, then the SENDER value needs to be stored in a
variable so that it can be used later in an output. It is always safer to use this approach rather than TO SENDER because
some SDL constructs (such as remote procedures) implicitly change the SENDER value. Thus for Figure 55, an
origination concentrator can reply to either of the destination concentrators by an output such asin Figure 67. For the
output Rel ease TOdest ConcPi d tobevalid, Dest Conc hasto be the name of an interface, process or process
typethat handlesthe Rel ease signal.

ETSI

68 REG/MTS-00072 V1.1.7 (March 2002)

DCL destConcPid DestConc;
Release /*DestConc is the name of the
process type for concentrators*/

Release
TO destConcPid

destConcPid
:=SENDER

Figure 67: Replying to a sender

Where communication is with the environment, any differentiation between entities in the environment should be
handled by the identity or content of signals, or the identity of channels, rather than use of the TO mechanism.
Interfaces can be defined that correspond to entities in the environment and would be used on the channels leading to
the environment.

10.7.4 Differentiating messages

The only way that one message can be distinguished from another beforeit isreceived in an input is by its signal name.
It isnot possible to selectively receive asignal according to its content or the sender or the communication path. When
aprocess reaches a state waiting for a stimulus (asignal or timer), those stimuli that can trigger atransition and those
which are saved are distinguished by name only.

NOTE: If aspecific signal can be received from several processes, it is not possible to selectively receiveit from
one source. The sending process identity can be determined by examining the SENDER value, but this
does not enabl e the name of the sending process or block definition to be (easily) determined.

To determine the SDL behaviour for each stimulus, it is necessary to define asignal for each distinct event that can lead
to adifferent transitioninthe SDL. If it isrequired to distinguish the same stimulus from different sources, then
different signal names should be used. ™A different signal (with a self descriptive name) should be defined for each
distinct message event.

Although it is possible to determine the source of asignal from the communication paths leading to the receiving
process, ®the source of the signal in an input should beindicated either by its name or by a comment with the input
of the signal because it makes it much easier to understand the description. Figure 68 shows alternative methods for
indicating the source of asignal.

Release
[*from
UserA*/

UserA

Release &---- < from UserA
Release

Figure 68: Identifying the source of an input signal

It is possible for messages, particularly those coming from the environment, to be defined in a generic form such that it
iS necessary to examine the message contents to determine what event it represents. In thesecases, a process can be
used to transl ate the generic message into signals that have a different name for each event.

10.7.5 Multiple outputs

Multiple messages output from a single process are sent in the order that the outputs are interpreted. A single output

containing several signalsis equivalent to outputting each signal in turn as listed (Ieft to right, top to bottom) in the text
of the output. ®)There should be only onesignal in each output symbol. This makes the description easier to read and

clarifies the actual order of the outputs.

ETSI

69 REG/MTS-00072 V1.1.7 (March 2002)

10.7.6 Transitions triggered by a set of signals

It is sometimes necessary for a process to trigger atransition only when it has received a set of more than one signd
(perhaps from the same entity or perhaps from different entities) although the order in which the signals are received is
not important. SDL does not have a built-in mechanism for achieving this but the behaviour can be modelled by saving
signals and treating each onein turn.

In the examplein Figure 69, the process is waiting for two messages (User Dat a, Dat aMbde) before entering the
Dat aMbde state. The Dat aMode signal issaved so, if it arrives before User Dat a, it is not lost and can be processed
later. Other signals that can be received are treated in the same way regardless of whether User Dat a has been
received or not.

PROCESS OriginationTerminal 4(5)
. . CallinProgress,| _ .
CallinProgress WaitDataMode WaitDataMode |~ Other signals
L e
[| T | |
] .
UserData i Require both DataModeRe UserPhone AudioModeRe
DataModeReq ---I Userdata and a a
[*from User*/ i DataModeReq [*from C|:onc*/ [*from User*/ /*from Conc*/
BeginData AudloModeReq
VIA Clink
S J

. __J: A timeout may)
WaitDataMode ' be appropriate DataMode CallinProgress
]
i here.

Figure 69: Waiting for multiple messages

10.8 Gates and implicit channels

If any gate on atype based agent definition isleft unconnected in adiagram, implicit channels are derived to connect
the gate to any agentsin the diagram and gates or channels connected to the diagram that handle the interface elements
of the gate.

If no channel had been drawn between User and Net , there would have been implicit channels joining the otherwise
unconnected gates of User and Net to the matching gate on the other block. Implicit channels are created when there
are gates (such asthe interface gatesCal | i ng and Cal | ed defined for User in Figure 64 derived from BLOCK
TYPEUser t ype inFigure 62) which are not connected to channels. Even for this simple example the use of explicit
channels to show the communication paths makes it clear what paths exist, and in more complex examples there may be
implicit channels that were not intended between unconnected gates.

()

To avoid undesirable implicit channels™*™ all the gates of an agent should be explicitly connected to channels.

It isallowed to have gates on an agent definition that is not type based. Such gates are shown as gate symbols on the
outside of the block or process symbol that references the agent diagram (similar to the interface gatesCal | i ng and
Cal | ed onBLOCK TYPEUser t ype in Figure 62)., but for the reasons explained above all gates should be
connected to channels but thisis not allowed for such gates shown outside agents. To avoid these undesirable implicit
channels® gates should not be attached to block symbols or process symbols.

10.9 Other structuring mechanisms

In most blocks the contained agents (usually processes) define the behaviour of ablock, and a block does not usually
have a state machine of its own. By comparison most processes just contain a state machine description and do not
contain any other agents. This keepsthe structure relatively simple and easy to understand. All the state machinesin

ETSI

70 REG/MTS-00072 V1.1.7 (March 2002)

such simple systems belong to processes and potentially have parallel concurrent behaviour: that is each process
instance can potentially have its own processor (though in areal implementation there would be less— perhaps only
one). Itisnot required that each process instance actually has its own processor, only that the system behaves asif this
isthe case.

Other structuring mechanisms exist in SDL, but make the model more complex.

10.9.1 Processes within a process

A processis allowed to contain other processes (but not blocks). Each contained process instance hasits own state
machine and input queue, but all the state machines share one processing resource so that only one process instance is
scheduled at any one time: only one process instance can be interpreting atransition. When this process instance
reaches a state, one of the process instances that can enter atransition (if any) is scheduled. If there is no process
instance ready, all of the process instances wait until one is ready. Such a structure more accurately models running
processes on asingle Erocr. The starting and stopping and other co-ordinating actions of the processes can be more
complex. In general, (4)process definitions contained within process definitions should be avoided, unlessthe
intention isto exclude concurrent interpretation of processes. The diagram of a process (type) with contained
processesisidentical to ablock (type - respectively) with contained processes except for the keyword PROCESS
instead of BLOCK in the diagram heading.

PROCESS sdu2pdu 1(2)

from_ » to_ from_
upper upper lower lower

Sdu tPdu

up_ down
units units

Figure 70: A process with contained processes.

10.9.2 Shared data

Any agent can contain data variables even if contains other agents and no explicit state machine. The contained agents
can access these variables. If the containing agent isablock, thereis an implicit state machine for the block that owns
these variables, and access to the variables is by implicit remote procedure calls. If the containing agent is a process, the
contained processes are scheduled one at atime (as described above) and access the data directly.

The use of such data may be a convenient way to represent acommon database that is accessed by different parts of the
model. In most cases an agent that encapsul ates the data would probably better model this, so that it is clear what

communication isreally taking place. In any case, shared data should not be used to pass information between agents
that otherwise communicate viaanormative interface. ®The use of shared data should be avoided.

10.9.3 Hiding and re-using parts of a state

In more complex systems where alarge number of different signals can be received in each state, the behaviour may be
difficult to understand even after introducing multiple occurrences of the state on different pages of the diagram. In
these cases, it may be acceptabl e to hide the consumption of some of the lessimportant parts of the behaviour in a state
diagram, so that input of some signalsis hidden from the agent level. Hiding some sub statesin thisway can, in some
instances, be better than using a procedure diagram becausesignals that cause exit from the state are shown with the
state in the agent diagram.

Use of acomposite state (one with behaviour ina STATEor STATE TY PEdiagram) to hide distracting detail can
make the overall behaviour of agent easier to understand. A composite state is appropriate if the agent is considered to
beina“global state” (such as establishing a call), but actually needs different states related to the detailed handling of
some of the signalsreceived. In Figure 71the state Cal | i nMbni t or isbased onthe STATETYPEMbni t or in
Figure 72that gives more detail for the state, in this case to receive two signals before proceeding to the Dat a state.

ETSI

71 REG/MTS-00072 V1.1.7 (March 2002)

A state that has an associated diagram (a composite state) can be recognised by an exit line that goes directly to a
transition or another state. It isnot always easy to seeif astateis basic or acomposite because:

- the symbol isthe samein each case;
- there can be multiple occurrences;
- theexit line may not be obvious and there need not be an exit line.

In particular, if aSTATE diagram (rather than aSTATETY PE) is used, this has the same name as in the state symboal,
which therefore looks like a basic state. Unlike other diagrams, no specific reference symbol existsfor STATE
diagrams.

If, however, acomposite state is based on aSTATETY PE, it is clear the state symbol contains a composite state
because a colon and the STATE TY PE identity follow the state name. Also aSTATE TY PEdiagram must have a
separate reference from the diagram in which it is defined, such as the referenceto Moni t or in the state type symbol
in Figure 71. For these reasons ®a composite state should ®use a STATE TYPE diagram rather than aSTATE
diagram.

PROCESS OriginationTerminal StateUse(6)

I —
Callir!Monitor _ _: See STATE
:Monitor 1 TYPE diagram

[
]

I*Data UserPhone AudioModelnd
mode*/ [*from User*/ [*from Conc*/

AudioModeReq
VIA Conc

[Data)(CallinMonitor) { Audio

Figure 71: A state that references a STATE TYPE

ETSI

72 REG/MTS-00072 V1.1.7 (March 2002)

STATE TYPE Monitor - 1(1)
. DataWatch
[* Exits when both AN -

UserData and DataModeReq
received. | |

)) UserData DataModeReq
Other inputs in the [*from User*/ [*from Conc*/

calling agent cause

exit from the state. */
DataModeRe UserData
[*from Conc*/ [*from User*/

[*Data mode*/

Figure 72: A STATE TYPEdiagram

Another advantage of using aSTATETY PE, rather than aSTATEdiagram, isthat aSTATETY PE can be used in
several places. Monitor could be used with state Audio asinFigure 73. Other inputs from Audi o are defined

elsewhere.
Audio
:Monitor
{ Data >

Figure 73: Re-use of the STATE TYPEused in Figure 71

10.9.4 Using packages

When ASN.1lisincluded into SDL, the ASN.1 istreated as a package referenced from the SDL. Other packages that
define commonly used behaviour could also be included. In both these cases, the SDL is made simpler by not having to
repeat the contents of the package. Some dangers of using an external package are, firstly, that it may not be clear
exactly what the package does and, secondly, that it may not be obvious that the contents of the package may be
changed.

The main advantage of packagesisthe possibility of re-use, which for standardsislesslikely than for product
engineering. In a standards context it is often better to have as most of the definition within the standard itself and
packages (other than for ASN.1) would not normally be needed.

10.9.5 Exception handling

Exceptions provide a mechanism for handling situations that are possible but unusual or undesirable. Exception
handling tends to be more difficult to understand than control that depends on decisions, because a search hasto be
made (both by areader and during interpretation) for the exception handler apart from the normal control flow. The
advantage of exception handler isthat normal flow can be more concise as the abnormal situations can be handled in
one place.

ETSI

73 REG/MTS-00072 V1.1.7 (March 2002)

@A standard should be defined so that the language-defined exceptions (such as Qut Of Range) do not occur. In
most cases this can be achieved by explicit checks.

11 Specification and use of data

A very important part of any protocol or service standard is the specification of data. SDL hasits own built-in data
types and mechanisms to create new data types. However, the standardized data type notation, ASN.1 (see ITU-T
Recommendation X.680 series [8, 9, 10, 11], isusually used in modern telecommunications standards to specify
messages and other data, particularly for normative interfaces. ASN.1 datatypes may be used as an alternative to SDL
data types by making these available to the SDL through ASN.1 modules used as packages (see ITU-T
Recommendation Z.105 [5]).

NOTE: Strictly speaking SDL datatypes are called 'sorts. However, in the present document for the sake of
simplicity the term ‘data type’ is used both in the context of using ASN.1 and SDL sorts.

An advantage of using ASN.1 isthat the ASN.1 data types can be associated with encoding rules, whereasthereis
currently no standardised way of associating encoding ruleswith SDL datatypes.

®9ASN.1 should be used to specify data and the ASN.1 data definitions should be made common to both the SDL
specification and the non-SDL parts of a standard.

This approach of common data has the significant advantage of reducing the possibility of confusion and mistakes that
can beintroduced if there are separate data descriptions of the same or similar data structures.

There are no operatorsin ASN.1. However, when ASN.1 isused with SDL, the basic types of ASN.1 (such as
INTEGER) are mapped to the corresponding SDL types (in this case Integer) and therefore the predefined SDL
operators can be used with these types. Similarly an ASN.1 SEQUENCE (or SET) istaken to bean SDL STRUCT, an
ASN.1 CHOICEan SDL CHOICE, and a SEQUENCE OF (or SET OF) an SDL String. Table 2 shows the mapping
between some ASN.1 and SDL.

Table 2: Some ASN.1 types and corresponding SDL data types

ASN1 SDL
BIT Bit
BIT STRING Bitstring
BOOLEAN Boolean
CHOICE CHOICE
OCTET STRING Octetstring
SEQUENCE STRUCT
SEQUENCE OF String
SET STRUCT
SET OF Bag

11.1 Specifying messages

One of the main purposes of using SDL in an ETSI standard is to provide an unambiguous description of the exchange
of messages over normative interfaces® SDL signals should be used to represent normative messages with ASN.1
describing the parameters carried by the messages. The behaviour diagrams of SDL agents describe dynamic
mechanisms that control the sending and receiving of these messages.

NOTE: Thedetails of these dynamic mechanisms are not usually normative and the SDL that describesthem
should be regarded as just one description of any number of possible alternative descriptions. What is
normative is the behaviour that the combined SDL state machines exhibits over the normative interfaces
with regard to message interactions.

Even though an ASN.1 module will specify the complete set of messages and message parametersrelevant to a
standard, it is unlikely that all the message parameters will be directly relevant to the SDL model. Note that even if the
ASN.1 datatype definitions are complex, only those parameters relevant to the dynamic requirements of the standard
need actually be used in the SDL behaviour descriptions. In thisway, the complexity of the data type definitions does
not adversely affect the readability of the SDL specification

ETSI

74 REG/MTS-00072 V1.1.7 (March 2002)

11.1.1 Structuring messages

Except in the very simplest of cases, the top-level parameters of messages should be contained in asingle
structured type (e.g., ASN.1 SEQUENCE or SET) rather than specified asa list of simple types.

For example, the longer but considerably more meaningful specification in a) below, is preferable to the more open
simple signal specification in case b). Although a) could be completely expressed in SDL (using STRUCT and Bitstring
with SIZE), ASN.1 isused as this the preferred notation. In b) no ASN.1 is necessary because the SIGNAL is defined
just interms of Bitstring mapped from the ASN.1 datatype BIT STRING.

a)
S| GNAL SETUP(SETUPtype); /*in SDL */
-- in an ASN 1 nodul e used as a PACKAGE by the SDL
SETUPt ype 11 = SEQUENCE
{ header Header, -- Note that these exanples follow the ASN 1 convention of
identifier I dentifier, -- starting identifiers with |ower case letters and starting
ext ensi onBl ock ExtensionBlock -- type references with upper case letters.
}
Header ::= BIT STRING (SI ZE (8..32))
Identifier ::=BIT STRING (SI ZE (8..8))
Ext ensi onBl ock ::= SEQUENCE
{ cal |l Ref erence Cal | Ref erence,
partyRef erence PartyReference
Cal | Reference ::= BIT STRING (Sl ZE (4..8))
PartyReference ::= BIT STRING (Sl ZE (4..8))
callref15 BIT STRING ::= '00001111'B
b)
/* in SDL */

SIGNAL SETUP (Bitstring, Bitstring, Bitstring, Bitstring);
/* NOTE that BIT STRRNGin ASN.1 is napped to Bitstring in SDL */

When compared with item b), the ASN.1 in item a) has the benefit of being able to give explicit names to message
parameters in the SDL signal. It uses SIZE restrictions in a readable manner. Finally, an advantage of using ASN.1in
this exampleis that the ASN.1 data types, the user defined SETUP and the pre-defined BIT STRING, can be associated
with encoding rules.

The use of structures has the added benefit of allowing the easy capture and manipulation of the entire contents of
messages rather than on a parameter-by-parameter basis. Figure 74 shows how the contents of an incoming message can
be simply output on another channel. In this example, set upQut has been declared as a variable of a structured type

(see below).

SETUP
(setupOut)

SETUP

(setupOut)
VIA Sub_Interface

Figure 74: Transferring message contents from Input to Output

ETSI

75 REG/MTS-00072 V1.1.7 (March 2002)

A minor drawback of using complex structuresis that the notation to refer to the elementsin the SDL description may
belonger. For examp le, if two variables, set upExt ensi onbl ock andset upQut were declared asfollows:

DCL set upExt ensi onbl ock Extensi onBl ock;
DCL setupQut SETUPtype;

an assignment to store the Ext ensi onBl ock value would be:
set upExt ensi onBl ock: = set upQut . ext ensi onBl ock

and an assignment inthe SDL tothecal | Ref er ence tooutputcal | r ef 15 would be:
set upQut . ext ensi onBl ock. cal | Ref erence: = cal | ref 15

Subclause 8.2 gives detail s of how operators can be used to hide long references. It also shows how operators may be
added to ASN.1 types.

In the above example afull stop (.), was used to denote field selection. SDL also allows an exclamation mark (!) to be

used with the same meaning. Using an exclamation mark makesit clear that field is being sd ected rather than a method
applied to the variable, whereas the dot notation is normal for both cases in many other languages. ®Eor readability
the same symbol (exclamation mark or full stop) should be used for all field selectionsin one specification.

11.1.2 Ordering message parameters

Protocol messages are most easily specified using the ASN.1 constructors, SEQUENCE or SET. ®?If the parametersin
a message have to appear in afixed order, then the ASN.1 constructor SEQUENCE should be used to specify the
message contents, asin the following:

SETUPI n :: = SEQUENCE
{ header Header ,
identifier Identifier,

i nExt ensi onBl ock | nExt ensi onBl ock

}

However, it is common that a protocol specification will allow elements to appear in any order. ©9f the parameters of
amessage may appear in any order, then the ASN.1 constructor SET should be used to specify the message contents.
For example, in the extension block of the previous example it could be required that it is possible to receive the

cal | Ref erence andthepart yRef er ence in either order, in which case this would be specified as follows:

| nExt ensi onBl ock ::= SET
{ cal | Reference Cal |l Ref erence,
partyRef erence PartyReference

NOTE 1: InITU-T Recommendation Z.105[5] SET and SEQUENCE are treated in the same way in SDL, and
therefore parameters are required to be in a specific order in SDL.

Another useful concept in ASN.1 isthe ability to specify parameters asOPTIONAL. In the following example the
partyref er ence may be omitted

Ext ensi onBl ock ::= SET
{ cal |l Reference [1] Call Reference,
partyReference [2] PartyReference OPTI ONAL

Finally, ASN.1, allows the specification of unionsthrough the CHOICE construct, for example:

Cener al Message : = CHO CE
{ set up SETUPt ype,
rel ease RELEASEt ype,
acknow edge ACKNON.EDCEt ype
}

NOTE 2: Tags([1] and[2]) have been introduced in the SET Ext ensi onBl ock to enable encoders to
differentiate between the two parameters, but are otherwise ignored in SDL models. Alternatively
automatic tagging could be used, asis assumed in the CHOICE Gener al Message.

ETSI

76 REG/MTS-00072 V1.1.7 (March 2002)

11.1.3 Transposing other message formats

In many lowerlayer protocol standards, messages are specified using atabular format. These tableswill haveto be
transposed to ASN.1 or SDL datatypesin order to be used in an SDL specification. In these cases it WI|| probably be
adequate to specify asimplified form of the messages (e.g., by omitting various message parameters ® When mapping
messages described in another format (such astables) to a simplified form as ASN.1 or SDL data types, the structure
of the simplified messages should be kept as close as possible to the structure of the original messages and the names
of messages and their associated parameters should be preserved. The important point is that messages should be
reduced to asimpler format in a consistent manner and that the mapping from the real messages to the simplified ones
inthe SDL iswell documented and obvious. Conversely, parameters that are not specified in the full description of the
messages should not be introduced in the transposed formal specification.

11.2 Specifying data that is internal to the SDL model

Datathat isinternal to the SDL model is datathat is not conveyed over a normative interface. Such internal data may be
specified using either SDL typesor ASN.1. In most casesit will be simpler to use SDL datatypes. SDL directly
supports the same features as ASN.1 such asSIZE, OPTIONAL and CHOICE.

The main benefit of specifying the datain SDL isthat the datatype can be directly embedded in the SDL diagrams,
whereas ASN.1 data types have to be included by a USE package clause that refersto ASN.1 modules containing the
datatype definitions.

While the mappings provide basic operators for using ASN.1 t}/ges in SDL, datatype specific operations can only be
added to an inherited type or some (otherwise unrelated) type. \When there are data type specific operationsfor
internal data, it isusually better to use SDL to define the data type rather than ASN.1 so that the operations can be
defined as part of the data type.

A minor disadvantage of ASN.1 (compared with SDL datatypes) isthat if one ASN.1 typeis defined as based on
another type, the values defined on either type are val ues of both types: the types are equivalent. In SDL the user can
choose to introduce either another name (asin ASN.1), or anew datatype that inherits the same propertiesbut is
distinct from the original. When such anew type isintroduced, items of one type cannot be used (by mistake) where the
other type has been specified. This feature is generally known as "strong type checking".

SDL hastwo predefined array constructor datatypes, ARRAY and VECTOR. These do not have a direct
correspondence to datatypesin ASN.1 and it may be simpler to use these predefined data types rather than define types
in ASN.1. It may also be simpler to define some data types directly in SDL using the predefined STRING constructor
datatype. In all these cases variables and val ues of the constructed data type can be indexed to select an array, vector or

string element. Indexing of ARRAY, VECTOR and STRING constructs is denoted by the index expression in square or
round brackets after the variable (or value). ®"For readabil ity, in one SDL specification the same brackets (square—
which aredistinct from other uses, or round) should be used for all ARRAY, VECTOR and STRING indexing.

11.2.1 Use of symbolic names

Subclauses 9.1.4 and 9.1.6 recommend that SYNONYM definitions or enumerated types should be used to specify
symbolic names that can be used as decision labels and that convey meaningful information to the user. When the data
typeisspecified in ASN.1, an ASN.1 value definition can be used instead of an SDL SYNONY M definition. For
example, in an ASN.1 module

maxNunber Lengt h | NTEGER :: = 20

isequivalent tothe SDL SYNONYM definition

SYNONYM maxNunber Lengt h | NTEGER = 20;

The use of the symbolic namemaxNunber Lengt h for the value both makes the description more understandable and

allows the actual value to be specified in one place only. In thisway, the value can be simply changed by changing the
definition and all uses 9 n expressions, parameters, data type definitions, size constraints, decisions and so on) will then
use the updated value. \Whenever possible symbolic names should be used rather than explicit value denotations

(such as 123, '0110'B). Either an ASN.1 value definition or an SDL SYNONY M can be used to define a symbolic
name. The explicit data value should appear just once: in the definition the symbolic name.

ETSI

77 REG/MTS-00072 V1.1.7 (March 2002)

It is often the case that there are alimited number of values for a particular datatype, and although the actual
transmitted encoding may be important, in the specification of the behaviour it is only necessary to compare one value
with another and there is no need for other operations such as arithmetic on the values. The appropriate datatypeisan
enumerated type to introduce symbolic literal namesfor the values. Both ASN.1 and SDL allow anl nt eger valueto
be associated with the literal. For example:

Li neState ::= ENUMERATED
{ out O Servi ce (1),
inServiceFree (2),
i nSer vi ceBusy (6) }

isequivalent to the SDL:

VALUE TYPE LineState;
LI TERALS
out O Ser vi ce
i nServi ceFree
i nServi ceBusy
ENDVALUE TYPE Li neSt at e;

1,
2,
6

Wherever possible ®»ASN.1 ENUMERATED or SDL literal list types should be used for data that consists of a
collection of names. Numeric values should be associated with the val ues of a data type by using the named numbers of
an ASN.1 ENUMERATED or SDL literal list type.

If it is not possible to use a data type to define symbolic names for values, the name can be defined asan ASN.1 value
definition or SDL SYNONYM.

11.2.2 Using data TYPE and SYNTYPE

The VALUE TYPE (or OBJECT TY PEsee 11.2.3) syntax can be used to specify an application datatypein SDL. A
datatype defined asa VALUE TY PEhas variables that are associated with values of the type: the predefined types
(Integer, Boolean etc.) are defined usingVALUE TYPE.

An SDL datatype has a set of values and a set of operations that can be inherited by another datatype. An operation can
be an OPERATOR, which does not modify any of its parameters but can return aresult, or aMETHOD, which is
applied to avariable and can modify this variable.

SYNTY PEdefines arange of another datatype. Typically the range defines a subset of the values of the parent data
type, for example:

SYNTYPE

Int16 = Integer CONSTANTS (O..65535);
ENDSYNTYPE;

Therange caninclude all values of the parent datatype, in which case the SYNTY PEis particularly suitable for
renaming existing types, for example:
SYNTYPE

Dest Poi nt Code = | nt 16;
ENDSYNTYPE;

A SYNTY PEthat does not define a subset of the values of the parent data type, can be used to rename a data type to an
alternative name.

VALUE TY PE, on the other hand, is more suitable for specifying new data. In general “°”VALUE TYPE should be
used to define a new data type in a specification while SYNTYPE should by used to rename or constrain the values
of existing data types.

It isworth noting that the following ASN.1 specification:
Btype:: = Atype
isequivalent to the SDL:

SYNTYPE Bt ype = Atype
ENDSYNTYPE Bt ype;

These data types have compatible values. An At ype value can be assigned to aBt ype variable or vice versa.

ETSI

78 REG/MTS-00072 V1.1.7 (March 2002)

11.2.3 Using OBJECT TYPE

When a datatypeisdefined asan OBJECT TY PE, avariable of that datatypeis associated with referencesto values. In
the following, such avariableis called an object variable.

When avalueis assigned to an object variable, an object is created that contains the value. When an object is assigned
to an object variable, the variable then references the object, so that it is possible for two object variables to reference
the same object. Therefore OBJECT TY PEdatais more suited to the data structures that will be created dynamically
with elementslinked by the reference characteristics of objects: for example linked lists, or trees.

OBJECT TY PE parameters of signals are either converted to val ues or require acommon container process. When such
asignal isused in an output in aPROCESS TY PE whether the parameter is passed as a value or an object will depend
on the context of process definitions based on that type. If the object is passed, two processes could refer to the same
object and thereisthe possibility of multiple processes changing the same object. If avalueis passed then thereislittle
benefit in having an object parameter. For these reasons ""OBJECT TYPE should be avoided as the data type for
signal parameters.

A datatypethat isdefined asaVALUE TYPE can be used as an OBJECT datatype by prefixing the data type name
with the keyword OBJECT and therefore defines an OBJECT TY PE. Similarly an OBJECT TYPEcan beused asa
VALUE TY PEDby prefixing a data type name with VALUE

When inheritance is used with OBJECT TY PE definitions, one result is that some operations using the data types
involved are “polymorphic”, which means the actual operation to be applied depends on what happens when the system

isinterpreted. Because the polymorphic character of OBJECT TY PEdefinitions can make the use of the data difficult to
understand, “YOBJECT TYPE definitions(or a data type name prefixed by OBJECT) should be used only when the
data cannot be simply expressed with aVALUE TYPE.

All datatypes inherit some properties from the Any datatype, an OBJECT TY PEthat isaroot type for all data. Use of
the Any data type to define variables should be avoided, because the resulting behaviour may be difficult to
understand and may have dynamic errors.

12 Using Message Sequence Charts (MSC)

12.1 Introduction

The Message Sequence Charts (MSC) language is defined in ITU-T Recommendation Z.120.

A basic MSC describes a scenario and consists of interacting instances. An instance is an object that has the properties
of acertain entity. On an instance, the ordering of eventsis specified. Events can be message outputs, message inputs,
local actions and timer events.

An HMSC (High-level Message Seguence Chart) isaroadmap of scenarios, where the details are hidden and described
in basic MSCs or HM SCsthat are referenced in the HM SC.

12.2 Relationship between MSC and SDL

Asfar as possible, entitiesin M SC should correspond to SDL entities. Normally, it is only useful to specify a subset of a
system's behaviour in MSC. It is also common not to reproduce the complete SDL architecture in MSC, but to represent
only the important communicating parts with MSC instances.

In the ITU MSC recommendation, the interpretation of a message input is not described. **wWhen MSCisused in
combination with SDL, a message input in MSC should correspond to a signal consumption in SDL.

12.3 Presentation and layout

There should be a reasonable amount of information in an MSC diagram, making the specification easy to comprehend
but ™each MSC diagram should be limited to the information that fitsinto one printed page. Additionally, **®when
used in a standard, an MSC diagram should always be surrounded by a diagram frame and have an attached name.

ETSI

79

The structuring mechanismsin M SC can be used to avoid large diagrams. If splitting a scenario into severa distinct
M SC diagramsis not feasible, vertical paging of diagrams can be used. If vertical paging is necessary, the instance
heads and the M SC diagram name should be repeated on each page. The instance end symbols must only appear on the

last page. However, horizontal paging should be avoided.

(199 A clear spacing between symbolsin an MSC diagram should be maintained both horizontally and vertically. This

REG/MTS-00072 V1.1.7 (March 2002)

makes it easier for each instance and message to be clearly distinguished from any others.

%) An instance axis should always be terminated at the end by either an instance end symbol or a stop. If vertical
paging is used, an unterminated instance axis indicates that the diagram continues on another page.

12.3.1 Annotations

There are four different annotationsin M SC:
- note
appears between items of texts;
- comment symbol
can be attached to events or symbols;
- text symbol
may contain larger texts for documentary purposes,

- informal action

may be used to informally expressinternal behaviour of an instance (see also 12.10).

Asin any formal language, “®annotations help to improve the understanding of an MSC description and should be

used fregly.
Another very useful practiceisto annotate which scenarios (or parts of scenarios) that are normal from those that are
exceptional.
msc Setup_Request
Thi io shows the handli
Ted of @ second connect request. 'ﬁ
svmbol
CallingParty Coﬂgﬁﬁffr"— CalledParty
ConnectRequest
/*
CallingPartylInfo,
Note CalledPartyInfo, B check nr of
SonnectlonType = Encrypted ree encrypted
connections'

ConnectAck

/* CalledPartyInfo */

The ConnectionType

parameter is optional

Connect_Accept

[
— —

)
——

Figure 75: Annotations in MSC

ETSI

Informal
action

Comment
symbol

80 REG/MTS-00072 V1.1.7 (March 2002)

12.4 Naming and scope

Most MSC names are globally visible within the set of MSC and HM SC diagrams defined by one M SC document
specification. Aninstance kind name is visible outside of its MSC document. Gate names and MSC formal parameter
names are visible in the scope of one MSC diagram.

Asfar as possible, *®namesin an MSC should be the same as the names of corresponding entitiesin the SDL. For
example, an M SC message name should be the same as its corresponding SDL signal name, and an MSC instance
should have the same kind name as the corresponding SDL process or block.

An entity may have the same name as another visible entity if the two entities are of different classes. A message may
thus have the same name as atimer or an instance. “*YEntity names should be unique within a specification.

12.5 MSC document

An MSC document is a collection of MSCs and HM SCs (Figure 76), declaring used instances, messages, timers and
M SC References. It is also the defining document for an instance kind. An M SC document might specify an inheritance
relationship between two instances (instance kinds), allowing specialization of used scenarios (M SC References).

Since an MSC document is not needed unless instance decomposition, instance kind inheritance or the data concepts are
used, it can often be omitted in order to reduce complexity of the specification.

mscdocument AllScenarios
inst user;
inst sys;

() (‘comora)
(e (2 J (e J(m)

mll

msc normal msc exceptional msc ml

|
mill 3

/\ /\

Figure 76: Collection of MSC diagrams

12.6 Structuring

There are two distinctive mechanisms for structuring M SC specifications. The first is related to the logical system
architecture. The second is related to behaviour.

12.6.1 Architecture

126.1.1 Instance

Aninstanceis an object of an entity specifying behaviour by means of eventsthat are ordered on theinstance axis.

M ore than one instance might be used to describe one entity. Every instance has a name associated with it and an
optional kind name, e.g. process name, which indicates which entity the instance is describing. In relation to SDL, the
kind name can be preceded by a kind denominator which mat be one of the reserved wordssystem, block or process.

ETSI

81 REG/MTS-00072 V1.1.7 (March 2002)

An instance without kind name will have its own name as an implicit kind name. *2|f thereis an associated SDL
specification, each MSC instance should have a kind name and kind denominator corresponding to the name and
entity kind of the equivalent entity in SDL.

It is easy to add more and more instances to an MSC in an attempt to make it easier to understand. Unfortunately, this
can have the opposite effect by adding complexity which can be an unnecessary distraction. So, ***the number of
instancesincluded in an MSC should be kept low to maintain a focus on the normative interface(s) and important
entitiesin thelogical or physical model.

The instance name (together with the optional kind name) may be placed above or inside the instance head. For the sake
of consistency, 95 the kind nameiis present in an MSC instance, theinstance head symbol should contain the

instance name with the kind name placed above the symbol, as shown in Figure 77. Otherwise both names have to be
separated by a colon symbol.

msc CallTermination))
kind denominator

process .
) Ijmamnmf_m_l TTLmjuaLtianﬂer kind name
instance head CallingParty Terminal

| instance name

instance end |

Figure 77: Placement of instance name and kind name

12.6.1.2 Instance decomposition

Behaviour described by several instances can be composed into one instance, hiding the intra-communication between
the original instances. This means that the same part of ascenario isdescribed in (at |east) two diagrams, firstly on the
higher level and secondly on alower level, showing the internal behaviour of the decomposed instance. Furthermore, a

decomposed instance needs a defining M SC document in which used instances, messages and MSC References are
defined. 1 nstance decomposition should be avoided in M SCs because of the complexity it might introduce.

It ishowever good practice to represent a higher-level SDL entity with an instance, without describing the lower-level
behaviour, if this abstraction improves the understanding of the overall behaviour.

12.6.1.3 Dynamic instances

Dynamic instances in M SC can be described by using the instance creation and instance stop concepts. Generally,

standards describe a static view of the components avoiding the more complex dynamic identity relations and so
(lle)dynamic instances should be avoided in MSCs. Instance creation and instance stop should only be shown if they

are avital part of the specification.

Note the difference between the instance end and the instance stop. The instance end terminates the description of the
behaviour of an instance within one MSC diagram, while the instance stop describes the termination of the entity that
the instance represents.

12.6.1.4 Environment

In general, one M SC specifies the possible behaviour of only apart of acertain system. Everything elseisreferred to as
"the environment" with which messages can be interchanged. The environment can be considered to be one or several
instances that communicate with the instances in the MSC. Graphically the environment is represented by the diagram
frame. Communication with the environment is provided by message arrows connected to the frame (see Figure 78).

ETSI

82 REG/MTS-00072 V1.1.7 (March 2002)

msc Successfull_Setup

Originating_ Destination_

CallRequest

SETUP

CALL_PROCEEDING

IncomingCall

CallAlerting

ALERTING

CallAnswer

CONNECTED

CallRequestAck

Figure 78: Messages being sent to and from the environment

There are situations when using the frame to represent the environment is counter-intuitive. In the example shown in
Figure 78, anatural, but not justified interpretation would be that the message Cal | Al erti ng issentinresponseto
message | nconi ngCal | . Infact, message Cal | Al erti ng might be sent before message | ncom ngCal | ,
possibly from a different entity than the receiver of messagel ncomi ngCal | .

As an alternative to the environment frame, specific instances may be used to describe the interaction of the system with
the environment. When there is communication with more than one distinct environment entity, explicit instances for
the environment enabl e the description of ordering. and allow a concrete behaviour description of external entities that
interact with the system under consideration. ™71 nstances with instance kind name " environment" should be used to
represent the environment in an MSC.

msc Succesfull_Setup

Environment Originatin Destination Environment
CallinéUser Dgel gr:g* Netwark — CalledUser

CallRequest

SETUP

CALL_PROCEEDING

IncomingCall

CallAlerting
ALERTING

CallAnswer

CONNECTED

CallRequestAck

Figure 79: MSC with instances representing the environment

12.6.2 Behaviour

In MSC, thereis apossibility to divide complex scenariosinto smaller, named descriptions. There are several reasons to
do this:

- making the specification easily readable and suitable for print-out;
- reuse of common behaviour parts, ensuring easier maintenance of the specification;
- hiding details while focussing on message exchange;

- keepinglogically distinct parts separate.

ETSI

83 REG/MTS-00072 V1.1.7 (March 2002)

This structuring of behaviour isrealized by allowing expressions on M SC parts. The parts can be agroup of events or
an M SC Reference. In an expression, the following relationships between the parts might be expressed:

seguence (seq);

aternative (alt);

optionality (opt);

repetition (loop);

paralelism (par);

exception (exc).

These expressions might be used in three different ways or contexts:
- HMSC;
- MSC referencesin basic MSCs;
- In-line expressionsin basic MSCs.

An MSC Referenceis used to refer to other MSC or HM SC diagrams by means of their MSC name. M SC References
may be used within basic MSCs or in HM SCs.

Generally, unrestricted use of the expressions can cause an explosion of the number of scenarios, which may cause
problems with validation.
12.6.2.1 High-level MSC (HMSC)

The composition of aset MSCsis specified by means of a High-level MSC (HM SC) which is aroadmap of the
contained M SC References. HM SCs provide a graphical way of describing the combination of Message Sequence
Charts, typically visualizing sequence, alternative and loop relationships.

18 M SCs should be used to specify a high-level view of scenarios which are defined in other MSC or HMSC
diagrams.

Apart from M SC References, an HM SC can also contain conditions, start, stop and connection symbols.

19Connections should always be used when HMSC flow linesjoin or merge to distinguish them from simple
crossing lines.

Unlike plain M SCs, instances and messages are not shown within HM SCs, which focus only on composition aspects.

ETSI

REG/MTS-00072 V1.1.7 (March 2002)

msc NetworkHandover

Token based security[

Association

A

Link_Capability

Force_Handover

Token_NW_signalling

Encryption_Startup

Authentication
{

Info_Transfer

Setup_Radio_Connection

Handover_Completion

No Token Support)
available

Figure 80: Example of HMSC usage

The annotations, "Token based security" and "Notoken
segregation within the HM SC shown in Figure 80. Such
purpose of different alternative branches.

@

su;)Port available" help to provide some helpful functional
9annotations should be used within HMSC to explain the

HMSCs are hierarchical in the sense that an MSC Reference may refer to an HM SC and, consequently support atop
down design approach very well. In order to maintain sufficient transparency and manageability, ‘*’References to
other HM SCs should be used within HMSCs to ensure that a logical structuring of described behaviour is achieved.
This has the added advantage of keeping to a minimum the number of symbolsin any one HMSC.

An MSC Reference may contain a textual operator expression instead of a single Reference name. The textual
expression offers the same expressiveness as the graphical notation with the one exception that loop boundaries can be
given in the textual form. MSC Reference expressions are useful for a compact representation, in particular of several
aternatives, but makes the description less intuitive. To improve readability**? graphical HMSC expressions should

be used in preference to textual Reference expressions.

ETSI

85 REG/MTS-00072 V1.1.7 (March 2002)

msc StartUp_Connection msc StartUp_Connection

StartUp

loop <1,4>
ConnectionRequest

ConnectionRequest

idle

b
G (oD
L 1

Figure 81: HMSC with reference expression
and corresponding HMSC with graphical relations between the references

12.6.2.2 MSC reference in basic MSC

Behaviour parts can also be reused or abstracted in basic M SCs by using MSC References connected to the instances. In
general, the number of M SC References should be kept low within aplain MSC in order to focus on the message
interchange.

HMSC References may be included in basic M SCs but referringto "overview" charts from detailed sequence
specifications can be confusing. Therefore, >®Plain MSCs should not include HM SC References.

M SC Referencesin basic M SCs should be used as a structuring means and for the reuse of scenarios. Figure 82 shows
an example of M SC References used in the specification of atest purpose preamble and postamble. As such, the MSC
Reference plays asimilar roleto that of aprocedurein SDL. ¥ the same scenario appearsin several MSCs, it
should be specified asan MSC of its own and referenced from other MSCs.

msc IN2_Basic msc O_S2P_Preamble

[sck] [csF ssF | [sigcon A | [scr] [csF_ssF | [sigcon_a

Setupind

O_S2P_Preamble]
Invokelnd

InvokeReq

InvokeR eq

Resultind

ContinueReq

Release_Call_PostAmble

[)
N

Figure 82: MSC references in basic MSC

ETSI

86 REG/MTS-00072 V1.1.7 (March 2002)

To ensure readability, “?®each message involved in an MSC (?that is referenced from a basic MSC?) should have
both its output and input described within the diagram.
12.6.2.3 Inline expression

An inline expressions can be looked upon as an expanded form of an M SC Reference expression used in abasic MSC
context. They areideally suited to the compact description of several small variants, typically covering only a small
section of the complete M SC which means that the inline expression should contain only afew events. Z\When it is

not feasible to use MSC References to describe different sequence structures, inline expressions should be used.

Inline expressions are used to define concisely several different sequences that can occur at the same placein the
enclosing diagram. A diagram using an inline expression is equivalent to several diagrams where the inline expression
isreplaced by each of the defined sequencesin turn. Inline expressions can use the following operators on events:

- sequence (seq);
- dternative (alt);
- optionality (opt);
- repetition (loop);
- pardlélism (par);

- exception (exc).

Inline expressions can be nested. Inline expressions give the benefit of conciseness at the expense of making a
specification more complex and, thus, more difficult to read. 2)The use of multi pleinline expressionsin asingle
M SC diagram should be limited to avoid an unnecessary explosion in the number of implicit scenarios

msc Release

| user A | |Network A | |Netw0rk B

Cancel

Deactivate

—X RespTimer

alt Off_line

X RespTimer

Success

X RespTimer

Fail

Figure 83: Usage of inline expression

If inline expressions are used®?® each message involved in an inline expression should have both its output and input
described within theinline expression in order to make an intuitive description.

In certain situations, inline expressions are the only descriptive way to illustrate a scenario. For example, after setting a
timer an alternative can be used to describe both the normal course of action and the exceptional behaviour resulting
from atimeout. A scenario with two or more alternative courses of action might either be described in an HMSC, where
the alternative is described by different MSC References on alternative paths, or in abasic MSC, where the alternative

ETSI

87 REG/MTS-00072 V1.1.7 (March 2002)

is described by alternative inline expressions. ®YHM SCs should be used to highlight significant alternative or
optional behaviour pathsbut; if the differences are only minor, these could be described within an MSC using inline
expressions.

12.7 Data

Although in many casesit is not necessary to model datawithin an MSC in astandard, it can sometimes be beneficial
to use data rel ated more to the description than to the described system. An example of this usage is specification data
needed to reduce the complexity of the behaviour (e.g. loop boundaries and guard conditions on alternatives).

An example of using system related datain MSC is describing or limiting the parameter data that can be sent by
messages, see Figure 84.

A consequence of using datain MSC is that the specification becomes more detailed and complex. If message
parameters should be stated when describing message passing, then the message needs to be declared in advance,
together with the data type declarations in a surrounding M SC document.

When data (type information or values) can enhance the understanding of an M SC, this may be indicated informally by
notes, comments or informal actions, see Figure 86. To formally express datain MSC can lead to an unnecessarily
complex specification that can be difficult to understand and maintain.

0)pata types and expressions introduce complexity to a specification and it istherefore preferable to omit them
from MSC diagrams. As an alternative, annotations may be added to describe the data if more detail is needed. Data
should be described formally in MSC only when greater formality than can be achieved by using annotationsis
required.

nscdocument Scenari 0s msc CallRequest
inst CallingParty CallingPar Net CalledPar&
vari abl es
g: : iTngPar g: lnfTo Cal | edPartyl nf 0: Subscri ber I nf oType; CallRequest IncomingCall
e e;
i nst Net.yp e (CallingPartylnfo,
inst CalledParty; gz”_?ggsrtylnfo, OffHook
nsg Cal | Request : (Subscri ber I nfoType, Subsriber|nfoType, Cal | Type);
msg ConfirmCol ect Cal I, Cal | Request Ack: (SubstriberlnfoType); opt

msg I nconingCall, OffHook, Confirned; hen (C@
wi y
anguage SOL; = CollectCall)
daE a o ConfirmCollectCall
use Predefined; Cal | Request .
use Paraneter Types_ASNL; "; (CallingPartyInfo)

Confirmed
CallRequestAck
(CalledPartyInfo)

Figure 84: Formal usage of datain MSC

12.8 Message

An M SC message describes two asynchronous events: a sending event that is performed by the sending instance and a
receive event that is handled by the receiving instance. The receive event is optional (see 12.8.1).

M essages may cross instances that are placed between the sender and receiver . By rearranging the order of the
instances, instance crossing messages can be minimized. (13DThe crossi ng of MSC instances by messages should be
minimised by placing frequently communicating instances close to each other wherever possible. However, the

natural and logical ordering of entities should be considered to be more important than strict adherence to this guideline.

A message arrow may be drawn either horizontally or with adownward slope. Both forms are equivalent but the
downward slope is sometimes used informally to indicate the passage of time. Since thisis prone to misinterpretation,
(2)delay or the passage of time should be described by the time conceptsin MSC (see 12.13).

ETSI

88 REG/MTS-00072 V1.1.7 (March 2002)

M essages with downward slopes can also be used to describe the overtaking of messages. However, the
unnecessary crossing of messages should be avoided since it obscures the meaning of an MSC, see Figure 85.

In general, two or more events may not be attached to the same point or at the same level on an instance axis. Thereis
one exception to thisrule. An incoming event and an outgoing event may be attached to the same point or at the same
height. Thisisinterpreted asif the incoming event is drawn above the outgoing event.

Although both representations are equivalent, within a standard, ©an M SC should show an outgoing event below the
incoming event that preceded it as this presentation gives a clearer description of the ordering relationships.

The two diagrams in Figure 85 are semantically equivalent, but the layout in MSC m2 makes the scenario easier to
comprehend.

msc ml msc m2
Lo | [| [i Lo | [| [
a b a -
c d b
>< d
/ c
(0 R B ﬁ T

Figure 85: Clear ordering of events and separation of message lines

M SC does not require the parameters of the message to be described. However, providing an informal type namein a
message is often useful when creating an SDL specification with an MSC model asinput. In some cases, it might also
be of value to indicate that a parameter has a certain value if thisimproves the understanding of the scenario. In
protocol standardsit isnot unusual for a message to have an extensive parameter list defined and the inclusion of such
lists with all messages can make an M SC very difficult to read.

The description of MSC message parameters may differ from SDL signal parameters regarding the level of detail. Ina
single scenario, it is common to highlight only the interesting aspects of the message parametersi.e.; the part that
affects the further behaviour of the scenario. This abstraction isavery useful mechanism that ensures that the scenarios
are not too detailed and complex.

M SC message parameters have aformal meaning in that they illustrate how values are transmitted together with the
message. These values must conform to the corresponding parameter data type in the message declaration. However, in
theinterests of clarity, (135)0nly those parametersthat are absolutely necessary for the understanding of the message
sequence should beincluded with an M SC message. In order to be able to do thiswhile still complying with the MSC
syntax, **®)if incompl ete message parameter information isto be shown in an MSC, this should be given in a note,
following the message name as shown in Figure 86.

ETSI

12.8.1

89

REG/MTS-00072 V1.1.7 (March 2002)

msc CollectCall

Calling Parti

CallRequest

/*
CallingPartylnfo,

CalledPartylInfo,
CallType = CollectCall
*/

[met]

IncomingCall

Called Parti

OffHook

ConfirmCollectCall

/* CallingPartylInfo */

Confirmed

CallrequestAck

/* CalledPartylnfo */

Incomplete messages

Figure 86: Indication of message parameter information

Besides the specification of successful transmission of messages, incomplete messages can be described in MSC. An
incomplete message communication is represented by alost message symbol or a found message symbol. A lost
message is a message output for which the message input is unknown. A found message is a message input for which
the message output is unknown. Lost messages may be used to describe the reaction of a system in error cases such as

in case of an unreliable transmitter.

(33)_ost and found message should normally not be used in M SCs because they correspond either to the behaviour of
the environment or the behaviour of the underlying system. They should not be used to describe traces of normal

behaviour of systems.

A situation where alost message may be used isin a scenario that describes how re-sending of lost messagesis handled.
Found messages may be used when a message can be sent by several possibleinstances, and the sending identity is not

relevant to the scenario.

In SDL, unsuccessful signal transmission can only be described in an indirect manner.

ETSI

90 REG/MTS-00072 V1.1.7 (March 2002)

msc Start TF fail msc ResourceAlloc
[usera | [sessionHandler | [TEControl [Clienta_| [Resource1 Suaervisor
Start_TF
Free
: Alloc
Waitresp »{ Allocated
TFReq /* Senderld */ -

T* Resourceld ¥/

TFInd < Busy >
®—

DeAlloc

StartFailed [* Senderld */
If Senderld is

Free} the Supervisor or
the Allocated

DeAllocated

>

/* Resourceld */

Figure 87: Lost and found message

12.9 Condition

M SC conditions can be used in two different ways:
- assetting conditions;
- asguarding conditions.

Setting conditions define the actual system state of the instance(s) that share the condition. Guarding conditions are
used to restrict the possible ways in which an MSC can continue.

Local setting conditions can be used to indicate system states corresponding to statesin SDL. The number of used local

conditions should be minimized in order to not obscure the primary function described by the MSC. Local guarding

conditions may contain a Boolean expression where variables are allowed. To make the description easy to understand,
Nogical names should be used in MSC guarding conditions instead of variable expressions.

Conditions have no further meaning. They are not events and a global condition does not imply synchronization
between the shared instances.

Global conditions are attached to all instances contained in an M SC and denote global system states. Conditions are
used in HM SCsto indicate global system states or guards and impose restrictions on the MSCs that are referenced in
the HM SC. Conditions also give extra context information for the basic M SC and makes the M SC specification model
easier to maintain. An example of an MSC with aglobal initial condition (guard) and a global final (setting) conditionis
shown in Figure 88.

ETSI

91 REG/MTS-00072 V1.1.7 (March 2002)

msc ForceHandover

when Associated_to_old

7\
N

RRC_force_handover_req

RLC_FORCE_HANDOVER

RRC_force_handover_ind
RRC_force_handover_rsp T_force_handover
RLC_FORCE

_HANDOVER ACK

RRC_force_handover_cnf

Forced_Handover_Initiated

>
= ==

I,

msc RadioHandover_HL <

Associated_to_old,

msc RadioHandover

MT_ENV/ MT_RLC AP_RLC AP_ENV

ForceHandover

opt

< when Associated_to_old >

RRC_handover_notify_req

RadioHandover

Associated_to_new

RLC_HANDOVER_NOTIFY

RRC_handover_notify_ind

RRC_forward_handover_rgq

RLC_HANDOVER_REQUEBT

RRC_forward_handover_i

RRC_radio_handover_rsp

RLC_RADIO_
|_HANDOVER_COMPLETE

RRC_radio_handover_cnf

Associated_to_new

< >
N

Figure 88: Global guard and setting conditions used to restrict composition of scenario parts

12.10 Action

In some situations, it can be useful to indicate informally the action that is performed after amessage isreceived (see
Figure 75). Thisis possible by using an informal action. 3*¥Use of the MSC action symbol should be limited to the
informal expression of a specific aspect of behaviour, which helpsto clarify the surrounding message sequence, and

to data assignments.

12.11 Timer

Timers may be used informally to indicate delays or time constraints on event sequences. Since thereis an explicit
notation in MSC for time constraints and measurements (see 12.13), this should be used instead of timers as the notion
of atimer entity may be too precise for most standard specifications.

ETSI

Note

REG/MTS-00072 V1.1.7 (March 2002)

92
msc CheckBalance
Disgla Unit UlControl KeyboardUnit

DisplaySelectService

DisplayPleaseWait

WaitForSelection

CheckBalance

DisplayCurrentBalance

DisplayDelay

Figure 89: Timer usage

Di spl ayDel ay timer isused asadelay in the execution.

TheWai t For Sel ect i on timer is used to restrict the waiting time for aresponse signal. The

In certain situations when using separated timer symbols, it is necessary to add an extratimer identifier in order to have

an unambiguous scenario.

msc 2Requests

User_a Network User_b
ServiceReq
InfoNeeded
WaitResp, a %
alt Info
WaitResp, a X—
WaitResp, a ™
ServiceReq
InfoNeeded
X WaitResp, b
alt Info
X WaitResp, b
X WaitResp, b

ETSI

Figure 90: Separated timer symbols and timer identifier

93 REG/MTS-00072 V1.1.7 (March 2002)

12.12 Control Flow

In specifying distributed systems, all communication is normally described by asynchronous messages. It is however
often the case that communication is by signal pairs, acall message and a corresponding reply message, together
making a synchronous communication.

A logically connected signal pair might be high-lighted in an M SC specification by using the special symbolsfor reply,
method and suspend.

The control flow concepts are:

method call;

reply symbol;

method symbol;
- suspend symbol.

A method call is represented by a message symbol with the CALL keyword before the message name. For a method
call, there must always be a corresponding reply, and vice versa.

The method symbol is used to indicate that an instance is active. The suspension symbol is used toindicate that an
instanceis suspended, typically waiting for the reply of a blocking method call. The normal instance axis means that the
instance isinactive, waiting for an activating event or atask to perform.

A method call followed by a suspension region is a synchronous method call.

If MSC Instances are used to represent entities that are not independent (asynchronously parallel), then the method and
suspend symbols can be used to indicate how each active object gets the flow of control from the CPU.

msc UpdateAll
Client Client
|C0ntro|ler | | Server Client_a Client_b
Call UpdateAll
Update
Suspend
symbol
UpdateAck
Method Update
symbol >
UpdateAck
UpdateAllReply
€ —--—— - ——— -
% % [=

Figure 91: Specification of synchronous communication utilizing the suspend symbol and the
method symbol.

12.13 Time

The time concepts can be used for:
- Time measurements

- Timing constraints on or between events

ETSI

94 REG/MTS-00072 V1.1.7 (March 2002)

Time constraints are useful for stating time reguirements without adding behaviour to the model (compare with the use
of timers). Using the time concepts assumes that a data type for handling time expressionsis available.

mscdocunent Al | Scenari os msc Successful_Setup

inst CallingUser; . .
inst Originati ngNetwork ﬁ(ﬂmil Originating_ Im lT“mil-l
variables rel 1 Tine; CallingUser CalledUser

i nst Destinati onNetwork; CallRequest
inst CalledUser;

| anguage SDL;
data use Predefined; Successful _Setup

1060 &N SETUP (0,20] &rell

CALL_PROCEEDING
[0.5%rell, 2*rell] IncomingCall

Note

12.14

CallAlerting
ALERTING

CallAnswer

CONNECTED
CallRequestAck

D

Figure 92: Time constraints between events

The time between sending the Cal | Request message and receiving the Cal | Request Ack message
should be within the range 10 to 60 time units.

Thetimeit takesto send the SETUP message is measured and saved into the time variable rel 1 and
should take no more than 20 time units.

Therelative time constraint [0.5*rel 1, 2*rel1] requires that the time it takesto send the
CALL_PROCEEDING message should be at least 0.5*rel 1 and at most 2*rel 1.

General ordering and coregion

Although an instance describes atotal order of its events, an MSC normally describes only a set of partial event orders.
This is because instances are independent, since each M SC instance is asynchronously parallel. Synchronization
between instances is normally achieved by message passing.

msc PartialOrders msc TotalOrder
w1 [z] [&] Lo] [2] [B 1]
a a
b
b
[

= === === T [e
An MSC with three different partial A totally ordered MSC
orders: a.out — a.in — b.out — b.in — c.out — c.in

a.out — a.in — b.out — b.in
a.out — b.out — a.in— b.in
a.out — b.out — b.in—a.in

Figure 93: Event orders of MSCs

Coregions are useful for describing situations where two or several events might happen in an arbitrary order on one
instance. They are also commonly used on decomposed instances to relax the total ordering imposed to the contained

instances by the decomposed instance. However, large coregions, covering many events might be very hard to interpret.
Thus, ®the number of events shown in an MSC coregion should be limited.

ETSI

95 REG/MTS-00072 V1.1.7 (March 2002)

In Figure 94, the four messages that are sent to the Server can be received in any order by the Server instance. However,
the first Info message must arrive after the second | nf o_Req is sent and thetwo | nf o_Req messages must be sent in
aspecific order.

msc Multiple_Info_Request

Client a Server Client b

Info_Req

Info_Req

Info -

Info

InfoEnd

InfoEnd

i R R

Figure 94: Use of coregion

General ordering can be used within a coregion to specify partial ordersin an otherwise completely unordered region.
However, Yan inline alternative expression should be used in an MSC instead of general ordering within a

coregion.

In the left diagram in Figure 95, the order restrictions that existed in the example in Figure 94 are released. On the other
hand, there are anumber of unwanted event ordersin thisMSC. Anl nf oEnd message can for example be consumed

before its corresponding Info message.

In theright diagram in Figure 95, each message triplet is now ordered, but the three events related to the communication
with Cl i ent _a isunordered with respect to the eventsrelated tothe Cl i ent _b communication. (Thel nf o_Req
and | nf 0 eventson the Server are ordered by the imposed ordering at the Client instance.)

msc Multiple_Requests .
ple_Req msc Multiple_Requests
Client S Client_b
[client a | [serer | [client o | [Gieria] [Gieno |
Info_R
mo_~ed ! Info_Req r ‘
[e———
| Info_Req ' { Info_Req
1 | 1
— —————
Info H Info | 1
> Y ' Info
1 | I 1
: Info : ;...:‘—
InfoEnd — d ' |
— InfoEnd R A
! InfoEnd E— T ! InfoEnd
—— I de—— |
| 1 (]

Figure 95: General ordering within a coregion reduces the number of orders

ETSI

96 REG/MTS-00072 V1.1.7 (March 2002)

12.15 Relationship between MSC and UML Sequence Diagrams

Sequence diagramsin UML and M SC have many similar concepts and also have the same basic scope. For normal
message i nterchange between instances, Sequence diagrams provide the same expressiveness as M SCs. However,
Sequence diagramsin UML 1.4 lack concepts to relate scenarios to each other (operators and M SC references), and
should only be used for small, isolated scenario descriptions.

msc UpdateAll
| Controller | | Server | | Client aClient | |CI|ent b:CIlent| (j,llent (?Ilent
— —— [Controller] [server [Client a] [Client b]
UpdateAll call UpdateAll
Update Update
UpdateAck UpdateAck
Update
Update
UpdateAck
UpdateAck -
UpdateAllReply
| Upcateniireny | .
% % (e (]

Figure 96: UML sequence diagram and corresponding MSC

ETSI

97 REG/MTS-00072 V1.1.7 (March 2002)

Annex A (informative):
Reserved words

Al SDL

A.1l.1 Keywords

Thefollowing words are keywordsin SDL and cannot be used as names.

NOTE: Thelist of keywords shows only the lower-case presentation. The upper-case equivalent of eachisalso an

SDL reserved word.

abstract active adding aggregation
alternative and any as
association atleast block break

cdl channel choice comment
composition connect connection constants
continue create dcl decision
default else endalternative endblock
endchannel endconnection enddecision endexceptionhandler
endinterface endmacro endmethod endobject
endoperator endpackage endprocedure endprocess
endsel ect endstate endsubstructure endsyntype
endsystem endtype endvalue env
exception exceptionhandler export exported
external fi finalized from

gate handle if import

in inherits input interface
join literals loop macro
macrodefinition macroid method methods
mod nameclass nextstate nodelay
none not now object
offspring onexception operator operators
optional or ordered out

output package parent priority
private procedure protected process
provided public raise redefined
referenced rem remote reset

return save select self

sender set signal signallist
signal set size spelling start

state stop struct substructure
synonym syntype system task

then this timer to

try type use value

via virtual with xor

ETSI

98 REG/MTS-00072 V1.1.7 (March 2002)

A.1.2 Predefined words

Thefollowing words are defined in ITU-T Recommendation Z.100 [4] in the SDL package "Predefined" and should not
be redefined or used for any other purposes:

ETSI

ACK Array Bag BEL
bit Bit bitstring Bitstring
Boolean BS CAN Character
Charstring chr CR DC1
DC2 DC3 DC4 del
DEL DivisionByZero DLE Duration
EM empty Empty emptystring
ENQ EOT ESC ETB
ETX Extract false FF
first fix float HT
incl Integer Invalidindex InvalidReference
IS1 IS2 1S3 14
last length LF Make
mkstring Modify NAK Natural
NoMatchingAnswer NUL num Octet
octetstring Octetstring OutOfRange Pid
power Powerset Predefined Real
remove Sl SO SOH
String STX SUB substring
SYN take Time true
UndefinedField UndefinedVariable Vector VT

A.2 MSC

The following words are keywordsin M SC and cannot be used as names.
action after all at
as before begin bottom
cdl comment concurrent condition
connect create data decomposed
def empty end endconcurrent
endexpr endinstance endmethod endmsc
endsuspension env equal par escape
exc expr external finalized
found from gate in
inf inherits inline inst
instance int_boundary label language
loop lost method msc
mscdocument msg nestable nonnestable
offset opt otherwise out
par parenthesis receive redefined
reference related replyin replyout
seq shared starttimer stop
stoptimer suspension text time
timeout timer to top
undef using utilities variables
via virtual when wildcards

REG/MTS-00072 V1.1.7 (March 2002)

A3 ASN.1

The following words are keywordsin ASN.1 and cannot be used as names.
ABSENT ABSTRACT-SYNTAX ALL APPLICATION
AUTOMATIC BEGIN BIT BMPString
BOOLEAN BY CHARACTER CHOICE
CLASS COMPONENT COMPONENTS CONSTRAINED
DEFAULT DEFINITIONS EMBEDDED END
ENUMERATED EXCEPT EXPLICIT EXPORTS
EXTENSIBILITY EXTERNAL FALSE FROM
GeneralizedTime General String GraphicString IA5String
IDENTIFIER IMPLICIT IMPLIED IMPORTS
INCLUDES INSTANCE INTEGER INTERSECTION
SO646String MAX MIN MINUS-INFINITY
NULL NumericString OBJECT ObjectDescriptor
OCTET OF OPTIONAL PDV
PLUSINFINITY PRESENT PrintableString PRIVATE
REAL SEQUENCE SET SIZE
STRING SYNTAX T61String TAGS
TeletexString TRUE TYPE-IDENTIFIER UNION
UNIQUE UNIVERSAL Universal String UTCTime
UTF8String VideotexString VisibleString WITH

A4 UML

The following words are cannot be used as namesin UML.
«access» association «associ ation» «become»
«call» complete «copy» «create»
«derive» derived «destroy» destroyed
«document» documentation «executable» «facade»
«filex» «framework>» «friend» Generalization
global «global» «implementation» «implementationClass»
implicit «import» incomplete «instantiate»
«invariant» «library» local «local»
«metaclass» «metamodel» new overlapping
parameter «parameter» persistence persistent
«postcondition» «powertype» «precondition» «process»
«realize» «refine» «requirement» «responsibility»
self «self» semantics «send»
«signalflow» «stub» «systemM odel » «table»
«thread» «topLevel» «trace» transient
«type» «utility» xor

ETSI

100 REG/MTS-00072 V1.1.7 (March 2002)

Annex

B (informative):

Summary of guidelines

Table B.1 provides a summary of the guidelines for the use of SDL for descriptive purposes. This summary should be
read in conjunction with the main body of text in the present document.

Table B.1: Summary of guidelines

Identifier

| Guideline

NAMING CONVENTIONS

1 A naming convention that can be applied consistently to each notation used should be chosen

2 While it is acceptable to use the underscore character to delineate words within most SDL entity names, it is
advisable to avoid the use of the dash character in ASN.1 types and values in order to avoid conflicts and
misinterpretation in the associated SDL.

3 The general use of names which differ only in character case to distinguish between entities should be avoided.

4 Care should be taken to ensure the consistent use of character case within names throughout an ASN.1, SDL,
MSC or UML specification

5 Names of less than 6 characters may be too cryptic and names of more than 30 characters may be too difficult
to read and assimilate.

6 The reserved words of all notations used within a standard should be avoided as defined names in each of the
individual parts

7 Readability is improved if the same convention for separating words within names is used throughout a
specification

8 In most cases an underscore character between each word removes any possibility of misinterpretation and this
is the approach that is recommended

9 In more complex models where each block is made up of a number of processes, the use of the same name for
a block and one of its constituent processes is likely to cause confusion and should be avoided.

10 The use of a single name for multiple purposes should be avoided wherever possible

11 The addition of project-specific prefixes or suffixes can make meaningful names appear cryptic and should be
used with great care

12 By giving blocks, processes and MSC instances names that represent the overall role that they play within the
system, it is possible to distinguish process names from procedure names. If carefully chosen, they can help to
link the SDL and MSC back to the corresponding subclauses in the text description

13 The name chosen for an SDL operation should indicate the specific action taken by the operation

14 If possible, it is advisable to leave at least one significant word in the name unabbreviated as this can help to
provide the context for interpreting the remaining abbreviations

15 The name chosen for an interface or signal list should indicate the general function of the grouped signals

16 Where all signals between one block or process and another can be logically grouped together, signal list names
can be chosen to indicate the origin and the destination of the associated signals

17 A state name should clearly and concisely reflect the status of the process while in that state

18 If it is important to number states then this should be done in conjunction with meaningful names

19 The name chosen for a variable should indicate in general terms what it should be used for

20 Names used to identify constants can be more specific by indicating the actual value assigned to the constant

21 The names of SDL data types should be capitalized while the names of literals and synonyms should begin with
a lower-case character

PRESENTATION AND LAYOUT OF DIAGRAMS

22 The general flow of SDL behaviour diagrams and UML statechart and activity diagrams should be from the top
of the page towards the bottom

23 The flow on a page of an SDL process should end in a NEXTSTATE symbol rather than a connector

24 States that are entered from NEXTSTATE symbols on other pages should always be placed at the top of the
page.

25 Where transitions are short and simple they can be arranged side-by-side on a single page

26 When two or more transitions are shown on one page, there should be sufficient space between them to make
their separation clear to the reader

27 Connector symbols should generally only be used to provide a connection from the bottom of one page to the
top of another

28 All reference symbols and text boxes containing common declarations should be collected together at a single
point within the process diagrams.

29 Separate text box symbols should be used for each different type of declaration

30 Activity diagrams or statechart diagrams should use text boxes indicate what functions are specified in other

diagrams or in which diagram the behaviour continues

ETSI

101 REG/MTS-00072 V1.1.7 (March 2002)

Identifier Guideline

31 When the text associated with a task symbol overflows its symbol boundaries, a text extension should be used
to carry the additional information

32 Symbols that terminate the processing on a particular page should be aligned horizontally

33 In simple systems where each process communicates with only one or two other processes, the orientation of
INPUT and OUTPUT symbols can be used to improve the readability of the SDL. However, to avoid possible
specification errors and misinterpretation, explicit methods of identifying the source and destination of signals
should be used

34 If used, the significance of the orientation of SDL symbols should be clearly explained in the text introducing
each process diagram

35 A state, input and the associated transition to the next state should be contained within a single SDL page

36 Process diagrams should segregate normal behaviour from exceptional behaviour.

USING PROCEDURES, OPERATIONS AND MACROS

37 The use of procedures to modularise specifications and to 'hide' detail is strongly recommended

38 Convert informal text descriptions of actions into procedure calls and replace the task symbols with a procedure
symbols

39 All data relevant to the real behaviour represented by a procedure should be specified in the parameter list and
returned value (if any).

40 In most cases it is preferable to use operations instead of value-returning procedures.

41 Procedures should only read and write to variables that are passed to the procedure in the parameter list or are
declared within the procedure itself

42 Procedures should specify a level of detail that is suitable for the particular purpose of the standard

43 A functional procedure should fulfil its specified role and do nothing that could be considered to be a side -effect

44 The processing of signals is one of the most important activities shown in the SDL of a protocol standard and
should normally be visible in the calling process rather than the called procedure

45 It is important that procedures that specify a limited sequence of actions should be given names that reflect as
fully as possible the activity performed by a procedure

46 Behaviour that could be considered a side-effect to its defined purposes, should not be specified in a procedure

47 In the exceptional case that a procedure includes the specification of one or more states, it is important to
ensure that all signals which are not directly processed within the procedure are correctly handled for
subsequent processing

48 The names of procedures having multiple effects should reflect each intended effect either individually or
collectively

49 The textual syntax of SDL can be used to define simple operations

50 Complex operations should be specified as operator or method diagrams which are referenced from the relevant
data type specification

51 The use of macros should be limited to those cases where the macro can be contained within one printed page

USING DECISIONS

52 It is essential that the complete range of values of the data type contained in the decision is covered by ranges
of values in the answers without any overlap

53 Identifiers used in decisions should clearly reflect to a reader the 'question' and 'answer' nature of the conditions
being expressed.

54 The use of informal text in decision statements should be limited, preferably to those cases where the decision is
obviously binary in nature

55 In most cases, enumerated types rather than text strings should be used to express decisions.

56 ELSE should be used as a decision outcome value to distinguish between one or more specific outcomes and
all other possibilities

57 ASN.1 constraint or SDL SYNTYPE constructs should be used to limit the range of values represented by an
ELSE branch in a decision

58 SDL SYNONYMs should be used to define meaningful alternatives to the Boolean values of true and false if this
aids clarity

59 Procedure calls should be used in conjunction with decisions to eliminate the use of informal text

60 The ANY expression should not appear in the SDL specifications in standards except where it is included to
show the behaviour of an entity (such as a user) that is not the subject of the standard

61 Where mutually exclusive implementation options are to be expressed, the option symbol should be used rather
than a decision

62 SDL algorithmic flow control expressions should be restricted to situations where the required behaviour

involves only the processing of data but not the sending of signals and not the control of timers.

SYSTEM STRUCTURE, COMMUNICATION AND ADDRESSING

63 The SDL version of the architecture of a protocol or service should be consistent with and complementary to
other (non-SDL) descriptive diagrams

64 Comments should be used to convey to the reader the relationship of the SDL architecture to the relevant non-
SDL parts of the standard

65 The SDL specification within a standard should comprise one system composed of at least one agent

66 SDL should be used to show the structure of a system as well as its behaviour

ETSI

102 REG/MTS-00072 V1.1.7 (March 2002)

Identifier Guideline

67 SDL sub-structuring should be used to simplify complex SDL models but should not be used excessively.

68 Multiple instances of SDL blocks and processes should be avoided if possible

69 Informative blocks or processes that are not needed to aid unders tanding should be omitted

70 If the same block or process is required at more than one place within an SDL specification, a BLOCK TYPE or
PROCESS TYPE should be defined from which instances can be derived.

71 Wherever possible, a minimal number of static instances should be used instead of dynamically created SDL
processes.

72 A specification area diagram (if used) should include the most important packages shown as reference symbols
with dependency shown on the diagram.

73 All normative channels (interfaces) should be clearly marked as being normative (using a comments box)

74 There should be no more than one communication path specified in each direction between one entity and
another.

75 Remote procedures, import/export, or shared data should not be used to exchange information between blocks
and processes

76 A small number of interface names (preferably one) should be used to identify the signals on a particular
channel or gate

77 All channels and gates should be shown with the associated interface names, signal list names or signals.

78 TO or VIA should be used in an output symbol to indicate the recipient clearly if this is not obvious from the
structure of the SDL system

79 A different signal (with a self descriptive name) should be defined for each distinct message event.

80 The source of the signal in an input should be indicated either by its name or by a comment

81 There should be only one signal in each output symbol.

82 All the gates of an agent should be explicitly connected to channels.

83 Gates should not be attached to block symbols or process symbols.

84 Process definitions contained within process definitions should be avoided, unless the intention is to exclude
concurrent interpretation of processes

85 The use of shared data should be avoided.

86 A composite state should

87 Use a STATE TYPE diagram rather than a STATE diagram.

88 A standard should be defined so that the language-defined exceptions (such as OutOfRange) do not occur.

SPECIFICATION AND USE OF DATA

89 ASN.1 should be used to specify data and the ASN.1 data definitions should be made common to both the SDL
specification and the non-SDL parts of a standard

90 SDL signals should be used to represent normative messages with ASN.1 describing the parameters carried by
the messages.

91 The top-level parameters of messages should be contained in a single structured type (e.g., ASN.1 SEQUENCE
or SET) rather than specified as a list of simple types

92 For readability the same symbol (exclamation mark or full stop) should be used for all field selections in one
specification.

93 If the parameters in a message have to appear in a fixed order, then the ASN.1 constructor SEQUENCE should
be used to specify the message contents

94 If the parameters of a message may appear in any order, then the ASN.1 constructor SET should be used to
specify the message contents.

95 When mapping messages described in another format (such as tables) to a simplified form as ASN.1 or SDL
data types, the structure of the simplified messages should be kept as close as possible to the structure of the
original messages and the names of messages and their associated parameters should be preserved.

96 When there are data type specific operations for internal data, it is usually better to use SDL to define the data
type rather than ASN.1 so that the operations can be defined as part of the data type.

97 For readability, in one SDL specification the same brackets (square — which are distinct from other uses, or
round) should be used for all ARRAY, VECTOR and STRING indexing.

98 Whenever possible symbolic names should be used rather than explicit value denotations (such as 123,
'0110'B).

99 ASN.1 ENUMERATED or SDL literal list types should be used for data that consists of a collection of names

100 VALUE TYPE should be used to define a new data type in a specification while SYNTYPE should by used to
rename or constrain the values of existing data types

101 OBJECT TYPE should be avoided as the data type for signal parameters

102 OBJECT TYPE definitions(or a data type name prefixed by OBJECT) should be used only when the data cannot
be simply expressed with a VALUE TYPE.

103 Any data type to define variables should be avoided

USING MESSAGE SEQUENCE CHARTS (MSC)

104 When MSC is used in combination with SDL, a message input in MSC should correspond to a signal
consumption in SDL.
105 Each MSC diagram should be limited to the information that fits into one printed page

ETSI

103 REG/MTS-00072 V1.1.7 (March 2002)

Identifier Guideline

106 When used in a standard, an MSC diagram should always be surrounded by a diagram frame and have an
attached name.

107 A clear spacing between symbols in an MSC diagram should be maintained both horizontally and vertically

108 An instance axis should always be terminated at the end by either an instance end symbol or a stop.

109 Annotations help to improve the understanding of an MSC description and should be used freely.

110 Names in an MSC should be the same as the names of corresponding entities in the SDL

111 Entity names should be unique within a specification.

112 If there is an associated SDL specification, each MSC instance should have a kind name and kind denominator
corresponding to the name and entity kind of the equivalent entity in SDL

113 The number of instances included in an MSC should be kept low to maintain a focus on the normative
interface(s) and important entities in the logical or physical model

114 If the kind name is present in an MSC instance, the instance head symbol should contain the instance name
with the kind name placed above the symbol

115 Instance decomposition should be avoided in MSCs because of the complexity it might introduce

116 Dynamic instances should be avoided in MSCs.

117 Instances with instance kind name "environment" should be used to represent the environment in an MSC.

118 HMSCs should be used to specify a high-level view of scenarios which are defined in other MSC or HMSC
diagrams.

119 Connections should always be used when HMSC flow lines join or merge to distinguish them from simple
crossing lines.

120 Annotations should be used within HMSC to explain the purpose of different alternative branches

121 References to other HMSCs should be used within HMSCs to ensure that a logical structuring of described
behaviour is achieved.

122 Graphical HMSC expressions should be used in preference to textual Reference expressions

123 Plain MSCs should not include HMSC References

124 If the same scenario appears in several MSCs, it should be specified as an MSC of its own and referenced from
other MSCs.

125 Each message involved in an MSC (?that is referenced from a basic MSC?) should have both its output and
input described within the diagram

126 When it is not feasible to use MSC References to describe different sequence structures, inline expressions
should be used.

127 The use of multiple inline expressions in a single MSC diagram should be limited to avoid an unnecessary
explosion in the number of implicit scenarios

128 Each message involved in an inline expression should have both its output and input described within the inline
expression

129 HMSCs should be used to highlight significant alternative or optional behaviour paths but; if the differences are
only minor, these could be described within an MSC using inline expressions

130 Data types and expressions introduce complexity to a specification and it is therefore preferable to omit them
from MSC diagrams. As an alternative, annotations may be added to describe the data if more detail is needed.
Data should be described formally in MSC only when greater formality than can be achieved by using
annotations is required.

131 The crossing of MSC instances by messages should be minimised by placing frequently communicating
instances close to each other wherever possible

132 Delay or the passage of time should be described by the time concepts in MSC

133 The unnecessary crossing of messages should be avoided since it obscures the meaning of an MSC

134 An MSC should show an outgoing event below the incoming event that preceded it

135 Only those parameters that are absolutely necessary for the understanding of the message sequence should be
included with an MSC message

136 If incomplete message parameter information is to be shown in an MSC, this should be given in a note, following
the message name

137 Lost and found message should normally not be used in MSCs

138 Logical names should be used in MSC guarding conditions instead of variable expressions

139 Use of the MSC action symbol should be limited to the informal expression of a specific aspect of behaviour,
which helps to clarify the surrounding message sequence, and to data assignments.

140 The number of events shown in an MSC coregion should be limited.

141 An inline alternative expression should be used in an MSC instead of general ordering within a coregion

ETSI

104 REG/MTS-00072 V1.1.7 (March 2002)

History
Document history
V1.1.1 June 2001 1% draft, Scope & TOC
V112 August 2001 Addition of Naming chapter
V113 October 2001 Addition of MSC, Decisions and Presentation chapters plus Introduction
V114 February 2002 Addition of Structuring Behaviour, Procedures & Data chapters
V115 February 2002 Addition of System structure, communication and addressing chapter
V1.1.6 February 2002 Tidied version for review
V117 March 2002 Add definition of polymorphic

ETSI

