
Methods for Testing and Specification (MTS);
Abstract Test Description Language (ATDL)

Technical Report

Keywords:
ASN.1, methodology, MTS, testing, ATDL

Gong Yue

Samsung Electronics Co., Ltd.
Samsung China Research Center

SAMSUNG Electronics Research Institute
Communications House South Street

TW18 4QE City : STAINES
UNITED KINGDOM - GB

February 2006

That's one small step for (a) man,
one giant leap for mankind.

–– Neil Armstrong

If I have seen further it is by standing
upon the shoulders of Giants.

–– Sir Isaac Newton

1. Scope ... 1

2. References .. 1

3. Definitions and abbreviations... 2
3.1. Definitions... 2
3.2. Abbreviations ... 6

4. Introduction ... 8
4.1. General ... 8

4.1.1. The core language and presentation formats.. 9
4.1.2. Differences between TTCN-3 and ATDL.. 10

4.2. ATDL overview ...11
4.2.1. ATDL views ..11
4.2.2. Statement diagram...11
4.2.3. Implementation view...11

4.3. Static view... 12
4.3.1. Relationships.. 12

4.4. ATDL grammars.. 13
4.5. Unanimity of the specification .. 13
4.6. Conformance.. 13
4.7. Comparison of ATDL, C++ and Java .. 14

5. Basic language elements.. 16
5.1. General ... 16
5.2. Parameterization ... 17

5.2.1. Static and dynamic parameterization ... 17
5.2.2. Formal and actual parameter lists .. 18
5.2.3. Empty formal parameter list .. 18
5.2.4. Nested parameter lists .. 18

5.3. Parameter semantics ... 18
5.3.1. In and inout parameters.. 19
5.3.2. Template parameters .. 20
5.3.3. Out parameters ... 20
5.3.4. String parameters ... 20
5.3.5. Array parameters.. 20
5.3.6. Open array parameters ... 20

5.4. Scope rules.. 22
5.5. Identifiers and keywords... 22
5.6. Division of text ... 22
5.7. General drawing rules... 23

5.7.1. Comments .. 23
5.7.2. Diagram area .. 24
5.7.3. Diagram heading .. 24
5.7.4. Usage of semicolons .. 24
5.7.5. Usage of task symbols.. 25

5.8. Variables declarations ... 25
5.8.1. Declaration of variables within <create request symbol>s 25
5.8.2. Declaration of variables within <default symbol>s ... 25
5.8.3. Declaration of variables within <reference symbol>s ... 25

5.9. Special terminal symbols... 25
5.9.1. Separators... 26
5.9.2. Operators.. 26

6. Abstract Object Definition Language.. 26

6.1. Conventions for the syntax description ..27
6.2. AODL keywords ...27
6.3. GORBA/AODL basics ...27
6.4. Modules ...28
6.5. Defining group types ..28
6.6. Defining co-class types ...29

6.6.1. Co-class type inheritance ..29
6.6.2. Required interface types ...30
6.6.3. Supported interface types ...30
6.6.4. Co-class diagrams...30

6.7. Declaring exception types ..31
6.8. Defining co-interface types ..31

6.8.1. Co-interface type inheritance..31
6.8.2. Defining operational co-interface types..32

6.9. Importing from modules..32
6.10. Templates for sending messages..33
6.11. Summary ...34

6.11.1. Benefits of AODL...34

7. Declaring ATDL/AODL signals.. 35
7.1. Declaring messages...35
7.2. Declaring operations ..36

7.2.1. Procedure signatures ...36
7.2.2. Operation attribute ..37
7.2.3. parameter lists ...37
7.2.4. Declaring parameters ..37
7.2.5. Value returning remote procedures ...37
7.2.6. Raises expressions ..38

8. Declaring ATDL/AODL constants ... 38
8.1. Constant expressions ..38

9. ATDL/AODL operators .. 39
9.1. Additive Operators...40

9.1.1. Unary arithmetic operators ...41
9.2. String operators ..41
9.3. Multiplicative operators...41
9.4. Relational operators ...42

9.4.1. The class operator ...43
9.5. Boolean logical operators...43

9.5.1. Conditional logical operator ...44
9.6. Bitwise operators ..44
9.7. Shift operators ..45
9.8. Rotate operators ...46
9.9. Primary expressions ...46
9.10. Typecast expressions ..46

10. ATDL/AODL types and values... 47
10.1. Simple generic types...48
10.2. Basic types and values..48

10.2.1. Integral types and values ..49
10.2.2. Character types and values ...49
10.2.3. Real types and values..50
10.2.4. Boolean type and value...51
Page 2 of 9

10.2.5. Objid type and values... 51
10.2.6. Ordinal types .. 52
10.2.7. AODL specific native types... 52
10.2.8. ATDL specific verdict types .. 52
10.2.9. Basic string types and values ... 52

10.3. Sub-typing of basic types .. 54
10.3.1. Value Set constructors.. 55
10.3.2. Length restriction ... 56
10.3.3. Subrange type... 56

10.4. Structured types and values.. 57
10.4.1. Parameterized type... 57
10.4.2. Sequence type and values .. 58
10.4.3. Choice type and values .. 59
10.4.4. Set type and values... 59
10.4.5. Enumerated type and values .. 60

10.5. Array type and values ... 60
10.5.1. Dynamic arrays .. 61
10.5.2. Array constants .. 61

10.6. Sets of types .. 62
10.7. Variant types .. 62
10.8. Changes to ASN.1 .. 62
10.9. Miscellaneous productions.. 63
10.10.Pre-defined ATDL/AODL types ... 63

10.10.1. Useful simple basic types... 63
10.10.2. Useful character string types.. 65

11. Modules .. 66
11.1. Module diagram... 66
11.2. Naming of modules .. 66
11.3. Module parameters.. 66

11.3.1. Default values for module parameters ... 67
11.4. Module definitions part... 67
11.5. Module control part... 67

11.5.1. Termination of test cases.. 67
11.5.2. Controlling execution of test cases .. 68
11.5.3. Test case selection .. 68
11.5.4. Use of timers in control.. 68
11.5.5. Control diagram ... 68

11.6. Groups .. 69
11.6.1. Group members.. 70
11.6.2. Host support for groups.. 70
11.6.3. Unique group names .. 70
11.6.4. Declaring groups .. 71
11.6.5. Group diagram ... 71

11.7. Importing from modules ... 71
11.7.1. Rules on using import .. 72
11.7.2. Recursive import .. 72
11.7.3. Importing single definitions ... 72
11.7.4. Import on demand .. 72
11.7.5. Importing groups.. 72
11.7.6. Handling name clashes on import.. 73
11.7.7. Import definitions from non-ATDL modules... 73

12. Test configurations .. 73
12.1. Test configurations at specification level ... 73

12.1.1. Defining association contracts ... 73

12.1.2. Abstract test system interface ...74
12.1.3. Configuration diagrams ..75

12.2. Test configurations at instance level ...76
12.2.1. Channel communication model ..76
12.2.2. Restrictions on connections ..77

12.3. Defining interface types ...77
12.3.1. Interface diagrams ..77
12.3.2. The message-based interface types...78
12.3.3. Operational interfaces ...79
12.3.4. Interface inheritance ...80
12.3.5. Declaring exception types...80

13. Defining classes .. 81
13.1. Defining class types ..81

13.1.1. Scope of a class type name ...82
13.1.2. Passive object..83
13.1.3. Final classes ..83
13.1.4. Class inheritances ...83
13.1.5. Ancestor interfaces ...84

13.2. Class members ..84
13.3. Declaring properties...84

13.3.1. Signal handlers..85
13.4. Declaring fields ...85

13.4.1. Static fields ...86
13.4.2. Initialization of fields..86

13.5. Visibility of class members ..86
13.6. Virtual classes ...87

13.6.1. Method template ...88
13.6.2. Incarnating ..88
13.6.3. Method template instantiation ..88

13.7. Declaring methods..88
13.7.1. Method implementations ..89
13.7.2. Method binding...89
13.7.3. Inheritance, overriding, and hiding...91
13.7.4. Overloading methods..92
13.7.5. Destructors ..93
13.7.6. Raises expressions ..93

13.8. Declaring constructors ...94
13.8.1. Constructor body ..95
13.8.2. Constructor overloading ...95
13.8.3. Default constructor ...95
13.8.4. Raises expressions ..95

13.9. Class references ..95
13.10.Coordinating threads ...95

13.10.1. Synchronized fields ..96
13.10.2. Synchronized methods..96

13.11.Exceptions ...97
13.11.1. Self-exceptions ...97
13.11.2. Compile-Time Checking of Exceptions..97
13.11.3. Unchecked exceptions ..97
13.11.4. The exceptions handling ...98

14. Declaring variables .. 98
14.1. Kinds of variables ...98

15. Declaring templates ... 99
Page 4 of 9

15.1. Declaring message templates .. 100
15.1.1. Templates for receiving messages.. 100

15.2. Parameterization of templates.. 100
15.2.1. Parameterization with matching attributes... 100
15.2.2. Templates reference ... 100

15.3. Template matching mechanisms .. 101
15.4. Modified templates .. 102

15.4.1. General ... 102
15.4.2. Parameterization of modified templates .. 102
15.4.3. In-line modified templates ... 102

15.5. Changing template fields... 103
15.6. Value of Operation... 103
15.7. Matching incoming values .. 103

15.7.1. In-line matching operators ... 103
15.7.2. Matching specific values.. 104
15.7.3. Constructed value... 105
15.7.4. Instead of Value.. 106
15.7.5. Inside Values .. 107
15.7.6. Attributes of values .. 107
15.7.7. Matching character pattern... 108

16. Routines and method templates ... 108
16.1. Functions .. 108
16.2. Test cases... 109

16.2.1. Test case diagram ..110
16.2.2. Parameterization of test cases ...110

16.3. Overloading test cases and functions ..111
16.4. Altsteps ..111

16.4.1. Parameterization of altsteps ..111
16.4.2. Altstep diagram...112
16.4.3. Invocation of altsteps ..112

16.5. Method templates ...113
16.5.1. Method template definition...113
16.5.2. Method template explicit incarnation ...114
16.5.3. Name resolution in method templates...114

17. Overview of program statements and operations ...116
17.1. Statement block...117

17.1.1. Statement diagrams ...118
17.1.2. Statements ...118
17.1.3. Unreachable Statements ..118

17.2. Kinds of conversion ..118
17.2.1. Identity conversions ..118
17.2.2. Widening primitive conversions ...119
17.2.3. Narrowing primitive conversions..119
17.2.4. Widening reference conversions ...119
17.2.5. Narrowing reference conversions .. 120
17.2.6. Charstring conversions... 120
17.2.7. Forbidden Conversions .. 120

17.3. Assignment conversion.. 120
17.4. Method invocation conversion.. 121
17.5. Casting conversion... 121
17.6. Type compatibility and identity.. 121

17.6.1. Type identity .. 121
17.6.2. Type compatibility ... 121

18. Basic program statements... 123
18.1. Local variable declaration statements..123
18.2. The task statements ..123

18.2.1. The Write statement..124
18.2.2. External actions ..124
18.2.3. Expression statements...124

18.3. The If-else statement ..124
18.3.1. The if statement with else branch ...125
18.3.2. Control icons...126

18.4. The Choice statement...126
18.5. The in-line expressions ...127

18.5.1. The labeled statement ...127
18.5.2. The if statement without else branch ..128
18.5.3. The For statement ...128
18.5.4. The While statement ...129
18.5.5. The Do-while statement..130

18.6. The Break statement ..131
18.7. The Continue statement...132
18.8. The Stop execution statement..132

19. Behavioural program statements ... 133
19.1. Alternative behaviour ..133

19.1.1. Graphical notation ..134
19.1.2. Execution of alternative behaviour ...135
19.1.3. Selecting/deselecting an alternative..135
19.1.4. Guard condition ..136
19.1.5. Else branch in alternatives ..136
19.1.6. ATDL test events ..136
19.1.7. Re-evaluation of alt statements...137
19.1.8. Invocation of altsteps as alternatives ..137

19.2. The Continue statement...137
19.3. The Return statement ..137
19.4. The Raise statement ...138

19.4.1. Raise a self-exception ...139
19.4.2. Re-raising exceptions..139

19.5. Exception handling...139
19.5.1. The Try statement ...139
19.5.2. The Catch clause...140
19.5.3. Catch a remote-exception ...141
19.5.4. The Timeout exception ...141
19.5.5. The catch all handler...141
19.5.6. The catch any clause ...142

19.6. Test verdict operations ...142
19.6.1. Test case verdict..143
19.6.2. Verdict values and overwriting rules ..143

19.7. Default Handling ..144
19.7.1. The default mechanism...144
19.7.2. Default references ...145
19.7.3. The activate operation...145
19.7.4. The deactivate operation...145

20. Expressions... 146
20.1. Boolean expressions..146

20.1.1. Conditional ? operator ..146
20.2. Primary expressions ...147
Page 6 of 9

20.2.1. Self ... 147
20.2.2. Parenthesized expressions.. 147

20.3. Typecast expressions.. 147
20.3.1. Value typecasts ... 147
20.3.2. Variable typecasts... 147

20.4. Component instance creation expressions... 148
20.4.1. Initializing the test component... 148
20.4.2. Component instance... 149

20.5. Field access expressions... 149
20.5.1. Field access using an object reference ... 150
20.5.2. Accessing inherited members .. 150

20.6. Method invocation expressions... 150
20.6.1. Invocation of functions .. 151
20.6.2. Execution of test cases ... 151
20.6.3. Determining the method... 152
20.6.4. Choose the most specific method... 153

20.7. References for data objects ... 153
20.7.1. Array references... 153
20.7.2. Record references... 153
20.7.3. String references .. 154

20.8. Assignments.. 154
20.8.1. Assignment rules for array types ... 155
20.8.2. Assignment rules for string types... 156

21. Object-based programming.. 156
21.1. Class templates... 156

21.1.1. Class template definition.. 158
21.1.2. Class template instantiation ... 158
21.1.3. Template arguments for non-generic type parameters ... 160
21.1.4. Member methods of class templates .. 160
21.1.5. Static members of class templates ... 160
21.1.6. Class template incarnations.. 161
21.1.7. Class template partial incarnations .. 163
21.1.8. Name resolution in class templates.. 163
21.1.9. Groups and class templates .. 163

21.2. Threads and operations... 163
21.2.1. Defining thread classes .. 164
21.2.2. The Priority field (informative).. 166
21.2.3. The Running operation... 167
21.2.4. The Start thread method ... 167
21.2.5. The Stop thread method ... 168
21.2.6. The Done operation.. 169
21.2.7. The MTC, System , Sender and Self operations .. 169

22. Communication operations .. 169
22.1. Connection Points .. 170

22.1.1. Simple connectable object ... 170
22.2. Interface references ... 171

22.2.1. Interface typecast ... 171
22.3. General format of communication operations .. 171

22.3.1. General format of the sending operations .. 171
22.3.2. General format of the receiving operations.. 172

22.4. Message-based communication .. 172
22.4.1. The Send operation .. 173
22.4.2. The Receive operation ... 173
22.4.3. The Trigger operation .. 174

22.5. Operation templates ...175
22.5.1. Templates for invoking procedures...175
22.5.2. Templates for accepting operation invocations ..176
22.5.3. In-line assignments for invoking operations...176

22.6. Procedure-based communication..177
22.6.1. The Call operation ..177
22.6.2. Determining the method ...179
22.6.3. The Synchronize operation ...179

22.7. Interceptors ...180
22.8. Channel controlling operations ...181

22.8.1. The Bind method ..181
22.8.2. The Release method..182
22.8.3. The Clear channel operation ...182
22.8.4. The Start channel operation ..183
22.8.5. The Stop channel operation ..183
22.8.6. Use of any and all with channels ..183

23. Timers and operations... 183
23.1. Timers as parameters...184
23.2. Timer class methods ...184

23.2.1. The Start timer operation ..185
23.2.2. The Stop timer method ...186
23.2.3. The Read timer method ..186
23.2.4. The Running timer operation..187
23.2.5. The Timeout operation..187
23.2.6. Summary of use of any and all with timers ..187

24. Specifying attributes.. 188
24.1. Display attributes ...189
24.2. Encoding of values..189

24.2.1. Encode attributes ..189
24.2.2. Variant attributes ...189
24.2.3. Special strings ...189
24.2.4. Invalid encodings..190

24.3. Extension attributes ...190
24.4. Scope of attributes ..190
24.5. Overwriting rules for attributes..190
24.6. Changing attributes of imported language elements ..190

25. The System module.. 191
25.1. The Group System.lang ...191

25.1.1. The Class TNumber ..191
25.1.2. The Class TInteger..191
25.1.3. The Class TFloat...194
25.1.4. The Class TDouble ...195
25.1.5. The Class TBitString ..196
25.1.6. The Class TBitStringBuffer ..197
25.1.7. The Class TOctetString...198
25.1.8. The Class TOctetStringBuffer ..198
25.1.9. The Class THexString...199
25.1.10. The Class THexStringBuffer ..200
25.1.11. The Class TCharString..201
25.1.12. The Class TCharStringBuffer ...201

25.2. The Group System.io..202
25.2.1. The Class DataInputStream ..202

25.3. Predefined functions...203
Page 8 of 9

25.3.1. Number of elements in a structured type ... 203
25.3.2. The IsPresent function ... 203
25.3.3. The IsChosen function ... 203
25.3.4. The LowerBoundary function.. 203
25.3.5. The UpperBoundary function .. 203

26. ATDL BNF and static semantics .. 204
26.1. ATDL grammars.. 204

26.1.1. ATDL terminals.. 204
26.1.2. Meta-language for graphical grammar... 205
26.1.3. Static and dynamic objects... 205

26.2. ATDL syntax BNF productions .. 206
26.2.1. ATDL Module .. 206
26.2.2. Module Definitions Part... 207
26.2.3. Control Part .. 214
26.2.4. Type.. 217
26.2.5. Value... 217
26.2.6. Parameterisation... 219
26.2.7. With Statement... 219
26.2.8. Statement Blocks.. 219
26.2.9. Behavior Statements .. 220
26.2.10. Basic Statements .. 221
26.2.11. Miscellaneous productions... 224

27. An INRES example ... 225

1. Scope
The present document defines the Core Language of ATDL. ATDL can be used for the
specification of all types of reactive system tests over a variety of communication ports. Typical
areas of application are protocol testing (including mobile and Internet protocols), service testing
(including supplementary services), module testing, testing of CORBA based platforms, APIs
etc. ATDL is not restricted to conformance testing and can be used for many other kinds of testing
including interoperability, robustness, regression, system and integration testing. The
specification of test suites for physical layer protocols is outside the scope of the present
document.

While the design of ATDL has taken the eventual implementation of ATDL translators and
compilers into consideration the means of realization of executable test suites (ETS) from
abstract test suites (ATS) is outside the scope of the present document.

2. References
The following documents contain provisions which, through reference in this text, constitute
provisions of the present document.

[1] ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test
Control Notation version 3; Part 1: TTCN-3 Core Language".

[2] Stroustrup, Bjarne. The C++ Progamming Language, 2nd ed. Addison-Wesley, Reading,
Massachusetts, 1991, reprinted with corrections January 1994, ISBN 0-201-53992-6.

[3] ISO/IEC 9646-1 : Information technology - Open Systems Interconnection - Conformance
testing methodology and framework - Part 1: General concepts, 1994.

(See also ITU-T Recommendation X.290 : 1995)

[4] ISO/IEC 9646-2 : Information technology - Open Systems Interconnection - Conformance
testing methodology and framework - Part 2: Abstract test suite specification, 1994. (See
also ITU-T Recommendation X.291 : 1995)

[5] ISO/IEC 9646-3 (1998): "Information technology - Open Systems Interconnection -
Conformance testing methodology and framework - Part 3: The Tree and Tabular
Combined Notation (TTCN)".

[6] ISO/IEC 646, Information technology - ISO 7-bit coded character set for information
interchange, 1991.

[7] ISO/IEC 10646-1, Information technology - Multiple-Octet Coded Character Set (UCS) -
Part 1: Architecture and Basic Multilingual Plane, 1993.

[8] ITU-T Recommendation X.680: "Information technology - Abstract Syntax Notation One
(ASN.1): Specification of basic notation".

[9] ITU-T Recommendation X.681: “ Information Technology - Abstract Syntax Notation One
(ASN.1) - Part 2: Information Object Specification”, 1994.

[10] ITU-T Recommendation X.682: "Information technology - Abstract Syntax Notation One
(ASN.1): Constraint specification".

[11] ITU-T Recommendation X.683: "Information technology - Abstract Syntax Notation One
(ASN.1): Parameterization of ASN.1 specifications".

[12] ISO/IEC 8859-1: "Information technology - 8-bit single-byte coded graphic character sets
- Part 1: Latin alphabet No. 1".

[13] ITU-T (CCITT) Recommendation X.722, Guidelines for the definition of Managed
Objects, January 1992. (Also ISO/IEC 10165-4.)

[14] ITU-T Recommendation X.690: "Information technology - ASN.1 encoding rules:
Specification of Basic Encoding Rules (BER), Canonical Encoding Rules (CER) and
Distinguished Encoding Rules (DER)".

[15] [MSC96] ITU-T Recommendation Z.120: Message Sequence Chart (MSC). ITU-TS,
Geneva, October 1996.

[16] ITU-T Recommendation X.660 (1992): "Information technology - Open Systems
Interconnection - Procedures for the operation of OSI Registration Authorities: General
procedures".

[17] [SDL92] ITU Rec. Z.100, Specification and Description Language SDL, ITU-T (03/
1993).

[18] ITU Recommendation Z.100, Specification and Description Language SDL, ITU-TS,
Geneva, November 1999.

[19] ISO/IEC 6429 (1992): "Information technology - Control functions for coded character
sets".

[20] [TRI] ETSI TR 102 043: Methods for Testing and Specification (MTS); The TTCN-3
Runtime Interface(TRI); Concepts and definition of the TRI, April 2002.

[21] [OSI] ISO/IEC 7498-1 : Information technology - Open Systems Interconnection - Basic
Reference Model - Part 1: The Basic Model, 1995. (Also ITU-T Rec. X.200 : 1994.)

[22] [ROSE] ITU-T Recommendation X.880, Information technology — Remote Operations:
Concepts, model and notation, 1994. (See also ISO/IEC 13712-1:1995)

[23] [ODP-3] ITU-T Recommendation X.903, Basic Reference Model of Open Distributed
Processing, ‘Part3: Architecture’, February 1995.

(See also ISO/IEC 10746-3)

[24] [ODL] Object Management Group, Draft of ITU Object Definition Language, (obtained
via ftp://ftp.omg.org/pub/docs/telecom/98-02-10).

[25] Object Management Group, The Common Object Request Broker: Architecture and
Specification, Revision 2.0, Object Management Group, July 1995.

[26] [COMP] Object Management Group, CORBA Components, Version 3.0, June 2002.

[27] IEEE Standard for Binary Floating-Point Arithmetic, ANIS/IEEE Std 754-1985.

[28] [INRES] Dieter Hogrefe, OSI formal specification case study: the INRES protocol and
service, IAM-91-012, 1991.

[29] ITU-T (CCITT) Recommendation X.722, Guidelines for the definition of Managed
Objects, January 1992. (Also ISO/IEC 10165-4.)

[30] [UML] Object Management Group, OMG Unified Modeling Language Specification 1.3
(draft), OMG Document Number: ad/99-02-01, January 1999.

3. Definitions and abbreviations

3.1. Definitions
For the purposes of the present document, the terms and definitions given in ISO/IEC 9646-1 [3]
and ISO/IEC 9646-3 [4] and the following apply:

actual parameter: A specific value corresponding to a formal parameter.

argument: see actual parameter.

association contract: A description of a connection among instances of components.
Page 2 of 226

Boolean expression: An enumeration whose values are true and false.

branch: An element in a statement diagram or an ETSC diagram in which a single node leads to
more than one possible outgoing path, each with its own guard condition.

BTSC diagram: A diagram that shows object interactions arranged in time sequence.

call: To invoke an operation.

channel: A tuple of interface object references that is an instance of an association contract or an
exception.

class: The descriptor for a set of objects that share the same fields, methods, contracts, and
behavior.

class member: The fields and methods of a class are called its members.

class method: A class method is a method that operates on classes instead of objects.

co-class: An abstract or physical, replaceable part of a system that packages implementation and
conforms to and provides the realization of a set of co-interfaces.

co-class diagram: A diagram that shows the organizations and dependencies among co-class
types.

co-class instance: A co-class instance is an instance that originates from a co-class.

co-interface: A point within a testing environment where the occurrence of test events is to be
controlled and observed, as defined in an Abstract Test Method.

communication operation: Operations such as send and call are collectively known as
communication operations. These operations shall only be used in ATDL test cases and functions.

compatible type: ATDL is strongly typed, and the language requires type compatibility.
Variables, constants, constraints etc. have compatible types if they resolve to the same base type
and, in the case of assignments, matching etc., no sub-typing (e.g., ranges, length restrictions) is
violated.

component: Threads, passive objects and co-objects are referred to collectively as components.

component type: A model element that describes behavioral and structural features. Kinds of
components include class, thread class and co-class. Classes are the most general kind of
component. Most properties of classes apply to components, in general, with certain restrictions
for each kind of component.

component instance diagram: A component instance diagram is a graph of instance symbols
representing component instance and channels representing contract instance.

component reference: Thread object references, object references and co-object references are
referred to collectively as component references.

configuration diagram: A configuration diagram presents either a test configuration at
specification level, which contains a set of inter-connected test components, as well as their
required relationships given in a particular context, or it presents a test configuration at instance
level with a collection of component instances and their relationships.

constructor: A component-scope method that creates and initializes an instance of a component.

control icons: Optional symbols that provides convenient shortcut notation for various control
patterns.

Coordination Signal (CS): An item of structured information which may be transferred from
one Test Component to another at a cp-interface.

cp-interface: An interface within a testing environment, assigned to two Test Components in a
Test Component Configuration, where CSs may be exchanged synchronously or asynchronously
between these Test Components.

creation: The instantiation and initialization of an object or other instance.

deployment diagram: A diagram that shows the configuration of run-time groups and the co-
class instances and objects that live on them.

dependency: A relationship between two components in which one component (the client)
requires the presence of another component (the server) for its correct functioning or
implementation.

destructor: A destructor is a special method that destroys the object where it is called and de-
allocates its memory.

ETSC diagram: A diagram that shows an ETSC graph.

event: The specification of a noteworthy occurrence that has a location in time and space.

exception: A message raised in response to behavioral faults by the underlying execution
machinery.

expression: A string that encodes a statement to be interpreted by a given language.

formal parameter: The specification of a variable that can be changed, passed, or returned. A
parameter may include a name, type, and direction.

function: Functions are methods which may return a value.

group: A general-purpose mechanism for organizing elements into groups. Groups may be
nested within other groups.

group instance: A group instance is an instance of a component group.

guard condition: A condition that must be satisfied in order to enable an associated guarded
statement to fire.

guarded statement: A guarded statement will perform specified statements when an optional
specified event occurs and specified guard conditions are satisfied.

implementation: A definition of how something is constructed or computed. For example, a
thread class or class is an implementation of a co-class; a method is an implementation of an
operation.

import: A stereotype of the permission dependency in which the names of the elements in the
supplier module are added to the namespace of the client module.

inheritance: The mechanism by which more specific elements incorporate structure and
behavior defined by more general elements.

in-line reference: an inline expression whose constituent is a single block or TSC reference.

interface: A place within a testing environment, assigned to two Test Components in a Test
Component Configuration, where signals may be exchanged synchronously or asynchronously
between these Test Components.

interface typecast: An interface typecast dynamically queries a given object and returns an
interface reference to the object.

join: A place in a statement diagram, or ETSC diagram at which two or more statement blocks or
TSC references combine to yield one statement block or TSC reference.

length restriction: Where a length restriction is used, the set of values for a type defined by this
restriction shall be a true subset of the value defined by the base type.
Page 4 of 226

location: The physical placement of a run-time entity, such as an object or a co-class instance,
within a distributed environment. In ATDL, location is discrete and the units of location are
groups.

lock: The built-in mechanism of a thread that prevents the execution of other threads from using
that object instance.

main thread component [MTC]: The single Test Thread in a Test Component Configuration
responsible for creating and controlling Parallel Test Threads and computing and assigning the
test verdict.

merge: A place in a state diagram, or ETSC diagram where two or more alternate control paths
come together. Antonym: branch.

message: The specification of an asynchronous communication between objects.

message-based communication: A message stimulus is an asynchronous communication
between two instances that conveys information with the expectation that action will ensue.

message-based interface: An interface serves to name a collection of messages.

message event: An event that is the receipt by an object of a message sent to it.

method: Test cases and functions are referred to collectively as methods.

module: A self-contained collection of ATDL objects. All referenced objects are either explicitly
defined in the Module, are imported from other sources or are defined as external objects in the
module.

object: A discrete entity with a well-defined boundary and identity that encapsulates state and
behavior; an instance of a class.

operation: An operation is a specification of a transformation or query that an object may be
called to execute.

operation attribute: The operation attribute specifies which invocation semantics the
communication service must provide for invocations of a particular operation.

operational co-interface: A named set of operations that characterize the behavior of a co-class.

operational cp-interface: An operational cp-interface defines methods that can be implemented
by a class or thread.

ordinal type: An ordinal type defines an ordered set of values in which each value except the
first has a unique predecessor and each value except the last has a unique successor.

parallel thread component [PTC]: Test thread object created by the main thread component.

procedure: Operations, testcases and functions are referred to collectively as procedures.

procedure template: Method templates and generic operations are referred to collectively as
procedure templates.

realization: The relationship between a specification and its implementation.

receive: To handle a message instance passed from a sender object.

record type: The sequence, set and choice types are collectively referred to as record types.

reference: A denotation of a model element, commonly called a pointer. Reference is a
relationship between elements at the same level of detail or between elements in different
containers. For a reference to be possible, the component performing the reference must have
visibility to the component being referenced.

root type: basic type, structured type, special data type, special configuration type or special
default type to which the user-defined ATDL type can be traced back.

routine: Test cases, altsteps and functions are referred to collectively as routines.

self-exception: A self-exception can carry an error message, from an object to itself. It transfers
control to the innermost exception handler that can handle exceptions of the given component.

send: To create a message instance by a sender object and to transfer it to a receiver object in
order to convey information.

signal: The conveyance of information from one object (or other instance) to another. A signal
may be a message or the call of an operation.

signature: The name and formal parameter properties of a signal, such as an operation or
message. A signature may include optional return types (for operations, not for messages).

snapshot: A collection of objects, channels, and values that forms the configuration of a system
at an instance during its execution. ATDL operational semantics assume that the status of any of
the events cannot change during the process of trying to match one of a set of alternatives.

specification: A declarative description of what something is or does. For example, a thread class
or a co-interface is a specification. Contrast: implementation.

statement block: A statement block is a sequence of statements and local declaration statements
within braces.

statement diagram: A diagram that shows a statement graph. Contrast: statement block.

static field: Class variables and constant fields are referred to collectively as static fields.

strong typing: strict enforcement of type compatibility by type name equivalence with no
exceptions.

synchronize event: The event of receiving a call for an operation that is implemented by the
object in which the operation is called.

task: An executable atomic computation that results in a change in the state of the model or the
return of a value.

template: ATDL templates are specific data structures for testing; used to either transmit a set of
distinct values or to check whether a set of received values matches the template specification.

testcase: See ISO/IEC 9646-1 [3].

thread class: A thread class is a class whose instances are thread objects.

thread-local field: A thread-local variable is also called a thread-local field.

thread object: An object that owns a thread of control and can initiate control activity; an
instance of a thread class.

timeout event: An event that denotes the passage of a given amount of time.

type: A type declaration specifies an identifier that denotes a type.

view: A projection of a model, which is seen from on perspective or vantage point and omits
entities that are not relevant to this perspective.

virtuality: As with fields, methods in ATDL may be decorated with visibility modifiers and
virtuality modifiers. The virtuality modifiers are static, virtual, and abstract.

visibility: An enumeration whose value (public, protected, or private) denotes whether the model
element to which if refers may be seen outside its enclosing namespace.

3.2. Abbreviations
For the purposes of the present document the following abbreviations apply:
Page 6 of 226

ANSI American National Standards Institute
AODL Abstract Object Definition Language
API Application Programming Interface
ARI ATDL Runtime Interface
ASCII American Standard Code for Information Interchange
ASN.1 Abstract Syntax Notation One
ASP Abstract Service Primitive
ATDL Abstract Test Description Language
ATDL/gr ATDL Graphic Representation
ATS Abstract Test Suite
ATSC Abstract Test Sequence Chart
BER Basic Encoding Rules
BTSC Basic Test Sequence Chart
BNF Backus-Nauer Form
COM Component Object Model
CORBA Common Object Request Broker Architecture
CP Coordination Point
CPU Central Processing Unit
EBNF Extended Backus-Nauer Form
ETSC Extended Test Sequence Chart
ETSI European Telecommunications Standard Institute
FIFO First In First Out
GDMO Guidelines for the Definition of Managed Objects
GORBA Generic Object Request Broker Architecture
IDL Interface Definition Language
ISO International Standardization Organization
ITU International Telecommunications Union
IUT Implementation Under Test
MSC Message Sequence Chart
MTC Master Thread Component
NaN Not-a-Number
ODL Object Definition Language
ODP Open Distributed Processing
OMG Object Management Group
ORB Object Request Broker
OSI Open System Interconnection
PDU Protocol Data Unit
(P)ICS (Protocol) Implementation Conformance Statement
(P)IXIT (Protocol) Implementation eXtra Information for Testing
PTC Parallel Thread Component
ROS Remote Operation Service
SDL Specification and Description Language
SUT System Under Test
TRI TTCN-3 Runtime Interface
TSC Test Sequence Chart
TSO Test Suite Operation
TTCN Tree and Tabular Combined Notation
TTCN-3 The Testing and Test Control Notation version 3
UML Unified Modeling Language

4. Introduction
The compact test notation, Abstract Test Description Language (ATDL), defines a framework
and methodology for conformance testing [3] of implementations of OSI and ITU protocols.
ATDL is a general-purpose, concurrent, component-based, object-oriented language. It is
designed to be simple enough that many programmers can achieve fluency in the language.
ATDL is strongly related to TTCN [1, 5] but is organized rather differently, with a number of
aspects of TTCN omitted and a few ideas from other languages included.

ATDL is a high-level, compiled, strongly typed language that supports structured and object-
oriented design. Its benefits include easy-to-read code, quick compilation, and the use of multiple
module files for modular programming.

The ATDL is a compact notation being developed for the specification of test cases at a level that
is abstracted from the architecture of any real test system that these test cases may eventually be
run on. This thesis specifies requirements on what a test suite standard may specify about a
conforming realization of the test suite, including the operational semantics of ATDL test suites.

4.1. General
TTCN was designed from the beginning with OSI-based protocol conformance testing in mind
and even TTCN-2[5] was not adequate for various kinds of testing. Therefore a more flexible and
powerful test description language was called for. In October 2000, TTCN-3 [1] was approved in
ETSI. TTCN-3 is a significant improvement over TTCN-2 in precision, expressiveness and
capability to meet emerging testing needs.

The test features provided with ATDL allow you to submit your application to a robust test
campaign. Each feature uses a different approach to the software testing problem, from the use of
test drivers stimulating the code under test, to source code instrumentation testing internal
behavior from inside the running application.

ATDL retained the proven features of TTCN-3 but was designed to provide the new features
listed above. ATDL is designed to bring object-oriented programming techniques to software
testing and is applicable to both object-oriented and procedural source code.

ATDL is a general-purpose, concurrent, class-based and object-oriented language. It is designed
to be simple enough that many programmers can achieve fluency in the language. ATDL is
strongly related to TTCN but is organized rather differently, with a number of aspects of TTCN
omitted and a few ideas from other languages included. It allows the use of different graphical
presentation (display) formats. Apart from the tabular (conformance testing) presentation format
known from TTCN-2, the development of an SDL-like (Specification and Description Language)
graphical presentation format appears to be of special interest and therefore is part of our work.

ATDL is a flexible, powerful and object-oriented language applicable to the specification of all
types of reactive system tests over a variety of communication interfaces. ATDL retained the
proven features of TTCN-3 but was designed to provide many new features. ATDL is on
syntactical (and methodological) level a drastic change to TTCN-3, however, the main concepts
of TTCN-3 have been retained and improved and new concepts have been included, so that
ATDL will be applicable for a broader class of systems. Improved concepts are, e.g., the
integration of ASN.1 [8], replacement of the test component construct with the thread class
construct, and replacement of abstract test system interface and address type concepts of TTCN-3
with multiple co-interface co-class type concepts.

The major contribution of this thesis is the design of a test description programming language
with explicit support for interactions with an external environment. AODL allows you to create
and use interfaces and co-interfaces in your application. Interfaces are a way extending the
single-inheritance model of the ATDL by allowing a single class to implement more than one
interface, and by allowing several classes descended from different bases to share the same
interface. Co-interfaces are useful when sets of operations, such as streaming, are used across a
Page 8 of 226

broad range of objects. Co-interfaces are also a fundamental aspect of the COM (Component
Object Model) and CORBA [25] distributed object models.

Compared to TTCN-3, the ATDL defined herein has been extended in the areas of object-oriented
data, harmonization of a number of features to make the language simpler. The overall design
goal of simplicity through generality has been achieved for the extended language, and the
conformance of the textual core language with the principles of abstraction, correspondence and
data type completeness has been preserved for the extended language.

ATDL has brought together many of the divergent, yet similar programming languages in the ITU
domain [1, 8, 15, 17, 29] and CORBA [25] into a single model. The goals of the unification
efforts were to keep it simple, to cast away elements of existing ASN1, SDL, TTCN and MSC
that didn’t work in practice, to add elements from other methods that were more effective, and to
invent new only when an existing solution was not available.

It should be made clear that ATDL not a radical departure from MSC, TTCN, ODL, or SDL, but
rather the legitimate successor to all of them. ATDL is more expressive yet cleaner and more
uniform than MSC, SDL, and TTCN. This means that there is value in moving to ATDL, because
it will allow projects to model things they could not have done before. Users of most other
methods and modeling languages will gain value by moving to the ATDL, since it removes the
unnecessary differences in notation and terminology that obscure the underlying similarities of
most of these approaches. ATDL has then laid the foundations for a new version of TTCN-3 by
drawing together a range of ideas under one umbrella. It finished by presenting the concrete
textual grammar of two new proposed language features: AMSC and AODL.

The basic notion is relatively simple. ATDL is, in some sense, a combination of an Interface
Definition Language and a “regular” programming language. The OMG has adopted a series of
technical services (CORBA and CORBA Services) and a way to exchange designs between
analysis and design tools (UML). What is lacking is the application architecture, technology and
specification mechanism that specializes these designs and services for distributed component
testing applications. The Generic ORB Architecture (GORBA) and ATDL provide this layer.

4.1.1. The core language and presentation formats
A main advantage of the graphical representation is its clear graphical layout, which immediately
gives an intuitive understanding of the described behavior. Using graphical representation format
may considerably improve the readability of test cases and make them more understandable.
ATDL has succeeded in further broadening the horizons of the TTCN-3 model. ATDL is an
evolution from SDL, MSC, UML, and many other sources. The ATDL graphical notation is a
melding of graphical syntax from various sources, with a number of symbols removed and with a
few new symbols added. This thesis has succeeded in bringing UML ideas to ATDL and in
making these ideas more efficiently implement-able under Generic ORB Architecture.

There are several new concepts that are included in ATDL, including

1) statement diagrams

2) EMSC diagrams

3) configuration diagrams at specification level and instance level, and

4) interfaces, co-interfaces and co-classes.

Many of these ideas were present in various individual methods and theories but ATDL brings
them together into a coherent whole.

In addition to the pure textual format, ATDL will define at least three graphical presentation
formats: a tabular conformance testing presentation format that resembles the tabular form of
TTCN-2, a graphical presentation format that resembles the graphical form of SDL [SDL92], and
an MSC presentation format that supports the presentation but also development of ATDL test
cases on MSC level [MSC96]. All of them can be mappable readily to and from the ATDL textual

grammar for the corresponding concepts. In particular, the graphical form of ATDL and the
textual form of ATDL are equivalent at semantic level.

4.1.2. Differences between TTCN-3 and ATDL
The advantages of language stability began to be outweighed by the need to update ATDL to
support and better match other languages that are frequently used in combination with ATDL.
Also modern tools and techniques have made it practical to generate software more directly from
ATDL specifications, but further significant gains could be acquired by incorporating better
support for this use in ATDL. While ATDL is largely an upgrade of TTCN-3, it was decided that
some incompatibility with TTCN-3 was justified; otherwise the resulting language would have
been too large, too complex and too inconsistent. This sub-clause provides information about the
changes.

Changes have been made in a number of areas, which focus on simplification of the language,
and adjustment to new application areas:

a) Adjustment of syntactical conventions to other languages with which ATDL is used;
b) Harmonization of the concepts of thread, class and co-class to be based on “component”;
c) Interface descriptions that conform to the CORBA object model and the UML meta-model;
d) Direct containment of groups and components in groups;
e) Replacement of the test component construct with the thread class construct;
f) New model for data;
g) Constructs to support the use of ASN.1 with ATDL previously in TTCN-2.

Compared to TTCN-3 as defined in [1], the ATDL defined herein has been extended in the areas
of object-oriented data, harmonization of a number of features to make the language simpler, and
features to enhance the usability of ATDL with other languages such as ASN.1, CORBA, ITU-T
ODL (Z.130) and UML. Other minor modifications have been included. Though care has been
taken not to invalidate existing TTCN-3 documents; some changes may require some
descriptions to be updated to use the ATDL.

The major extensions were in the area of object orientation. While TTCN-3 is component based
in its underlying model, some language constructs had been added to allow ATDL to more
completely and uniformly support the object paradigm:

a) Thread class, class and co-class types;
b) Thread class, class, co-class and group instances based on types;
c) Parameterization of types by means of context parameters of a constructor;
e) Specialization of types, and redefinition of virtual functions and test cases.

ATDL supports three kinds of class types. Co-class types are supported for backward
compatibility with ITU-ODL. All ITU-ODL object templates are ATDL co-classes. Class types
are supported for backward compatibility with object-orientated programming languages. All
Java classes are ATDL classes. Thread class types are supported for backward compatibility with
TTCN. All TTCN test components can be easily mapped to ATDL thread classes.

Unlike Java, which was designed to restrain programmers into making "correct" object-oriented
design choices, ATDL can adapt to any paradigm.

Some of the definitions of TTCN-3 were extended considerably, e.g. port definition. It should be
noted that the extensions were used for utilizing the power introduced by the object oriented
extensions, e.g. to use implementation and inheritance for interfaces and/or co-interfaces.

On the syntactic level, ATDL is case-sensitive. Keywords of ATDL that are not keywords of
TTCN-3 are:

bind, break, cardinal, choice, class, co, constructor, continue, destructor, final,
implements, inherited, interface, members, operation, overload, private,
protected, public, raises, real, release, requires, sequence, supports, synchronize,
synchronized, thread, try, uses, virtual, wide.
Page 10 of 226

The following keywords of TTCN-3 are not keywords in ATDL:

address, and4b, check, component, connect, disconnect, execute, getcall,
getreply, goto, interleave, length, map, match, message, mixed, not4b, nowait, on,
or4b, param, port, procedure, record, repeat, reply, runs, signature, subset,
superset, to, union, universal, unmap, valueof, xor4b.

A small number of constructs of TTCN-3 are not available in ATDL: port type definitions,
component type definitions, test system interface definitions, representation of configuration.
These constructs were not compatible with the CORBA object model and the UML meta-model,
and the overhead of keeping them in the language and tools did not justify their retention.

4.2. ATDL overview
This chapter presents a brief walkthrough of ATDL concepts and diagrams using a simple
example. The purpose of the chapter is to organize the high-level ATDL concepts into a small set
of views and diagrams that present the concepts visually. It shows how the various concepts are
used to describe a system and how the views fit together.

4.2.1. ATDL views
There is no sharp line between the various concepts and constructs in ATDL, but, for
convenience, we divide them into several views. A view is simply a subset of ATDL modeling
constructs that represents one aspect of a system.

Structural classification describes the things in the system and their relationships to other things.

Dynamic behavior describes the behavior of a system over time. Behavior can be described as a
series of changes to snapshots of the system drawn from the static view. Dynamic behavior views
include the activity view, ETSC view and basic interaction view.

4.2.2. Statement diagram
The operational semantics of ATDL is based on the interpretation of flow graphs. In this report
flow graphs are introduced (see statement diagram), the construction of flow graphs representing
ATDL module control, test cases, and functions is described, and the construction of flow graphs
representing the handling of messages, remote procedure calls, replies to remote procedure calls
and exceptions is described.

4.2.3. Implementation view
The implementation view models the co-classes in a system i.e., the software units from which
the application is constructed. The implementation is displayed on co-class diagrams. There are

Table 1: ATDL Views and Diagrams

Major
Area Views and Diagrams Main Concepts

st
ru

ct
ur

al

static view: configuration diagram at
specification level

component, cp-interface, co-interface,
inheritance, dependency, realization

implementation view: co-class diagram co-class, co-interface, dependency,
realization

instance and deployment view:
configuration diagram at instance level

group instance, component instance,
channel, dependency, location

dy
na

m
ic activity

view
statement diagram alternative, join, guarded statement, event
ETSC diagram control icons, in-line reference

interaction view BTSC diagram task, instance, signal, activation

three user interfaces: one each for customers using a kiosk, clerks using the on-line reservation
system, and supervisors making queries about ticket sales. The co-class diagram shows the kinds
of co-classes in the system; a particular configuration of the application may have more than one
copy of a co-class.

A small circle with a name is a co-interface. A solid line from a co-class to a co-interface
indicates that the co-class provides the services listed in the co-interface. A dashed arrow from a
co-class to a co-interface indicates that the co-class requires the services provided by the co-
interface. For example, subscription sales and group sales are both provided by the ticket seller
co-class; subscription sales are accessible from both kiosks and clerks, but group sales are only
accessible from a clerk.

4.3. Static view
The static view is the foundation of ATDL. The elements of the static view of a model are the
concepts that are meaningful in an application, including all kinds of concepts found in systems.

4.3.1. Relationships
Relationships among components are association contract, inheritance, and various kinds of
dependency, including realization and usage (see Table 2).

The contract relationship describes semantics connections among individual objects of given
components. Contracts provide the connections with which instances of different components can
interact. The remaining relationships relate the descriptions of components themselves.

The inheritance relationship relates general descriptions of parent components (super-classes) to
more specialized child components (subclasses). Generalization facilitates the description of
components out of incremental declaration pieces, each of which adds to the description inherited
from its ancestors. The inheritance mechanism constructs complete descriptions of components
from incremental descriptions using generalization relationships.

The realization relationship relates a specification to an implementation. The realization
relationship connects a component, such as a class, to another model element, such as an
interface, that supplies its behavioral specification but not its structure or implementation.

A cp-interface or a co-interface is a specification of behavior without implementation; a class
includes implementation structure. One or more classes may realize an interface, and each class
implements the operations found in the interface or co-interface.

Table 2: Kinds of Relationships

Relationship Function Graphical notation
association
contract

A description of a connection among
instances of components

dependency A relationship between two components,
A situation in which one component
requires another for its correct functioning

inheritance A relationship between a more general
description and a more specific variety of
the general thing, used for inheritance

realization Relationship between a specification and
its implementation
Page 12 of 226

4.4. ATDL grammars
ATDL gives a choice of two different syntactic forms to use when representing a system: a
Graphic Representation (ATDL/gr), and a textual Phrase Representation (ATDL/pr). As both are
concrete representations of the same ATDL semantics, they are equivalent at semantic level.

A subset of ATDL/pr is common with ATDL/gr. This subset is called common textual grammar.

Figure 1 shows the relationships between ATDL/pr, ATDL/gr and the concrete grammars.

Figure 1. ATDL grammars

Each of the concrete grammars has a definition of its own syntax and of its relationship to the
semantics of ATDL. This approach will ensure that ATDL/pr and ATDL/gr are equivalent.

The syntax productions of ATDL are specified in section 26.2. As an aid to clarifying the ATDL
description, many syntax productions are embedded in the text of the body of this document. To
aid readability some productions will appear in several places in the text. The syntax productions
embedded within the text are intended to be identical copies of the corresponding productions
from section 26.2, but if there is any conflict section 26.2 shall take precedence.

4.5. Unanimity of the specification
The language is specified syntactically and semantically in terms of a textual description in the
body of the current document (clauses 5 to 24) and in a formalized way in Chapter 26. In each
case, when the textual description is not exhaustive, the formal description completes it. If the
textual and the formal specifications are contradictory, the latter shall take precedence.

4.6. Conformance
The present document does not specify levels of implementation for the language. However, for
an implementation claiming to conform to this version of the language, all implemented features
of the present document shall be consistent with the requirements given in the present document.

NOTE: This does not prevent any conformant implementation to realize extra features
not specified in the present document.

Common textual grammar
Graphical grammar

Textual grammar

ATDL/gr

ATDL/pr

4.7. Comparison of ATDL, C++ and Java
As a Java programmer, you already have the basic idea of object-oriented programming, and the
syntax of ATDL no doubt looks familiar to you. This makes sense since ATDL is semantically a
superset of Java. However, there are a surprising number of differences between ATDL and Java.
These differences are intended to be significant improvements, and if you understand the
differences you’ll see why ATDL is such a beneficial programming language.

1. ATDL has both kinds of comments like Java and C++ do.

2. Class definitions are roughly the same form in ATDL and Java as in C++, but there’s no
closing semicolon.

3. ATDL and Java, like C++, have primitive types for efficient access. All the primitive types
have specified sizes that are machine independent for portability. Type-checking and type
requirements are much tighter in ATDL and Java.

4. The ATDL wide char type uses the international 16-bit Unicode character set, so it can
automatically represent most national characters.

5. ATDL uses modules and groups in place of namespaces. The name issue is taken care of
by putting everything into a class and by using a facility called “groups” that performs the
equivalent namespace breakup for class names.

6. There are no ATDL and Java pointers in the sense of C++. When you create an object with
create, you get back a reference.

7. ATDL has constructors that are similar to constructors in C++ and Java. You get a default
constructor if you don’t define one, just like in C++ and Java.

8. ATDL has method overloading that works virtually identically to C++ function and Java
method overloading.

9. There’s no goto in ATDL and Java. The one unconditional jump mechanism is the break
label or continue label, which is used to jump out of the middle of multiply-nested loops.

10. ATDL and Java use a singly-rooted hierarchy, C++ appears to be the only object-oriented
language that does not impose a singly rooted hierarchy.

11. Java has no templates or other implementation of parameterized types. Templates are a
wonderful feature of ATDL and C++. The collections in Java don’t have the same kind of
efficiency as template implementations would allow.

12. ATDL and Java have built-in multi-threading support. Mutual exclusion occurs at the level
of objects using the synchronized keyword as a type qualifier for methods. Only one
thread may use a synchronized method of a particular object at any one time. Put another
way, when a synchronized method is entered, it first “locks” the object against any other
synchronized method using that object and “unlocks” the object only upon exiting the
method. There are no explicit locks; they happen automatically.

13. Instead of controlling blocks of declarations like C++ does, the access specifiers in ATDL
and Java are placed on each definition for each member of a class. Without an explicit
access specifier, an element defaults to “friendly,” which means that it is accessible to
other elements in the same scope unit (equivalent to them all being C++ friends) but
inaccessible outside the scope unit.

14. Nested classes. In C++, nesting a class is an aid to name hiding and code organization (but
C++ namespaces eliminate the need for name hiding). ATDL grouping and Java
packaging provides the equivalence of namespaces, so that isn’t an issue.

15. Inheritance in ATDL has the same effect as in C++, but the syntax is different. ATDL uses
the extends keyword to indicate inheritance from a base class and the inherited keyword
to specify methods to be called in the base class that have the same name as the method
Page 14 of 226

you’re in. (However, the inherited keyword in ATDL allows you to access methods only
in the parent class, one level up in the hierarchy.) The base-class constructor is also called
using the inherited keyword.

16. Inheritance in ATDL doesn’t change the protection level of the members in the base class.
Also, overridden methods in a descendant class cannot reduce the access of the method in
the ancestor class.

17. ATDL provides the interface keyword, which creates the equivalent of an abstract base
class filled with abstract operations and with no data members. This makes a clear
distinction between something designed to be just an interface and an extension of
existing functionality via the extends keyword.

18. There’s no virtual keyword in Java because all non-static methods always use dynamic
binding. The reason virtual exists in ATDL and C++ is so you can leave it off for a slight
increase in efficiency when you’re tuning for performance.

19. ATDL and Java don’t provide multiple inheritance, at least not in the same sense that C++
does. The interface keyword takes care of combining multiple interfaces.

20. Run-time object type checking functionality in ATDL is quite similar to that in Java and
C++. The compiler automatically invokes the dynamic casting mechanism without
requiring extra syntax.

21. Exception specifications in ATDL and Java are vastly superior to those in C++. Instead of
the C++ approach of calling a function at run-time when the wrong exception is thrown,
ATDL and Java exception specifications are checked and enforced at compile-time. In
addition, overridden methods must conform to the exception specification of the base-
class version of that method: they can raise the specified exceptions. This provides much
more robust exception-handling code.

22. ATDL and Java have method overloading, but no operator overloading.

23. The const constructs in ATDL and C++ are absent in Java by convention. If you want the
equivalent of C++’s pass-by-value in Java, you call clone() to produce a local copy of the
argument (although the clone() mechanism is somewhat poorly designed). There’s no
copy-constructor that’s automatically called.

24. Since ATDL and Java can be too restrictive in some cases, ATDL and Java solve this with
external methods that allow you to call a function written in another language.

25. Generally, ATDL and Java are more robust, via:

- Object handles initialized to null (a keyword)

- Handles are always checked and exceptions are raised for failures

- Clean, relatively fool-proof exception handling

- Simple language support for multi-threading

ATDL is a fun language. Java and C++ programmers should have a relatively easy time learning
it, and will find that they enjoy using it.

5. Basic language elements

5.1. General
The top-level unit of ATDL is a module. A module cannot be structured into sub-modules. A
module can import definitions from other modules. Modules can have parameter lists to give a
form of test suite parameterization similar to the PICS and PIXIT parameterization mechanisms
defined in ISO/IEC 9646-2.

The control part of a module calls the test cases and controls their execution. Program statements
(such as if-else and do-while) can be used to specify the selection and execution order of
individual test cases. The concept of global variables is not supported in ATDL.

Table 3: Overview of ATDL language elements

ATDL Language element Associated
keyword

Associated
graphical

symbol

Structural concepts
ATDL module definition module <module symbol>
Group definitions group <group symbol>
Altstep heading definitions altstep <reference symbol>
Test thread definitions thread <thread class symbol>
Class definitions class <class symbol>
Object template definitions co-class <coclass symbol>
Component inheritance definitions extends <component extends symbol>
Communication co-interface definitions co-interface <interface symbol>
Communication cp-interface definitions interface <interface symbol>
Interface inheritance definitions extends <interface extends symbol>
Required interface definitions requires <dependency symbol>
Supported interface definitions supports <channel symbol>
Textual object declarations
Import of definitions from other module import <text symbol>
Timer declarations timer <text symbol>
Data type definitions type <text symbol>
Constant definitions const <text symbol>
Variable declarations var <text symbol>
Exception definitions exception <text symbol>
Signature definitions operation <interface symbol 1>
External function/constant definitions external <text symbol>
Data/signature template definitions template <text symbol>
Dynamic object declarations
Constructor definitions constructor <frame symbol>
Function definitions function <frame symbol>
Altstep definitions altstep <frame symbol>
Test case definitions testcase <frame symbol>
Page 16 of 226

ATDL has a number of pre-defined basic data types as well as structured types such as sequences,
sets, choices, enumerated types and arrays. Imported ASN.1 types and values may be used with
ATDL.

A special kind of data structure called a template provides parameterization and matching
mechanisms for specifying test data to be sent or received over the test channels. The operations
on these channels provide both message-based and procedure-based communication capabilities.
Procedure calls may be used for testing implementations which are not message based.

Dynamic test behaviour is expressed as test cases. ATDL program statements include powerful
behaviour description mechanisms such as alternative reception of communication, timer events
and default behaviour. Test verdict assignment and logging mechanisms are also supported.

Finally, ATDL language elements may be assigned attributes such as encoding information and
display attributes. It is also possible to specify (non-standardized) user-defined attributes.

5.2. Parameterization
Parameters are used for modules, types, operations, templates, functions, testcases and altsteps.

5.2.1. Static and dynamic parameterization
ATDL supports value parameterization according to the following limitations:

a) language elements which cannot be parameterized are: const, var, timer, control, group
and import;

b) the language element module allows static value parameterization to support test suite
parameters i.e. this parameterization may or may not be resolvable at compile-time but shall be
resolved by the commencement of run-time (i.e. static at run-time). This means that, at run-time,
module parameter values are globally visible but not changeable;

c) all user-defined type definitions (including the structured type definitions such as set,
sequence etc.) support static value parameterization i.e. this parameterization shall be resolved
at compile-time;

Table 4: Overview of parameterizable ATDL language elements

Keyword Value Parameterization Associated graphical
symbol

module Static at start of run-time Values of: all basic types and all user-defined types

type Static at compile-time Values of: all basic types and all user-defined types

template Dynamic at run-time Values of: all basic types, all user-defined types and
template.

function Dynamic at run-time Values of: all basic types, all user-defined types,
component type, interface type, default,
template and timer.

altstep Dynamic at run-time Values of: all basic types, all user-defined types,
component type, interface type, default,
template and timer.

testcase Dynamic at run-time Values of: all basic types and of all user-defined
types and template.

operation Dynamic at run-time Values of: all basic types and all user-defined types

NOTE 1: sequence of, set of, enumerated, and subtype definitions do not allow
parameterization.

NOTE 2: Examples of syntax and specific use of parameterization with the different language
elements are given in the relevant clauses in the present document.

d) the language elements template, operation, testcase, altstep and function support
dynamic value parameterization (i.e. this parameterization shall be resolvable at run-time).

A summary of which language elements can be parameterized and what can be passed to them as
parameters is given in Table 4.

ATDL concrete textual grammar
55 FormalCrefPar ::= FormalValuePar | FormalTemplatePar

168 FormalPar&Type ::= FormalValuePar | FormalTimerPar | FormalTypePar
| FormalTemplatePar | FormalInterfacePar

375 Direction ::= “in” | “out” | “inout”

376 FormalValuePar ::= [Direction] ValueParIdentifier {“:” ValueParIdentifier}* Type

377 ValueParIdentifier ::= Identifier

378 FormalTypePar ::= [Direction] ValueParIdentifier

379 FormalInterfacePar ::= [“inout”] InterfaceParIdentifier InterfaceTypeIdentifier

380 InterfaceParIdentifier ::= Identifier

381 FormalTimerPar ::= [“inout”] “timer” TimerParIdentifier

382 TimerParIdentifier ::= Identifier

383 FormalTemplatePar ::= [“in”] “template” TemplateParIdentifier Type

384 TemplateParIdentifier ::= Identifier

5.2.2. Formal and actual parameter lists
The number of elements and the order in which they appear in an actual parameter list shall be the
same as the number of elements and their order in which they appear in the corresponding formal
parameter list. Furthermore, the type of each actual parameter shall be compatible with the type
of each corresponding formal parameter.

Concrete textual grammar
77 ActualCrefParList ::= “(“ ActualCrefPar {“,” ActualCrefPar}* “)”

78 ActualCrefPar ::= [VarIdentifier AssignmentChar] TemplateInstance | Type
/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type, the TemplateInstance
production shall resolve to one or more SingleExpressions */

174 ActualParList ::= “(“ ActualPar {“,” ActualPar}* “)”

175 ActualPar ::= TimerRef | TemplateInstance | Type | Channel | ComponentRef

5.2.3. Empty formal parameter list
If the formal parameter list of the ATDL language elements function, testcase, operation,
altstep or external function is empty then the empty parentheses can be included both in the
declaration and in the invocation of that element. In all other cases the empty parentheses shall be
omitted.

5.2.4. Nested parameter lists
Generally, all parameterized entities specified as an actual parameter shall have their own
parameters resolved in the actual parameter list.

5.3. Parameter semantics
By default, all actual parameters of basic types, basic string types, user-defined structured types,
channel type and component type are passed by value. This may optionally be denoted by the
keyword in. To pass parameters of the mentioned types by reference the keywords out or inout
shall be used.
Page 18 of 226

Timers and channels are always passed by reference and are identified by the keywords timer
and interface. The keyword inout may optionally be used to denote passing by reference.

Passing parameters by reference has the following limitations:

a) only the formal parameter lists to altsteps called explicitly, functions, operations and
testcases may contain pass-by-reference parameters;

b) the actual parameters shall only be variables (e.g. not constants or templates).

Actual parameters that are passed by value may be variables as well as constants, templates etc.

5.3.1. In and inout parameters
Most parameters are either in parameters (the default) or variable (inout) parameters. In
parameters are passed by value, while variable parameters are passed by reference. To see what
this means, consider the following functions.

function DoubleByValue(MyPar1 Word) return Word // MyPar1 is an in parameter
{

MyPar1 := 2 * MyPar1;
return MyPar1;

}

function DoubleByRef(inout MyPar1 Word) return Word // MyPar1 is a variable parameter
{

MyPar1 := 2 * MyPar1;
return MyPar1;

}

These functions return the same result, but only the second one — DoubleByRef — can change
the value of a variable passed to it. Suppose we call the functions like this:

var I Word, J Word, V Word, W Word;

I := 4;

V := 4;

J := DoubleByValue(I); // J = 8, I = 4

W := DoubleByRef(V); // W = 8, V = 8

After this code executes, the variable I, which was passed to DoubleByValue, has the same value
we initially assigned to it. But the variable V, which was passed to DoubleByRef, has a different
value.

An in parameter acts like a local variable that gets initialized to the value passed in the test case
or function call. If you pass a variable as an in parameter, the test case or function creates a copy
of it; changes made to the copy have no effect on the original variable and are lost when program
execution returns to the caller.

A variable parameter, on the other hand, acts like a pointer rather than a copy. Changes made to
the parameter within the body of a function or procedure persist after program execution returns
to the caller and the parameter name itself has gone out of scope.

If a routine’s declaration specifies an inout parameter, you must pass an assignable expression —
that is, a variable, field, or indexed variable — to the routine when you call it. To use our previous
examples, DoubleByRef(7) produces an error, although DoubleByValue(7) is legal.

5.3.2. Template parameters
A template (template) parameter is like a local constant or read-only variable. Template
parameters are similar to in parameters, except that you can’t assign a value to a template
parameter within the body of a test case or function, nor can you pass one as an inout parameter
to another routine.

Using template parameter allows the compiler to optimize code for structured- and string-type
parameters. It also provides a safeguard against unintentionally passing a parameter by reference
to another routine.

5.3.3. Out parameters
An out parameter, like a variable parameter, is passed by reference. With an out parameter,
however, the initial value of the referenced variable is discarded by the routine it is passed to. The
out parameter is for output only; that is, it tells the function or test case where to store output, but
doesn’t provide any input. You should use out parameters when you pass an uninitialized variable
to a function or test case.

5.3.4. String parameters
When you declare routines that take string parameters, you cannot include length specifiers in the
parameter declarations. That is, the declaration

testcase Check(S charstring[20]); // syntax error

causes a compilation error. But

type TString20 ::= charstring[20];

testcase Check(S TString20);

is valid.

5.3.5. Array parameters
When you declare routines that take array parameters, you cannot include index type specifiers in
the parameter declarations. That is, the declaration

testcase Sort(A sequence[1..10] of Smallint); // syntax error

causes a compilation error. But

type TDigits ::= sequence[1..10] of Smallint;

testcase Sort(A TDigits);

is valid. For most purposes, however, open array parameters are a better solution.

5.3.6. Open array parameters
Open array parameters allow arrays of different sizes to be passed to the same function or test
case. To define a routine with an open array parameter, use the syntax sequence of type (rather
than sequence [X..Y] of type) in the parameter declaration.

For example,

function Find(A sequence of char) return Smallint;

declares a function called Find that takes a character array of any size and returns an integer.

The syntax of open array parameters resembles that of dynamic array types, but they do not mean
the same thing. The example above creates a function that takes any array of char elements,
Page 20 of 226

including (but not limited to) dynamic arrays. To declare parameters that must be dynamic arrays,
you need to specify a type identifier:

type TDynamicCharArray ::= sequence of char;
function Find(A TDynamicCharArray) return Smallint;

Within the body of a routine, open array parameters are governed by the following rules.

- They can be accessed by element only. Assignments to an entire open array parameter are
not allowed.

- They can be passed to other procedures and functions only as open array parameters. They
cannot be passed to SetLength.

- Instead of an array, you can pass a variable of the open array parameter’s base type. It will
be treated as an array of length 1.

When you pass an array as an open array value parameter, the compiler creates a local copy of the
array within the routine’s stack frame. Be careful not to overflow the stack by passing large
arrays.

Figure 2. Hierarchy of scope units

module definitions part

module control part thread or co-class

block of statements
(within a compound
 statement)

embedded
block of statement
(within a compount

function within
a component

testcase within
a component

class type type

altstep within
a component

 statement)

block of statements
(within a compound
 statement)

embedded
block of statement

 statement)
(within a compount

block of statements
(within a compound
 statement)

embedded
block of statement

 statement)
(within a compount

block of statements
(within a compound
 statement)

embedded
block of statement

 statement)
(within a compount

group

5.4. Scope rules
ATDL provides six basic units of scope:

a) module definition part; b) control part of a module; c) groups;

d) component and interface types; e) functions, altsteps and test cases;

f) "blocks of statements and declarations" within compound statements.

Each unit of scope consists of (optional) declarations. The scope units control part of a module,
functions, test cases, altsteps and "blocks of statements and declarations" within compound
statements may additionally specify some form of behaviour by using the ATDL program
statements and operations (see §17).

Definitions made in the module control part have local visibility, i.e. can be used within the
control part only.

Test cases, altsteps and functions are individual scope units without any hierarchical relation
between them, i.e. declarations made at the beginning of their body have local visibility and may
be used in the given test case, altstep or function only (e.g. a declaration made in a test case is
not visible in a function called by the test case or in an altstep used by the test case).

Compound statements, e.g. if-else-, while-, do-while-, or alt-statements include "blocks of
statements and declarations". They may be used within the control part of a module, test cases,
altsteps, functions, or may be embedded in other compound statements, e.g. an if-else-statement
that is used within a while-loop.

The "blocks of statements and declarations" of compound statements and embedded compound
statements have a hierarchical relation both to the scope unit including the given "block of
statements and declarations" and to any embedded "block of statements and declarations".
Declarations made within a "block of statements and declarations" have local visibility.

The hierarchy of scope units is shown in Figure 2. Declarations of a scope unit at a higher
hierarchical level are visible in all units at lower levels within the same branch of the hierarchy.
Declarations of a scope unit in a lower level of hierarchy are not visible to those units at a higher
hierarchical level.

5.5. Identifiers and keywords
ATDL identifiers are case sensitive and ATDL keywords shall be written in all lowercase letters
(see §26). ATDL keywords shall not be used neither as identifiers of ATDL objects nor as
identifiers of objects imported from modules of other languages.

ATDL identifiers are case sensitive and may only contain lowercase letters (a-z) uppercase letters
(A-Z) and numeric digits (0-9). Use of the underscore (_) symbol is also allowed. An identifier
shall begin with a letter (i.e. not a number and not an underscore).

5.6. Division of text
The Recommendation is organized by topics described by an optional introduction followed by
titled enumeration items for:

a) Concrete textual grammar – Both the common textual grammar used for ATDL/pr and ATDL/
gr and the grammar used only for ATDL/pr. This grammar is described by the textual syntax,
static conditions, and well-formedness rules for the textual syntax.

b) Concrete graphical grammar – Described by the graphical syntax, static conditions and well-
formedness rules for the graphical syntax, and some additional drawing rules(to those in 5.7).
Page 22 of 226

c) Semantics – Gives meaning to a construct, provides the properties it has, the way in which it is
interpreted and any dynamic conditions which have to be fulfilled for the construct to behave
well in the ATDL sense.

d) Graphical notation – This section contains a detailed description of the graphical notation for
the concept. The notation section usually includes one or more diagrams to illustrate the concept.

e) Examples

Where a topic has an introduction followed by a titled enumeration item, then the introduction is
considered to be an informal part of the Recommendation presented only to aid understanding
and not to make the Recommendation complete.

5.7. General drawing rules
The size of the graphical symbols can be chosen by the user.

The metasymbol is_followed_by implies a <flow line symbol>.

Line symbols may consist of one or more straight line segments.

An arrowhead is required on a <flow line symbol>, when it enters another <flow line symbol>, a
<try out-connector symbol>, a <decision outlet symbol>, or an <alt outlet symbol>. In other
cases, arrowheads are optional on <flow line symbol>s. The <flow line symbol>s are horizontal
or vertical.

Vertical mirror images of <internal input symbol>, <internal output symbol>, <message in
symbol>, <message out symbol>, <procedure in symbol>, <exception out symbol>, <exception
in symbol>, and <comment symbol> are allowed.

The right-hand argument of the metasymbol is_associated_with must be closer to the left-hand
argument than to any other graphical symbol. The syntactical elements of the right-hand
argument must be distinguishable from each other.

Text within a graphical symbol must be read from left to right, starting from the upper left corner.
The right-hand edge of the symbol is interpreted as a newline character, indicating that the
reading must continue at the leftmost point of the next line (if any).

5.7.1. Comments
A comment is a notation to represent comments associated with symbols or text. Comments
written in free text may appear anywhere in an ATDL specification.

Figure 3. Examples for the effects of the general drawing rules

(a) Sequence of statements in a
<task symbol>

(b) Comment within a comment symbol
associated a <reference symbol>

(c) Comment in a <text symbol> (d) Comment within a <reference symbol>

myFloatVar := 10.0 * 7.4;

localVerdict := getverdict;

sutaction(redlight());

MyResult :=
MyFunc()

This comment is
associated with a
reference symbol

// This is a
// comment in a
// text symbol

Initialisation()

/* Preamble invocation */

In the Concrete textual grammar, two forms of comments are used.

Block comments shall be opened by the symbol pair /* and closed by the symbol pair */.

EXAMPLE 1:

/* This is a block comment
spread over two lines */

Block comments shall not be nested.

Line comments shall be opened by the symbol pair // and closed by a <newline>.
510 <comment area> ::= <comment symbol> contains FreeText

is_connected_to <dashed association symbol>

One end of the <dashed association symbol> must be connected to the middle of the vertical
segment of the <comment symbol>.

A comment in a <comment symbol> can be provided in form of free text, i.e. the comment
delimiter "/*", "*/" and "//" of the core language need not to be used.

ATDL/gr provides three possibilities to put comments into ATDL diagrams:

a) Comments may be put into Graphical symbols following the symbol inscription and using the
syntax for comments of the ATDL textual language (Figure 3 (d)).

b) Comments in the syntax for comments of the ATDL textual language can be put into text
symbols and freely placed in the ATDL diagram area (Figure 3 (c)).

c) The comment symbol can be used to associate comments to graphical symbols. A <comment
symbol> can be connected to any graphical symbol by means of a <dashed association symbol>.
The <comment symbol> is considered as a closed symbol by completing (in imagination) the
rectangle to enclose the text. It contains comment text related to the graphical symbol.

A comment in a comment symbol can be provided in form of free text, i.e. the comment delimiter
"/*", "*/" and "//" of the textual language need not to be used (Figure 3 (b)).

5.7.2. Diagram area
Each Graphical control, test case, altstep and function diagram shall have a frame symbol (also
called diagram frame) to define the diagram area. All symbols and text needed to define a
complete and syntactically correct ATDL diagram shall be made inside the diagram area.

5.7.3. Diagram heading
Each ATDL/gr diagram shall have a diagram heading. The diagram heading shall be placed in the
upper left-hand corner of the diagram frame.

The diagram heading shall uniquely identify each ATDL/gr diagram type. The general rule to
achieve this is to construct the heading from the keywords testcase, altstep or function followed
by the ATDL signature of the test case, altstep or function that should be presented graphically.
For an ATDL/gr control diagram, the unique heading is constructed from the keyword control
followed by the module name.

5.7.4. Usage of semicolons
All ATDL/gr symbols with the exception of the <task symbol> and <save symbol> shall include
only one statement in ATDL core textual language. Only a <task symbol> or a <save symbol>
may include a sequence of ATDL statements (see §5.7.5).

Semicolons shall separate the statements in a sequence of statements within a <task symbol>.
The semicolon is optional for the last statement in the sequence.
Page 24 of 226

5.7.5. Usage of task symbols
The following ATDL declarations, statements and operations are specified within task symbols:
local declarations, assignments, bind, write, release, channel controlling and sutaction.

A <task symbol> may contain several task statements. It is not necessary to use a separate <task
symbol> for each declaration, statement or operation.

5.8. Variables declarations
ATDL allows the declaration and initialization of variables at the beginning of statement blocks.
ATDL/gr uses the syntax of the ATDL core language for declarations in several symbols. The
type of a symbol depends on the specification of the initialization, e.g. a variable of type default
that is initialized by means of an activate operation shall be specified within a default symbol.

5.8.1. Declaration of variables within <create request symbol>s
Variable declarations of a component type that are initialized by means of component instance
creation expressions shall be made within a <create request symbol>. In contrast to declarations
within <task symbol>s, each declaration that is initialized by means of a component instance
creation expression shall be presented in a separate <create request symbol>.

5.8.2. Declaration of variables within <default symbol>s
Variable declarations of type default that are initialized by means of activate operations shall be
made within a default symbol. In contrast to declarations within <task symbol>s, each declaration
that is initialized by means of an activate operation shall be presented in a separate <default
symbol>.

5.8.3. Declaration of variables within <reference symbol>s
Variable declarations that are initialized by means of a function invocation expression, shall be
made within <reference symbol>s. In contrast to declarations within <task symbol>s, each
declaration that is initialized by means of a function invocation expression, shall be presented in a
separate <reference symbol>.

5.9. Special terminal symbols
ATDL special terminal symbols are listed in this section.

Figure 4. Examples for declarations in ATDL/gr

(a) Variable declaration within
a <create request symbol>

(b) Sequence of declarations
within a <task symbol>

(c) Variable declaration within
a <reference symbol>

(d) Variable declaration within
a <default symbol>

var MyComp CompType :=

CompType.create

var MyFloatVar float;
const MyConst cardinal := 6;
var MyDefault default := null

var MyVar integer :=
MyFunction()

var MyDefault default :=
activate(MyAltstep())

5.9.1. Separators
The following nine ASCII characters are the ATDL separators (punctuators):

() { } [] ; , .

5.9.1.1. Statement terminator symbols
In general all ATDL language constructs (i.e. definitions, declarations, statements and operations)
are terminated with a semi-colon (;). The semi-colon is optional if the language construct ends
with a right-hand curly brace (}) or the following symbol is a right-hand curly brace (}), i.e. the
language construct is the last statement in a block of statements, operations and declarations.

5.9.2. Operators
The following 27 tokens are the ATDL operators, formed from ASCII characters:

:= > < ! not and or xor == <= >= != && ||

+ - * / mod & | ^ rem << >> <@ @>

6. Abstract Object Definition Language
The AODL grammar is a subset of the proposed ATDL grammar, in other words, AODL is an
“internal” language of the ATDL. AODL is a declarative language, it is an extension of ASN.1
[8], with additional constructs to support the operation invocation mechanism, and it can be
mappable readily to and from ITU-ODL. AODL supports some features that are not (currently)
covered by OMG-IDL and ASN1. The lack of a truly asynchronous method invocation model in
CORBA is one of its shortcomings. In AODL, management events are behaviour unconnected
with operations; they reflect the active, autonomous nature of managed objects.

The proposal introduces the concept of AODL which provides a level of abstraction needed to
express the semantics of telecommunication components and to combine (compose) components,
a capability beyond the OMG-IDL. AODL enhances IDL in that it can describe object semantics
as well as interfaces. AODL (and semantic definition) is required to support the definition and
standardization of common engineering objects, domain specific engineering objects and
corporate standard engineering objects.

This submission provides a proposed specification for a Generic Object Request Broker
Architecture which satisfies the request: an interoperable framework capable of supporting those
engineering objects as application components within a specific vertical market. The GORBA
Architecture is based on and dependent on the support of the CORBA infrastructure, services and
facilities. Without distributed objects, engineering objects would not be possible.

By default pseudo-object types are not CORBA Objects. The rationale for that decision is that
mandating CORBA Object semantics for all pseudo-object types is overkill. If value types had
existed at the time CORBA 1.0 was defined pseudo objects (e.g. TypeCodes) could have been
expressed cleanly as values too, forcing these kinds of data objects to support all the apparatus of
a CORBA Object is an unnecessary burden. The CORBA pseudo-interfaces are conceptually
very similar to the operational cp-interfaces of ATDL. It is our belief that the concepts provided
by this submission would enable the OMG to eliminate almost all the pseudo-IDL (PIDL)
contained in the CORBA specification.

An interesting application of our work is to assign meaning to connector specifications as they
appear, for instance, we could enhance the Interface Description Languages (IDLs) used in
middleware technologies by supplying automatically derived behavior descriptions in addition to
the static method signatures in use today.
Page 26 of 226

6.1. Conventions for the syntax description
Table 5 defines the meta-notation used to specify the extended BNF grammar for AODL/ATDL.
(It henceforth just called BNF):

6.2. AODL keywords
The identifiers listed in Table 6 are reserved for use as keywords and may not be used otherwise,
unless escaped with a leading underscore. Keywords obey the rules for identifiers and must be
written exactly as shown in the above list.

6.3. GORBA/AODL basics
Abstract Object Definition Language (AODL) is an extension to the semantics of the OMG-IDL
[25]. These stem from the ITU-ODL [24] and include multiple co-interface and co-class
definitions, co-class group definitions, and message-based co-interface descriptions.

AODL is an extension of the ASN1, with additional constructs to support the operation
invocation mechanism. It is a declarative language. It supports ATDL syntax for constant, type,
template, and operation declarations; it does not include any algorithmic structures or variables.

AODL syntax and semantics have the following characteristics:

a) Every attempt has been made to ensure that AODL is architecturally consistent with evolving
component architectures, including the CORBA Component Model [26].

b) AODL is a derivation of OMG IDL and ASN1, uses a subset of ATDL expression syntax, and
incorporates many ITU-ODL (Object Definition Language) concepts and terms. AODL is a
combination of the syntactic and semantic content of these languages.

c) AODL is a declarative language. It support:

Table 5: The ATDL/AODL Syntactic Meta-notation
::= is defined to be
abc xyz abc followed by xyz
| Alternatively
[abc] 0 or 1 instances of abc
{abc}* 0 or more instances of abc
{abc}+ 1 or more instances of abc
(...) textual grouping
{ ... } textual grouping
Abc the non-terminal symbol Abc
ABC a terminal symbol ABC
"ABC" a terminal symbol ABC

and
bitstring
boolean
cardinal
char
charstring
choice
class
co
const
else

enumerated
exception
extends
external
false
float
group
hexstring
import
in
infinity

inout
integer
interface
language
members
mod
modifies
module
noblock
not
objid

octetstring
of
operation
optional
or
out
raises
real
recursive
rem
requires

return
sequence
set
supports
template
true
type
variant
void
wide
xor

Table 6: List of AODL terminals which are reserved words

1) ATDL syntax for constant, type, and operation declarations;
2) concepts derived from ITU-ODL to represent information model concepts [9];
3) side effect free expressions with syntax derived from ATDL;
4) concepts derived from TTCN-3 for declarative constraints; and
5) additional constructs required to model engineering objects and domains.

d) There is an isomorphic mapping between AODL and the GORBA interface repository.

6.4. Modules
In AODL, a specification breaks down into one or several modules. The basic element for an
AODL compiler, the module, can be shared by several specifications, thereby facilitating their
coherence. It is preferable, as much as possible, to build up the module names with the number of
the standard it refers to and its name or acronym.

Module names are composed of an ATDL identifier followed by an optional object identifier.

The module names may have a worldwide scope of action in which case it is obviously
impossible to ensure uniqueness. In order to clear up this ambiguity, the module is registered in a
worldwide registration tree, where we deal with object identifiers. If the module is registered, its
object identifier is inserted in curly brackets on the left-hand side of its name.

The object identifier DefinitiveIdentifier uniquely and unambiguously identifies a module. The
object identifier DefinitiveIdentifier contains at least two arcs (DefinitiveObjectIdComponent).
This restriction is imposed by the BER encoding rules, which encode together the two first arcs of
the registration tree.

AODL syntax definition
1 AODL_Module ::= “module” AODL_ModuleId “{“ [ModuleDefinitionsPart] “}”

2 AODL_ModuleId ::= ModuleIdentifier [DefinitiveIdentifier]

3 DefinitiveIdentifier ::= Dot ObjectIdType “{“ DefinitiveObjIdComponentList “}”

4 DefinitiveObjIdComponentList ::= {DefinitiveObjIdComponent}+

5 DefinitiveObjIdComponent ::= NameForm | Number | NameForm “(“ Number “)”

6 ModuleIdentifier ::= Identifier

7 ModuleDefinitionsPart ::= {ModuleDefinition [SemiColon] }+

8 ModuleDefinition ::= SupportingDef | ImportDef | GroupDef | InterfaceDef | CoclassDef

9 SupportingDef ::= TypeDef | ParameterizedTypeDef | ConstDef | TemplateDef | ExceptionDef

6.5. Defining group types
A co-class group type specification comprises two high-level parts. The first is associated with
the declaration of the co-class group type’s identifier. The second part is the group definition
body, which comprises a specification of contained co-classe types and co-class group types.

AODL syntax definition
10 GroupDef ::= GroupHeading “{“

[SupportingDefSpec]
[InterfaceDefSpec]
[CoclassDefSpec]
MemberComponentList

11 GroupHeading ::= “group” GroupIdentifier

12 GroupIdentifier ::= Identifier

13 SupportingDefSpec ::= { SupportingDef SemiColon }*

14 InterfaceDefSpec ::= {InterfaceDef SemiColon }*

15 CoclassDefSpec ::= {CoclassDef SemiColon }*
Page 28 of 226

16 MemberComponentList ::= “members” MemberComponentDef {“,” MemberComponentDef}* “;”

17 MemberComponentDef ::= GroupIdentifier | CoclassName

6.6. Defining co-class types
A class may be declared abstract and must be declared abstract if it is incompletely implemented;
such a class can be extended by subclasses. A co-class is a class that is incomplete, or to be
considered incomplete. Only co-classes may have abstract methods (operations), that is, methods
that are declared but not yet implemented.

A co-class specification comprises two high level parts. The first supports inheritance, and is
associated with the declaration of the identifier of the co-class. The second part is the co-class
template body, which comprises the main sub-parts of the template as follows: 1) a specification
of required and supported interfaces and co-interfaces. 2) an initialization specification.

A co-class defines both the public view of a type of object and its private implementation. Data
members, properties, and operations make up a co-class definition. Properties describe an
object’s state. Operations are the actions that may be performed on an object. Events are
notifications that something interesting has happened. A co-class may be an event source that
sends notifications, an event sink that receives notifications, or both.

A subclass of a co-class that is not itself abstract may be instantiated, resulting in the execution of
a constructor for the co-class and, therefore, the execution of the property initializers for instance
variables of that class.

It is a compile-time error to declare a co-class type such that it is not possible to create a subclass
that implements all of its operations. This situation can occur if the class would have as members
two operations that have the same operation signature but different return types.

ATDL concrete textual grammar
90 CoclassDef ::= CoclassHeading “{“

[ClassPropertiesList]
[InterfaceDefSpec]
SupportedInterfaceList
[RequiredInterfaceList]

91 CoclassHeading ::= “co” “class” CoclassIdentifier [CoclassHeritage]

92 CoclassIdentifier ::= Identifier

110 ClassPropertiesList ::= { (SupportingDef | ClassFieldDef | DefaultAltstepDef) SemiColon}*

AODL syntax definition
18 CoclassDef ::= CoclassHeading “{“ [ClassPropertiesList]

[UsesClause]
[InterfaceDefSpec]
SupportedInterfaceList
[RequiredInterfaceList]

19 CoclassHeading ::= “co” “class” CoclassIdentifier [CoclassHeritage]

20 CoclassIdentifier ::= Identifier

21 UsesClause ::= “uses” CoclassIdentifier {“,” CoclassIdentifier}*

22 CoclassName ::= [GlobalModuleId Dot] CoclassIdentifier

23 ClassPropertiesList ::= {SupportingDef SemiColon}*

6.6.1. Co-class type inheritance
Co-class type inheritance is intended to support specification reuse and to provide a mechanism
for defining compatibility via sub-typing relationships.

AODL syntax definition
24 CoclassHeritage ::= “(“ CoclassIdentifier “)”

6.6.2. Required interface types
The second comprises the (declared) required interfaces which specifies interface types used by
instances of the co-class type to perform their functions and provide their services.

ATDL concrete textual grammar
95 RequiredInterfaceList ::= “requires” InterfaceType {“,” InterfaceType}* SemiColon

AODL syntax definition
25 RequiredInterfaceList ::= “requires” InterfaceType {“,” InterfaceType}* SemiColon

6.6.3. Supported interface types
The (declared) supported interfaces of a co-class type are the interfaces listed as supported in the
co-class type specifications. Instances of interface types declared as supported may be offered by
instances of descendant classes of the co-class types being defined.

ATDL concrete textual grammar
94 SupportedInterfaceList ::= “supports” InterfaceType {“,” InterfaceType}* SemiColon

AODL syntax definition
26 SupportedInterfaceList ::= “supports” InterfaceType {“,” InterfaceType}* SemiColon

Figure 5. Supported co-interface type and required co-interface type

6.6.4. Co-class diagrams
A co-class diagram is a graph of co-classes connected by contract relationships. A co-class
diagram shows the contracts among software components, including the components that specify
them (e.g., implementation classes) and the artifacts that implement them (e.g., source code files,
binary code files, executable files, scripts).

A diagram containing co-class types may be used to show static dependencies, such as compiler
dependencies between programs, which are shown as dashed arrows (dependencies) from a client
co-class to a supplier co-class that it depends on in some way.

A co-class diagram has only a type form, not an instance form. To show co-class instances, use a
deployment diagram (possibly a degenerate one without groups).

ATDL concrete graphical grammar
96 <coclass diagram> ::= <coclass symbol>

(CoclassIdentifier <class properties area> ConstructorHeading)
[is_connected_to <component extends area>]
[is_connected_to {<required interface area>+ } set]
[is_connected_to {<supported interface area>+ } set]
[is_connected_to { <dependency symbol>+ } set]

If a co-class is the realization of a co-interface, the shorthand notation of a circle attached to the
<coclass symbol> by a line segment may be used. Realizing a co-interface means that the
implementation subclass of the co-class supply all the operations in the co-interface, at least.
Using a co-interface means that the implementation elements in the co-class require no more

Scheduler reservations

:

PlannerSupported

cointerface

Required

cointerface

<<co interface>>
Page 30 of 226

operations from a supplier co-class that the ones listed in the co-interface (but the client may
depend on other interfaces, as well).

6.7. Declaring exception types
Exception declarations permit the declaration of struct-like data structures which may be returned
to indicate that an exceptional condition has occurred during the performance of a request.

Each exception is characterized by its ExceptionIdentifier, an exception type identifier, and the
type of the associated return value (as specified by the ExceptionMember in its declaration). If an
exception is returned as the outcome to a request, then the value of the exception identifier is
accessible to the programmer for determining which particular exception was raised.

If an exception is declared with members, a programmer will be able to access the values of those
members when an exception is raised. If no members are specified, no additional information is
accessible when an exception is raised.

AODL syntax definition
27 ExceptionDef ::= “exception” ExceptionIdentifier “{“ {ExceptionMember}* “}”

28 ExceptionIdentifier ::= Identifier

29 ExceptionMember ::= ExceptionTypeIdentifier Type [SemiColon]

30 ExceptionTypeIdentifier ::= Identifier

31 ExceptionName ::= [GlobalModuleId Dot] ExceptionIdentifier

6.8. Defining co-interface types
As with classes, we use the term co-interface to refer specifically to an interface listed as
supported in the co-class specifications, just in case your development tool distinguishes these
from some other type of interface. A co-class cannot implement a co-interface.

AODL syntax definition
32 InterfaceDef ::= MsgInterfaceDef | CoOpInterfaceDef

33 MsgInterfaceDef ::= MessageInterfaceHeader MessageAttribs

34 MsgInterfaceHeader ::= “co” “interface” MsgInterfaceTypeIdentifier [MsgInterfaceHeritage]

35 MsgInterfaceTypeIdentifier ::= Identifier

36 CoOpInterfaceDef ::= CoOpInterfaceHeader OperationAttribs

37 CoOpInterfaceHeader ::= “co” “interface” CpOpInterfaceTypeIdentifier [CoOpInterfaceHeritage]

38 CoOpInterfaceTypeIdentifier ::= Identifier

39 InterfaceTypeIdentifier ::= MsgInterfaceTypeIdentifier | CpOpInterfaceTypeIdentifier

40 InterfaceType ::= [ComponentType Dot] InterfaceTypeIdentifier

Semantics

AODL co-interface references are semantically equivalent to CORBA object references.

6.8.1. Co-interface type inheritance
The rules which apply to co-interface inheritance are those specified for OMG-IDL [25], with
extensions to deal with messages.

Consistent with OMG-IDL, co-interface inheritance is the equivalent of simple inclusion of all
attributes (including operational co-interface attributes), operations and messages from the base
co-interface into the derived co-interface. This inclusion involves all attributes, operations and
messages of the base co-interface, including those obtained by inheritance from other cointerface
specifications. Hence a derived co-interface should always be capable of providing the services
of the base co-interface.

It should be noted that a message-based co-interface should not inherit from an operational
cointerface and vice versa.

AODL syntax definition
41 MsgInterfaceHeritage ::= “extends“ MsgInterfaceIdentifier {“,” MsgInterfaceIdentifier}*

42 CoOpInterfaceHeritage ::= “extends“ CoOpInterfaceIdentifier {“,” CpOpInterfaceIdentifier}*

message-based co-interface
43 MessageAttribs ::= “{“ {MessageList [SemiColon]}+ “}”

44 MessageList ::= [Direction] MessageIdentifier Type

45 MessageIdentifier ::= Identifier

6.8.2. Defining operational co-interface types

An operational cointerface is a collection of operations used to specify a service of a co-class.

AODL syntax definition
46 OperationAttribs ::= “{“ {OperationDef [SemiColon]}+ “}”

ATDL concrete textual grammar
147 OperationAttribs ::= “{“ {OperationDef [SemiColon]}+ “}”

Semantics

A co-interface declaration introduces a new reference type whose members are attributes and
operations. This type has no implementation, but otherwise unrelated classes can implement it by
providing logical implementations for its operations.

An operational co-interface comprises a set of interrogation and announcement signatures, one
for each operation type in the interface template.

6.9. Importing from modules
It is possible to re-use definitions specified in different modules using the import statement.

AODL syntax definition
47 ImportDef ::= “import” ModuleId (ImportSpec | “{“ {ImportSpec [SemiColon]}* “}”) [“recursive”]

48 ImportSpec ::= ImportAllSpec | ImportGroupSpec | ImportInterfaceSpec | ImportClassSpec
| ImportTypeDefSpec | ImportTemplateSpec | ImportConstSpec

49 ImportAllSpec ::= [DefKeyword] Dot “*”

50 ModuleId ::= GlobalModuleId [“language” FreeText]

51 ModuleName ::= GlobalModuleId | LocalModuleId

52 GlobalModuleId ::= ModuleIdentifier [Dot ObjectIdentifierValue]

53 LocalModuleId ::= ModuleIdentifier {Dot GroupIdentifier}*

54 ImportGroupSpec ::= “group” GroupIdentifier {“,” GroupIdentifier}*

55 ImportInterfaceSpec ::= “interface” InterfaceIdentifier {“,” InterfaceIdentifier}*

56 ImportClassSpec ::= “class” CoclassIdentifier {“,” CoclassIdentifier}*

57 ImportTypeDefSpec ::= “type” TypeIdentifier {“,” TypeIdentifier}*

58 ImportTemplateSpec ::= “template” TemplateIdentifier {“,” TemplateIdentifier}*

59 ImportConstSpec ::= “const” ConstIdentifier {“,” ConstIdentifier}*

60 ExtendedAlphaNum ::= /* REFERENCE - A character from any character set defined in ISO/IEC
10646 */

61 FreeText ::= “ “ “ {ExtendedAlphaNum}* “ “ “
Page 32 of 226

UML graphical notation

An import dependency is shown as a dashed arrow from the module gaining access to the module
supplying elements.

6.10. Templates for sending messages
A template used in a sending operation defines a complete set of field values comprising the
message to be transmitted over a test channel. At the time of the sending operation, the template
shall be fully defined i.e., all fields shall resolve to actual values and no matching mechanisms
shall be used in the template fields, neither directly nor indirectly.

// Given the message definition

type MyMessageType ::= sequence

{ field1 Cardinal, field2 charstring, field3 boolean}
// a message template could be

template MyTemplate MyMessageType :=
{field1 := 1, field2 := "My string", field3 := true }

// and a corresponding send operation could be

MyPCO.send (MyTemplate);

AODL syntax definition
62 TemplateDef ::= “template” BaseTemplate [DerivedDef] “:=” TemplateBody

63 BaseTemplate ::= TemplateIdentifier [FormalCrefParList] (MessageIdentifier | Operation)

64 TemplateIdentifier ::= Identifier

65 DerivedDef ::= “modifies” TemplateRef

66 FormalCrefParList ::= “(“ FormalCrefPar {“,” FormalCrefPar}* “)”

67 FormalCrefPar ::= FormalValuePar | FormalTemplatePar
/* STATIC SEMANTICS - FormalValuePar shall resolve to an in parameter */

68 TemplateBody ::= TemplateValue | FieldSpecList

69 FieldSpecList ::= “{“ [FieldSpec {“,” FieldSpec}*] “}”

70 FieldSpec ::= FieldReference “:=” TemplateBody

71 FieldReference ::= StructFieldIdentifier | ArrayOrBitRef | OperationParIdentifier

72 OperationParIdentifier ::= ValueParIdentifier

73 ArrayOrBitRef ::= “[“ FieldOrBitNumber “]”

74 FieldOrBitNumber ::= SingleConstExpression
/* STATIC SEMANTICS - SingleConstExpression will resolve to a value of cardinal type */

75 TemplateValue ::= SingleConstExpression | Omit | TemplateRefWithPara

76 Omit ::= “omit”

77 TemplateRefWithPara ::= [GlobalModuleId Dot] TemplateIdentifier [ActualCrefParList] |
TemplateParIdentifier

78 ActualCrefParList ::= “(“ ActualCrefPar {“,” ActualCrefPar}* “)”

79 ActualCrefPar ::= Value

Semantics

Constraints that are referenced for send events shall not include wildcards (i.e., AnyValue (?) or
AnyOrOmit (*)) unless these are explicitly assigned specific values on the send event line in the
behaviour description.

6.11. Summary
The TTCN style of programming has proven extremely popular because it is easy to use and
avoids the need for TTCN programmers to learn a separate interface definition language.
However, TTCN lacks interoperability with other languages and it is not currently supported over
standard protocols. The AODL subset of ATDL described in this chapter is intended to unify the
ease-of-programming of TTCN with support for cross-language operation (through AODL) and
support for standard protocols (through IIOP).

To encourage convergence between the TTCN and CORBA programming communities, it is
important to define a solution that is both fully compatible with current TTCN semantics and
fully compatible with OMG IDL, IIOP, and the CORBA object model.

The subset of ATDL that meets these goals is referred to as AODL. This section describes the
subset of ATDL that can be mapped to IDL and can run over GIOP.

All the standard ATDL predefined types except for verdicttype are supported as part of AODL.
An AODL remote co-interface defines an ATDL interface that can be invoked remotely.

At run time, when a reference to an AODL remote co-interface is passed across a remote
cointerface, the class of the actual object that is passed must be either a stub class or a remote
implementation class.

It is not required that methods in ATDL classes be included into AODL.

6.11.1. Benefits of AODL
Our submission directly addresses requirements from the computational language of the
Reference Model for Open Distributed processing [23]. The concepts and designs proposed have
been tested in industrial-strength product. They are known to deliver significant benefits for the
application developer.

The AODL is the language used to describe ODP objects and domain models. AODL provides a
level of abstraction needed to develop components not currently found within the OMG’s
Interface Definition Language (IDL). A co-class definition written in AODL defines not only the
component object interface but also the contract between cooperation components.

AODL provides syntaxes to describe static and dynamic aspects of the computational viewpoint
of ODP-systems. Aspects which can be expressed by using the ATDL/AODL syntax include:

a) Standard inheritance: Co-class objects support the core object concepts of multiple interface
inheritance, including implementation inheritance. All semantics defined for a co-class apply to
all subtypes of that co-class.

b) Replaceable: The unit of implementation is defined by co class. It must be possible to relocate
or replace a co-class with another implementation of the co-class, transparent to all clients.

c) Reusability: The Generic ORB Architecture (GORBA) lays the foundation for specifying and
implementing interoperable abstract test suites. It is anticipated that this foundation will
accelerate consensus building and OMG testing-domain task forces.

One key factor in reusability is understanding and communicating the design of existing co-
classes. Implementation without design is not reusable. The precise co-class semantics, the
contract between cooperating co-classes, provided by GORBA facilitates reusable components.

d) Scaleable: The GORBA is implemented as a composition of AODL specifications. Every
effort has been made to avoid architecturally mandated limits to scale-ability.

e) Ease of development and deployment: The GORBA architecturally separates co-class
building from co-class assembly and reuse. Co-class assembly and reuse is an inherently easy
method for building and deploying object models.
Page 34 of 226

f) Off-the-shelf Models: It is the realization of tailor-able, replaceable, reusable, interoperable,
off-the-shelf domain model implementations that attain the cycle-time objective. There is a direct
correspondence, maintained at run time, between the component model and component instances.
Component instances are directly and dynamically controlled by component specifications.

g) Application Integration: The GORBA supports implementation inheritance, ensuring a
common implementation semantic across all ORBs and enabling plug-and-play replace-ability
between different implementations of a domain model. New or separate object models are
integrated with an existing object model by the GORBA and associated tools.

h) Legacy Applications: Until the objective of plug-and-play domain models has been achieved,
we can view all forms of application software as “legacy”. Legacy software will be in many
different forms, this proposed specification cannot address all possible scenarios. The integration
of legacy applications requires two steps: 1) Define the legacy application in AODL 2)
Implement the engineering objects using ATDL.

i) Generality and Desktop Integration: Based on existing and proposed CORBA
interoperability standards, GORBA objects can interoperate with application components
implemented on Microsoft OLE/COM, Internet/JAVA, or other CORBA implementations.

j) Proof of Commonality: ASN.1 [8] has already been used in a variety of domain specifications,
AODL is an extension of ASN1 grammar productions.

7. Declaring ATDL/AODL signals
A signal is a link between an occurrence in the system (such as a user action or a change in focus)
and a piece of code that responds to that occurrence. The responding code is a signal handler, and
can be written by the application developer. Signals let application developers customize the
behavior of components without having to change the classes themselves.

7.1. Declaring messages
The specification of an asynchronous communication between components. ATDL is able to send
and receive complex messages over the communication channels defined by the test
configuration. These messages may be those explicitly concerned with testing the SUT or with
the internal co-ordination and control messages specific to the relevant test configuration.

In TTCN-2 these messages are the Abstract Service Primitives (ASPs), the Protocol Data Units
(PDUs) and co-ordination messages. The core language of ATDL is generic in the sense that it
does not make any syntactic or semantic distinctions of this kind.

Complex messages may be defined as sequence types. For example:

type MyMessageType ::= sequence

{
field1 FieldType1,
field2 FieldType2,
:
fieldN FieldTypeN

}
Messages can, of course, be sub-structured.

Concrete textual grammar
145 MessageList ::= [Direction] MessageIdentifier Type

146 MessageIdentifier ::= Identifier

7.2. Declaring operations
Operation signatures are needed for synchronous communication. An operation may either be
invoked in the SUT (i.e., the test system performs the call) or invoked in the test system (i.e., the
SUT performs the call).

For both operations called from the SUT and operations called from the test system the complete
operation signature shall be defined in the ATDL module.

An operation call will result in the called party performing either a reply (the normal case) or
raising an exception. The actions resulting from an accepted operation call are defined by the
receiving party.

An operation declaration consists of:

1) An optional operation attribute that specifies which invocation semantics the communication
system should provide when the operation is invoked. Operation attributes are described in
“operation attribute”.

2) The type of the operation’s return result; the type may be any type that can be defined in
AODL. If no return is specified then the function is void. An explicit keyword for void is null in
AODL.

3) An identifier that names the operation in the scope of the co-interface in which it is defined.
The name together with the list of formal parameter types, is called the matching template of the
operation. Note that the direction of the parameters is as seen by the caller rather than the callee.

4) An optional raises expression that indicates which exceptions may be raised as a result of an
invocation of this operation.

Note that an operation declared in an operational interface must not be declared external or
synchronized, or a compile-time error occurs, because those keywords describe implementation
properties rather than interface properties. However, an operation declared in an operational
interface may be implemented by a method that is declared external or synchronized in a class
that implements the operational interface.

7.2.1. Procedure signatures
Procedure signatures (or signatures for short) are needed for procedure-based communication.
Procedure-based communication may be used for the communication within the test system, i.e.
among test components, or for the communication between the test system and the SUT. In the
latter case, a procedure may either be invoked in the SUT (i.e. the test system performs the call)
or invoked in the test system (i.e. the SUT performs the call). For all used procedures, i.e.
procedures used for the communication among test components, procedures called from the SUT
and procedures called from the test system, complete operation signature shall be defined in
the ATDL interface.

ATDL concrete textual grammar
182 OperationDef ::= [OpAttribute] “operation” OperationIdentifier [FormatParList] [ReturnType]

[RaisesExpr]

183 OperationIdentifier ::= Identifier

185 Operation ::= [ModuleName Dot] OperationIdentifier

AODL syntax definition
80 OperationDef ::= [OpAttribute] “operation” OperationIdentifier [FormatParList] [ReturnType]

[RaisesExpr]

81 OperationIdentifier ::= Identifier

82 Operation ::= [GlobalModuleId Dot] OperationIdentifier

83 ReturnType ::= “return” Type
Page 36 of 226

7.2.2. Operation attribute
ATDL supports blocking and non-blocking procedure-based communication. Operation
definitions for non-blocking communication shall use a noblock keyword, shall only have in
parameters (see §7.2.4) and shall have no return value (see §7.2.5), but may raise exceptions (see
§7.2.6). By default, operation definitions without noblock keyword are assumed to be used for
blocking procedure-based communication.

ATDL concrete textual grammar
184 OpAttribute ::= “noblock” | “template”

AODL syntax definition
84 OpAttribute ::= “noblock” | “template”

7.2.3. parameter lists
A specification of the values that a language element receives. A parameter list is an ordered list
of formal parameter declarations. The list may be empty.

A parameter list is a comma-separated list of parameter declarations enclosed in parentheses.

ATDL concrete textual grammar
54 FormalCrefParList ::= FormalCrefPar {“,” FormalCrefPar}*

167 FormalParList ::= “(“ FormalPar&Type {“,” FormalPar&Type}* “)”

AODL syntax definition
85 FormalParList ::= “(“ FormalPar&Type {“,” FormalPar&Type}* “)”

7.2.4. Declaring parameters
Signature definitions may have parameters. Within an operation definition the parameter list
may include parameter identifiers, parameter types and their direction i.e. in, out, or inout. A
parameter declaration must have a directional attribute that informs the communication service in
both the client and the server of the direction in which the parameter is to be passed. Note that the
direction of the parameters is as seen by the called party rather than the calling party. The
directional attributes are:

- in - the parameter is passed from client to server.

- out - the parameter is passed from server to client.

- inout - the parameter is passed in both directions.

AODL syntax definition
86 FormalPar&Type ::= FormalValuePar | FormalTemplatePar

87 Direction ::= “in” | “out” | “inout”

88 FormalValuePar ::= [Direction] ValueParIdentifier {“,” ValueParIdentifier}* Type

89 ValueParIdentifier ::= Identifier

90 FormalTemplatePar ::= [“in”] “template” TemplateParIdentifier Type

91 TemplateParIdentifier ::= Identifier

7.2.5. Value returning remote procedures
A remote procedure may return a value after its termination. The type of the return value shall be
specified by means of a return clause in the corresponding signature definition.

7.2.6. Raises expressions
A raises expression specifies which exceptions may be raised as a result of an invocation of the
operation or method. For example:

operation MyRemoteProc (in Par1 Byte, out Par2 float, inout Par3 Byte) return Byte;
raises (Exception1, Exception2);

The ExceptionNames in the raises expression must be previously defined exceptions.

ATDL concrete textual grammar
186 RaisesExpr ::= “raises” “(“ ExceptionName {“,” ExceptionName}* “)”

AODL syntax definition
92 RaisesExpr ::= “raises” “(“ ExceptionName {“,” ExceptionName}* “)”

8. Declaring ATDL/AODL constants
Constants can be declared and used in module headers, module control, test cases and functions.
Constant definitions are denoted by the keyword const. The value of the constant shall be
assigned at the point of declaration. For example:

const MyConst1 Cardinal := 1;
const MyConst2 boolean := true, MyConst3 boolean:= false;

ATDL concrete textual grammar
47 ConstDef ::= “const” SingleConstDef {“,” SingleConstDef}*

48 SingleConstDef ::= ConstIdentifier Type “:=” ConstantExpression

49 ConstIdentifier ::= Identifier

AODL syntax definition
93 ConstDef ::= “const” SingleConstDef {“,” SingleConstDef}*

94 SingleConstDef ::= ConstIdentifier Type “:=” ConstantExpression
/* STATIC SEMANTICS - The value of the ConstantExpression shall be of the same type as the stated type for the
constant */

95 ConstIdentifier ::= Identifier

8.1. Constant expressions
A constant expression is an expression that the compiler can evaluate without executing the
program in which it occurs. Constant expressions include numerals; character strings; bit strings;
octet strings; hexadecimal strings; the special constants True, and False; and expressions built
exclusively from these elements with operators, and typecasts. Constant expressions cannot
include variables, or function calls, except calls to the ATDL predefined functions.

ATDL concrete textual grammar
476 ConstantExpression ::= SingleConstExpression | CompoundConstExpression

477 SingleConstExpression ::= SingleExpression

479 CompoundConstExpression ::= FieldConstExpressionList | ArrayConstExpression

AODL syntax definition
96 ConstantExpression ::= SingleConstExpression | CompoundConstExpression

97 SingleConstExpression ::= SingleExpression

98 CompoundConstExpression ::= FieldConstExpressionList | ArrayConstExpression

Page 38 of 226

9. ATDL/AODL operators
ATDL supports a number of predefined operators that may be used in the terms of ATDL
expressions. The predefined operators fall into seven categories:

a) arithmetic operators; b) string operators; c) relational operators;

d) logical operators; e) bitwise operators; f) shift operators.

 These operators are listed in Table 7.

The unary operators (taking one operand) include +, -, !, not, and typecast operators. All other
operators are binary (taking two operands), except that + and – can function as either unary or

Table 7: List of ATDL/AODL operators

Category Operator Symbol or Keyword AODL
Arithmetic operators addition + yes

subtraction - yes
multiplication * yes
division / yes
modulo mod yes
remainder rem yes

String operators concatenation + yes
Relational operators equal == yes

less than < yes
greater than > yes
not equal != yes
greater than or equal >= yes
less than or equal <= yes

Logical operators logical negation ! yes
logical conjunction & yes
logical disjunction | yes
logical exclusive or ^ yes

conditional and && no

conditional or || no

conditional ? ?: no

value set membership in no
Bitwise operators bitwise negation not yes

bitwise and and yes
bitwise or or yes
bitwise xor xor yes

Shift operators bitwise shift left << yes
bitwise shift right >> yes

Rotate operators rotate left <@ yes
rotate right @> yes

binary. A unary operator always precedes its operand. A binary operator is placed between its
operands.

In complex expressions, rules of precedence determine the order in which operations are
performed. The precedence of these operators is shown in Table 8. Within any row in this table,
the listed operators have equal precedence. An operator with higher precedence is evaluated
before an operator with lower precedence. If more than one operator of equal precedence appears
in an expression, the operations are evaluated from left to right.

Parentheses may be used to group operands in expressions, in which case a parenthesized
expression has the highest precedence for evaluation.

ATDL concrete textual grammar
482 SingleExpression ::= ConditionalExpression [? SimpleExpression Colon ConditionalExpression]

AODL syntax definition
99 SingleExpression ::= SimpleExpression {LogicOp SimpleExpression}*
/* OPERATIONAL SEMANTICS - If both SimpleExpressions and the LogicalOp exist then the SimpleExpressions
shall evaluate to specific values of compatible types */

9.1. Additive Operators
The arithmetic operators represent the operations of addition, subtraction, multiplication, division
and modulo. Operands of these operators shall be of type integer (including derivations of
integer) or float (including derivations of float) or real (including derivations of real), except for
mod and rem which shall be used with integer (including derivations of integer) types only.

With integer types the result type of arithmetic operations is integer. With cardinal types the
result type of arithmetic operations is cardinal. With float types the result type of arithmetic
operations is float. With real types the result type of arithmetic operations is real.

Table 8: Precedence of Operators

Priority Operator type Operator

highest

Lowest

UnaryBinary
Binary
Unary
Binary
Binary
Binary
Binary
Binary
Binary
Unary
Binary
Binary
Binary

(…)

+, - *, /, mod, rem
+, -, &
not
and
xor
or
<<, >>, <@, @>
<, >, <=, >=
==, !=
!
&
^
|

Table 9: Binary additive operators

Operator Operation Operand types Result type
+ addition integer, cardinal, float, real integer, cardinal, float, real
- subtraction integer, cardinal, float, real integer, cardinal, float, real
Page 40 of 226

ATDL concrete textual grammar
491 AdditiveExpression ::= MultiplicativeExpression { (“+” | “-”) MultiplicativeExpression}*

AODL syntax definition
100 AdditiveExpression ::= MultiplicativeExpression { (“+” | “-”) MultiplicativeExpression}*

9.1.1. Unary arithmetic operators
In the case where plus (+) or minus (-) is used as the unary operator the rules for operands apply
as well. The result of using the minus operator is the negative value of the operand if it was
positive and vice versa.

ATDL concrete textual grammar
493 UnaryExpression ::= [("+" | "-")] Primary | CastExpression

AODL syntax definition
101 UnaryExpression ::= [("+" | "-")] Primary | CastExpression

9.2. String operators
The predefined string operators perform concatenation of values of compatible string types. The
operation is a simple concatenation from left to right. No form of arithmetic addition is implied.
The result type is the root type of the operands. For example,

'1111'B + '0000'B + '1111'B gives '111100001111'B

If only one operand expression is of type charstring, then charstring conversion is performed on
the other operand to produce a charstring at run time. The result is a reference to a newly created
charstring object that is the concatenation of the two operand charstrings. The characters of the
left-hand operand precede the characters of the right-hand operand in the newly created string.

For example,

"The square root of 2 is " + Math.sqrt(2)

produces the result:

"The square root of 2 is 1.4142135623730952"

9.3. Multiplicative operators
The operators *, /, mod and rem are called the multiplicative operators. They have the same
precedence and are syntactically left-associative (they group left-to-right). The type of each of the
operands of a multiplicative operator must be a primitive numeric type.

The result of performing the division operation (/) on two:

1) integer values gives the whole integer value resulting from dividing the first integer by the
second (i.e., fractions are discarded);

2) float values gives the float value resulting from dividing the first float by the second (i.e.,
fractions are not discarded);

Table 10: Unary arithmetic operators

Operator Operation Operand types Result type
+ sign identity integer, cardinal, float, real integer, cardinal, float, real
- sign negation integer, cardinal, float, real integer, cardinal, float, real

3) real values gives the real value resulting from dividing the first real by the second (i.e.,
fractions are not discarded).

The value of x mod y is the value of x/y rounded in the direction of zero to the nearest integer.

The rem operator returns the remainder obtained by dividing its operands. In other words, x rem
y = x – (x mod y) * y.

A runtime error occurs when y is zero in an expression of the form x/y, x mod y, or x rem y.

ATDL concrete textual grammar
492 MultiplicativeExpression ::= UnaryExpression {MultiplyOp UnaryExpression}*

497 MultiplyOp ::= "*" | "/" | "mod" | "rem"

AODL syntax definition
102 MultiplicativeExpression ::= UnaryExpression {MultiplyOp UnaryExpression}*

103 MultiplyOp ::= "*" | "/" | “mod” | “rem”

9.4. Relational operators
The predefined relational operators represent the relations of equality (==), less than (<), greater
than (>), non-equality to (!=), greater than or equal to (>=) and less than or equal to (<=).
Operands of equality and non-equality may be of arbitrary but compatible types with the
exception of the enumerated type, in which case operands shall be instances of the same type.
All other relational operators shall have operands only of ordinal type (including derivatives of
ordinal type) or float, real (including derivations of float, real). Expressions that use these
operators must always evaluate to a boolean value.

Relational operators are used to compare two operands. Expressions that use these operators must
always evaluate to a boolean value. For example, I == J is true just in case I and J have the same
value, and I != J is true otherwise. In all cases the two operands shall be of compatible type ,
except that a float and an integer can be compared.

An order among the values of type char or wide char is defined by the integer value of their
encoding, i.e., the relational operators ==, <, >, !=, >= and <= can be used to compare values
of type char or wide char.

Table 11: Binary multiplicative operators

Operator Operation Operand types Result type
* multiplication integer, cardinal, float, real integer, cardinal, float, real
/ real division integer, cardinal, float, real float, real
mod integer division integer, cardinal integer, cardinal
rem remainder integer, cardinal integer, cardinal

Table 12: Relational operators

Operator Operation Operand types Result type
== equal any compatible types Boolean
!= not equal any compatible types Boolean
> greater than ordinal types, float, real Boolean
< less than ordinal types, float, real Boolean
>= greater than or equal ordinal types, float, real Boolean
<= less than or equal ordinal types, float, real Boolean
Page 42 of 226

Two charstring or wide charstring values are equal only, if they have equal lengths and the
characters at all positions are the same. For values of bitstring, hexstring or octetstring
types the same equality rule applies with the exception, that fractions which shall equal at all
positions are bits, hexadecimal digits or pairs of hexadecimal digits accordingly.

ATDL concrete textual grammar
486 EqualityExpression ::= RelationalExpression [("==" | "!=") RelationalExpression]

487 RelationalExpression ::= ShiftExpression [("<" | ">" | ">=" | "<=") ShiftExpression]
| ShiftExpression “instanceof” RestrictedType
| ShiftExpression "in" ShiftExpression

AIDL syntax definition
104 EqualityExpression ::= RelationalExpression [("==" | "!=") RelationalExpression]

105 RelationalExpression ::= ShiftExpression [("<" | ">" | ">=" | "<=") ShiftExpression]

9.4.1. The class operator
The type of a ShiftExpression operand of the instanceof operator must be a reference type or the
null type; otherwise, a compile-time error occurs. The RestrictedType mentioned after the
instanceof operator must denote a reference type; otherwise, a compile-time error occurs.

At runtime, ShiftExpression must be an instance of the class denoted by RestrictedType or one of
its descendants, or be null; otherwise an exception is raised. If the declared type of
ShiftExpression is unrelated to RestrictedType—that is, if the types are distinct and one is not an
ancestor of the other—a compilation error results.

9.5. Boolean logical operators
The predefined boolean operators include the logical NOT operator “!”, logical AND operator
“&”, logical exclusive XOR operator “^”, and inclusive OR operator “|”. Their operands shall be
of type boolean. The result type of logical operations is boolean.

The logical NOT is the unary operator that returns the value true if its operand was of value
false and returns the value false if the operand was of value true.

The logical AND returns the value true if both its operands are true; otherwise it returns the
value false.

The logical OR returns the value true if at least one of its operands is true; it returns the value
false only if both operands are false.

The logical XOR returns the value true if one of its operands is true; it returns the value false
if both operands are false or if both operands are true.

ATDL concrete textual grammar
483 ConditionalExpression ::= LogicalExpression {(“&&” | “||”) LogicalExpression}*

484 LogicalExpression ::= SimpleExpression {LogicalOp SimpleExpression}*

485 SimpleExpression ::= ["not"] EqualityExpression

499 LogicOp ::= “&” | “^” | “|”

AODL syntax definition
106 SimpleExpression ::= ["not"] EqualityExpression

107 LogicOp ::= “&” | “^” | “|”

9.5.1. Conditional logical operator
The && operator is like logical and “&”, but evaluates its right-hand operand only if the value of
its left-hand operand is true. It is syntactically left-associative (it groups left-to-right). It is fully
associative with respect to both side effects and result value.

Each operand of && must be of type boolean, or a compile-time error occurs. The type of a
conditional-and expression is always boolean.

At run time, the left-hand operand expression is evaluated first; if its value is false, the value of
the conditional-and expression is false and the right-hand operand expression is not evaluated. If
the value of the left-hand operand is true, then the right-hand expression is evaluated and its
value becomes the value of the conditional-and expression. Thus, && computes the same result
as & on boolean operands. It differs only in that the right-hand operand expression is evaluated
conditionally rather than always.

The || operator is like logical or “|”, but evaluates its right-hand operand only if the value of its
left-hand operand is false. It is syntactically left-associative (it groups left-to-right). It is fully
associative with respect to both side effects and result value.

Each operand of || must be of type boolean, or a compile-time error occurs. The type of a
conditional-or expression is always boolean.

At run time, the left-hand operand expression is evaluated first; if its value is true, the value of
the conditional-or expression is true and the right-hand operand expression is not evaluated. If
the value of the left-hand operand is false, then the right-hand expression is evaluated and its
value becomes the value of the conditional-or expression. Thus, || computes the same result as |
on boolean operands. It differs only in that the right-hand operand expression is evaluated
conditionally rather than always.

9.6. Bitwise operators
The predefined bitwise operators perform the operations of bitwise not,bitwise and, bitwise or
and bitwise xor.

Their operands shall be of type integer, cardinal, bitstring, hexstring, octetstring. In the case
of and, or and xor the operands shall be of compatible types. The result type of the bitwise
operators shall be the root type of the operands.

The bitwise not unary operator inverts the individual bit values of its operand. For each bit in the
operand a 1 bit is set to 0 and a 0 bit is set to 1. That is:

not '1'B gives '0'B

not '0'B gives '1'B

The bitwise and operator accepts two operands of equal length. For each corresponding bit
position, the resulting value is a 1 if both bits are set to 1, otherwise the value for the resulting bit
is 0. That is:

'1'B and '1'B gives '1'B
'1'B and '0'B gives '0'B
'0'B and '1'B gives '0'B
'0'B and '0'B gives '0'B

The bitwise or operator accepts two operands of equal length. For each corresponding bit
position, the resulting value is 0 if both bits are set to 0, otherwise the value for the resulting bit is
1. That is:

'1'B or '1'B gives '1'B
'1'B or '0'B gives '1'B
'0'B or '1'B gives '1'B
Page 44 of 226

'0'B or '0'B gives '0'B

The bitwise xor operator accepts two operands of equal length. For each corresponding bit
position, the resulting value is 0 if both bits are set to 0 or if both bits are set to 1, otherwise the
value for the resulting bit is 0. That is:

'1'B xor '1'B gives '0'B
'0'B xor '0'B gives '0'B
'0'B xor '1'B gives '1'B
'1'B xor '0'B gives '1'B

ATDL concrete textual grammar
489 BitwiseExpression ::= SubResult {BitOp SubResult}*

490 SubResult ::= ["not"] AdditiveExpression | “complement” ValueList

498 BitOp ::= “and” | “xor” | “or”

AODL syntax definition
108 BitwiseExpression ::= SubResult {BitOp SubResult}*

109 SubResult ::= ["not"] AdditiveExpression
/* OPERATIONAL SEMANTICS - If the not operator exists, the operand shall be of type bitstring, octetstring or
hexstring. */

110 BitOp ::= “and” | “xor” | “or”

9.7. Shift operators
The predefined shift operators perform the shift left (<<) and shift right (>>) operations. Their
left-hand operand shall be of type bitstring, hexstring, octetstring, cardinal or integer. Their
right hand operand shall be of type cardinal. The result type of these operators shall be the same
as that of the left operand.

The shift operators behave differently based upon the type of their left-hand operand. If the type
of the left-hand operand is:

a) bitstring then the shift unit applied is 1 bit;

b) hexstring then the shift unit applied is 1 hexadecimal digit;

c) octetstring then the shift unit applied is 1 octet.

d) integer type then the operations x << y and x >> y shift the value of x to the left or right by y
bits, which is equivalent to multiplying or dividing x by 2y; the result is of the same type as x. For
example, if N stores the value 01101 (decimal 13), then N << 1 returns 11010 (decimal 26).

The shift left (<<) operator accepts two operands. It shifts the left-hand operand by the number of
shift units to the left as specified by the right-hand operand. Excess shift units (bits, hexadecimal
digits or octets) are discarded. For each shift unit shifted to the left, a zero ('0'B, '0'H, or '00'O
determined according to the type of the left-hand operand) is inserted from the right-hand side of
the left operand.

The shift right (>>) operator accepts two operands. It shifts the left-hand operand by the number
of shift units to the right as specified by the right-hand operand. Excess shift units (bits,
hexadecimal digits or octets) are discarded. For each shift unit shifted to the right, a zero ('0'B,
'0'H, or '00'O determined according to the type of the left-hand operand) is inserted from the left-
hand side of the left operand.

ATDL concrete textual grammar
488 ShiftExpression ::= BitwiseExpression [ShiftOp BitwiseExpression]

500 ShiftOp ::= "<<" | ">>" | "<@" | "@>"

AODL syntax definition
111 ShiftExpression ::= BitwiseExpression [ShiftOp BitwiseExpression]

112 ShiftOp ::= “<<“ | “>>” | "<@" | "@>"

9.8. Rotate operators
The predefined rotate operators perform the rotate left (<@) and rotate right (@>) operators.
Their left-hand operand shall be of type bitstring, hexstring, octetstring, charstring or wide
charstring. Their right-hand operand shall be of type cardinal. The result type of these operators
shall be the same as that of the left operand.

The rotate operators behave differently based upon the type of their left-hand operand. If the type
of the left-hand operand is:

a) bitstring then the rotate unit applied is 1 bit;

b) hexstring then the rotate unit applied is 1 hexadecimal digit;

c) octetstring then the rotate unit applied is 1 octet;

d) charstring or wide charstring then the rotate unit applied is one character;

The rotate left (<@) operator accepts two operands. It rotates the left-hand operand by the
number of shift units to the left as specified by the right-hand operand. Excess shift units (bits,
hexadecimal digits, octets, or characters) are re-inserted into the left-hand operand from its right-
hand side.

The rotate right (@>) operator accepts two operands. It rotates the left-hand operand by the
number of shift units to the right as specified by the right-hand operand. Excess shift units (bits,
hexadecimal digits, octets, or characters) are re-inserted into the left-hand operand from its left-
hand side.

9.9. Primary expressions
AODL syntax definition

113 Primary ::= Value | "(" Expression ")"

9.10. Typecast expressions
It is sometimes useful to treat an expression as if it belonged to different type. A typecast allows
you to do this by, in effect, temporarily changing an expression’s type. For example, integer(“A”)
casts the character A as an integer.

If it is necessary to convert values of one type to values of another type, where the types are not
derived from the same root type, then typecast expressions shall be used.

Typecast expressions provide functionalities similar to TTCN-3 predefined operations. TTCN-3
now supports a number of predefined operations: int2char, char2int, int2unichar, unichar2int,
bit2int, hex2int, oct2int, str2int, int2bit, int2hex, int2oct, and int2str [1].

ATDL concrete textual grammar
495 CastExpression ::= Type “(“ SingleExpression “)”

AODL syntax definition
114 CastExpression ::= Type “(“ SingleExpression “)”
Page 46 of 226

10. ATDL/AODL types and values
ATDL is a “strongly typed” language, which means that it distinguishes a variety of data types
and does not always allow you to substitute one type for another. This is usually beneficial
because it lets the compiler treat data intelligently and validate your code more thoroughly,
preventing hard-to-diagnose runtime errors. When you need greater flexibility, however, there are
mechanisms to circumvent strong typing.

ATDL supports a number of predefined basic types. These basic types include ones normally
associated with a programming language, such as integer, cardinal, boolean and string types, as
well as some ATDL specific ones such as objid and verdicttype. It also allows the user to
construct his own types from the predefined types. Structured types such as sequence of types,
sequence types and enumerated types can be constructed from these basic types.

The ATDL special type default may be used for the default handling (see clause 19.7).

The ATDL types are summarized in Table 13.

ATDL concrete textual grammar
24 TypeDef ::= “type” TypeIdentifier “::=” Type

25 TypeIdentifier ::= Identifier

Table 13: Overview of ATDL/AODL types

Class of type Keyword Sub-type AODL Used
Simple basic
generic types

integer range, list, length yes
cardinal range, list, length yes
real range, list, length yes

Simple basic
concrete types

char range, list yes
wide char range, list yes
float range, list yes
boolean list yes
objid list yes
verdicttype list no

Basic string types bitstring list, length yes
hexstring list, length yes
octetstring list, length yes
charstring range, list, length yes
wide charstring range, list, length yes

Structured types sequence list yes
sequence of list, length yes
set list yes
set of list, length yes
enumerated list yes
choice list yes

Special generic types variant list yes
Native type external no yes
Default types default no no

308 Type ::= BasicType | ConstrainedType | StructuredType | ReferencedType | RestrictedType

325 Value ::= LiteralValue | StringValue | ReferencedValue | TemplateValue&Attributes

326 LiteralValue ::= BooleanValue | ChoiceValue | IntegerValue | FloatingPointLiteral | CharValue
 | ObjectIdentifierValue | EnumeratedValue | VerdictValue | NullValue

349 ReferencedValue ::= [GlobalModuleId Dot] ValueReference [ExtendedFieldReference]

350 ValueReference ::= ConstIdentifier | ValueParIdentifier | ModuleParIdentifier | VarIdentifier

374 NullValue ::= “null”

AODL syntax definition
115 TypeDef ::= “type” TypeIdentifier “::=” Type

116 TypeIdentifier ::= Identifier

117 Type ::= BasicType | ConstrainedType | StructuredType | ReferencedType | “variant”

118 Value ::= LiteralValue | StringValue | ReferencedValue

119 LiteralValue ::= BooleanValue | ChoiceValue | IntegerValue | FloatingPointLiteral | CharValue
 | ObjectIdentifierValue | EnumeratedValue

120 ReferencedValue ::= [GlobalModuleId Dot] ValueReference [ExtendedFieldReference]

121 ValueReference ::= ConstIdentifier | ValueParIdentifier

10.1. Simple generic types
ATDL supports simple generic and concrete types.

ATDL is a strongly typed language, it is mandatory that every generic type has a fixed length that
is known at compile time (called early or static binding,). Fixed-length types limit the values that
a variable can hold or that an expression can produce, limit the operations supported on those
values, and determine the meaning of the operations. Strong typing helps detect errors at compile
time. Only template methods may have generic type as parameters or generic return types. If a
procedure that is not template contains a generic type, then a compile-time error occurs.

Simple generic types include integer, cardinal and real types. For this purpose, data objects of
integer type are assumed to be defined as signed sequence of {byte}, data objects of cardinal
type are assumed to be defined as unsigned sequence of {byte}, data objects of real type are
assumed to be defined as signed sequence of { floating-point byte}.

ATDL supports both Late binding at runtime, and Early binding at compile-time. Early binding is
highly recommended, both for compile-time type checking and because it is much faster than late
(dynamic) binding. Late binding is very flexible, but by using it you lose many benefits such as
code insight and type checking. In addition, late binding is slower than early binding, because the
compiler generates additional calls to the test system to set up calls before they are invoked.

The generic type without any type constraints is called raw generic type. Raw generic types are
only permitted within virtual class declarations. The exception types cannot be generic: Generic
exception or error types are disallowed because the exception handling mechanism is a runtime
mechanism and the underlying system does not know anything about generic types.

10.2. Basic types and values
Simple types, which include ordinal types, string types, float types and real types.

ATDL concrete textual grammar
309 BasicType ::= OrdinalType | “float” | RealType | StringType | “objid” | VerdictType | BooleanType

AODL syntax definition
122 BasicType ::= OrdinalType | “float” | RealType | StringType | “objid” | “external” | BooleanType

123 ReferencedType ::= [GlobalModuleId Dot] TypeReference [ExtendedFieldReference]

124 ExtendedFieldReference ::= { (Dot StructFieldIdentifier | ArrayOrBitRef) }+
Page 48 of 226

125 TypeReference ::= ParameterizedType | TypeIdentifier

126 ParameterizedType ::= TypeIdentifier TypeActualParList

10.2.1. Integral types and values
An integer type represents a subset of the whole numbers. The generic integral types are integer
and cardinal. A integer type denotes a type with distinguished values which are the positive and
negative whole numbers, including zero. A cardinal type denotes a type with distinguished
values which are the positive whole numbers, including zero.

An integer literal may be expressed in decimal. A decimal numeral is either the single ASCII
character 0, representing the integer zero, or consists of an ASCII digit from 1 to 9, optionally
followed by one or more ASCII digits from 0 to 9, representing a positive integer.

ATDL concrete textual grammar
313 IntegerType ::= (“integer” | “cardinal”) [LengthRestriction]

330 IntegerValue ::= Number

351 Number ::= (NonZeroNum {Num}*) | “0”

352 NonZeroNum ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

AODL syntax definition
127 IntegerType ::= (“integer” | “cardinal”) [LengthRestriction]
/* STATIC SEMANTICS - The length restriction may only be omitted when used as generic-type template parameter
or return type associated with a template operation declaration. */

128 IntegerValue ::= Number

129 Number ::= (NonZeroNum {Num}*) | “0”

130 NonZeroNum ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"

10.2.2. Character types and values
The fundamental character types are char and wide char. Char type is a type whose
distinguished values are characters of the version of ISO/IEC 646 [6] complying to the
International Reference Version (IRV) as specified in clause 8.2 of ISO/IEC 646 [6]. Wide char
type is a type whose distinguished values are single characters from ISO/IEC 10646 [7].

Values of the type char may be given enclosed in single quotes (‘) and followed by the pair of
characters (’) and an optional type suffix ‘C’, or calculated using a predefined conversion
function with the cardinal value of their encoding as argument.

Relational operators equality (==)and non-equality (!=) can be used to compare values of type
char.

Values of the type wide char may be given enclosed in single quotes (‘)and followed by the pair
of characters (’) and an optional type suffix ‘C’, or calculated using a predefined conversion
function with the cardinal value of their encoding as argument, or by translating the ASCII
characters \u followed by four hexadecimal digits to the Unicode character with the indicated
hexadecimal value according to ISO/IEC 10646 [7].

Relational operators equality (==) and non-equality (!=) can be used to compare values of
type wide char.

ATDL concrete textual grammar
316 CharType ::= “char”

317 WideChar ::= “wide” “char”

355 CharValue ::= “‘” Char “‘” [“C”]

363 Char ::= /* REFERENCE - A character defined by the relevant CharacterString type. For charstring
a character from the character set defined in ISO/IEC 646. For wide charstring a character from
any character set defined in ISO/IEC 10646 */

AODL syntax definition
131 CharType ::= “char”

132 WideChar ::= “wide” “char”

133 CharValue ::= “‘” Char “‘” [“C”]

134 Char ::= /* REFERENCE - A character defined by the relevant CharacterString type. For charstring
a character from the character set defined in ISO/IEC 646. For wide charstring a character from
any character set defined in ISO/IEC 10646 */

10.2.3. Real types and values
A real type defines a set of numbers that can be represented with floating-point notation. The
ATDL types float and real are IEEE 754 single-precision and ASN.1 REAL type, respectively.

The float type represents IEEE 32-bit single-precision floating type. See IEEE Standard for
Binary Floating-Point Arithmetic, IEEE Standard 754-1985 [27], for a detailed specification. Use
this type whenever possible, since it results in the best performance for the underlying system.

Floating point numbers are represented as: <mantissa> × <base><exponent>, and a type suffix.

Where <mantissa> a positive or negative integer, <base> a positive integer (in most cases 2, 10
or 16) and <exponent> a positive or negative integer. A floating-point literal is of type float if it
is suffixed with an ASCII letter F or f; otherwise its type is real and it can optionally be suffixed
with an ASCII letter R or r.

The floating-point number representation is restricted to a base with the value of 10. Floating
point values can be expressed by using either:

- the normal notation with a dot in a sequence of numbers like, 1.23 (which represents
123*10-2), 2.783 (i.e. 2783 × 10-3) or -123.456789 (which represents -123456789 × 10-6);
or

- by two numbers separated by E where the first number specifies the mantissa and the
second specifies the exponent, for example 12.3E4 (which represents 12.3 × 104) or -
12.3E-4 (which represents -12.3 × 10-4).

The IEEE 754 standard includes not only positive and negative sign-magnitude numbers, but also
positive and negative zeros, positive and negative infinities, and a special Not-a-Number
(hereafter abbreviated NaN). The NaN value is used to represent the result of certain operations
such as dividing zero by zero.

The largest positive finite float literal is 3.40282347e+38f. The smallest positive finite nonzero
literal of type float is 1.40239846e-45f. The type real in ATDL can model arbitrarily long but
finite decimals. A compile-time error occurs if a nonzero fix-length floating-point literal is too
large, so that on rounded conversion to its internal representation it becomes an IEEE 754
infinity. An ATDL program can represent infinities without producing a compile-time error by
using the predefined keywords “infinity” and “-infinity”.

A compile-time error occurs if a nonzero fix-length floating-point literal is too small, so that, on
rounded conversion to its internal representation, it becomes a zero. A compile-time error does
not occur if a nonzero floating-point literal has a small value that, on rounded conversion to its
internal representation, becomes a nonzero denormalized number.

ATDL concrete textual grammar
315 RealType ::= “real” [LengthRestriction]

344 FloatingPointLiteral ::= (FloatDotNotation | FloatENotation) [FloatTypeSuffix]

345 FloatDotNotation ::= Number Dot DecimalNumber

346 FloatENotation ::= Number [Dot DecimalNumber] Exponential [Minus] Number

347 Exponential ::= “e” | “E”
Page 50 of 226

348 FloatTypeSuffix ::= “f” | “F” | “r” | “R”

353 DecimalNumber ::= {Num}*

354 Num ::= “0” | NonZeroNum

AODL syntax definition
135 RealType ::= “real” [LengthRestriction]
/* STATIC SEMANTICS - The length restriction may only be omitted when used as generic-type template parameter
or return type associated with a template operation declaration. */

136 FloatingPointLiteral ::= (FloatDotNotation | FloatENotation) [FloatTypeSuffix]

137 FloatDotNotation ::= Number Dot DecimalNumber

138 FloatENotation ::= Number [Dot DecimalNumber] Exponential [Minus] Number

139 Exponential ::= “e” | “E”

140 FloatTypeSuffix ::= “f” | “F” | “r” | “R”

141 DecimalNumber ::= {Num}*

142 Num ::= “0” | NonZeroNum

10.2.4. Boolean type and value
A boolean type denotes a type consisting of two distinguished values.

Values of boolean type shall be denoted by true and false.

ATDL concrete textual grammar
314 BooleanType ::= “boolean”

328 BooleanValue ::= "true" | "false"

AODL syntax definition
143 BooleanType ::= “boolean”

144 BooleanValue ::= “true” | “false”

10.2.5. Objid type and values
A objid type denotes a type whose distinguished values are the set of all object identifiers
conforming to clause 6.2 of ITU-T Recommendation X.660 [16]. Hyphens in object identifiers
are replaced with underscores.

ATDL concrete textual grammar
331 ObjectIdentifierValue ::= “{“ ObjIdComponentList “}”
/* STATIC SEMANTICS - ReferencedValue shall be of type object Identifier */

332 ObjectIdComponentList ::= {ObjIdComponent}+

333 ObjIdComponent ::= NameForm | NumberForm | NameAndNumberForm

334 NumberForm ::= Number | ReferencedValue
/* STATIC SEMANTICS - ReferencedValue shall be of type integer and hava a non negative Value */

335 NameAndNumberForm ::= Identifier NumberForm

336 NameForm ::= Identifier

AODL syntax definition
145 ObjectIdentifierValue ::= “{“ ObjIdComponentList “}”
/* STATIC SEMANTICS - ReferencedValue shall be of type object Identifier */

146 ObjectIdComponentList ::= {ObjIdComponent}+

147 ObjIdComponent ::= NameForm | NumberForm | NameAndNumberForm

148 NumberForm ::= Number | ReferencedValue
/* STATIC SEMANTICS - ReferencedValue shall be of type integer and have a non negative Value */

149 NameAndNumberForm ::= Identifier NumberForm

150 NameForm ::= Identifier

10.2.6. Ordinal types
Ordinal types include integer, cardinal, char, wide char, enumerated, and sub-range types. An
ordinal type defines an ordered set of values in which each value except the first has a unique
predecessor and each value except the last has a unique successor. Further, each value has an
ordinality, which determines the ordering of the type. For integer types, the ordinality of a value
is the value itself; for all other ordinal types except sub-ranges, the first value has ordinality 0, the
next value has ordinality 1, and so forth. If a value has ordinality n, its predecessor has ordinality
n–1 and its successor has ordinality n+1.

Several predefined functions operate on ordinal values and type identifiers. For example,
UpperBoundary(char) returns 127 because the highest value of ISO/IEC 646 type char is 127.

ATDL concrete textual grammar
311 OrdinalType ::= IntegerType | CharType | WideChar | EnumType

AODL syntax definition
151 OrdinalType ::= IntegerType | CharType | WideChar | EnumType

10.2.7. AODL specific native types
AODL provides a declaration for use by object adapters to define an opaque type whose
representation is specified by the language mapping for that object adapter. The syntax is:

TypeDef ::= TypeIdentifier “::=” external

A native type may be used to define operation parameters and results. However, there is no
requirement that values of the type be permitted in remote invocations, either directly or as a
component of a structured type.

The native type declaration is provided specifically for use in object adapter interfaces, which
require parameters whose values are concrete representations of object implementation instances.
It is strongly recommended that it not be used in service or application interfaces. The native type
declaration allows object adapters to define new primitive types without requiring changes to the
AODL language or to AODL compiler.

10.2.8. ATDL specific verdict types
Verdict type is a type for use with test verdicts consisting of 5 distinguished values.

Values of verdicttype shall be denoted by pass, fail, inconc, none and error.

ATDL concrete textual grammar
337 VerdictValue ::= "pass" | "fail" | "inconc" | "none" | "error"

10.2.9. Basic string types and values
ATDL supports the following basic string types:

a) bitstring: a type whose distinguished values are the ordered sequences of zero, one, or more
bits. Values of type bitstring shall be denoted by an arbitrary number (possibly zero) of the bit
digits: 0 1, preceded by a single quote (') and followed by the pair of characters 'B.

b) hexstring: a type whose distinguished values are the ordered sequences of zero, one, or more
hexadecimal digits, each corresponding to an ordered sequence of four bits.

Values of type hexstring shall be denoted by an arbitrary number (possibly zero) of the
hexadecimal digits: 0 1 2 3 4 5 6 7 8 9 A B C D E F, preceded by a single quote (') and followed
Page 52 of 226

by the pair of characters 'H; each hexadecimal digit is used todenote the value of a semi-octet
using a hexadecimal representation.

c) octetstring: a type whose distinguished values are the ordered sequences of zero or a positive
even number of hexadecimal digits (every pair of digits corresponding to an ordered sequence of
eight bits).

Values of type octetstring shall be denoted by an arbitrary, but even, number (possibly zero) of
the hexadecimal digits: 0 1 2 3 4 5 6 7 8 9 A B C D E F, preceded by a single quote (') and
followed by the pair of characters 'O; each hexadecimal digit is used to denote the value of a
semi-octet using a hexadecimal representation.

ATDL concrete textual grammar
312 StringType ::= “bitstring” | CharStringType | WideCharString | “octetstring” | “hexstring”

327 StringValue ::= Bstring | CharStringValue | Ostring | Hstring

356 Bstring ::= " ’ " {Bin | Wildcard}* " ’ " “B”

357 Bin ::= "0" | "1"

358 Hstring ::= " ’ " {Hex | Wildcard}* " ’ " “H”

359 Hex ::= Num | "A" | "B" | "C" | "D" | "E" | "F"| "a" | "b" | "c" | "d" | "e" | "f"

360 Ostring ::= " ’ " {Oct | Wildcard}* " ’ " “O”

361 Oct ::= Hex Hex

AODL syntax definition
152 StringType ::= “bitstring” | CharStringType | WideCharString | “octetstring” | “hexstring”

153 StringValue ::= Bstring | CharStringValue | Ostring | Hstring

154 Bstring ::= " ’ " {Bin}* " ’ " “B”

155 Bin ::= “0” | “1”

156 Hstring ::= " ’ " {Hex}* " ’ " “H”

157 Hex ::= Num | "A" | "B" | "C" | "D" | "E" | "F"| "a" | "b" | "c" | "d" | "e" | "f"

158 Ostring ::= " ’ " {Oct}* " ’ " “O”

159 Oct ::= Hex Hex

10.2.9.1. Char string types
A char string represents a sequence of characters.

a) charstring: are types whose distinguished values are zero, one, or more characters of the
version of ISO/IEC 646 [6] complying to the International Reference Version (IRV) as specified
in clause 8.2 of ISO/IEC 646 [6].

b) wide charstring: The character string type preceded by the keyword wide denotes types
whose distinguished values are zero, one, or two characters from ISO/IEC 10646 [7].

Values of charstring type shall be denoted by an arbitrary number (possibly zero) of characters
from the relevant character set, preceded and followed by double quote (").

Multibyte character sets — especially double-byte character sets (DBCS) — are widely used for
Asian languages. In the Unicode character set, each character is represented by two bytes. Thus a
Unicode string is a sequence not of individual bytes but of two-byte words. Unicode characters
and strings are also called wide characters and wide character strings. The first 256 Unicode
characters map to the ASCII character set.

ATDL supports single-byte and Unicode characters and character strings through the char, wide
char, charstring, and wide charstring types.

ATDL implementations first should recognize Unicode escapes in their input, translating the
ASCII characters \u followed by four hexadecimal digits to the Unicode character with the
indicated hexadecimal value, and passing all other characters unchanged.

If an eligible \ is not followed by u, then it is treated as a RawInputCharacter and remains part of
the escaped Unicode stream. If an eligible \ is followed by u, or more than one u, and the last u is
not followed by four hexadecimal digits, then a compile-time error occurs.

ATDL implementations next should divide the sequence of Unicode input characters into lines by
recognizing line terminators, that is, the Carriege Return and Line Feed characters. Neither of the
characters Carriege Return and Line Feed is ever considered to be an InputCharacter; each is
recognized as constituting a LineTerminator.

Certain characters can be represented in character by escape sequences like \n (newline); these
sequences look like two characters, but represent only one. The complete set of escape sequences
is shown in Table 14.

ATDL concrete textual grammar
318 CharStringType ::= “charstring”

319 WideCharString ::= “wide” “charstring”

339 CharStringValue ::= Cstring | Quadruple

340 UnicodeInputCharacter ::= UnicodeEscape | Char

341 UnicodeEscape ::= \ UnicodeMarker Hex Hex Hex Hex

342 UnicodeMarker ::= {u}+

343 InputCharacter ::= UnicodeInputCharacter

362 Cstring ::= " " " {InputCharacter | Wildcard | “\”}* " " "

AODL syntax definition
160 CharStringType ::= “charstring”

161 WideCharString ::= “wide” “charstring”

162 CharStringValue ::= Cstring | Quadruple

163 UnicodeInputCharacter ::= UnicodeEscape | Char

164 UnicodeEscape ::= \ UnicodeMarker Hex Hex Hex Hex

165 UnicodeMarker ::= {u}+

166 InputCharacter ::= UnicodeInputCharacter
/* STATIC SEMANTICS - The InputCharacter shall not be Carriage Return or Line Feed character */

167 Cstring ::= " " " {InputCharacter | “\”}* " " "

10.3. Sub-typing of basic types
User-defined types shall be denoted by the keyword type. With user-defined types it is possible
to create sub-types (such as lists, ranges and length restrictions) on simple basic and basic string
types according to Table 13.

ATDL concrete textual grammar
39 ConstrainedType ::= BasicType [SubTypeSpec]

40 SubTypeSpec ::= SimpleValueSet | LengthRestriction

AODL syntax definition
168 ConstrainedType ::= BasicType [SubTypeSpec]

Table 14: List of ATDL escape sequences

Character Description Character Description

\r carriage return (see [19]) \n newline (see ISO/IEC 6429 [19])
\” double quote \t horizontal tab (see [19])
\\ backslash \’ single quote
Page 54 of 226

169 SubTypeSpec ::= | LengthRestriction
/* STATIC SEMANTICS - The value shall be of the same type as the field being subtyped */

10.3.1. Value Set constructors
A value set is a collection of values of the same type. The values have no inherent order, nor is it
meaningful for a value to be included twice in a value set.

A value set constructor denotes a set of values. For example,

(5, 6, 7, 8)

denotes the value set whose members are 5, 6, 7, and 8. The value set constructor

(5..8)

could also denote the same value set.

The in operator tests value set membership:

if ['a' in MyValueSet] { do something } ;

Value sets can be used in several kinds of statements:

a) a value set denotes a set of type value;

b) can be used in control flow statements;

c) used in a receiving operation defines a data template against which an incoming message is to
be matched (see clause 15.7.3).

ATDL concrete textual grammar
41 SimpleValueSet ::= SimpleValueList | IntegerRange

AODL syntax definition
170 SimpleValueSet ::= SimpleValueList | IntegerRange

10.3.1.1. Value Set operators
The following operators take value sets as operands.

A value set O is in X + Y if and only if O is in X or Y (or both). O is in X – Y if and only if O is in
X but not in Y. O is in X * Y if and only if O is in both X and Y. For example,

(1,2,3)+(2,3,4) == (1,2,3,4)

(1,2,3)*(2,3,4) == (2,3)

10.3.1.2. Lists of values
ATDL/AODL permits the specification of a list of distinguished values of any given type as listed
in Table 13. The values in the list shall be of the root type and shall be a true subset of the values
defined by the root type. The subtype defined by this list restricts the allowed values of the
subtype to those values in the list.

Table 15: Value Set operators

Operator Operation Operand types Result type

+ union value set value set
- difference value set value set
* intersection value set value set
complement complement value set value set

ATDL concrete textual grammar
42 SimpleValueList ::= “(“ SingleConstExpression {“,” SingleConstExpression}* “)”

AODL syntax definition
171 SimpleValueList ::= “(“ SingleConstExpression {“,” SingleConstExpression}* “)”

10.3.2. Length restriction
ATDL permits the specification of length restrictions on integer, cardinal and string types. The
length boundaries are of different complexity depending on the string type with which they are
used. In all cases, these boundaries shall evaluate to cardinal values (or derived cardinal values).

Table 16 specifies the units of length for different string types.

For the upper bound the keyword infinity may also be used to indicate that there is no upper limit
for the length. The upper boundary shall be greater than or equal to the lower boundary.

For example:

type MyByte ::= bitstring [8]; // Exactly length 8

type MyNibbleOrByte ::= bitstring [4..8]; // Minimum length 4, maximum length 8

In the context of templates, length restrictions can also be specified on values of array type, thus
limiting the number of their elements.

Length specifications shall not conflict, i.e., a restriction on a type (set of values) that is already
restricted shall specify a subrange of values of its base type.

ATDL concrete textual grammar
46 LengthRestriction ::= “[“ SingleConstExpression [“..” UpperBound] “]”

AODL syntax definition
172 LengthRestriction ::= “[“ SingleConstExpression [“..” UpperBound] “]”
/* STATIC SEMANTICS - LengthRestriction will resolve to a value of cardinal type. LengthRestriction shall only be
used with String types, Integer types or to limit sequence of type */

10.3.3. Subrange type
ATDL permits the specification of a range of values of type ordinal and real or float (or
derivations of these types). The subtype defined by this range restricts the allowed values of the
subtype to the values in the range including the lower boundary and the upper boundary. In the
case of char and wide char types, the boundaries shall evaluate to valid character positions
according to the coded character set table(s) of the type (e.g. the given position shall not be

Type Units of Length
integer or cardinal Bytes
real Bytes
bitstring Bits
hexstring Hexadecimal digits
octetstring Octets
character strings Characters
sequence of Elements of its base type
set of Elements of its base type

Table 16: Units of length used in field length specifications
Page 56 of 226

empty). Empty positions between the lower and the upper boundaries are not considered to be
valid values of the specified range. For example:

type MyIntegerRange ::= Smallint (0 .. 255);

For values of ordinal type (or derivations of these types), it is possible to mix lists and subranges.

ATDL concrete textual grammar
43 IntegerRange ::= “(“ LowerBound “..” UpperBound “)”

44 LowerBound ::= SingleConstExpression | Minus “infinity”

45 UpperBound ::= SingleConstExpression | “infinity”

AODL syntax definition
173 IntegerRange ::= “(“ LowerBound “..” UpperBound “)”
/* STATIC SEMANTICS - IntegerRange shall only be used with ordinal types */

174 LowerBound ::= SingleConstExpression | Minus “infinity”

175 UpperBound ::= SingleConstExpression | “infinity”

10.3.3.1. Infinite ranges
In order to specify an infinite integer or float range, the keyword infinity may be used instead of
a value indicating that there is no lower or upper boundary. The upper boundary shall be greater
than or equal to the lower boundary.

10.3.3.2. Mixing lists and ranges
For values of type integer, cardinal, char, wide char, real and float (or derivations of these
types) it is possible to mix lists and ranges.

10.4. Structured types and values
The type keyword is also used to specify structured types such as sequence of types, sequence
types, and choice types.

Values of these types may be given using an explicit assignment notation or a shorthand
initializer. It is not allowed to mix the two value notations in the same (immediate) context.

ATDL concrete textual grammar
310 StructuredType ::= SequenceType | SequenceOfType | SetType | SetOfType | ChoiceType

AODL syntax definition
176 StructuredType ::= SequenceType | SequenceOfType | SetType | SetOfType | ChoiceType

10.4.1. Parameterized type
Type parameterization [11] allows dummy type identifiers which act as placeholders for any type.
This means that a type can be left open by the ATDL descriptor as long as it is resolvable at
compile-time. The actual type is only known when the type parameter is actually used. This is a
generalization of the PDU meta-type concept of TTCN-2.

ATDL concrete textual grammar
26 TypeDefFormalParList ::= “(“ FormalValuePar {“,” FormalValuePar}* “)”

324 TypeActualParList ::= “(“ SingleConstExpression {“,” SingleConstExpression}* “)”

AODL syntax definition
177 TypeDefFormalParList ::= “(“ FormalValuePar {“,” FormalValuePar}* “)”
/* STATIC SEMANTICS - FormalValuePar shall resolve to an in parameter */

178 TypeActualParList ::= “(“ SingleConstExpression {“,” SingleConstExpression}* “)”

10.4.2. Sequence type and values
ATDL supports ordered structured types known as sequence (also called `struct'). The elements
of a sequence type may be any of the base types or user-defined types such as other sequences, or
sets. The values of a sequence shall be compatible with the types of the sequence fields. The
element identifiers are local to the sequence and shall be unique within the sequence.

type MyRecordType ::= sequence
{

field1 integer[2],
field2 MyOtherRecordType optional,
field3 charstring

}

The field identifiers field1, field2, and field3 are the field designators for MyRecordType, and they
behave like variables. The MyRecordType type declaration, however, does not allocate any
memory for the field1, field2, and field3 fields; memory is allocated when you instantiate the
record. A sequence value is assigned on an individual element basis or using an value list.

EXAMPLE 2:

const MyStructValue MyStructType:= {MyIntegerValue, {'11001'B, true}, "A string"};

Sequences may be defined with no fields (i.e., as empty structs). For example:

type MyEmptyStruct ::= sequence { }

For optional fields it allowed to omit the value using the omit parameter symbol.

Elements of nested sequences are referenced by StructId.FieldId pairs.

ATDL concrete textual grammar
27 SequenceType ::= “sequence” [TypeDefFormalParList] “{“ [StructFieldDef {“,” StructFieldDef}*] “}”

28 StructFieldDef ::= StructFieldIdentifier Type [SubTypeSpec] [“optional”]

29 StructFieldIdentifier ::= Identifier

AODL syntax definition
179 SequenceType ::= “sequence” [TypeDefFormalParList] “{“ [StructFieldDef {“,” StructFieldDef}*] “}”

180 StructFieldDef ::= StructFieldIdentifier Type [SubTypeSpec] [“optional”]

181 StructFieldIdentifier ::= Identifier

10.4.2.1. Optional elements in a struct
Optional elements in a sequence shall be specified using the optional keyword.

10.4.2.2. Sequence constants
To declare a sequence constant, specify the value of each field with the field assignments
separated by commas. The values must be represented by constant expressions. The fields must
be listed in the order in which they appear in the sequence type declaration. A constant that is of
sequence type shall not contain variables (including module parameters) as field values, either
directly or indirectly.

ATDL concrete textual grammar
480 FieldConstExpressionList ::= FieldExpressionList

473 FieldExpressionSpec ::= FieldReference AssignmentChar Expression

AODL syntax definition
182 FieldConstExpressionList ::= “{“ FieldConstExpressionSpec {“,” FieldConstExpressionSpec}* “}”
Page 58 of 226

183 FieldConstExpressionSpec ::= FieldReference AssignmentChar ConstantExpression

10.4.3. Choice type and values
The constructor choice gives the choice (also called `union') between several alternatives:

type Afters ::= choice (Cardinal) {cheese [0] charstring,
dessert [1] charstring }

A choice is denoted by an identifier, which is a word beginning with a lower-case letter. This
identifier is not encoded and it makes it possible to build unambiguous abstract values; for this
reason, the identifiers of a choice type must be distinct. Their names should be as self-explicit as
possible so that the role of each alternative could be easily understood.

The choice type models two pieces of information: the chosen alternative (the identifier) and the
value associated with this alternative. A BER decoder will rely on the received tag to determine
the alternative that has been chosen and decode the value according to this alternative. The tags of
the choice alternatives must therefore be distinct. Indeed, the choice type does not exist `as is'; it
is only a collection of several types among which one of them is chosen to be encoded with its
associated tag. The TagTypec production must be a previously defined ordinal type.

Name scope rules require that the element descriptors in a particular choice be unique. If the
TagType is an EnumType, the identifier for the enumeration is in the scope of the choice; as a
result, it must be distinct from the element descriptors.

A value of type choice features the identifier of the chosen alternative followed by the symbol
“:”, and a value complying with the type of this alternative. For example:

const mine Afters := dessert:"profiteroles"

The initializer notation for setting values shall not be used for values of choice types.

The optional keyword shall not be used with choice types.

Concrete textual grammar
31 ChoiceType ::= “choice” “(” OrdinalType “)” “{“ ChoiceFieldDef {“;” ChoiceFieldDef}* “}”

32 ChoiceFieldDef ::= StructFieldIdentifier TaggedType [SubTypeSpec]

33 TaggedType ::= “[“ (SingleConstExpression | “else”) “]” Type

329 ChoiceValue ::= StructFieldIdentifer Colon Value

AODL syntax definition
184 ChoiceType ::= “choice” “(” OrdinalType “)” “{“ ChoiceFieldDef {“;” ChoiceFieldDef}* “}”

185 ChoiceFieldDef ::= StructFieldIdentifier TaggedType [SubTypeSpec]

186 TaggedType ::= “[“ (SingleConstExpression | “else”) “]” Type
/* STATIC SEMANTICS - The value of the ConstantExpression shall be of the same type as the TagTypeSpec. */

187 ChoiceValue ::= StructFieldIdentifier Colon Value

10.4.4. Set type and values
ATDL supports unordered structured types known as set. Set types and values are similar to
structs except that the ordering of the set fields is not significant.

The field identifiers are local to the set and shall be unique within the set (but do not have to be
globally unique).

ATDL concrete textual grammar
30 SetType ::= “set” [TypeDefFormalParList] “{“ [StructFieldDef {“,” StructFieldDef}*] “}”

AODL syntax definition
188 SetType ::= “set” [TypeDefFormalParList] “{“ [StructFieldDef {“,” StructFieldDef}*] “}”

10.4.4.1. Optional elements in a set
Optional elements in a set shall be specified using the optional keyword.

10.4.5. Enumerated type and values
ATDL supports enumerated types. Enumerated types are used to model types that take only a
distinct named set of values. Such distinct values are called enumerations. Each enumeration
shall have an identifier. Operations on enumerated types shall only use these identifiers and are
restricted to assignment, equivalence and ordering operators. Enumeration identifiers shall be
unique within the enumerated type (but do not have to be globally unique) and consequently
visible within the context of the given type only.

Each enumeration may optionally have an assigned integer value, which is defined after the name
of the enumeration in parenthesis. Each assigned integer number shall be distinct within a single
enumerated type. For each enumeration without an assigned integer value, the system
successively associates an integer number in the textual order of the enumerations, starting at the
left-hand side, beginning with zero, by step 1 and skipping any number occupied in any of the
enumerations with a manually assigned value.

The integer value also may be used by the system to encode/decode enumerated values. This,
however is outside of the scope of the present document (with the exception that ATDL allows
the association of encoding attributes to ATDL items).

ATDL concrete textual grammar
36 EnumType ::= “enumerated” “{“ NamedValue {“,” NamedValue}* “}”

37 NamedValue ::= NamedValueIdentifier [“(“ Number “)”]

38 NamedValueIdentifier ::= Identifier

338 EnumeratedValue ::= NamedValueIdentifier

AODL syntax definition
189 EnumType ::= “enumerated” “{“ NamedValue {“,” NamedValue}* “}”

190 NamedValue ::= NamedValueIdentifier [“(“ Number “)”]

191 NamedValueIdentifier ::= Identifier

192 EnumeratedValue ::= NamedValueIdentifier

10.5. Array type and values
An array (also called `sequence of' type) represents an indexed collection of elements of the same
type (called the base type). Because each element has a unique index, arrays, unlike sets, can
meaningfully contain the same value more than once.

Arrays can be allocated statically or dynamically. Array indexes are expressions which shall
evaluate to cardinal values. By default, indexing of ATDL arrays shall start with the digit 0 (zero).

Array dimensions shall be specified using constant expressions which shall evaluate to a cardinal
value. Array dimensions may also be specified using ranges. In such cases the lower and upper
values of the range define the lower and upper index values. For example,

type MyArrayType ::= sequence [10] of Smallint ; // is an array of exactly 10 integers
type MyArrayType record [0..10] of Smallint; // is an array of a maximum of 10 integers

Sequences of struct types allow the possibility to specify multi-dimensional arrays. For example:

// Given

type MyStructType ::= sequence { field1 Smallint, field2 MyOtherStruct , field3 charstring }
// An array of MyStructType could be

type MyStructArray ::= sequence [10] of MyStructType;
Page 60 of 226

// A reference to a particular element would look like this

MyStructArray[1].field1 := 1;

A multidimensional array is an array of arrays. For example,

type TMatrix ::= array [10] of array [50] of float;

is equivalent to

type TMatrix ::= array[10][50] of float;

Whichever way TMatrix is declared, it represents an array of 500 float values.

The standard functions LowerBoundary and UpperBoundary operate on array type identifiers and
variables. They return the low and high boundarys of the array’s first index type. The standard
function SizeOf returns the number of elements in the array’s first dimension.

ATDL concrete textual grammar
34 SequenceOfType ::= “sequence” [{LengthRestriction}+] “of” Type [SubTypeSpec]

AODL syntax definition
193 SequenceOfType ::= “sequence” [{LengthRestriction}+] “of” Type [SubTypeSpec]

10.5.1. Dynamic arrays
Dynamic arrays do not have a fixed size or length. Instead, memory for a dynamic array is
reallocated when you assign a value to the array or pass it to the SetLength function. For example,

var MyFlexibleArray ::= sequence of float;

declares a one-dimensional dynamic array of floats. The declaration does not allocate memory for
MyFlexibleArray. To create the array in memory, call SetLength. For example, given the
declaration above,

SetLength(MyFlexibleArray, 20);

allocates an array of 20 floats, indexed 0 to 19.

Once a dynamic array has been allocated, you can pass it to the standard functions SizeOf,
UpperBoundary, and LowerBoundary. SizeOf returns the number of elements in the array,
UpperBoundary returns the array’s highest index (that is, SizeOf–1), and LowerBoundary returns
0. In the case of a zero-length array, UpperBoundary returns –1 (with the anomalous consequence
that UpperBoundary < LowerBoundary).

10.5.2. Array constants
To define a multidimensional array constant, enclose the values of each dimension in a separate
set of curly braces, separated by commas. For example,

type TCube ::= sequence [2][2][2] of Smallint;
const Maze TCube := {{{0, 1}, {2, 3}}, {{4, 5}, {6,7}}};

When the value list notation is used, the first value in the list is assigned to the first element, the
second list value is assigned to the second element etc. No empty assignment is allowed (e.g. two
commas, the second immediately following the first or only with white space between them),
elements to be left out from the assignment shall be explicitly skipped or omitted in the list.

ATDL concrete textual grammar
481 ArrayConstExpression ::= “{“ [ConstantExpression {“,” ConstantExpression}*] “}”

AODL syntax definition
194 ArrayConstExpression ::= “{“ [ConstantExpression {“,” ConstantExpression}*] “}”

10.6. Sets of types
ATDL supports the specification of sequences and sets whose elements are all of the same type.
These are denoted using the keyword of. These sequences and sets do not have element
identifiers and can be considered similar to an ordered array and an unordered array respectively.

The value notation for sequence of and set of shall be a value list notation or an indexed
notation for an individual element.

When the value list notation is used, the first value in the list is assigned to the first element, the
second list value is assigned to the second element etc. No empty assignment is allowed (e.g. two
commas, the second immediately following the first or only with white space between them),
elements to be left out from the assignment shall be explicitly skipped or omitted in the list.

ATDL concrete textual grammar
35 SetOfType ::= “set” [{LengthRestriction}+] “of” Type [SubTypeSpec]

AODL syntax definition
195 SetOfType ::= “set” [{LengthRestriction}+] “of” Type [SubTypeSpec]

10.7. Variant types
Sometimes it is necessary to manipulate data whose type varies or cannot be determined at
compile time. In these cases, one option is to use variables and parameters of type variant, which
represent values that can change type at runtime. Variants, as they are called, offer greater
flexibility but consume more memory than regular variables, and operations on them are slower
than on statically bound types. Moreover, illicit operations on variants often result in runtime
errors, where similar mistakes with regular variables would have been caught at compile time.

Only class templates (§21.1) or method templates may have generic type parameters. Class and
method templates are a wonderful feature of ATDL. In many ordinary object-oriented languages,
one cannot create a type-safe container. Type safe containers are not the only good thing about
class templates. Class templates in ATDL are a very nice way of achieving static polymorphism.
Although it is more typical in ordinary object-oriented languages to gain this kind of
polymorphism using abstract base classes; there are some distinct advantages to using class
templates. For example, there is no virtual overhead. i.e. no extra time or memory is spent
managing the dynamic binding of normal virtual functions.

10.8. Changes to ASN.1
1) Addition of ‘underscore’ to ASN.1 identifiers: AODL extends the definition of identifier
name to allow the use of underscores as well as hyphens.

AODL syntax definition
196 Identifier ::= Alpha {AlphaNum | “_”}*

197 Alpha ::= UpperAlpha | LowerAlpha

198 AlphaNum ::= Alpha | Num

199 UpperAlpha ::= "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M" |"N" | "O" | "P" | "Q"
| "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"

200 LowerAlpha ::= "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" |"n" | "o" | "p" | "q" | "r" |
"s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"

2) Alternative syntax for ASN.1 keywords: ASN.1 currently defines the following base types
with space separators between the two keywords: OCTET STRING, BIT STRING,
CHARACTER STRING, OBJECT IDENTIFIER. AODL extends the ASN.1 syntax to include
an alternative set of keywords containing no space characters.
Page 62 of 226

The consequence of the proposed change is that AODL modules conforming to the ITU-T
Recommendation X.680 [ASN1] series specifications can be written in (or transformed too) a
syntax which can be directly used within other high level specification languages.

10.9. Miscellaneous productions
201 Dot ::= "."

202 Minus ::= “-”

203 SemiColon ::= ";"

204 Colon ::= “:”

205 AssignmentChar ::= “:=”

10.10. Pre-defined ATDL/AODL types

10.10.1. Useful simple basic types
The pre-defined integer types are Integer and Cardinal; use these whenever possible, since they
result in the best performance for the underlying CPU and operating system. In general,
arithmetic operations on integers return a value of type Integer which is equivalent to the 32-bit
Longint. The pre-defined floating-point types are float and Double, representing the single-
precision 32-bit and double-precision 64-bit format IEEE 754 values and operations as specified
in IEEE Standard for Binary Floating-Point Arithmetic, ANSI/IEEE Standard 754-1985.

The values of the integer types are integers in the following ranges:

- For Integer, from –2147483648 to 2147483647, inclusive

- For Cardinal, from 0 to 4294967295, inclusive

10.10.1.1.Signed and unsigned short byte integers
These types supports integer values of the range from –128 to 127 for the signed and from 0 to
255 for the unsigned type. The value notation for these types are the same as the value notation
for the integer type. Values of these types shall be encoded and decoded as they were represented
on a single byte within the system independently from the actual representation form used.

Type definitions for these types are:

type Shortint ::= integer [1] with { variant "8 bit" };

type Byte ::= cardinal [1] with { variant "unsigned 8 bit" };

10.10.1.2.Signed and unsigned small integers
These types support integer values of the range from -32768 to 32767 for the signed and from 0
to 65535 for the unsigned type. The value notation for these types are the same as the value
notation for the integer type. Values of these types shall be encoded and decoded as they were
represented on two bytes within the system independently from the actual representation form
used.

Encoding of values of these types may be the same or may differ from each other and from the
encoding of the integer type (the root type of these useful types) depending on the actual
encoding rules used. Details of encoding rules are out of the scope of the current document.

Type definitions for these types are:

type Smallint ::= integer [2] with { variant "16 bit" };

type Word ::= cardinal [2] with { variant "unsigned 16 bit" };

10.10.1.3.Signed and unsigned long integers
These types support integer values of the range from -2147483648 to 2147483647 for the signed
and from 0 to 4294967295 for the unsigned type. The value notation for these types are the same
as the value notation for the integer type. Values of these types shall be encoded and decoded as
they were represented on four bytes within the system independently from the actual
representation form used.

Encoding of values of these types may be the same or may differ from each other and from the
encoding of the integer type (the root type of these useful types) depending on the actual
encoding rules used. Details of encoding rules are out of the scope of the current document.

Type definitions for these types are:

type Longint ::= integer [4] with { variant "32 bit" };

type Longword ::= cardinal [4] with { variant "unsigned 32 bit" };

10.10.1.4.Signed and unsigned long long integers
These types support integer values of the range from -9223372036854775808 to
9223372036854775807 for the signed and from 0 to 18446744073709551615 for the unsigned
type. The value notation for these types are the same as the value notation for the integer type.
Values of these types shall be encoded and decoded as they were represented on eight bytes
within the system independently from the actual representation form used.

Encoding of values of these types may be the same or may differ from each other and from the
encoding of the integer type (the root type of these useful types) depending on the actual
encoding rules used. Details of encoding rules are out of the scope of the current document.

Type definitions for these types are:

type Longlongint ::= integer [8] with { variant "64 bit" };

type Longlongword ::= cardinal [8] with { variant "unsigned 64 bit" };

10.10.1.5.IEEE 754 floats
These types support the ANSI/IEEE Standard 754 [27] for binary floating-point arithmetic. The
type IEEE 754 float supports floating-point numbers with base 10, exponent of size 8, mantissa
of size 23 and a sign bit. The type IEEE 754 double supports floating-point numbers with base
10, exponent of size 11, mantissa of size 52 and a sign bit. The type IEEE 754 extfloat supports
floating-point numbers with base 10, minimal exponent of size 11, minimal mantissa of size 32
and a sign bit. The type IEEE 754 extdouble supports floating-point numbers with base 10,
minimal exponent of size 15, minimal mantissa of size 64 and a sign bit.

Values of these types shall be encoded and decoded according to the IEEE 754 definitions. The
value notation for these types are the same as the value notation for the float type (base 10).

Precise encoding of values of this type depends on the actual encoding rules used. Details of
encoding rules are out of the scope of the current document.

Type definitions for these types are:

type IEEE754float ::= float with { variant "IEEE754 float" };

type Double ::= real [8] with { variant "IEEE754 double" };

type IEEE754extfloat ::= real [6] with { variant "IEEE754 extended float" };

type IEEE754extdouble ::= real [10] with { variant "IEEE754 extended double" };
Page 64 of 226

10.10.2. Useful character string types

10.10.2.1.UTF-8 character string "utf8string"
This type supports the whole character set of the ATDL type wide charstring (see clause
10.2.9). Its distinguished values are zero, one, or more characters from this set. Values of this type
has entirely (e.g. each character of the value individually) be encoded and decoded according to
the UCS Transformation Format 8 (UTF-8) as defined in annex R of ISO/IEC 10646 [7]. The
value notation for this type is the same as the value notation for the wide charstring type.

The type definition for this type is:

type utf8string wide charstring ::= with { variant "UTF-8" };

10.10.2.2.BMP character string "bmpstring"
This type supports the Basic Multilingual Plane (BMP) character set of ISO/IEC 10646 [7]. The
BMP represents all characters of plane 00 of group 00 of the Universal Multiple-octet coded
Character Set. Its distinguished values are zero, one, or more characters from the BMP. Values of
this type have entirely (e.g. each character of the value individually) be encoded and decoded
according to the UCS-2 coded representation form (see clause 14.1 of ISO/IEC 10646 [7]). The
value notation for this type is the same as the value notation for the wide charstring type.

The type "bmpstring" supports a subset of the TTCN-3 type universal charstring.

The type definition for this type is:

type bmpstring ::= wide charstring (‘\u0000’.. ‘uFFFF’) with { variant "UCS-2" };

10.10.2.3.ISO/IEC 8859 character string "iso8859string"
This type supports all characters in all alphabets defined in the multiparty standard ISO/IEC 8859
[12]. Its distinguished values are zero, one, or more characters from the ISO/IEC 8859 character
set. Values of this type has entirely (e.g. each character of the value individually) be encoded and
decoded according to the coded representation as specified in ISO/IEC 8859 (an 8-bit coding).
The value notation for this type is the same as the value notation for the wide charstring type.

The type "iso8859string" supports a subset of the ATDL type wide charstring.

In each ISO/IEC 8859 alphabet the lower part of the character set table (positions 02/00 to 07/14)
is compatible with the ISO/IEC 646 [6] character set. Hence all extra language specific characters
are defined for the upper part of the character table only (positions 10/00 to 15/15). As the
"iso8859string" type is defined as a subset of the TTCN-3 type wide charstring, any coded
character representation of any ISO/IEC 8859 alphabets can be mapped into an equivalent
character (a character with the same coded representation when encoded on 8 bits) from the Basic
Latin or Latin-1 Supplement character tables of ISO/IEC 10646 [7].

The type definition for this type is:

type iso8859string ::= wide charstring (‘\u000’ .. ‘\u00FF’) with { variant "8 bit" };

11. Modules
The principal building blocks of ATDL are modules. For example, a module may define a fully
executable test suite or just a library. A module consists of a (optional) definitions part, and a
(optional) module control part.

Concrete textual grammar
1 ATDL_Module ::=ModuleHeading “{“ [ModuleDefinitionsPart] [ModuleControlPart] “}”

2 ModuleHeading ::= “module” ATDL_ModuleId [ModuleParList]

11.1. Module diagram
A module is shown as a large rectangle with a small rectangle(a “tab”) attached on one corner.
The name of the module may be placed within the tab.

The ATDL module defines a test suite and the associated collection of statement diagrams, which
again define traces of test events. A module may contain a collection of referenced definitions,
together with any declarations needed for the test suite.

An ATDL system cannot usually be described easily as a single independent piece of text or on a
single diagram. The language therefore supports the partitioning of the specification and use of
ATDL from elsewhere.

Concrete graphical grammar
11 <module diagram> ::= <frame symbol> contains

(ModuleHeading {{<module text area>}*
{<group diagram>}* {<group reference area>}*
<component interaction area> } set)
[is_followed_by <control part area>]

12 <module text area> ::= <text symbol> contains
{(SupporingDef | ImportDef | ExtFunctionDef) [SemiColon]}*

13 <group reference area> ::= <reference symbol> contains GroupHeading

15 <control part area> ::= <reference symbol> contains (“control” ATDL_ModuleId)

11.2. Naming of modules
Module names are of the form of an ATDL identifier followed by an optional object identifier.

NOTE: The module identifier is the informal text name of the module.

Concrete textual grammar
3 ATDL_ModuleId ::= ModuleIdentifier [DefinitiveIdentifier]

4 DefinitiveIdentifier ::= Dot ObjectIdType “{“ DefinitiveObjIdComponentList “}”

5 DefinitiveObjIdComponentList ::= {DefinitiveObjIdComponent}+

6 DefinitiveObjIdComponent ::= NameForm | Number | NameForm “(“ Number “)”

7 ModuleIdentifier ::= Identifier

11.3. Module parameters
The module parameter list defines a set of values that are supplied by the test environment at
run-time. During test execution these values shall be treated as constants.

Concrete textual grammar
8 ModuleParList ::= “(“ ModulePar {“,” ModulePar}* “)”
Page 66 of 226

9 ModulePar ::= [“in”] ModuleParIdentifier Type [“:=” ConstantExpression]

10 ModuleParIdentifier ::= Identifier

11.3.1. Default values for module parameters
It is allowed to specify default values for module parameters. This shall be done by an assignment
in the module parameter list. A default value can be a literal value only and can merely be
assigned at the place of the declaration of the parameter. If the test system does not provide an
actual run-time value for the given parameter, the default value shall be used during test
execution, otherwise the actual value provided by the test system.

11.4. Module definitions part
The module definitions part specifies the top-level definitions of the module and may import
identifiers from other modules. Scope rules for declarations made in the module definition part
and imported declarations are given in clause 5.4. Those language elements which may be
defined in an ATDL module are listed in Table 3. The module definitions may be imported by
other modules.

NOTE: ATDL does not support the declaration of variables in the module definitions
part. This means that global variables cannot be defined in ATDL. However
variables defined in a test component may be used by all test cases, functions
etc. running on that component and variables defined in the control part
provide the ability to keep their values independently of test case execution.

Concrete textual grammar
21 ModuleDefinitionsPart ::= {ModuleDefinition [SemiColon] }+

22 ModuleDefinition ::= (SupportingDef | TemplateDef | ImportDef | GroupDef | InterfaceDef
| FunctionDef | TestcaseDef | AltstepDef | ExtFunctionDef | ClassDef
| CoclassDef | ThreadClassDef | ClassTemplateDef) [WithStatement]

23 SupportingDef ::= TypeDef | ConstDef | ExceptionDef

11.5. Module control part
The module control part describes the execution order (possibly repetitious) of the actual test
cases. A test case shall be defined in the module definitions part and called in the control part.

Test cases are defined in the module definitions part while the module control part manages their
execution. All variables, timers etc. (if any) defined in the control part of a module shall be
passed into the test case by parameterization if they are to be used in the behaviour definition of
that test case i.e. ATDL does not support global variables or timers of any kind.

At the start of each test case the test configuration shall be reset. This means that all components
and channels conducted by create, bind, etc. operations in a previous test case were destroyed
when that test case was stopped (hence are not 'visible' to the new test case).

11.5.1. Termination of test cases
A test case terminates with the termination of the MTC. On terminating of the MTC (explicitly or
implicitly) all running parallel test components shall be terminated by the test system.

The final verdict of a test case is calculated based on the final local verdicts of the different test
components according to the rules defined in clause 19.6. The actual local verdict of a test
component becomes its final local verdict when the test component terminates itself or is stopped
by itself, another test component or by the test system.

11.5.2. Controlling execution of test cases
Program statements, limited to those defined in Table 21 may be used in the control part of a
module to specify such things as the order in which the test cases are to be executed or the
number of times a test case may be run.

If no programming statements are used then, by default, the test cases are executed in the
sequential order in which they appear in the module control.

Test cases return a single value of type verdicttype so it is possible to control the order of
execution depending on the outcome of a test case.

11.5.3. Test case selection
Boolean expressions may be used to select and deselect which test cases are to be executed. This
includes, of course, the use of functions that return a boolean value.

Another way to execute test cases as a group is to collect them in a class and execute that class
from the module control with a try statement.

11.5.4. Use of timers in control
Timer may be used to supervise execution of a test case. This may be done using an explicit
timeout in the try statement. If the test case does not end within this duration, the result of the test
case execution shall be a fail verdict and the test system may terminate the test case. The timer
used for test case supervision is a system timer and need not be neither declared nor started.

EXAMPLE 3:

var MyTObject TObject := TObject.Create;

try (7E-3) {

MyTObject.MySimpleTestCase1();
MyTObject.MySimpleTestCase2();
MyTObject.MySimpleTestCase3();
}

TSystemTimer.catch (timeout) {
setverdict(fail);
stop;

}

Timer operations may also be used explicitly to control test case execution.

Concrete textual grammar
228 ModuleControlPart ::= “control” “{“ ModuleControlBody “}” [WithStatement] [SemiColon]

229 ModuleControlBody ::= [ControlStatementOrDefList [“stop”] | “stop”]

230 ControlStatementOrDefList ::= {ControlStatementOrDef [SemiColon]}+

231 ControlStatementOrDef ::= ControlStatement | ClassLocalInst | ConstDef

400 ControlStatement ::= TestcaseInstance | FunctionInstance | AltConstruct | LoopConstruct
| DecisionConstruct | ActivateStatement | DeactivateStatement
| ChoiceConstruct | AltstepInstance | BasicStatement | TaskStatement

425 BasicStatement ::= TimerStatement | BreakStatement | ContinueStatement | TryStatement

11.5.5. Control diagram
An ATDL control diagram provides a graphical presentation of the control part of an ATDL
module. The heading of a control diagram shall be the keyword control followed by the module
name. Attributes associated to the ATDL module control part shall be specified within a <text
Page 68 of 226

symbol> in the control diagram. The principle shape of an ATDL control diagram and the
corresponding ATDL textual description are sketched in Figure 6.

Concrete graphical grammar
232 <control diagram> ::= <frame symbol> contains ((“control” ATDL_ModuleId)

({<control text area>}* <control graph area>) set)
233 <control text area> ::= <text symbol> contains

({ATDLComments}* [MultiWithAttrib] { ATDLComments}*)

234 <control graph area> ::= <statement start symbol> is_followed_by <control block area>

235 <control block area> ::= [<control statement block area> is_followed_by]
(<stop symbol> | <statement end symbol>)

236 <control statement block area> ::= <control statement area>
[is_followed_by <control statement block area>]

401 <control statement area> ::= <testcase instance area> | <function instance area>
| <fgr inline expression area> | <default area>
| <altstep instance area> | <choice area>
| <decision area> | <task area>

426 <basic statement area> ::= <timer statement area> | <continue area> |
<break area> | <try statement area>

11.6. Groups
In the module definitions part definitions can be collected in named groups. Groups are arranged
in a refinable structure. Groups may be nested i.e. groups may contain other groups. There is no
limit to the number of hierarchical levels for groups.

Grouping is done to aid readability and to add logical structure to the test suite if required. Groups
and nested groups have no scoping except in the context of group identifiers and attributes given
to a group by an associated with statement.

A group type defines containers for one or more component type or group definitions.

Concrete textual grammar
80 GroupDef ::= GroupHeading “{“

{ SupportingDef SemiColon }*

Figure 6. Principle shape of an ATDL control diagram and corresponding textual language

control MyModule
{
 var MyVar Smallint := 1;
 MyVerdict := MyTestCase(MyParameter);
 :
 :
} // end control

Graphical presentation Textual presentation

control MyModule

var MyVar integer := 1;

 MyVerdict := MyTestCase(MyParameter)

[InterfaceDefSpec]
[ComponentDefSpec]
MemberComponentList “}”

ATDL modules are organized as sets of groups. Each group has its own set of names for types,
which helps to prevent name conflicts. The naming structure for groups is hierarchical. The
members of a group are class and interface types. If ATDL code is to be widely distributed,
unique group names should be chosen.This can prevent the conflicts that would otherwise occur
if two development teams happened to pick the same module name and these modules were later
to be used in a single program.

11.6.1. Group members
A group can have members of either or both of the following kinds: a) Sub groups of the group b)
Types declared in the module definition part of the module. A group may not contain a type
declaration and a subgroup of the same name, or a compile-time error results.

Concrete textual grammar
83 SupportingDefSpec ::= { (SupportingDef | FunctionDef | TestcaseDef | AltstepDef) SemiColon }*

84 InterfaceDefSpec ::= {InterfaceDef SemiColon }*

85 ComponentDefSpec ::= { (CoclassDef | ClassDef | ThreadClassDef) SemiColon }*

86 MemberComponentList ::= “members” MemberComponentDef {“,” MemberComponentDef}* “;”

87 MemberComponentDef ::= GroupIdentifier | ComponentTypeIdentifier

11.6.2. Host support for groups
Each ATDL host determines how modules, groups, and subgroups are created and stored; which
top-level group names are in scope in a particular compilation; and which groups are accessible.

The groups may be stored in a local file system in simple implementations of ATDL. Other
implementations may use a distributed file system or some form of database to store ATDL
source and/or binary code.

As an extremely simple example, all the ATDL groups and source and binary code on a system
might be stored in a single directory and its subdirectories. Each immediate subdirectory of this
directory would represent a top-level group.

Under this simple organization of groups, an implementation of ATDL would transform a group
name into a pathname by concatenating the components of the group name, placing a file name
separator (directory indicator) between adjacent components. For example, if this simple
organization were used on a UNIX system, where the file name separator is /, the group name:

org.etsi.ttcn.tci;

would be transformed into the directory name:

org/etsi/ttcn/tci.

11.6.3. Unique group names
Developers should take steps to avoid the possibility of two published groups having the same
name by choosing unique group names for groups that are widely distributed. This allows groups
to be easily and automatically installed and catalogued.

You form a unique group name by first having (or belonging to an organization that has) a
module name, such as Org.ETSI; and use this as a prefix for your group names, using a
convention developed within your organization to further administer group names.

Such a convention might specify that certain directory name components be division, department,
project, machine, or login names.
Page 70 of 226

11.6.4. Declaring groups
A group declaration appears within a module to indicate the group to which the module belongs.
A module that has no group declaration is part of an unnamed group. A group declaration in a
module specifies the name of the group to which the module belongs.

Concrete textual grammar
81 GroupHeading ::= “group” GroupIdentifier

82 GroupIdentifier ::= Identifier

11.6.4.1. Unnamed group
An ATDL module may support one unnamed group. Unnamed groups are provided by ATDL
principally for convenience when developing small or temporary applications or when just
beginning development.

11.6.5. Group diagram
An ATDL group diagram provides a graphical presentation of an ATDL group. The heading of a
group diagram shall be the keyword group followed by the group identifier. Each diagram must
be owned by exactly one group, which may be nested within (and therefore owned by) another
group. A group may contain subordinate groups and ordinary component types.

Concrete graphical grammar
88 <group diagram> ::= <frame symbol>

contains {GroupHeading {{<group text area>}*
[<component interaction area>] {<group reference area>}*}set}

89 <group text area> ::= <text symbol> contains {(SupportingDef | InterfaceDef) [SemiColon]}*

11.7. Importing from modules
It is possible to re-use definitions specified in different modules using the import statement.
ATDL has no explicit export construct thus, by default, all module definitions in the module
definitions part may be imported. An import statement can be used anywhere in the module
definitions part. It shall not be used in the control part.

If the object identifier is provided as part of the module name (from which the definitions are
imported from) in the import statement, this object identifier shall be used to identify the correct
module.

All definitions that are imported from one module shall be referenced in one import statement
only.

If an imported definition has attributes (defined by means of a with statement) then the attributes
shall also be imported.

ATDL concrete textual grammar
211 ImportDef ::= “import” ModuleId (ImportSpec | “{“ {ImportSpec [SemiColon]}* “}”) [“recursive”]

212 ImportSpec ::= ImportAllSpec | ImportGroupSpec | ImportInterfaceSpec | ImportConstSpec
ImportComponentSpec | ImportTypeDefSpec | ImportTemplateSpec |
 | ImportTestcaseSpec | ImportFunctionSpec | ImportAltstepSpec

213 ImportAllSpec ::= [DefKeyword] Dot “*”

214 ModuleId ::= ModuleName [“language” FreeText]

216 GlobalModuleId ::= ModuleIdentifier [Dot ObjectIdentifierValue]

218 DefKeyword ::= “type” | “const” | “class” | “interface” | “template” | “testcase” | “function” | “altstep”

219 ImportGroupSpec ::= “group” GroupIdentifier {“,” GroupIdentifier}*

220 ImportInterfaceSpec ::= “interface” InterfaceIdentifier {“,” InterfaceIdentifier}*

221 ImportComponentSpec ::= “class” ComponentTypeIdentifier {“,” ComponentTypeIdentifier}*

222 ImportTypeDefSpec ::= “type” TypeIdentifier {“,” TypeIdentifier}*

223 ImportTemplateSpec ::= “template” TemplateIdentifier {“,” TemplateIdentifier}*

224 ImportConstSpec ::= “const” ConstIdentifier {“,” ConstIdentifier}*

225 ImportTestcaseSpec ::= “testcase” TestcaseIdentifier {“,” TestcaseIdentifier}*

226 ImportFunctionSpec ::= “function” FunctionIdentifier {“,” FunctionIdentifier}*

227 ImportAltstepSpec ::= “altstep” AltstepIdentifier {“,” AltstepIdentifier}*

11.7.1. Rules on using import
On using import the following rules shall be applied:

a) Only top-level definitions in the module may be imported. Definitions which occur at a lower
scope (e.g. local constants defined in a function) shall not be imported;

b) Only direct importing from the source module of a definition (i.e. the module where the actual
definition for the identifier referenced in the import statement resides) is allowed;

c) A definition is imported together with its name and all local definitions.

d) A definition is imported together with all information of referenced definitions that are
necessary for the usage of the referenced definition.

e) As default, the identifiers of referenced definitions are not automatically imported. If the
identifiers of the referenced definitions are wished to be implicitly imported, the recursive
directive (see §11.7.2) shall be used.

11.7.2. Recursive import
The ATDL default import mechanism imports referenced definitions without their identifier. This
means, a referenced definition cannot be used within the importing module for, e.g. declaring a
variable or for being sent over a port. Even though this default import mechanism avoids
cluttering up of the name space of the importing module, in some cases it is desired to import all
referenced definitions together with their identifiers. In ATDL, the recursive keyword provides
this feature.

11.7.3. Importing single definitions
Single definitions may be imported.

11.7.4. Import on demand
All definitions of a module definitions part may be imported using the “*” symbol next to the
module name. If all definitions of a module is imported by using the “*” symbol, no other form of
import (import of single definitions, import of the same kind etc.) shall be used for the same
import statement. A type-import-on-demand declaration allows all types declared in the group
named by a fully qualified name to be imported as needed. For example,

import MyModule.*;

import Org.ETSI.*

11.7.5. Importing groups
Groups of definitions may be imported. The effect of importing a group is identical to an import
statement that lists all importable definitions (including sub-groups) of this group.
Page 72 of 226

11.7.6. Handling name clashes on import
All ATDL modules shall have their own name space in which all definitions shall be uniquely
identified. Name clashes may occur due to import e.g. import from different modules, import of
groups or import of recursive definitions. Name clashes shall be resolved by prefixing the
imported definition (which causes the name clash) by the identifier of the module from which it is
imported. The prefix and the identifier shall be separated by a dot (.).

In cases where there are no ambiguities the prefixing need not (but may) be present when the
imported definitions are used. When the definition is referenced in the same module where it is
defined, the module identifier of the module (the current module) also may be used for prefixing
the identifier of the definition.

11.7.7. Import definitions from non-ATDL modules
In cases when definitions are imported from other sources than ATDL modules, the language
specification shall be used to denote the language (may be together with a version number) of the
source (e.g. module, package, library or even file) from which definitions are imported. It
consists of the language keyword and a subsequent textual declaration of the denoted language.

12. Test configurations
ATDL allows the (static and dynamic) specification of concurrent test configurations (or
configuration for short).

Within every configuration there shall be one (and only one) main test thread class (MTC). Test
components that are not MTCs are called parallel test components or PTCs. The MTC shall be
created automatically at the start of each test case execution. The behavior defined in the body of
the test case shall execute on this component. During execution of a test case other components
can be created dynamically by the explicit use of the constructor operation.

Test case execution shall end when the MTC terminates. All other PTCs are treated equally i.e.,
there is no explicit hierarchical relationship among them and the termination of a single PTC
terminates neither other components nor the MTC.

12.1. Test configurations at specification level
ROS [ROSE] defines a number of concepts and constructs to describe the interaction between
objects that follow the request/reply interaction paradigm. Such objects are called ROS-objects.
A pair of ROS-objects must have an association between them to serve as a context for the
invocation and performance of operations. ROS defines a connection package as two special
operations, called bind and unbind, that are available, as an option, to an application designer to
dynamically establish and release, respectively, the association between two ROS-objects. In
addition to the means by which an association is established between two ROS-objects, the
association is governed by an association contract.

There are no restrictions on the number of association contracts a component type may maintain.
One-to-many association contracts are also allowed at specification level.

12.1.1. Defining association contracts
ATDL components communicate by sending and receiving signals. Table 17 shows the different
communication possibilities depending on the components involved.

A required interface or co-interface is one that a component needs to support as a client in order
to provide its services. The (declared) supported interfaces of a class are the interfaces listed as
supported in the class specifications. The (declared) supported co-interfaces of a co-class are the
co-interfaces listed as supported in the co-class specifications. Instances of interface (cointerface)
templates declared as supported may be offered by instances of classes (coclasses) being defined.

A supported co-interface is an object’s server co-interface (in the client-server sense), i.e., the
operations that it can perform. Co-interfaces listed as being supported on a co-class type are the
only co-interfaces for which instances may exist on the co-objects. The declared supported co-
interfaces of a base co-class are considered as supported co-interfaces of the sub-co-class and
may be instantiated by the object instance of the sub-co-class as well.

A class may be declared to directly implement one or more interfaces, meaning that any instance
of the class implements all the abstract methods specified by the interface or interfaces. A class
necessarily implements all the interfaces that its direct ancestor classes and direct ancestor
interfaces do. This (multiple) interface inheritance allows objects to support (multiple) common
behaviors without sharing any implementation.

If a co-class uses a co-interface of another co-class, the contract may be shown as a dashed line
with an arrowhead on the co-interface symbol (Figure 5). If a co-class is the realization of a co-
interface, the shorthand notation of a circle attached to the co-class symbol by a line segment may
be used.

In ATDL, operational cp-interfaces and/or co-interfaces and message-based cp-interfaces and/or
co-interfaces are defined as the client’s view on the server. The service is defined naturally in
terms of information sources and sinks. However, all of these definitions presuppose a
directionality, or point of view, namely that of the client.

Each signature is specified as a source if information flows from the server to the client, and as a
sink if it flows in the opposite direction. In the abstract class definition of the server, the interface
is listed as a supported interface; while on the client, the interface is listed as a required interface.

When a co-class is implemented, its supported co-interface is mapped onto an implemented
interface in the implementing class.

Concrete graphical grammar
148 <required interface area> ::= <dependency symbol>

is_connected_to (<component area> <interface area>)

150 <channel symbol> ::= <channel symbol 1> | <channel symbol 2> | <channel symbol 3>

151 <channel symbol 1> ::= <solid association symbol>

12.1.2. Abstract test system interface
The ATDL co-classes replace abstract test system interface and address data type definitions in
TTCN-3. An SUT may consist of several entities which have to be addressed individually. The
address data type in TTCN-3 is a type for use with port operations to address SUT entities.

In a real test environment ATS need to communicate with the SUT. Instead, a set of well-defined
test system co-classes is associated with each test case. A test system co-class definition is a list
of all possible co-interfaces through which the test case is connected to the SUT. A set of co-class
definitions is used to define the test system interface because, conceptually, co-class definitions
and test system interface definitions have the same form.

co class MyISDNTestSystemInterface
{

supports MyBchannelB1, MyBchannelB2, MyDchanneld1;
:

Table 17: Cp-interface and co-interface

client server possible contracts contract objects
components co-class required/supported co-interface
components class required/implemented cp-interface
components thread class required/implemented cp-interface
Page 74 of 226

}

12.1.3. Configuration diagrams
A configuration diagram given at specification level shows a test configuration, i.e. a set of inter-
connected test components with well-defined communication interfaces and/or co-interfaces and
an explicit test system interface which defines the borders of the test system.

Concrete textual grammar
125 ComponentTypeIdentifier ::= ThreadClassIdentifier | ClassInstance | CoclassIdentifier

126 ClassInstance ::= ClassIdentifier | ClassTemplateInstance

127 ComponentType ::= [ModuleName Dot] ComponentTypeIdentifier

Concrete graphical grammar
16 <component interaction area> ::= {<component area> | <component dependency area>

17 <component area> ::= <component reference area> | <component diagram>

18 <component diagram> ::= <thread class diagram> | <class diagram> | <coclass diagram>

20 <component reference area> ::= <reference symbol> contains ComponentType
[is_connected_to <component extends area>]
[is_connected_to { <required interface area>+ } set]
[is_connected_to { <supported interface area>+ } set]
[is_connected_to { <dependency symbol>+ } set]

Figure 7. A typical ATDL Configuration Diagram at specification level

12.1.3.1. The usage dependency
A usage dependency is a situation in which one component requires the presence of another
component for its correct implementation or functioning. All the components must exist at the
same level of meaning i.e., they do not involve a shift in the level of abstraction or realization. A
usage may be stereotyped further to indicate the exact nature of the dependency, such as calling
an operation of another class or instantiating an object of another class. A usage dependency is
indicated by a <dependency symbol>. The arrowhead is on the server (independent) component,
and the tail is on the client (dependent) component.

Concrete graphical grammar
19 <component dependency area> ::= <dependency symbol>

is_connected_to (<component area> <component area>)

GROUP

N_1service;

N-1serviceA
Interface1

Req, Dat, ...;

N-1serviceB

N-1sapA N-1sapB

(N-1)-service provider

NserviceA
MTC

NserviceB
N_PDUs

...;

PTC1

Abstract Test System InterfaceN-1sapA... N-1sapB...

<<co interface>>

<<interface>>

<<co interface>> <<co interface>>

12.2. Test configurations at instance level
Test configurations can be graphically represented by component instance diagram. Unlike a
basic message sequence chart, a component instance diagram explicitly shows the relationships
among the component instances. On the other hand, a component instance diagram does not show
time as a separate dimension.

ATDL allows the (dynamic) specification of concurrent test configurations. A configuration
diagram given at instance level shows a test configuration instance, i.e. a collection of component
object boxes and lines mapping to component instances and channels, respectively.

The component instance diagram contains group instances. The group instances may contain run-
time instances, such as co-class instances and objects. The model may show dependencies among
the instances and their interfaces. Components are connected to other components by dashed
dependency arrows (possibly through channels). This indicates that one component uses the
services of another component.

12.2.1. Channel communication model
Test component instances can be connected with other component instances.

When a program detects something that has happened, it can notify its clients. This notification
process is referred to as firing a message event. Test component instances are connected via their
message-based channels i.e., connections among component instances and between a component
instance and the test system instance are channel-oriented. Each channel is modeled as an infinite
FIFO queue, which stores the incoming messages or procedure calls until they are processed by
the component instance owning that channel.

ATDL connectable objects provide outgoing channels to their clients in addition to their
incoming channels. As a result, components and their clients can engage in bidirectional
communication. Incoming channels are implemented on a server object and receive calls from
external clients of an object, while outgoing interfaces are implemented on the client's sink and
receive calls from the object. The object defines an interface it would like to use, and the client
implements it.

An object defines its incoming interfaces and provides implementations of these interfaces.
Incoming interfaces are available to clients through the object's bind method. Clients call the
methods of an incoming interface on the object, and the object performs desired actions on behalf
of the client.

Figure 8. The ATDL channel communication model

Outgoing interfaces are also defined by an object, but the client provides the implementations of
the outgoing interfaces on a sink object that the client creates. The object then calls methods of
the outgoing interface on the sink object to notify the client of changes in the object, to trigger
events in the client, to request something from the client, or, in fact, for any purpose the object
creator comes up with.

Connectable signal objects provide a general mechanism for object-to-client communication.
Any object that wishes to expose signals or notifications of any kind can use this technology. This
technology includes the following elements:

Client Object
Incoming channel Connectable Object

Sink
Outgoing channel

Connection Point
Interface
Page 76 of 226

Server object: Implements the signal-based channel and manages connection with the client's
sink, defines an outgoing interface for the client.

Client: creates a sink object to implement the outgoing channel defined by the server object.

Sink object: Implements the outgoing channel; used to establish a connection to the server.

12.2.2. Restrictions on connections
ATDL connections are component-to-component connections (see Figure 9). There are no
restrictions on the number of connections a component instance may have, but one-to-many
connections are NOT allowed at instance level. Meanwhile, connections among the co-class
instances within the test system interface are not allowed.

Figure 9. Allowed connections

A component instance can only connect to itself through an exception channel.

12.3. Defining interface types
Interfaces facilitate communication between test components and between test components and
the test system interface. ATDL supports message-based and operational cp-interfaces. ATDL
also supports message-based and operational co-interfaces. Interfaces offer some of the
advantages of multiple inheritance without the semantic difficulties. They are also essential for
using distributed object models. Objects built with ATDL that support interfaces can interact with
SUT objects and thread object written in other languages.

An interface declaration introduces a new reference type whose members can be messages or
operations. This type has no implementation, but otherwise unrelated classes can implement it by
providing signal handlers for its messages and abstract methods.

Unlike other object-oriented languages, ATDL is a ‘pure’ object-oriented language: every
coordinating signal in ATDL is an object, whereas in other languages this isn't always the case.

The benefits of this “every signal is an object” philosophy are great, and pure languages such as
ATDL are considered to be more productive, and - more importantly - more precise to work with.

Concrete textual grammar
129 InterfaceDef ::= MsgInterfaceDef | CpOpInterfaceDef | CoOpInterfaceDef

143 InterfaceType ::= [ComponentType Dot] InterfaceTypeIdentifier

12.3.1. Interface diagrams
An interface or a co-interface may be shown using the interface symbol with the keyword
<<interface>> and <<co interface>> respectively. A list of operations supported by the interface

Co-object BCo-object A

Test Component AThread A Thread B

(a) a channel navigable in both directions

(c) connected with co-objects

Component A

(b) self-connection is only allowed for an exception channel

is placed in the operation compartment. A list of messages supported by the interface is placed in
the message compartment. The attribute compartment may be omitted because it is always empty.

An interface may also be displayed as a small circle with the name of the interface placed below
the symbol. The circle may be attached to a solid line to the classes that support it. This indicates
that the class provides all of the operations in the interface type (and possibly more). A class that
uses or requires the operations supplied by the interface may be attached to the circle by a dashed
arrow pointing to the circle. The dashed arrow implies that the class requires no more than the
operations specified in the interface; the client class is not required to actually use all of the
interface operations.

Concrete graphical grammar
152 <interface area> ::= (<interface area 1> | <interface area 2>)

[is_connected_to {<interface extends area>*} set]
154 <interface extends symbol> ::= <component extends symbol>

155 <interface area 1> ::= <interface symbol 1> contains
(<interface heading> (OperationAttribs | MessageAttribs))

156 <interface heading> ::= (<entity kind symbol> contains [co] interface) InterfaceIdentifier

157 <interface area 2> ::= <interface symbol 2> is_associated_with InterfaceIdentifier

158 <interface symbol 2> ::= <connector symbol>

12.3.2. The message-based interface types
A message-based interface is comprised of a set of message types. The term message is used to
mean both messages as defined by templates and actual values resulting from expressions. Thus,
the list restricting what may be used on a asynchronous channel. Each message type contains the
identifier of the message, the information type of the message, and an indication of whether it is a
producer or consumer (but not both) with respect to the object which provides the service defined
by the interface template.

Concrete textual grammar
130 MsgInterfaceDef ::= MessageInterfaceHeader MessageAttribs

131 MsgInterfaceHeader ::= [“co”] “interface” MsgInterfaceTypeIdentifier [MsgInterfaceHeritage]

132 MsgInterfaceTypeIdentifier ::= Identifier

144 MessageAttribs ::= “{“ {MessageList [SemiColon]}+ “}”

It should be noted that the syntax defined here presupposes a directionality with respect to the
message-based interface definitions. If two objects are involved in a message binding, then one is
designated a service provider, or server, and the other a service consumer, or client. The interface
template describing interactions between them is expressed from the viewpoint of the client
(defining the server). In many ways, particularly where messages travel in both directions, the
choice of client and server may appear rather arbitrary. However, this model is consisted with
many familiar service models [25]. Note that the server template includes a declaration that it
“supports” the message-based interface, while the client template includes a declaration that it
“requires” the message-based interface template. Each message-based interface type definition
shall have one or more lists indicating the allowed collection of message types together with the
allowed communication direction.

In ATDL, message-based interface templates are defined as the client’s view on the server. The
directions are specified by the keywords in (for the in direction, as a source if information flows
from the server to the client), out (for the out direction, as a sink if it flows from the client to the
server) and inout (for both directions). For example,

// Asynchronous interface which allows types MsgType1 and MsgType2 to be received at,
// MsgType3 to be sent via and any integer value to be send and received over the interface

interface MyMessagePortType
Page 78 of 226

{
in UpMessage MsgType1;
out DownMessage MsgType2;
inout BiDirectionalMessage MyIntegerType1
}

12.3.3. Operational interfaces
A passive object operational interface — or simply operational interface — defines methods that
can be implemented by a class. Operational interfaces are declared like classes, but cannot be
directly instantiated and do not have their own method definitions. Rather, it is the responsibility
of any class that supports an interface to provide implementations for the interface’s methods.

An operational interface is a descriptor for the externally visible operations of a class, or thread
class without specification of internal structure. Each operational interface often specifies only a
limited part of the behavior of an actual class. A class may support many operational interfaces.
Operational interfaces may have inheritance relationships.

A variable of an interface type can reference an object whose class implements that interface;
however, only methods declared in the interface can be called using such a variable.

Concrete textual grammar
134 CpOpInterfaceDef ::= CpOpInterfaceHeader OperationAttribs

135 CpOpInterfaceHeader ::= “interface” CpOpInterfaceTypeIdentifier [CpOpInterfaceHeritage]

136 CpOpInterfaceTypeIdentifier ::= Identifier

12.3.3.1. Defining operational interface types
Operational interfaces, like classes, can be declared only in the outermost scope of a module or
class, not in a testcase or function declaration.

An operational interface is essentially equivalent to a class with no properties and only abstract
methods. All the operations in an interface have public visibility. The operational interface can
include only operations. Fields are not allowed in operational interfaces.

12.3.3.2. Inheritance and Overriding
If the interface declares an operation, then the declaration of that operation is said to override any
and all operations with the same signature in the ancestor interfaces of the interface that would
otherwise be accessible to code in this interface.

If an operation declaration in an operational interface overrides the declaration of an operation in
another operational interface, a compile-time error occurs if the operations have different return
types or if one has a return type and the other does not have. Moreover, an operation declaration
must not have a raises clause that conflicts (clause 7.2.6) with that of any method that it
overrides; otherwise, a compile-time error occurs.

12.3.3.3. Implementing operational interfaces
Once an operational interface has been declared, it can be implemented in a thread or a class
before it can be used. The operational interfaces implemented by a thread or a class are specified
in the ImplementedInterfaceList. By default, each interface method is mapped to a method of the
same name in the implementing component.

When an interface is implemented, each of its methods is mapped onto a method in the
implementing class that has the same result type, the same number of parameters, and identically
typed parameters in each position. By default, each cp-interface method is mapped to a method of
the same name in the implementing class.

A compile-time error occurs if the same operational interface is mentioned two or more times in a
single implements clause, even if the interface is named in different ways.

Concrete textual grammar
103 ImplementedInterfaceList ::= “implements” InterfaceType {“,” InterfaceType}* “;”

Concrete graphical grammar
149 <supported interface area> ::= <channel symbol>

is_connected_to (<interface area> <component area>)

The realization relationship is shown by a <channel symbol> or by a dashed line with a solid
triangular arrowhead from a class to an interface it supports. This is the same notation used to
indicate realization of a co-class by an implementation class.

12.3.3.4. Changing inherited implementations
Descendant classes can change the way a specific interface method is implemented by overriding
the implementing method. This requires that the implementing method be virtual.

12.3.4. Interface inheritance
If an extends clause is provided, then the interface being declared extends each of the other
named interfaces and therefore inherits the operations and messages of each of the other named
interfaces. These other named interfaces are the ancestor interfaces of the interface being
declared. Any class that implements the declared interface is also considered to implement all
the interfaces that this interface extends and that are accessible to the class.

An operational interface, like a class, inherits all of its ancestors’ methods. But interfaces, unlike
classes, do not implement methods. What an interface inherits is the obligation to implement
methods — an obligation that devolves onto any class supporting the interface.

It should be noted that a message-based interface or a message-based co-interface should not
inherit from an operational interface or an operational co-interface and vice versa.

Concrete textual grammar
133 MsgInterfaceHeritage ::= “extends“ MsgInterfaceTypeIdentifier {“,” MsgInterfaceTypeIdentifier}*

137 CpOpInterfaceHeritage ::= “extends“ CpOpInterfaceTypeIdentifier {“,”
CpOpInterfaceTypeIdentifier}*

141 CoOpInterfaceHeritage ::= “extends“ CoOpInterfaceTypeIdentifier {“,”
CoOpInterfaceTypeIdentifier}*

Concrete graphical grammar
153 <interface extends area> ::= <interface extends symbol>

is_connected_to (<interface area> <interface area>)

12.3.5. Declaring exception types

Exception types are a special kind of message-based interface.

All exceptions in ATDL occur synchronously as a result of an action by the thread in which they
occur, and at a point in the ATDL program that is specified to possibly result in such an
exception. An ordinary message is, by contrast, an asynchronous message that can potentially
occur at any point in the execution of an ATDL program.

It is illegal to define generic type directly or indirectly within an exception type declaration.
Consequently, no parameterized types appear anywhere in exception handling.

Concrete textual grammar
187 ExceptionDef ::= “exception” ExceptionIdentifier “{“ {ExceptionMember}* “}”
Page 80 of 226

188 ExceptionIdentifier ::= Identifier

189 ExceptionMember ::= ExceptionTypeIdentifier Type [SemiColon]

190 ExceptionTypeIdentifier ::= Identifier

191 ExceptionName ::= [ModuleName Dot] ExceptionIdentifier

Concrete graphical grammar
192 <exception area> ::= <interface symbol 1> contains (<exception heading> {ExceptionMember}*)

193 <exception heading> ::= (<entity kind symbol> contains exception) ExceptionIdentifier

13. Defining classes
To incorporate concurrent constructs in a conventional object-oriented system, the notion of
execution threads was introduced in ATDL. A model in which concurrency is introduced in this
way is called an object / thread model. This model has the advantage of familiarity, because a
conventional programming language is used as the base language.

In this model, objects are passive entities, and each thread can execute object method code at any
time. Good response times and good performance are expected. However, since threads execute
independently, a mutual exclusion problem might occur when more than two threads
simultaneously execute the same method. To avoid this problem, a locking mechanism must be
used to control access to synchronized fields in a method.

A class (or class type) defines a structure consisting of methods, and properties. Instances of a
class type are called objects. The fields and methods of a class are called its members. The
members of a class include both declared and inherited members. Field, method, and constructor
declarations may include the access modifiers (§13.5) public, protected, or private. Newly
declared fields can hide fields declared in an ancestor class. Newly declared methods can hide,
implement, or override methods declared in an ancestor class or operational interface.

Method declarations describe code that may be invoked by method invocation expressions. A
synchronized method (§13.10.2) automatically locks an object before executing its body and
automatically unlocks the object on return, thus allowing its activities to be synchronized with
those of other threads (§21.2). Method names may be overloaded (§13.7.4).

Constructors (§13.8) are similar to methods, but cannot be invoked directly by a method call;
they are used to initialize new class instances. Like methods, they may be overloaded.

13.1. Defining class types
A class type must be declared and given a name before it can be instantiated. (You cannot define
a class type within a variable declaration.) Declare classes only in the outermost scope of a
module, not in a test case or function declaration.

A class may participate in association contract, inheritance, and dependency relationships. A
class type declaration can also include a list of interfaces implemented by the class. The class
type defines which interfaces are associated with a class. These definitions shall be made in the
module definitions part. The interface names in a class definition are local to that class i.e.,
another class may have interfaces with the same names.

Methods appear in a class declaration as function or test case headings, with no body. Defining
declarations for each method occur elsewhere in the module definition part. Thus testcase and
function declarations in the class declaration work like forward declarations, although the
forward directive isn’t used.

Concrete textual grammar
99 ClassDef ::= [(“virtual” | “final”)] “class” ClassIdentifier [ClassHeritage]

100 ClassDefBody ::= “{“ [ClassPropertiesList]
[InterfaceDefSpec]

[ImplementedInterfaceList]
[RequiredInterfaceList]
[ClassMethodList] “}”

104 ClassMethodList ::= {ClassMethodDef SemiColon}*

Concrete graphical grammar
115 <class diagram> ::= <class symbol> contains

(ClassIdentifier <class properties area> <class methods area>)
[is_connected_to <component extends area>]
[is_connected_to {<required interface area>+ } set]
[is_connected_to {<supported interface area>+ } set]
[is_connected_to { <dependency symbol>+ } set]

116 <class methods area> ::= ({ ClassMethodDef <end> }*) set

A class is shown as a solid-outline rectangle with three compartments separated by horizontal
lines. The top compartment holds the class name. The middle compartment holds a list of
properties. The bottom compartment contains a list of operations or methods. The middle and
bottom compartment can be suppressed in a class symbol.

Table 18 shows a basic class declaration with properties and methods.

Presentation options

Suppressing compartments. Either or both of the property and method compartments may be
suppressed. A separator line is not drawn for a missing compartment. If a compartment is
suppressed, on inference can be drawn about the presence or absence of elements in it. Note that
an empty compartment implies that there are no elements in the corresponding list.

Additional compartments. Additional compartments may be supplied to show signals handled,
exceptions raised, and so on.

13.1.1. Scope of a class type name
The ClassIdentifier in a class declaration specifies the name of the class. This class name has as
its scope the entire group or the entire current module, in which the class is declared. Forward
declarations allow mutually dependent classes. As an example, the group:

group points {
class Point { x Integer; y Integer; // coordinates

color PointColor; // color of this point
next Point; // next point with this color
var nPoints Integer; }

class PointColor {
first Point; // first point with this color
//...
private color Integer; // color components
}

}

Table 18: Detailed class declaration with visibilities of features

Window // name compartment
public size Area := (100,100); // property compartment
protected visibility boolean := invisible;
public function display (location Point); // method compartment
public function hide ();
Page 82 of 226

defines two classes that use each other in the declarations of their class members. Because the
class type names Point and PointColor have the entire group points, as their scope, this example
compiles correctly — that is, forward reference is not a problem.

Concrete textual grammar
101 ClassIdentifier ::= Identifier

13.1.2. Passive object
An object that does not have it own thread of control. Its operations execute under a control
thread anchored in a thread object. A thread object is one that owns a thread of control and may
initiate control activity. A passive object is one that has a value but does not initiate control.
However, a method on a passive object may send messages while processing a request that it has
received on an existing thread.

Passive objects are dynamically allocated blocks of memory whose structure is determined by
their class type. Each object has a unique copy of every field defined in the class, but all instances
of a class share the same methods. Passive objects are created and destroyed by special methods
called constructors and destructors.

13.1.3. Final classes
A class can be declared final if its definition is complete and no descendants are desired or
required. A compile-time error occurs if the name of a final class appears in the extends clause
of another class declaration; this implies that a final class cannot have any descendants. A
compile-time error occurs if a class is declared both final and virtual, because the implementation
of such a class could never be completed

13.1.4. Class inheritances
Generalization is a transitive, anti-symmetric relationship. One direction of traversal leads to the
parent; the other direction leads to the child. An element related in the parent direction is called
an ancestor; an element related in the child direction is called a descendant.

The optional extends clause in a class declaration specifies the direct ancestor of the current
class. A class is said to be a direct descendant of the class it extends. The direct superclass is the
class from whose implementation the implementation of the current class is derived. If the class
declaration for any other class has no extends clause, then the class has the class TObject as its
implicit direct ancestor class.

A class type automatically inherits all of the members from its immediate ancestor. Each class
can declare new members and can redefine inherited ones, but a class cannot remove members
defined in an ancestor. The scope of a member’s identifier starts at the point where the member is
declared, continues to the end of the class declaration, and extends over all descendants of the
class and the blocks of all methods defined in the class and its descendants.

A class type is assignment-compatible with its ancestors. Hence a variable of a class type can
reference an instance of any descendant type.

Concrete textual grammar
93 CoclassHeritage ::= “extends“ CoclassIdentifier

102 ClassHeritage ::= “extends“ (ClassIdentifier | CoclassIdentifer)

122 ThreadClassHeritage ::= “extends“ (ThreadClassIdentifer | CoclassIdentifer)

Concrete graphical grammar
97 <component extends area> ::= <component extends symbol>

is_connected_to (<component area> <component area>)

Inheritance between components is shown as a solid-line path from the child component to the
parent component, with a large hollow triangle at the end of the path where it meets the ancestor
component.

13.1.4.1. The TObject class
The TObject class is the ultimate ancestor of all other classes. TObject defines only a handful of
methods, including a basic constructor and destructor.

13.1.5. Ancestor interfaces
The optional implements clause in a class declaration lists the names of interfaces that are direct
ancestor interfaces of the class being declared. The declarations of the operations defined in each
ancestor operational interface must be implemented either by a declaration in this class or by an
existing method declaration inherited from the direct ancestor class.

13.1.5.1. Implementation inheritance
The inheritance of the implementation of a parent element. In this relationship, a class inherits
both interface and implementation from another component. ATDL does not permit multiple
inheritances of class. ATDL will let you use single implementation inheritance within a process.

Certain kinds of elements, such as interfaces and co-classes, are intended for specifying behavior,
and they contain no implementation information. Other kinds of elements, such as classes, are
intended for implementing behavior. They contain implementation information. Usually,
realization relates a specification element, such as a co-class or an interface, to an implementation
element, such as a MSC diagram or a class.

A cp-interface or a co-interface is a collection of procedure names, without an implementation. A
class can support any number of cp-interfaces and/or co-interfaces and must provide
implementations for every function described in the cp-interface and/or co-interfaces. Both
artifacts provide a greater level of polymorphism. Interfaces and co-interfaces provide signature
inheritance; standard ATDL classes provide implementation inheritance.

13.2. Class members
The members of a class type include the following: a) Members inherited from its direct ancestor
class, except in class TObject, which has no direct ancestor class b) Members declared in the
body of the class.

Members of a class that are declared private are not inherited by descendant classes of that class.
Only members of a class that are declared protected or public are inherited by descendant
classes declared in a module other than the one in which the class is declared.

A class type may have two or more methods with the same simple name if the methods have
different signatures, that is, a method can be redeclared using the overload directive, if they have
different numbers of parameters or different parameter types in at least one parameter position.

A class type may contain a declaration for a method with the same name and the same signature
as a method that would otherwise be inherited from a ancestor class or ancestor interface. In this
case, the method of the ancestor class or ancestor interface is not inherited. If the method not
inherited is an operation, then the new declaration is said to implement it; if the method not
inherited is virtual, then the new declaration is said to override it. To override a method,
redeclare it with the override directive.

13.3. Declaring properties
The fields, data types, exceptions and constants of a component are called its properties. It is
possible to declare variables and constants local to a particular component. These declarations are
visible to all functions that run on the component.
Page 84 of 226

Concrete textual grammar
110 ClassPropertiesList ::= { (SupportingDef | ClassFieldDef | DefaultAltstepDef) SemiColon}*

Concrete graphical grammar
98 <class properties area> ::= ({ ClassProperty <end> }*) set

The first ClassProperty in a <class properties area> must be placed uppermost in the middle
compartment of the containing component symbol. Each subsequent ClassProperty must be
placed below the previous one.

13.3.1. Signal handlers
Signal handlers are altsteps that implement responses to dynamically dispatched signals. ATDL
uses signal handlers to respond to run-time signals. Default Handler is called by the ATDL
underlying system when it cannot find an altstep for a particular signal. Default Handler provides
signal handling for all signals for which an object does not have specific handlers.

A signal is a mechanism that links an occurrence to some code. More specifically, a signal is an
altstep pointer that points to an altstep in a specific class instance.

The ATDL underlying system uses altstep pointers to implement signals. An altstep pointer is a
special pointer type that points to a specific altstep in an instance object. As a component writer,
you can treat the altstep pointer as a placeholder: When your code detects that a signal occurs,
you call the altstep (if any) specified by the user for that signal.

Altstep pointers maintain a hidden pointer to an object. When the application developer assigns a
signal handler to a component’s signal, the assignment is not just to an altstep declaration with a
particular name, but rather to an altstep instance in a specific instance object.

Components use fields to implement their signal handlers. But while a field is merely a storage
location whose contents can be examined and changed, a signal handler is associated with a
specific altstep. The declaration of a signal handler specifies a name and a type, and includes one
default specifier.

Concrete textual grammar
114 DefaultAltstepDef ::= ClassFieldIdentifier (MessageType | Operation) “default“ AltstepInstance

13.4. Declaring fields
A field is like a variable that belongs to an object. Fields can be of any type, including class types.
(That is, fields can hold object references.) Fields are usually private. To define a field member of
a class, simply declare the field as you would a variable. All field declarations must occur before
any method declarations. For example:

class MyMTCType
{

public MyLocalInteger integer[2];
timer MyLocalTimer;
implements MyMessagePortPCO1;
:

}

It is a compile-time error for the body of a class declaration to contain declarations of two fields
with the same name. Methods and fields may have the same name, since they are used in different
contexts. If the class declares a field with a certain name, then the declaration of that field is said
to hide any and all accessible declarations of fields with the same name in the ancestor classes of
the class. If a field declaration hides the declaration of another field, the two fields need not have
the same type.

Concrete textual grammar

111 ClassFieldDef ::= ClassVisibility [“synchronized”] ClassFieldIdentifier VarInitializer

13.4.1. Static fields
A static field can be a static variable or a constant field. There exists exactly one incarnation of
the field, no matter how many instances (possibly zero) of the class may eventually be created.

A static variable, sometimes called a class variable, is incarnated when the class is initialized. A
field that is not a class variable (sometimes called a non-static field) is called an instance
variable. Whenever a new instance of a class is created, a new variable associated with that
instance is created for every instance variable declared in that class or any of its ancestors.

13.4.1.1. Constant fields
Every constant declaration in the body of a class is called a constant field. Every constant field in
the body of a class must have an initialization expression, which must be a constant expression.

13.4.2. Initialization of fields
If a field declarator contains a variable initializer, then it has the semantics of an assignment to
the declared variable, and:

- If the declarator is for a class variable (that is, a static field), then the variable initializer is
evaluated and the assignment performed exactly once, when the class is initialized.

If the keyword self or the keyword inherited occurs in an initialization expression for a class
variable, then a compile-time error occurs.

- If the declarator is for an instance variable (i.e. a field), then the variable initializer is
evaluated and the assignment performed each time an instance of the class is created.

Variable initializers are also used in local variable declaration statements (§18.1), where the
initializer is evaluated and the assignment performed each time the local variable declaration
statement is executed.

13.5. Visibility of class members
Every member of a class has an attribute called visibility, which is indicated by one of the
reserved words private, protected, or public. Visibility determines where and how a member
can be accessed, with private representing the least accessibility, protected representing an
intermediate level of accessibility, and public representing the greatest accessibility.

There are three predefined visibilities:

a) private: Class members declared as private can be used only by member functions and test
cases of the class.

b) protected: Class members declared as protected can be used by member functions and test
cases of the class. Additionally, they can be used by classes derived from the class.

c) public: A public member is visible wherever its class can be referenced.

If none of the access modifiers public, protected, or private are specified, a class member or
constructor is accessible throughout the group that contains the declaration of the class in which
the class member is declared, but the class member or constructor is not accessible in any other
group. The default access has no keyword, but it is commonly referred to as “friendly.”

Friendly access allows you to group related classes together in a group so that they can easily
interact with each other. When you put classes together in a group, you “own” the code in that
group. It makes sense that only code that you own should have friendly access to other code that
you own. You could say that friendly access gives a meaning or a reason for grouping classes
together in a group.
Page 86 of 226

Members of a class that are declared private are not inherited by descendant classes of that class.
Only members of a class that are declared protected or public are inherited by subclasses
declared in a package other than the one in which the class is declared.

You can increase the visibility of a member in a descendant class by re-declaring it, but you
cannot decrease its visibility. For example, a protected attribute can be made public in a
descendant, but not private.

Concrete textual grammar
112 ClassVisibility ::= [“public” | “protected” | “private”]

13.6. Virtual classes
The virtual test case or virtual function declarations within a virtual class include only the
method’s heading. The implementation of the virtual test case or virtual function follows in the
descendant implementation class. Thus virtual test case and virtual function declarations within
the virtual class work like abstract declarations, although the abstract directive isn’t used.

A virtual class is a class that is incomplete, or to be considered incomplete. Only virtual classes
may have abstract methods, that is, methods that are declared but not yet implemented. If a class
that is not virtual contains a method template, then a compile-time error occurs.

A compile-time error occurs if an attempt is made to create an instance of a virtual class using a
class instance creation expression. It is a compile-time error to declare a virtual class type such
that it is not possible to create a descendant class that implements all of its abstract methods.
This situation can occur if the class would have as members two abstract methods that have the
same method signature but different return types.

A virtual class may also have method template declarations. Method templates are the efficient
way to implement polymorphic behavior. Just like type declarations, method declarations can be
generic, that is, parameterized by one or more generic type parameters.

Method templates provide a mechanism by which we can preserve the semantics of method
definitions and method calls (encapsulate a section of code in one program location and ensure
that the arguments are evaluated only once prior to the invocation of the method) without having
to bypass ATDL's strong type-checking as is done with the macro solution.

If you have written an arithmetic expression in a programming language, you have used a
predefined incarnated function. For example, the expression

1 + 3

invokes the addition operation for integer operands, whereas the expression

1.0 + 3.0

invokes a different addition operation that handles floating point operands. The operation that is
actually used is transparent to the user. The addition operation is incarnated to handle the
different operand types. It is the responsibility of the compiler, and not of the programmer, to
distinguish between the different operations and to apply the appropriate operation depending on
the operands' types. Method incarnating (§16.5.2) allows multiple methods that provide a
common operation on different parameter types to share a common name.

As is the case with the built-in addition operation, we may want to define a set of functions that
perform the same general action but that apply to different parameter types. The implementation
details of how that is accomplished are of little interest to the users of the function. This lexical
complexity reflects a limitation of the programming environment in which each name occurring
at the same scope must refer to a unique entity. Such complexity presents a practical problem to
the programmer, who must remember or look up each name. Method template incarnating
relieves the programmer of this lexical complexity.

13.6.1. Method template
ATDL provides many facilities to ease the use of functions in ATDL programs. The first such
facility is different incarnated methods. Methods that provide a common operation but that
operate on different data types and require differing implementations may share a common name.
This capability eases the use of methods, because programmers do not have to remember
different method names for a same operation.

A second facility supported in ATDL to ease the use of methods is method templates. A method
template is a generic method definition that is used to automatically generate an infinite set of
method definitions that vary by type but whose implementations remain invariant.

The declaration of a method template m must appear within a virtual class (call it A); otherwise a
compile-time error results. The descendant classes of A that is not virtual must provide an
incarnation for m, or a compile-time error occurs.

13.6.2. Incarnating
Method templates can be incarnated in descendant classes. A method template specifies how
individual methods can be constructed given a set of one or more actual types. If the descendant
class is not virtual, this process of construction is referred to as method template incarnation. To
incarnate a method template, redeclare it in the descendant class. When the method template is
incarnated, an actual built-in or user-defined type is substituted for the template type parameter.

In this case, the template argument list explicitly specifies the type of the template argument.

13.6.3. Method template instantiation
The method templates in the base virtual class are always “dummy” methods. That’s because the
intent of a method template is to create a common interface for all the classes derived from it. The
only reason to establish this common interface is so it can be expressed differently for each
different incarnated type. It establishes a basic form, so you can say what’s in common with all
the derived classes. All derived-class methods that incarnate the signature of the base-class
declaration will be called using the dynamic binding mechanism.

If a virtual class contains one or more method templates, objects of that class almost always have
no meaning. A method template specifies how individual functions can be invoked given a set of
one or more actual types or values. This process of invocation is referred to as method template
instantiation. It occurs implicitly as a side effect of invoking a method template. To determine the
actual type and value to use as template arguments, the type of the method argument provided on
the method call is examined. The process of determining the types and values of the template
arguments from the type of the method arguments is called template argument deduction.

13.7. Declaring methods
A method is a test case or function associated with a class. A call to a method specifies the object
(or, if it is a class method, the class) that the method should operate on. For example,

SomeObject.Free;

calls the Free method in SomeObject.

Concrete textual grammar
105 ClassMethodDef ::= ClassVisibility [Virtuality] MethodHeading [RaisesExpr]

107 MethodHeading ::= [“synchronized”] [“class”] RoutineHeading
| ConstructorHeading | DestructorHeading
Page 88 of 226

13.7.1. Method implementations
Within a class declaration, methods appear as test case, altstep and function headings, which
work like forward declarations. Somewhere after the class declaration, but within the same scope
unit (module or enclosing group), each method must be implemented by a defining declaration.

In the heading of a defining declaration, the method name is always qualified with the name of
the class to which it belongs. The heading can repeat the parameter list from the class declaration;
if it does so, the order, type, and names of the parameters must match exactly, and, if the method
is a function, so must the return value.

When you use an identifier that has been declared in more than one place, it is sometimes
necessary to qualify the identifier.

Qualifiers can be iterated.

If you don’t qualify an identifier, its interpretation is determined by the scope rules [1].

Concrete textual grammar
170 QualifierId ::= (ComponentType | InterfaceIdentifier) Dot

13.7.1.1. Inherited
The reserved word inherited plays a special role in implementing polymorphic behavior. It can
occur in method definitions, with or without an identifier after it.

If inherited is followed by a method identifier, it represents a normal method call, except that the
search for the method begins with the immediate ancestor of the enclosing method’s class. For
example, when

inherited Create(...);

occurs in the definition of a method, it calls the inherited Create.

When inherited has no identifier after it, it refers to the inherited method with the same name as
the enclosing method. In this case, inherited can appear with or without parameters; if no
parameters are specified, it passes to the inherited method the same parameters with which the
enclosing method was called.

13.7.2. Method binding
Methods can be static (the default), or virtual. Virtual methods can be overridden, and they can
be abstract. These designations come into play when a variable of one class type holds a value of
a descendant class type. They determine which implementation is activated when a method is
called.

Concrete textual grammar
106 Virtuality ::= “final” [“virtual”] | “override” | “overload” | “external” | “template”

13.7.2.1. Class methods
A class method is a method (other than a constructor) that operates on classes instead of objects.
The definition of a class method must begin with the reserved word class.

The defining declaration of a class method must also begin with class. In the defining declaration
of a class method, the identifier Self represents the class where the method is called.

A class method can be called through an object reference. When it is called through an object
reference, the class of the object becomes the value of Self.

A method that is not declared with the class directive is called an instance method. An instance
method is always invoked with respect to an object, which becomes the current object to which
the keywords self and inherited refer during execution of the method body.

13.7.2.2. Static instance methods
Instance methods are by default static. When a static instance method is called, the declared
(compile-time) type of the class or object variable used in the method call determines which
implementation to activate. In the following example, the Execute methods are static.

class TTestcase { testcase Execute; }
class TIpTest extends TTestcase { testcase Execute; }

Given these declarations, the following code illustrates the effect of calling a static instance
method. In the second call to Testcase.Execute, the Testcase variable references an object of class
TIpTest, but the call invokes the implementation of Execute in TTestcase, because the declared
type of the Testcase variable is TTestcase.

EXAMPLE 1:

var Testcase TTestcase;
var IpTest TIpTest;
Testcase := TTestcase.Create;
Testcase.Execute; // calls TTestcase.Execute
Testcase.Destroy;
Testcase := TIpTest.Create;
Testcase.Execute; // calls TTestcase.Execute
Testcase.Destroy;
IpTest := TIpTest.Create;
IpTest.Execute; // calls TIpTest.Execute
IpTest.Destroy;

13.7.2.3. Abstract methods
An abstract method declaration introduces the method as a member, providing its signature (name
and number and type of parameters), return type, and raises clause (if any), but does not provide
an implementation. All methods declared in a virtual class (§13.6) are implicitly abstract, it is
not required for the declarations of such methods to redundantly include the abstract keyword.

13.7.2.4. Virtual instance methods
It is a compile-time error for a private method to be declared virtual. It would be impossible for a
descendant class to implement a private virtual method, because private methods are not visible
to descendant classes; therefore such a method could never be used.

It is a compile-time error for a class method to be declared virtual.

To make an instance method virtual, include the virtual directive in its declaration. Virtual
methods, unlike static methods, can be overridden in descendant classes. When an overridden
method is called, the actual (runtime) type of the object used in the method call — not the
declared type of the variable — determines which implementation to activate.

Virtual methods are the most efficient way to implement polymorphic behavior. An override
declaration must match the ancestor declaration in the order and type of its parameters and in its
result type (if any). To override an instance method, re-declare it with the override directive.
Moreover, an instance method declaration must not have a raises clause that conflicts with that of
any method that it overrides.

In the following example, the Execute method declared in TTestcase is overridden in two
descendant classes.
Page 90 of 226

class TTestcase {virtual testcase Execute}
class TIpTest extends TTestcase {override testcase Execute}
class TSipTest extends TTestcase {override testcase Execute}

Given these declarations, the following code illustrates the effect of calling a virtual method
through a variable whose actual type varies at runtime. For example,

var Testcase TTestcase;
Testcase := TIpTest.Create;
Testcase.Execute; // calls TIpTest.Execute
Testcase.Destroy;
Testcase := TSipTest.Create;
Testcase.Execute; // calls TSipTest.Execute
Testcase.Destroy;

Only virtual methods can be overridden. All methods, however, can be overloaded.

13.7.2.5. Final methods
A virtual method can be declared final to prevent descendant classes from overriding or hiding it.
A static method can be declared final to prevent descendant classes from hiding it. It is a compile-
time error to attempt to hide a final static method.

It is a compile-time error to attempt to override or hide a final virtual method. A private method
and all methods declared in a final class are implicitly final, because it is impossible to hide them.
All virtual methods declared in a final class are implicitly final, because it is impossible to
override or to hide them. It is permitted but not required for the declarations of such methods to
redundantly include the final keyword.

It is a compile-time error for a final method to be declared abstract.

13.7.2.6. External methods
The external directive, which replaces the block in a test case or function declaration, allows you
to call test cases and functions that are compiled separately from your program. A method that is
external is implemented in platform-dependent code, typically written in another programming
language such as assembly language.

13.7.3. Inheritance, overriding, and hiding
A class inherits from its ancestors all the methods (whether virtual or not) of the ancestors.

13.7.3.1. Overriding versus implementing
If a class declares an instance method, then the declaration of that method is said to override the
virtual method with the same signature in the ancestor classes. To override an instance method,
re-declare it with the override directive. Moreover, if the descendant class is not virtual, then the
declaration of that method is said to implement any and all declarations of abstract methods with
the same signature in the ancestor classes or to implement the operation with the same signature
in the ancestor operational interfaces of the class.

A compile-time error occurs if an instance method overrides a class method.

13.7.3.2. Hiding
If a class declares a virtual method, then the declaration of that virtual method is said to hide an
inherited virtual method with a new one. The virtual directive suppresses compiler warnings
about hiding previously declared virtual methods.

If a class declares a class method, then the declaration of that method is said to hide any and all
class methods with the same signature in the ancestor classes. A compile-time error occurs if a
class method hides an instance method.

If an instance method declaration specifies the same method identifier and parameter signature as
an inherited method, but doesn’t include override, the new declaration merely hides the inherited
one without overriding it. Both methods exist in the descendant class, where the method name is
statically bound. For example,

 class Test1 extends TObject {virtual testcase Execute;}
 class Test2 extends Test1 {testcase Execute;} // Execute is redeclared, but not overridden

Given these declarations, the following code illustrates the effect of hiding a virtual method.

var SomeObject Test1;
SomeObject := Test2.Create;
SomeObject.Execute; // calls Test1.Execute

If a class declares a class method, then the declaration of that method is said to hide any and all
methods with the same signature in the ancestor classes of the class.

A hidden method can be accessed by using a qualified name or by using a method invocation
expression that contains the keyword inherited or a cast to an ancestor class type. In this respect,
hiding of methods is similar to hiding of fields.

13.7.3.3. Requirements in Overriding and Hiding
If a method declaration overrides or hides the declaration of another method, then a compile-time
error occurs if they have different return types or if one has a return type and the other does not
have. Moreover, a method declaration must not have a raises clause that conflicts with that of any
method that it overrides or hides; otherwise, a compile-time error occurs.

The access modifier of an overriding or hiding method must provide at least as much access as
the overridden or hidden method, or a compile-time error occurs. In more detail:

- If the overridden or hidden method is public, then the overriding or hiding method must
be public; otherwise, a compile-time error occurs.

- If the overridden or hidden method is protected, then the overriding or hiding method
must be protected or public; otherwise, a compile-time error occurs.

Note that a private method is never accessible to descendant classes and so cannot be hidden or
overridden in the technical sense of those terms. This means that a descendant class can declare a
method with the same signature as a private method in one of its ancestor classes, and there is no
requirement that the return type or raises clause of such a method bear any relationship to those
of the private method in the ancestor class.

13.7.4. Overloading methods
If two methods of a class (whether both declared in the same class, or both inherited by a class, or
one declared and one inherited) have the same name but different signatures, then the method
name is said to be overloaded. This fact causes no difficulty and never of itself results in a
compile-time error. There is no required relationship between the return types or between the
raises clauses of two methods with the same name but different signatures.

If you overload a virtual method, use both the virtual and overload directives when you redeclare
it in descendant classes.

A method can be redeclared using the overload directive. In this case, if the re-declared method
has a different parameter signature from its ancestor, it overloads the inherited method without
hiding it. For example,
Page 92 of 226

class T1 extends TObject {overload testcase Test(I Smallint); }
class T2 extends T1 {overload testcase Test(S charstring); }
…
SomeObject := T2.Create;
SomeObject.Test('Hello!'); // calls T2.Test
SomeObject.Test(7); // calls T1.Test

When a method is invoked (§20.6), the number of actual arguments and the compile-time types of
the arguments are used, at compile time, to determine the signature of the method that will be
invoked. Calling the method in a descendant class activates whichever implementation matches
the parameters in the call. .

The implementation of an overloaded method must repeat the parameter list from the class
declaration. For more information about overloading, see clause “Overloading test cases and
functions” on page 111.

13.7.5. Destructors
A destructor is a special method that destroys the object where it is called and deallocates its
memory.The declaration of a destructor looks like a testcase declaration, but it begins with the
word destructor. Examples:

destructor Destroy;
override destructor Destroy;

To call a destructor, you must reference an instance object. For example,

MyObject.Destroy;

When a destructor is called, actions specified in the destructor implementation are performed
first. Typically, these consist of destroying any embedded objects and freeing resources that were
allocated by the object. Then the storage that was allocated for the object is disposed of.

The last action in a destructor’s implementation is typically to call the inherited destructor to
destroy the object’s inherited fields.

When a self-exception is raised during creation of an object, default destructor is automatically
called to dispose of the unfinished object. This means that the destructor must be prepared to
dispose of partially constructed objects. Because a constructor sets the fields of a new object to
zero or empty values before performing other actions, class-type and dynamic-array fields in a
partially constructed object are always null. A destructor should therefore check for null values
before operating on class-type or dynamic-array type fields.

Concrete textual grammar
161 DestructorHeading ::= “destructor” [QualifierId] DestructorIdentifier [FormalParList]

162 DestructorIdentifier ::= Identifier

13.7.6. Raises expressions
A raises expression specifies which checked exceptions may be raised as a result of an
invocation of a method or constructor. The syntax for its specification is as follows:

ATDL concrete textual grammar
186 RaisesExpr ::= “raises” “(“ ExceptionName {“,” ExceptionName}* “)”

The ExceptionNames in the raises expression must be previously defined exceptions.

For each checked exception that can result from execution of the body of a method or constructor,
a compile-time error occurs unless that exception type or an ancestor class of that exception type
is mentioned in a raises clause in the declaration of the method or constructor. The requirement to
declare checked exceptions allows the compiler to ensure that code for handling such error

conditions has been included. Methods or constructors that fail to handle exceptional conditions
raised as checked exceptions will normally result in a compile-time error because of the lack of a
proper exception type in a raises clause. ATDL thus encourages a programming style where rare
and otherwise truly exceptional conditions are documented in this way.

A method that overrides or hides another method (§13.7.2), including methods that implement
operations defined in interfaces, may not be declared to raise more checked exceptions than the
overridden or hidden method.

13.8. Declaring constructors
A constructor is a special method that creates and initializes instance objects. The declaration of a
constructor looks like a testcase declaration, but it begins with the word constructor. Examples:

constructor Create;
constructor Create(AOwner TComponent);

A class can have more than one constructor, but most have only one. It is conventional to call the
constructor create.

Although the declaration specifies no return value, when a constructor is called using a class
reference, it returns a reference to the object it creates. To create an object, call the constructor
method in a class type. For example,

MyObject := TMyClass.Create;

This allocates storage for the new object. Other actions specified in the constructor
implementation are performed next; typically, objects are initialized based on values passed as
parameters to the constructor. Finally, the constructor returns a reference to the newly allocated
and initialized object. The type of the returned value is the same as the class type specified in the
constructor call.

When a constructor is called using an object reference, it does not create an object or return a
value. Instead, the constructor operates on the specified object, executing only the statements in
the constructor’s implementation. A constructor is always invoked on an object reference in
conjunction with the reserved word inherited to execute an inherited constructor.

Here is an example of a class type and its constructor.

class TShape extends TGraphicControl {
FPenMessage TPenMessage default PenChanged;
FBrushMessage TBrushMessge default BrushChanged;
altstep PenChanged(Sender TObject);
altstep BrushChanged(Sender TObject);
public override constructor Create(Owner TComponent);
public override destructor Destroy;
:
};

constructor TShape.Create(Owner TComponent) {
inherited Create(Owner); // Initialize inherited parts
Width := 65; // Change inherited properties
Height := 65;
FPen := null; // Initialize new fields
FBrush := null;
} ;
Page 94 of 226

There is no practical need for a constructor to be synchronized, because it would lock the object
under construction, which is normally not made available to other threads until all constructors
for the object have completed their

Concrete textual grammar
159 ConstructorHeading ::= “constructor” [QualifierId] ConstructorIdentifier [FormalParList]

160 ConstructorIdentifier ::= Identifier

In a configuration diagram at specification level, a constructor operation declaration is included
as one of the methods in the method list of the class. It may have a parameter list, but the return
value is implicitly an instance of the class and may be omitted.

13.8.1. Constructor body
The first statement of a constructor body may be an explicit invocation of another constructor of
the same class, written as self followed by the constructor name and a parenthesized argument
list, or an explicit invocation of a constructor of the ancestor class, written as inherited followed
by the constructor name and a parenthesized argument list.

It is a compile-time error for a constructor to directly or indirectly invoke itself through a series of
one or more explicit constructor invocations involving self.

13.8.2. Constructor overloading
Overloading of constructors is identical in behavior to overloading of methods. The overloading
is resolved at compile time by each component instance creation expression (§20.4).

13.8.3. Default constructor
If a class contains no constructor declarations, then a default constructor (create) that takes no
parameters is automatically provided. The default constructor takes no parameters and simply
invokes the ancestor class constructor with no arguments.

13.8.4. Raises expressions
The raises expression for a constructor is identical in structure and behavior to the raises
expression for a method.

13.9. Class references
Sometimes operations are performed on a class itself, rather than on instances of a class (that is,
passive objects). This happens, for example, when you call a constructor method using a class
reference. You can always refer to a specific class using its name, but at times it is necessary to
declare variables or parameters that take classes as values, and in these situations you need class-
reference types. Class-reference types are useful when you want to invoke a class method or
virtual constructor on a class or object whose actual type is unknown at compile time.

Concrete textual grammar
323 ClassRefType ::= “class” “of” ClassIdentifer

13.10. Coordinating threads
When writing the code that runs when your thread is executed, you must consider the behavior of
other threads that may be executing simultaneously. In particular, care must be taken to avoid two
threads trying to use the same global object or variable at the same time. In addition, the code in
one thread can depend on the results of tasks performed by other threads.

To avoid clashing with other threads when accessing global objects or variables, you may need to
block the execution of other threads until your thread code has finished an operation. Be careful

not to block other execution threads unnecessarily. Doing so can cause performance to degrade
seriously and negate most of the advantages of using multiple threads.

13.10.1. Synchronized fields
Synchronized fields work like gates that allow only a single thread to enter at a time. Each
synchronized field is associated with the global memory you want to protect.

There is a lock associated with every synchronized field. The ATDL language does not provide a
way to perform separate lock and unlock actions; instead, they are implicitly performed by high-
level constructs that arrange always to pair such actions correctly. Every thread that accesses that
global memory should first implicitly use the Lock method to ensure that no other thread is using
it. When finished, threads call the Unlock method implicitly so that other threads can access the
global memory by implicitly calling Lock.

13.10.2. Synchronized methods
When you use synchronized fields to protect global memory, only one thread can use the memory
at a time. This can be more protection than you need, especially if you have an object or variable
that must be read often but to which you very seldom write. Best practice is that if a variable is
ever to be assigned by one thread and used or assigned by another, then all accesses to that
variable should be enclosed in synchronized methods.

A synchronized method acquires a lock before it executes. Acquiring the lock associated with an
object does not of itself prevent other threads from accessing fields of the object or invoking
unsynchronized methods on the object. For example,

class TBox {
private boxContents TObject;
public synchronized function retrieve () return TObject;
public synchronized function put (content TObject) return boolean;

}

function TBox.retrive() return TObject {
var contents TObject := boxContents;
boxContents := null;
return contents;
}

function TBox.put(content TObject) return boolean {
if [boxContents != null] return false;
boxContents := contents;
return true;
}

defines a class which is designed for concurrent use. Each instance of the class TBox has an
instance variable contents that can hold a reference to any object. You can put an object in a
TBox by invoking put, which returns false if the box is already full. You can get something out
of a TBox by invoking retrieve, which returns a null reference if the tbox is empty.

If put and retrieve were not synchronized, and two threads were executing methods for the
same instance of TBox at the same time, then the code could misbehave. It might, for example,
lose track of an object because two invocations to put occurred at the same time.

A synchronized method automatically performs a lock action when it is invoked; its body is not
executed until the lock action has successfully completed. If the method is an instance method, it
locks the lock associated with the instance for which it was invoked (that is, the object that will be
known as this during execution of the body of the method). If execution of the method’s body is
Page 96 of 226

ever completed, either normally or abruptly, an unlock action is automatically performed on that
same lock.

13.11. Exceptions
You will probably have noticed many similarities between exception handling and function calls.
A raise statement behaves somewhat like a function call, and the catch clause behaves somewhat
like a function definition. The main difference between these two mechanisms is that all the
information necessary to set up a function call is available at compile-time, and that is not true for
the exception handling mechanisms in other object-oriented languages. The exception handling
mechanisms commonly found in other object-oriented languages, require run-time support.

In ATDL, the exception declaration of a catch clause can be changed to a reference declaration.
The catch clause then directly refers to the exception object created by the raise statement
instead of creating a local copy.

13.11.1. Self-exceptions
In the case of a self-connection, when an ATDL program violates the semantic constraints of the
ATDL language, the underlying test system signals this error to the program as a self-exception.
An example of such a violation is an attempt to index outside the boundaries of an array. Some
programming languages and their implementations react to such errors by peremptorily
terminating the program, this approach is not compatible with the design goals of ATDL. Instead,
ATDL specifies that an exception will be raised when semantic constraints are violated and will
cause a non-local transfer of control from the point where the exception occurred to a point that
can be specified by the programmer. An exception is said to be raised from the point where it
occurred and is said to be caught at the point to which control is transferred.

13.11.2. Compile-Time Checking of Exceptions
An ATDL compiler may check, at compile time, that an ATDL program contains exception
handlers for checked exceptions, by analyzing which checked exceptions can result from
execution of a method or constructor. For each checked exception which is a possible result, the
raises clause for the method (clause 13.7.6) or constructor (§13.8.4) must mention the class of
that exception or one of the ancestor classes of the class of that exception. This compile-time
checking for the presence of exception handlers is designed to reduce the number of exceptions
which are not properly handled.

The checked exception classes named in the raises clause are part of the association contract
between the implementor and user of the method or constructor. The raises clause of an
overriding method may not specify that this method will result in throwing any checked
exception which the overridden method is not permitted, by its raises clause, to throw. When
operational interfaces are involved, more than one method declaration may be overridden by a
single overriding declaration. In this case, the overriding declaration must have a raises clause
that is compatible with all the overridden declarations (§12.3.3).

13.11.3. Unchecked exceptions
In addition to any user-defined exceptions specified in the raises expression, there are a standard
set of exceptions that may be signalled by the ATDL underlying system. The absence of a raises
expression on an operation implies that there are no user-defined exceptions. Invocations of such
an operation are still liable to receive one of the standard exceptions.

The standard exceptions are exempted from compile-time checking because, in the judgment of
the designers of ATDL, having to declare such exceptions would not aid significantly in
establishing the correctness of ATDL programs. Many of the operations and constructs of the
ATDL language can result in runtime exceptions. Requiring such exceptions to be declared would
simply be an irritation to ATDL programmers.

13.11.4. The exceptions handling
An exception instance denotes that an exceptional situation (typically an error situation) has
occurred while interpreting a system. An exception instance is created implicitly by the
underlying system or explicitly by a raise operation and the exception instance ceases to exist if it
is caught by a catch operation or timeout exception.

ATDL exception handling uses the try, catch, and raise statements to implement exception
handling. With ATDL exception handling, your program can communicate unexpected events to
a higher execution context that is better able to recover from such abnormal events. These
exceptions are handled by code that is outside the normal flow of control.

A statement or expression is dynamically enclosed by a catch clause if it appears within the try
block of the try statement of which the catch clause is a part, or if the caller of the statement or
expression is dynamically enclosed by the catch clause.

The caller of a statement or expression depends on where it occurs. If within a method, then the
caller is the method invocation expression that was executed to cause the method to be invoked.
If within a constructor, then the caller is the component instance creation expression that was
executed to cause an object to be created.

13.11.4.1.Handling of a self-exception
An exception instance transfers control to an exception handler. When a self-exception is raised,
control is transferred from the code that caused the exception to the nearest dynamical-enclosing
catch clause of a try statement (§19.5.1) that handles the exception.

The control transfer that occurs when a self-exception is raised causes abrupt completion of
expressions and statements until a catch clause is encountered that can handle the exception;
execution then continues by executing the block of that catch clause. The self-exception handling
mechanism is said to be nonresumptive; once the exception has been handled, the execution of
the program does not resume where the exception was originally raised.

14. Declaring variables
Variables are denoted by the keyword var. Variables can be declared and used in the module
control part, test cases, functions and altsteps. Additionally, variables can be declared in
component type definitions. Variables declared within a test case or function are sometimes
called local variable, while variables declared within a class are called class variable. Variables
shall not be declared or used in a module definitions part. A variable declaration may have an
optional initial value assigned to it. For example:

var MyVar1 Smallint := 1;
var MyVar2 boolean:= true, MyVar3 boolean:= false;

Variables should be bound before use, unless they appear on the left-hand side of an assignment.
Use of un-initialized variables at runtime shall cause a test case error.

Concrete textual grammar
237 VarInstance ::= “var” SingleVarInstance {“,” SingleVarInstance}*

238 SingleVarInstance ::= VarIdentifier {Colon VarIdentifier}* VarInitializer

239 VarInitializer ::= Type [AssignmentChar VarInitialValue]

240 VarInitialValue ::= Expression

241 VarIdentifier ::= Identifier

14.1. Kinds of variables
There are six kinds of variables:
Page 98 of 226

1. A class variable is a variable declared within a class declaration. A class variable is created
when its class is initialized and may be initialized to a default value. The class variable effectively
ceases to exist when its class is destroyed.

2. An instance variable is a field declared within a class declaration. If a class T has a field a that
is an instance variable, then a new instance variable a is created and initialized to a default value
as part of each newly created object of class T or of any class that is a descendants of T. The
instance variable effectively ceases to exist when the object of which it is a field is no longer
referenced, after the destructor has been called to destroy the unfinished object.

3. Thread-local (or thread) variables are used in multithreaded applications. A thread-local
variable is also called a thread-local field, each thread of execution gets its own private copy of
the variable, which cannot be accessed from other threads. Thread-local variables are declared
within thread class definitions.

4. Method parameters name argument values passed to a method. For every parameter declared
in a method declaration, a new parameter variable is created each time that method is invoked.
The new variable is initialized with the corresponding argument value from the method
invocation. The method parameter effectively ceases to exist when the execution of the body of
the method is complete.

5. Constructor parameters name argument values passed to a constructor. For every parameter
declared in a constructor declaration, a new parameter variable is created each time a class
instance creation expression or inherited constructor invocation invokes that constructor. The
new variable is initialized with the corresponding argument value from the creation expression or
constructor invocation. The constructor parameter effectively ceases to exist when the execution
of the body of the constructor is complete.

6. Local variables are declared by local variable declaration statements. Whenever the flow of
control enters a statement block or for statement, a new variable is created for each local variable
declared in a local variable declaration statement immediately contained within that block or for
statement. A local variable declaration statement may contain an expression which initializes the
variable. The local variable with an initializing expression is not initialized, however, until the
local variable declaration statement that declares it is executed. The local variable effectively
ceases to exist when the execution of the block or for statement is complete.

15. Declaring templates
Templates are used to either transmit a set of distinct values or to test whether a set of received
values matches the template specification. Templates provide the following possibilities:

a) they are a way to organize and to re-use test data, including a simple form of inheritance;
b) they can be parameterized;
c) they allow matching mechanisms;
d) they can be used with either asynchronous or operational communications.

Within a template values, ranges and matching attributes can be specified and then used in both
asynchronous and operational communications. Templates may be specified for any ATDL type
or operation signature. The type-based templates are used for asynchronous communications and
the operation templates are used in operational communications.

Concrete textual grammar
50 TemplateDef ::= “template” BaseTemplate [DerivedDef] AssignmentChar TemplateBody

51 BaseTemplate ::= TemplateIdentifier [FormalCrefParList]
(MessageIdentifier | Operation | ExceptionTypeIdentifier)

52 TemplateIdentifier ::= Identifier

56 TemplateBody ::= TemplateValue&Attributes | FieldSpecList

57 TemplateValue&Attributes ::= TemplateValue [ValueAttributes]

58 FieldSpecList ::= “{“ [FieldSpec {“,” FieldSpec}*] “}”

59 FieldSpec ::= FieldReference AssignmentChar TemplateBody

60 FieldReference ::= StructFieldIdentifier | ArrayOrBitRef | OperationParIdentifier

61 OperationParIdentifier ::= ValueParIdentifier

64 TemplateValue ::= SingleConstExpression | MatchingSymbol | TemplateRefWithPara

72 TemplateInstance ::= InLineTemplate

74 TemplateRef ::= [ModuleName Dot] TemplateIdentifier | TemplateParIdentifier

79 TemplateOps ::= “value” “of” “(“ TemplateInstance “)” | “value”

15.1. Declaring message templates
Instances of messages with actual values may be specified using templates. A template can be
thought of as being a set of instructions to build a message for sending or to match a received
message. Templates may be specified for any ATDL type. However, it is anticipated that the most
common use will be with sequences, as shown by the examples in the following clauses.

Templates for communication operations can have an explicit list of formal parameters. The
formal parameters of a template can include templates, functions and the special matching
symbols.

To enable matching attributes to be passed as parameters the extra keyword template shall be
added before the type field. This makes the parameter a template and in effect extends the
allowed parameters for the associated type to include the appropriate set of matching attributes as
well as the normal set of values. Template parameter fields shall not be called by reference.

15.1.1. Templates for receiving messages
A template used in a receiving operation defines a data template against which an incoming
message is to be matched. Matching mechanisms, may be used in receive templates. No binding
of the incoming values to the template shall occur.

15.2. Parameterization of templates
Templates for both sending and receiving operations can be parameterized. The actual parameters
of a template can include values and templates, functions and special matching symbols.

15.2.1. Parameterization with matching attributes
To enable templates or matching symbols to be passed as parameters the extra keyword
template shall be added before the type field. This makes the parameter a template-type and in
effect extends the allowed parameters for the associated type to include the appropriate set of
matching attributes (see §15.7) as well as the normal set of values. Template parameter fields
shall not be called by reference.

15.2.2. Templates reference
The templates reference shall be present in conjunction with sending and receiving methods. It
shall not be present with any other kind of ATDL statement.

Concrete textual grammar
73 TemplateRefWithPara ::= [ModuleName Dot] TemplateIdentifier [ActualCrefParList] |

TemplateParIdentifier

77 ActualCrefParList ::= “(“ ActualCrefPar {“,” ActualCrefPar}* “)”

78 ActualCrefPar ::= [VarIdentifier AssignmentChar] TemplateInstance | Type
Page 100 of 226

15.3. Template matching mechanisms
Generally, matching mechanisms are used to replace values of single template fields or to replace
even the entire contents of a template. Some of the mechanisms may be used in combination.

Matching mechanisms and wildcards may also be used in-line in received events only (i.e.
receive, synchronize, trigger and catch operations). They may appear in explicit values.

For example:

MyPCO.receive (MyCharstring : "abcxyz");

MyPCO.receive (MyInteger: complement(1, 2, 3));

The message identifier may be omitted when the value unambiguously identifies the message.

However, the message identifier of the in-line template shall be in the interface definition over
which the template is received. In the case where there is an ambiguity between the listed
message and the type of the value provided (e.g. through sub-typing) then the message name shall
be included in the receive statement.

Matching mechanisms are arranged in five groups:
a) specific values (i.e., an expression that evaluates to a specific value);

Table 19: ATDL Matching Mechanisms

Used with values of Value Constructed
Value

Instead
Of Value Inside Value Attributes

Type

Sp
ec

ifi
c

Va
lu

e

O
m

it
(-)

C
om

pl
em

en
t

Va
lu

eL
is

t

R
an

ge

A
ny

Va
lu

e
(?

)

A
ny

O
rO

m
it

(*
)

A
ny

O
ne

 (?
)

A
ny

O
rN

on
e

(*
)

Pe
rm

ut
at

io
n

Le
ng

th

IfP
re

se
nt

boolean Y Y Y Y Y Y Y
integer Y Y Y Y Y Y Y Y Y
cardinal Y Y Y Y Y Y Y Y Y
char Y Y Y Y Y Y Y Y
wide char Y Y Y Y Y Y Y Y
float Y Y Y Y Y Y Y
real Y Y Y Y Y Y Y Y
enumerated Y Y Y Y Y Y Y
bitstring Y Y Y Y Y Y Y Y Y Y
octetstring Y Y Y Y Y Y Y Y Y Y
hexstring Y Y Y Y Y Y Y Y Y Y
character strings Y Y Y Y Y Y Y Y Y Y
sequence Y Y Y Y Y Y Y
sequence of Y Y Y Y Y Y Y Y Y Y
set Y Y Y Y Y Y Y
set of Y Y Y Y Y Y Y Y Y Y
objid Y Y Y Y Y Y Y
choice Y Y Y Y Y Y Y

b) specific symbols that can be used constructed values;
c) special symbols that can be used instead of values;
d) special symbols that can be used inside values;
e) special symbols which describe attributes of values.
An overview of the supported matching mechanisms is defined in Table 19, including the special
symbols and the scope of their application. The left-hand column of this table lists all the ATDL
and ASN.1 equivalent types as defined in the ITU-T Recommendation X.680 series [8], [9], [10]
and [11] to which these matching mechanisms apply.

A full description of each matching mechanism can be found in clause 15.7. Additional supported
matching mechanisms and their associated symbols (if any) and the scope of their application are
shown in Table 20.

15.4. Modified templates

15.4.1. General
Normally a template specifies a set of base or default values or matching symbols for each and
every field defined in the appropriate definition. In cases where small changes are needed to
specify a new template it is possible to specify a modified template. A modified template
specifies modifications to particular fields of the original template, either directly or indirectly.

The modifies keyword denotes the parent template from which the new, or modified template
shall be derived. This parent template may be either the original template or a modified template.

The modifications occur in a linked fashion eventually tracing back to the original template. If a
template field and its corresponding value or matching symbol is specified in the modified
template, then the specified value or matching symbol replaces the one specified in the parent
template. If a template field and its corresponding value or matching symbol is not specified in
the modified template, then the value or matching symbol in the parent template shall be used.
When the field to be modified is nested within a template field which is a structured field itself,
no other field of the structured field is changed apart from the explicitly denoted one(s).

A modified template shall not refer to itself, either directly or indirectly i.e. recursive derivation is
not allowed.

Concrete textual grammar
53 DerivedDef ::= “modifies” TemplateRef

15.4.2. Parameterization of modified templates
If a base template has a formal parameter list, the following rules apply to all modified templates
derived from that base template, whether or not they are derived in one or several modification
steps: a) the derived template shall not omit parameters defined at any of the modification steps
between the base template and the actual modified template; b) a derived template can have
additional (appended) parameters if wished; c) the formal parameter list shall follow the template
name for every modified template; d) base template fields containing parameterized templates
shall not be modified or explicitly omitted in a modified template.

15.4.3. In-line modified templates
As well as creating explicitly named modified templates ATDL allows the definition of in-line
modified templates.

template Setup MyMessageType :=

{ field1 := 75, field2 := "abc", field3 := true }

// Could be used to define an in-line modified template of Setup
Page 102 of 226

Pco1.send (modifies Setup := {field1 76});

Concrete textual grammar
75 InLineTemplate ::= [(MessageIdentifier | ExceptionTypeIdentifier) InLineMatchingSymbol]

[DereivedDef “:=”] TemplateBody

15.5. Changing template fields
All changes to template fields shall only be done via parameterization or by in-line derived
templates at the time of performing a communication operation (e.g., send, receive, call,
synchronize etc.). The effects of these changes on the value of the template field do not persist in
the template subsequent to the corresponding communication event.

The notation of the kind MyTemplateId.Fieldid shall not be used to set or retrieve values in
templates in communication events. The keyword “->” shall be used for this purpose.

15.6. Value of Operation
The valueof operation allows the value specified within a template to be assigned to the fields
of a variable. The variable and template shall be type compatible (see 17.6) and each field of the
template shall resolve to a single value. For example,

type ExampleType ::= sequence
{

field1 Smallint,
field2 boolean

}
template SetupTemplate ExampleType :=
{

field1 := 1,
field2 := true

}
:
var RxValue ExampleType := value of(SetupTemplate);

15.7. Matching incoming values
This clause specifies the matching mechanisms that may be used in ATDL templates (and only
incoming templates).

15.7.1. In-line matching operators
The following operators may also be used in-line in communication operations.

Table 20: ATDL in-line matching operators

Operator Operation Operand types Used in
:= assignment any type The sending operations

in value set membership any type The receiving operations

== equality any type The receiving operations

<= sub value set set of The receiving operations

>= super value set set of The receiving operations

The value set matching operater allows the value of a variable to be compared with a template.
The operation returns a boolean value. If the types of the template and variable are not compatible
(see §17.6) the operation returns false. If the types are compatible the return value of the
operation indicates whether the value of the variable conforms to the specified template.

template LessThan10 MyInteger := (-infinity..9);
testcase MyMTCType.TC001()
{

var RxValue MyInteger;
:
PCO1.receive(MyInteger in ?) -> (RxValue := value;)
if [RxValue in LessThan10] { … }
// true if the actual value of Rxvalue is less than 10 and false otherwise
:

}

Concrete textual grammar
76 InLineMatchingSymbol ::= AssignmentChar | Colon | ">=" | "<=" | “==”

15.7.1.1. SuperSet
Super Set is an operator for matching that shall be used only on values of set of types. Super Set
is denoted by the symbol “>=”. A message that uses Super Set matches the corresponding
incoming message if, and only if, the incoming message contains at least all of the elements
defined within the Super Set, and may contain more. For example,

interface MyInterface { out MySetOfType set of Smallint; }
var MyChannel := MyInterface(TSenderObject);
MyChannel.receive (MySetOfType >= (1, 2, 3));
// any sequence of integers matches which contains at least one occurrences
// of the numbers 1, 2 and 3 in any order and positions

15.7.1.2. SubSet
Sub Set is an operation for matching that can be used only on values of set of types. Sub Set is
denoted by the symbol “<=”. A message that uses Sub Set matches the corresponding incoming
message if, and only if, the incoming message contains only elements defined within the Sub Set,
and may contain less. To use our previous examples,

MyChannel.receive (MySetOfType <= (1, 2, 3));

// any sequence of integers matches which contains zero or one occurrences

// of the numbers 1, 2 and 3 in any order and positions

15.7.2. Matching specific values
Specific values are the basic matching mechanism of ATDL templates. Specific values in
templates are expressions which do not contain any matching mechanisms or wildcards. Unless
otherwise specified, a template field matches the corresponding incoming field value if, and only
if, the incoming field value has exactly the same value as the value to which the expression in the
template evaluates. For example,

// Given the message type definition

interface MyMessageInterface {...;

MyMessageType sequence
{

Page 104 of 226

field1 Smallint,
field2 charstring ,
field3 boolean optional,
field4 sequence [3] of Smallint

}
...}

// A message template using specific values could be

template MyTemplate MyMessageType :=

{
field1 := 3+2, // specific value of integer type
field2 := "My string", // specific value of charstring type
field3 := true, // specific value of boolean type
field4 := {1,2,3} // specific value of integer array

}

15.7.2.1. Omit
Omit is a special symbol for matching that can be used on values of all types, provided that the
struct field is optional.

Concrete textual grammar
68 Omit ::= “omit”

15.7.3. Constructed value

15.7.3.1. Value List
Value lists specify lists of acceptable incoming values. It can be used on values of all types. A
template field that uses a value list matches the corresponding incoming field if, and only if, the
incoming field value matches any one of the values in the value list. Each value in the value list
shall be of the type declared for the template field in which this mechanism is used. ValueLists
are denoted by a parenthesized list of values separated by commas.

Concrete textual grammar
71 ValueList ::= “(“ TemplateBody {“,” TemplateBody}* “)”

15.7.3.2. Complement
The keyword complement denotes a list of values that will not be accepted as incoming values
(i.e. it is the complement of a value list). It can be used on all values of all types.

Each value in the list shall be of the type declared for the template field in which the complement
is used. A template field that uses complement matches the corresponding incoming field if and
only if the incoming field does not match any of the values listed in the value list. The value list
may be a single value, of course.

15.7.3.3. Value ranges
Ranges indicate a bounded range of acceptable values, when used for values of integer, cardinal,
float, or real types (and integer, cardinal, float, or real sub-types). A boundary value shall be
either: a) infinity or -infinity; b) an expression that evaluates to a specific integer, cardinal, real or
float value.

The lower boundary shall be put on the left side of the range, the upper boundary at the right side.
The lower boundary shall be less than the upper boundary. A template field that uses a range

matches the corresponding incoming field if, and only if, the incoming field value is equal to one
of the values in the range.

When used in templates or template fields of char, wide char, charstring or wide
charstring types, the boundaries shall evaluate to valid character positions according to the
coded character set table(s) of the type (e.g. the given position shall not be empty). Empty
positions between the lower and the upper boundaries are not considered to be valid values of the
specified range.

Concrete textual grammar
43 IntegerRange ::= “(“ LowerBound “..” UpperBound “)”

44 LowerBound ::= SingleConstExpression | Minus “infinity”

45 UpperBound ::= SingleConstExpression | “infinity”

15.7.4. Instead of Value
The following matching mechanisms may be used in place of explicit values.

Concrete textual grammar
65 MatchingSymbol ::= CharStringMatch | Omit | AnyValue | AnyOrOmit | ValueList | IntegerRange

15.7.4.1. Any value
The matching symbol "?" (AnyValue) is used to indicate that any valid incoming value is
acceptable. It can be used on values of all types. A template field that uses the any value
mechanism matches the corresponding incoming field if, and only if, the incoming field evaluates
to a single element of the specified type. For example,

template MyTemplate MyMessageType :=

{

field1 := ?, // will match any integer
field2 := ?, // will match any non-empty charstring value
field3 := ?, // will match true or false
field4 := ? // will match any sequence of integers

}

Concrete textual grammar
69 AnyValue ::= “?”

15.7.4.2. Any value or none
The matching symbol "*" (AnyValueOrNone) is used to indicate that any valid incoming value,
including omission of that value, is acceptable. It can be used on values of all types, provided that
the template field is declared as optional.

A template field that uses this symbol matches the corresponding incoming field if, and only if,
either the incoming field evaluates to any element of the specified type, or if the incoming field is
absent. For example,

template MyTemplate MyMessageType :=

{ :
field3 := *, // will match true or false or omitted field
:

}

Concrete textual grammar
Page 106 of 226

70 AnyOrOmit ::= “*”

15.7.5. Inside Values

Concrete textual grammar
364 Wildcard ::= AnyOne | AnyOrNone

15.7.5.1. Any One
AnyOne is a special symbol for matching that can be used within values of string types and
sequence of. In both tabular and ATDL templates AnyOne is denoted by "?".

Concrete textual grammar
365 AnyOne ::= “?”

15.7.5.2. Any Or None
AnyOrNone is a special symbol for matching that can be used within values of string types and
sequence of. In both tabular and ATDL constraints AnyOrNone is denoted by "*".

Concrete textual grammar
366 AnyOrNone ::= “*”

15.7.6. Attributes of values
The following attributes may be associated with matching mechanisms.

66 ValueAttributes ::= LengthRestriction | “ifpresent” | LengthRestriction “ifpresent”

15.7.6.1. Length restriction
The length restriction attribute is used to restrict the length of integer of string values and the
number of elements in a set of, and sequence of structure. It shall be used only as an attribute
of the following mechanisms: Complement, AnyValue, AnyValueOrNone, Any Element and
AnyElementsOrNone. It can also be used in conjunction with the ifpresent attribute. The syntax
for length can be found in clauses 10.3.2 and 10.5.

The units of length are to be interpreted according to Table 16. For set of, and sequence of
types the unit of length is the replicated type. The boundaries shall be denoted by expressions
which resolve to specific cardinal values. Alternatively, the keyword infinity can be used as a
value for the upper boundary in order to indicate that there is no upper limit of length.

The length specifications for the template shall not conflict with the length for restrictions (if any)
of the corresponding type. A template field that uses Length as an attribute of a symbol matches
the corresponding incoming field if, and only if, the incoming field matches both the symbol and
its associated attribute. The length attribute matches if the length of the incoming field is greater
than or equal to the specified lower bound and less than or equal to the upper bound. In the case
of a single length value the length attribute matches only if the length of the received field is
exactly the specified value.

Concrete textual grammar
46 LengthRestriction ::= “[“ SingleConstExpression [“..” UpperBound] “]”

15.7.6.2. The IfPresent indicator
The ifpresent indicates that a match may be made if an optional field is present (i.e. not
omitted). This attribute may be used with all the matching mechanisms, provided the type is
declared as optional.

A template field that uses ifpresent matches the corresponding incoming field if, and only if,
the incoming field matches according to the associated matching mechanism, or if the incoming
field is absent.

15.7.7. Matching character pattern
Character patterns can be used in templates to define the format of a required character string to
be received. Character patterns can be used to match charstring and wide charstring values.
In addition to literal characters, character patterns allow the use of meta characters ? and * to
mean any character and any number of any character respectively.

template MyTemplate charstring := pattern "ab??xyz*";

This template would match any character string that consists of the characters 'ab', followed by
any two characters, followed by the characters 'xyz', followed by any number of any characters.

If it is required to interpret any metacharacter literally it should be preceded with the
metacharacter '\'. For example,

template MyTemplate charstring := pattern "ab?\?xyz*";

This template would match any character string which consists of the characters 'ab', followed by
any character, followed by the characters '?xyz', followed by any number of any characters.

Concrete textual grammar
67 CharStringMatch ::= “pattern” Cstring

16. Routines and method templates
In ATDL, functions and altsteps are used to specify and structure test behaviour, define default
behaviour and to structure computation in a module etc. as described in the following clauses.

16.1. Functions
Functions are used in ATDL to express test behavior or to structure computation in a module.
Functions may return a value. This is denoted by the return keyword followed by a type
identifier. If no return is specified then the function is void. An explicit keyword for void does
not exist in ATDL. The keyword return, when used in the body of the function, causes the
function to terminate and to return a value compatible with the return type. A raises expression is
used to declare any checked exceptions that can result from the execution of a function.

In a module, the behavior of a function can be defined by using the program statements and
operations. If a function includes communication operations the associated component type shall
be referenced using the qualifier in the function header to define the number, type and identifiers
of the available interfaces. For example:

function MyComponent.MyFunction() return Smallint
{

:
}

Instances of different component types may use the same function if they fulfill the method
resolution rule. Functions may be parameterized. The rules for formal parameter lists shall be
followed as defined in parameter lists clause.

Concrete textual grammar
163 FunctionDef ::= MethodModifier FunctionHeading

| ConstructorHeading | DestructorHeading) StatementBlock

164 FunctionHeading ::= “function” [QualifierId] FunctionIdentifier [FormalParList] [ReturnType]
Page 108 of 226

169 ReturnType ::= “return” Type

166 MethodModifier ::= “overload” | “template | “class”

Concrete graphical grammar
176 <function diagram> ::= <frame symbol>

contains ([“overload”] FunctionHeading
{{<function text area>}* <function graph area> } set)

177 <function text area> ::= <control text area>

178 <function graph area> ::= <function start area> is_followed_by <function block area>

179 <function block area> ::= <statement block area>
is_followed_by (<stop symbol> | <statement end symbol>)

180 <function start area> ::= <function start symbol> contains ([Virtuality])

ATDL/gr presents functions by means of function diagrams. The heading of a function diagram
shall be the keyword function followed by the complete signature of the function. Complete
means that at least function name and parameter list shall be present. The return clause and the
qualifier identifier are optional in the textual language. If these clauses are specified in the
corresponding textual language, they shall also be present in the header of the function diagram.

Attributes associated to the function presented in ATDL/gr shall be specified within a <text
symbol> in the <function diagram>. The principle shape of an ATDL function diagram and the
corresponding textual description are sketched in Figure 10.

A function is used to specify and structure test behaviour, define default behaviour or to structure
computation in a module. A function may contain declarations, statements, communication and
timer operations and invocation of function or altsteps and an optional return statement.

16.2. Test cases
Test cases are a special kind of function. The result of an executed test case is always a value of
type verdicttype. Its purpose is to stimulate the tested classes by creating objects and calling their
methods. It provides different ways to check that the objects behavior is the one that was
expected. A raises expression is used to declare any checked exceptions that can result from the
execution of a test case.

Figure 10. Principle shape of an ATDL function diagram and corresponding textual language

function MyPTCtype.MyFunction
(inout MyPar integer) return Smallint
{
 var MyVar integer := 1;
 MyChannel.send(Template1);
 :
 :
 return MyVar+MyPar
}

Graphical presentation Textual presentation

MyChannel.Template1

function MyPTCtype.MyFunction
(inout MyPar integer) return Smallint

var MyVar integer := 1;

MyVar+MyPar

Concrete textual grammar
194 TestcaseDef ::= MethodModifier TestcaseHeading StatementBlock

195 TestcaseHeading ::= “testcase” QualifierId TestcaseIdentifier [FormalCrefParList]

16.2.1. Test case diagram
A test case diagram provides a graphical presentation of an ATDL test case. The heading of a test
case diagram shall be the keyword testcase followed by the complete signature of the test case.
Complete means that at least test case name and parameter list shall be present. The qualifier
identifier is mandatory in the textual language, it shall also be present in the heading of the test
case diagram.

Attributes associated to the test case presented in ATDL/gr shall be specified within a text symbol
in the test case diagram. The principle shape of an ATDL test case diagram and the corresponding
textual description are sketched in Figure 11.

A test case represents the dynamic test behaviour and can create test components. A test case may
contain declarations, statements, communication and timer class methods and invocation of
functions or altsteps.

Concrete graphical grammar
199 <testcase diagram> ::= <frame symbol>

contains ([“overload”] TestcaseHeading
{{<function text area>}* <testcase graph area>} set)

200 <testcase graph area> ::= <function start area> is_followed_by <testcase block area>

201 <testcase block area> ::= <statement block area> is_followed_by <statement end symbol>

16.2.2. Parameterization of test cases
Test cases may be parameterized. The rules for formal parameter lists shall be followed as
defined in clause 5.2.

Figure 11. Principle shape of an ATDL test case diagram and corresponding textual language

testcase MyMTCtype.MyTestCase
(inout MyPar Smallint)
{
 var MyVar Smallint := 1;
 MyChannel.send(MyTemplate);
 :
 :
}

Graphical presentation Textual presentation

MyChannel.MyTemplate

testcase MyMTCtype.MyTestCase
(inout MyPar Smallint)

var MyVar integer := 1;
Page 110 of 226

16.3. Overloading test cases and functions
You can declare more than one method in the same scope with the same name. This is called
overloading. Overloaded methods must be declared with the overload modifier and must have
distinguishing parameter lists. For example, consider the declarations

overload function Divide(X float, Y float) return float
{ Result := X/Y; }

overload function Divide(X Smallint, Y Smallint) return Smallint
{ Result := X mod Y; }

These declarations create two functions, both called Divide, that take parameters of different
types. When you call Divide, the compiler determines which function to invoke by looking at the
actual parameters passed in the call. For example, Divide(6.0, 3.0) calls the first Divide function,
because its arguments are real-valued.

Overloaded routines must be distinguished by the number of parameters they take or the types of
their parameters. Hence the following pair of declarations causes a compilation error.

overload function Capital(S charstring) return charstring;
:
overload testcase Capital(inout Str charstring);
:

But the declarations

overload function Func(X float, Y Smallint) return float;
:
overload function Func(X Smallint, Y float) return float;
:

are legal.

You can limit the potential effects of overloading by qualifying a method’s name when you call it.
For example, Module1.MyProcedure(X, Y) can call only methods declared in Modole1; if no
routine in Module1 matches the name and parameter list in the call, an error results.

16.4. Altsteps
ATDL uses altsteps to specify default behaviour and default signal handler or to structure the
alternatives of an alt statement. Altsteps are scope units similar to functions. The altstep body
defines an optional set of local definitions and a set of alternatives, the so-called top alternatives,
that forms the altstep body. The syntax rules of the top alternatives are identical to the syntax
rules of the alternatives of alt statements.

Concrete textual grammar
203 AltstepDef ::= [“overload”] AltstepHeading “{“ AltGuardList “}”

204 AltstepHeading ::= “altstep” [QualifierId] AltstepIdentifier [FormalParList]

205 AltstepIdentifier ::= Identifier

207 AltstepRef ::= [ModuleName Dot] AltstepIdentifier

16.4.1. Parameterization of altsteps
Altsteps may be parameterized. An altstep that is activated as default signal handler shall only
have value parameters, i.e. in parameters. An altstep that only is invoked as an alternative in an
alt statement or as stand-alone statement in an ATDL behaviour description may have in, out
and inout parameters. The rules for formal parameter lists shall be followed as defined in clause
5.2.

16.4.2. Altstep diagram
ATDL/gr presents altsteps by means of altstep diagrams. The heading of an altstep diagram shall
be the keyword altstep followed by the complete signature of the altstep. Complete means that at
least altstep name and parameter list shall be present. The qualifier identifier is optional in the
textual language. If the qualifier identifier is specified in the corresponding textual language, it
shall also be present in the header of the altstep diagram.

Attributes associated to the altstep shall be specified within a <text symbol> in the ATDL/gr
altstep diagram. The principle shape of an ATDL altstep diagram and the corresponding ATDL
textual language are sketched in Figure 12.

Concrete graphical grammar
208 <altstep diagram> ::= <frame symbol>

contains ([“overload”] AltstepHeading <altstep body area>)

209 <altstep body area> ::= <fgr alt area>

An altstep is used to specify default behaviour or to specify default signal handler or to structure
the alternatives of an alt statement. An altstep may contain statements, communication and timer
operations and invocation of function or altsteps.

16.4.3. Invocation of altsteps
The invocation of an altstep is related to an alt statement or a default signal handler. The
invocation may be done either implicitly by the default mechanism (see §19.7) or explicitly by a
direct call within an alt statement (see §19.1.8). The invocation of an altstep causes no new
snapshot and the evaluation of the top alternatives of an altstep is done by using the actual
snapshot of the alt statement from which the altstep was called.

An explicit call of an altstep within an alt statement looks like a function call as alternative.

An altstep can also be called as stand-alone statement in an ATDL behaviour description. In this
case the call of the altstep can be interpreted as shorthand for an alt statement with only one
alternative describing the explicit call of the altstep.

Concrete textual grammar

Figure 12. Principle shape of an ATDL altstep diagram and corresponding textual language

altstep MyMTCtype.MyAltstep ()
{
alt {
 [] MyChnnl.receive(Template1)
 {
 setverdict(inconc)
 }
 [] MyChnnl.receive(Template2)
 {
 setverdict(fail)
 }
 }
 :
 :
 continue
}

Graphical presentation Textual presentation

altstep MyMTCtype.MyAltstep ()

MyChnnl.Template1 MyChnnl.Template2

inconc fail
Page 112 of 226

206 AltstepInstance ::= AltstepRef [ActualParList]

Concrete graphical grammar
210 <altstep instance area> ::= <reference symbol> contains AltstepInstance

The invocation of altsteps is represented by use of the reference symbol (Figure 13). The syntax
of the altstep invocation is placed within that symbol. The symbol may contain the invocation of
an altstep with optional parameters. It shall be used within alternative behaviour only, where the
altstep invocation shall be one of the branches of the alternative statements.

16.5. Method templates
This section describes what a method template is and discusses how to define and use a method
template. A strongly typed language can sometimes seem an obstacle to implementing what are
otherwise straightforward functions. A method template provides an algorithm that is used to
automatically generate particular instances of a method varying by type. The programmer
parameterizes all or a subset of the types in the interface (the parameter and return types) of a
method whose body otherwise remains invariant. A method is a candidate to be made a template
when its implementation remains invariant over a set of instances.

16.5.1. Method template definition
The keyword template begins a definition of a method template. The keyword is followed by a
comma-separated list of template parameters enclosed in parentheses. This list is the template
parameter list. It cannot be empty. A method template parameter can be a template generic type
parameter representing a generic type or a template non-generic type parameter representing an
ordinary built-in or user-defined type.

A template non-generic type parameter consists of an ordinary parameter declaration. A template
non-generic type parameter indicates that the parameter name represents a potential value. This
value represents a constant in the method template definition.

When the method template is instantiated, an actual built-in or user-defined type is substituted for
the template generic type parameter. Generic type will be substituted with various built-in and
user-defined types and non-generic type will be substituted with various constant values
determined by the actual uses of method template. This process of type and value substitution is
referred to as method template instantiation.

The name of a method template parameter can be used after it has been declared as a template
parameter and until the end of the template declaration or definition. A template generic type
parameter serves as a type specifier for the remainder of the template definition; it can be used in
exactly the same way as a built-in or user-defined type specifier, such as for variable declarations
and casts. A template non-generic type parameter serves as a constant value for the remainder of
the template definition; it can be used when constant values are required. The name of a template
generic type parameter can be used to specify the return type of the method template.

Figure 13. Altstep invocation

 MyAltstep(MyParam1,MyParam2);

Graphical presentation Textual presentation

 MyAltstep(MyParam1,MyParam2)

16.5.2. Method template explicit incarnation
It is not always possible to write a single function template that is best suited for every possible
type with which the template may be instantiated. In some cases, we may be able to take
advantage of some specific knowledge about a type to write a more efficient function than the one
that is instantiated from the template. At other times, the general template definition is simply
wrong for a type. For example, suppose we have this definition of the function template max():

virtual class MyVirtualClass { //...
// Only virtual classes may have abstract type declarations
type MyType ::= variant;
template function max (t1 MyType, t2 MyType) return MyType;
//...

}

// generic function template definition

template function MyVirtualClass.max (t1 MyType, t2 MyType) return MyType {

return (t1>t2 ? t1:t2)

}

If the function template is instantiated with a template argument of type charstring, the generic
template definition does not give the right semantics if we intend each argument to be interpreted
as an ATDL character string. To get the right semantics, we must provide an incarnated definition
for the function template instantiation.

It is possible to declare a method template explicit incarnation without defining it within a class
declaration. When we are declaring or defining a method template explicit incarnation, we must
not omit the template keyword from the incarnation declaration. Similarly, the function
parameter list cannot be omitted from the incarnation declaration. For example,

class MyCstringClass extends MyVirtualClass { //...
type MyType charstring; // type incarnation
template function max(s1 MyType, s2 MyType) return MyType;
// ...

}

An explicit incarnation definition is a definition in which the function keyword is followed by
the definition of the function template incarnation. This definition indicates the method template
name, the method template arguments for which the method template is incarnated, the function
parameter list, and the function body. In the following example, an explicit incarnation is defined
for max(charstring, charstring):

template function MyCstringClass.max(s1 MyType, s2 MyType) return MyType {

return (strcmp (s1, s2) >0 ? s1 : s2);

}

An explicit incarnation for a method template can be defined only after the general method
template has been declared in the ancestor virtual class. The declaration of a method template
explicit incarnation must be seen before it is used in the source file.

16.5.3. Name resolution in method templates
Inside a method template definition, some constructs have a meaning that differs from one
instantiation of the method template to another, whereas other constructs have the same meaning
for all instantiations of the method template. This depends on whether or not the construct
involves a method template parameter. For example:
Page 114 of 226

virtual class MyVClass { //...
// Only virtual classes may have abstract type declarations
type MyType ::= variant;
template function min(MyArray sequence of MyType, size Byte) return MyType;
// ...

}
template function MyVClass.min(MyArray sequence of MyType, size Byte) return MyType
{

var min_val MyType := MyArray[0];
for (var i Smallint :=1; i < size; i := i+1)
{ if [MyArray[i] < min_val]

{ min_val := MyArray[i] }
}
print (“Mimimum value found: ”);
print(min_val);
return min_val;

}

In min(), the types of MyArray and of min_val depend on the actual type with which MyType
will be replaced when the template is instantiated, whereas the type of size, for example, remains
Smallint regardless of the type of the template parameter. The types of MyArray and of min_val
vary from one instantiation of the function template to another. Because of this, we say that the
types of these variables depend on a template parameter, whereas the type of size does not
depend on a function template parameter.

Because the type of min_val is unknown, it is also unknown which operation is used when
min_val appears in an expression. For example, which print() function should be called by the
function call print(min_val)? Should it be the print() function used for Smallint types? Or should
it be the function for float types? Is the call in error because there is no function print() that can
be called with an argument of min_val's type? It is impossible to answer these questions until the
template is instantiated and until we know what the type of min_val is. Because of this, we also
say that the call print (min_val) depends on a function template parameter.

There are no such questions with the constructs within min() that do not depend on a template
parameter. For example, it is always known which function should be called for the call print
("Minimum value found: "). It is the function used to print character strings. The print() function
called does not vary from one instantiation of the function template to another. Thus, we say that
this call does not depend on a function template parameter.

Because the call print ("Minimum value found: ") is not a call that depends on a function
template parameter, the function print() for character strings must be declared before it can be
used in the template definition. On the other hand, the declaration for the print() function used by
the call print (min_val) is not yet needed because we do not yet know which print() function to
look for. It is not possible to know which print() function is called by print(min_val) until the
type of min_val is known. For example:

const arrayi sequence [4] of Smallint = { 12, 8, 73, 45 };

MyResult := min(arrayi, 4);

The function invocation expression calls the function template instantiation. In this instantiation
of min(), MyType is replaced by Smallint and the type of the variable min_val is Smallint. The
function call print (min_val) therefore calls a function that can be invoked with an argument of
type Smallint. It is when min () is instantiated that we know that the second call to the print()
function has an argument of type int. It is at this time that a function print() that can be called
with an argument of type Smallint needs to be visible.

17. Overview of program statements and operations
There are many kinds of statements in the ATDL language. Most correspond to statements in the
TTCN-2 and TTCN-3 languages, but some are unique to ATDL.

Table 21: Overview of ATDL statements and symbols

Statement
Associated
keyword or

symbol

Associated
graphical

symbol

Basic program statements
Expressions (…) yes
Function invocation expression <procedure call symbol>
Assignments := <task symbol>
Logging write <task symbol>
Label label <connector symbol>
Break break <break symbol>
Continue continue <continue symbol>
If statement without else if […] <inline expression symbol>
If statement with else branch if […] {…} else {…} <decision symbol>
For loop for (…) {…} <inline expression symbol>
While loop while […] <inline expression symbol>
Do while loop do {…} while […] <inline expression symbol>
Assignment list := <save symbol>
Behavioral program statements
Start of an alternative behavior alt {…} <alt symbol>
End of an alternative behavior alt {…} <alt outlet symbo>
Start of a try statement try { … } <try symbol>
End of a try statement try { … } <connector symbol>
Raise exception (to a procedure) raise <exception out symbol>
Catch exception (from callee) catch <exception in symbol>
Returning control return <return symbol>
Statements for default handling

Activate a default activate <default symbol>
Deactivate a default deactivate <default symbol>
Thread operations
Create parallel test thread create <create request symbol>
Get MTC address mtc <task symbol>
Get test system interface address system <task symbol>
Get own address self <task symbol>
Start execution of test thread start <procedure call symbol>
Stop execution of test thread stop <procedure call symbol>
Check termination of a PTC running <condition symbol>
Wait for termination of a PTC done <internal input symbol>
Page 116 of 226

The fundamental program elements of the control part of ATDL modules and functions are basic
program statements such as expressions, assignments, loop constructs etc., behavioral statements
such as sequential behavior, alternative behavior, interleaving, defaults etc., and operations such
as send, receive, create, etc.

Statements can be either single statements (which do not include other program statements) or
compound statements (which may include other statements).

Statements shall be executed in the order of their appearance, i.e. sequentially.

The individual statements in the sequence shall be separated by the delimiter ";".

17.1. Statement block
A statement block is a list of statements. The statements are executed sequentially.

Statement blocks are a mechanism to group statements. Statement blocks may be used in different
scope units i.e., module control, functions and test behaviors. The kind of statements that may be
used in a block will depend on the scope unit in which the block is used. For example, a statement
block appearing in a function shall only use those program statements which may be used in
functions.

A statement block is syntactically equivalent to a single statement; thus, wherever a statement is
allowed in a function a statement block may appear. This implies that blocks may be nested.
Declarations, if any, shall be made at the beginning of the statement block. These declarations are
only visible inside the statement block and to nested sub-blocks.

Communication operations
Send message send <message out symbol>
Invoke procedure call call <procedure call symbol>
Receive message receive <message in symbol>
Trigger on message trigger <message in symbol>
Synchronize a procedure call synchronize <procedure in symbol>
Server-side channel controlling operations
Give access to channel start <condition symbol>
Clear channel clear <condition symbol>
Stop access at channel stop <condition symbol>
Client-side channel controlling operations
Bind channel to server component bind <task symbol>
Release a channel release <task symbol>
Timer class methods

Start timer start <internal output symbol>
Stop timer stop <internal output symbol>
Read elapsed time read <task symbol>
Check if timer running running <condition symbol>
Timeout event timeout <internal input symbol>
Verdict class methods

Set local verdict setverdict <condition symbol>
Get local verdict getverdict <task symbol>
External actions

Stimulate an (SUT) action sutaction <task symbol>

Table 21: Overview of ATDL statements and symbols

The statements in the statement block shall be executed in the order of their appearance. The
specification of an empty statement block i.e., {}, is allowed. An empty statement block implies
that no actions are taken.

A statement block is executed by executing each of the local declaration statements and other
statements in order from first to last (left to right). If all of these block statements complete
normally, then the block completes normally. If any of these block statements complete abruptly
for any reason, then the block completes abruptly for the same reason.

Concrete textual grammar
394 StatementBlock ::= “{“ BlockStatement [TerminatorStatement] | TerminatorStatement “}”

395 BlockStatement ::= { ActionStatement [SemiColon]}+

17.1.1. Statement diagrams
A statement graph models the possible life histories of an instance of a component (Figure 54).

The operational semantics represents ATDL behavior in form of flow graphs. The construction
algorithm for the flow graphs representing behavior is described. It is based on templates for flow
graphs and flow graph segments that have to be used for the construction of concrete flow graphs
for module control, test cases, and functions defined in an ATDL module.

A statement graph is like a traditional flow graph. A flow graph is a directed graph that consists
of labeled nodes and labeled edges. Walking through a flow graph describes the flow of control
during the execution of a represented behavior description.

Concrete graphical grammar
398 <statement block area> ::= [<action statement area> is_followed_by]

{ <return area> | <stop symbol> }

17.1.2. Statements
There are many kinds of statements in the ATDL language. Most correspond to statements in the
TTCN-3 language, but some are unique to ATDL.

Concrete textual grammar
396 ActionStatement ::= ControlStatement | ConfigurationStatement |

CommunicationStatement | SetLocalVerdict

397 TerminatorStatement ::= ReturnStatement | “stop” | RaiseStatement

Concrete graphical grammar
399 <action statement area> ::= <control statement area> | <configuration statement area> |

<communication statement area> | <set verdict area>

17.1.3. Unreachable Statements
It is a compile-time error if a statement cannot be executed because it is unreachable. Every
ATDL compiler must carry out the conservative flow analysis specified here to make sure all
statements are reachable.

17.2. Kinds of conversion
Specific type conversions in ATDL are divided into five categories.

17.2.1. Identity conversions
A conversion from a type to that same type is permitted for any type. This may seem trivial, but it
has two practical consequences. First, it is always permitted for an expression to have the desired
Page 118 of 226

type to begin with, thus allowing the simply stated rule that every expression is subject to
conversion, if only a trivial identity conversion. Second, it implies that it is permitted for a
program to include redundant cast operators for the sake of clarity.

The only permitted conversion that involves the type boolean is the identity conversion from
boolean to boolean.

17.2.2. Widening primitive conversions
The following conversions on primitive types (or derived primitive types) are called the widening
primitive conversions. For example,

1. Byte or Shortint to Word, Smallint, Longword, Longint, Longlongword, Longlongint,
float, IEEE754extfloat, IEEE754double or IEEE754extdouble.

2. Word or Smallint to Longword, Longint, Longlongword, Longlongint, float,
IEEE754extfloat, IEEE754double or IEEE754extdouble.

3. char to Word, Smallint, Longword, Longint, Longlongword, Longlongint, float,
IEEE754extfloat, IEEE754double or IEEE754extdouble.

4. wide char to Longword, Longint, Longlongword, Longlongint, float, IEEE754extfloat,
IEEE754double or IEEE754extdouble.

5. Longword or Longint to Longlongword, Longlongint, float, IEEE754extfloat,
IEEE754double or IEEE754extdouble.

6. Longlongword or Longlongint to float, IEEE754extfloat, IEEE754double or
IEEE754extdouble.

Widening primitive conversions do not lose information about the overall magnitude of a
numeric value. Indeed, conversions widening from an integral type to another integral type and
from float to real do not lose any information at all; the numeric value is preserved exactly.
Conversion of an integer or a cardinal value to float may result in loss of precision — that is, the
result may lose some of the least significant bits of the value. In this case, the resulting floating-
point value will be a correctly rounded version of the integer value, using IEEE 754 round-to-
nearest mode.

A widening conversion of a signed integer value to a wider integer type simply sign-extends the
two’s-complement representation of the integer value to fill the wider format.

Despite the fact that loss of precision may occur, widening conversions among primitive types(or
derived primitive types) never result in a run-time exception

17.2.3. Narrowing primitive conversions
Narrowing conversions may lose information about the overall magnitude of a numeric value and
may also lose precision.

A narrowing conversion from Double to float behaves in accordance with IEEE 754. The result is
correctly rounded using IEEE 754 round-to-nearest mode. A value too small to be represented as
a float is converted to positive or negative zero; a value too large to be represented as a float is
converted to a (positive or negative) infinity. A real NaN is always converted to a float NaN.

17.2.4. Widening reference conversions
The following conversions are called the widening reference conversions:

a) From any class type S to any class type T, provided that S is a descendant of T.

b) From any class type S to any interface type K, provided that S implements K.

c) From the null type to any class type, interface type, or array type.

d) An interface type is assignment-compatible with any ancestor interface type.

Such conversions never require a special action at run time and therefore never raise an exception
at run time. They consist simply in regarding a reference as having some other type in a manner
that can be proved correct at compile time.

17.2.5. Narrowing reference conversions
The narrowing reference conversions require a test at run time to find out whether the actual
reference value is a legitimate value of the new type.

17.2.6. Charstring conversions
There is a string conversion to type charstring from every other type, including the null type.

Charstring conversion applies only to the operands of the binary charstring operator (+) when one
of the arguments is a charstring. In this single special case, the other argument to the + is
converted to a charstring, and a new charstring which is the concatenation of the two
charstrings is the result of the +. Charstring conversion is specified in detail within the description
of the string concatenation + operator (§9.2).

17.2.7. Forbidden Conversions
a) There is no permitted conversion from any reference type to any primitive type.

b) Except for the string conversions, there is no permitted conversion from any primitive type (or
derived primitive types) to any reference type.

c) There is no permitted conversion from the null type to any primitive type.

d) There is no permitted conversion to the type boolean other than the identity conversion.

e) There is no permitted conversion from the type boolean other than the identity conversion and
string conversion.

f) There is no permitted conversion from class type S to interface type K if S is final and does not
implement K.

17.3. Assignment conversion
Assignment conversion occurs when the value of an expression is assigned to a variable: the type
of the expression must be converted to the type of the variable. Assignment contexts allow the
use of an identity conversion, a widening primitive conversion, or a widening reference
conversion. If the type of the expression cannot be converted to the type of the variable by a
conversion permitted in an assignment context, then a compile-time error occurs.

If the type of an expression can be converted to the type a variable by assignment conversion, we
say the expression (or its value) is assignable to the variable or, equivalently, that the type of the
expression is assignment compatible with the type of the variable.

A value of primitive type must not be assigned to a variable of reference type; an attempt to do so
will result in a compile-time error. A value of type boolean can be assigned only to a variable of
type boolean.

A value of reference type must not be assigned to a variable of primitive type; an attempt to do so
will result in a compile-time error.

A value of the null type (the null reference is the only such value) may be assigned to any
reference type, resulting in a null reference of that type.
Page 120 of 226

17.4. Method invocation conversion
Method invocation conversion is applied to each argument value in a method or constructor
invocation: the type of the actual parameter expression must be converted to the type of the
corresponding parameter. Method invocation contexts allow the use of an identity conversion
(§17.2.1), a widening primitive conversion(§17.2.2), or a widening reference conversion (17.2.4).

17.5. Casting conversion
Casting conversion is applied to the operand of a cast operator: the type of the operand
expression must be converted to the type explicitly named by the cast operator. Casting contexts
allow the use of an identity conversion (§17.2.1), a widening primitive conversion (§17.2.2), a
narrowing primitive conversion (clause 17.2.3), a widening reference conversion (§17.2.4), or a
narrowing reference conversion (§17.2.5). Thus casting conversions are more inclusive than
assignment or method invocation conversions: a cast can do any permitted conversion other than
a charstring conversion.

A value of a primitive type (or a derived primitive type) can be cast to another primitive type (or
a derived primitive type) by identity conversion, if the types are the same, or by a widening
primitive conversion or a narrowing primitive conversion.

A value of a primitive type (or a derived primitive type) cannot be cast to a reference type by
casting conversion, nor can a value of a reference type be cast to a primitive type.

17.6. Type compatibility and identity
Generally, ATDL requires type compatibility of values at assignments, instantiations and
comparison. To understand which operations can be performed on which expressions, we need to
distinguish several kinds of compatibility among types and values. These include type identity,
type compatibility, and assignment-compatibility.

17.6.1. Type identity
Type identity is almost straightforward. When one type identifier is declared using another type
identifier, they denote the same type.

Language constructions that function as type names denote a different type each time they occur.
Thus the declarations

type TS1 ::= set of char;
type TS2 ::= set of char;

create two distinct types, TS1 and TS2. Similarly, the variable declarations

var S1 charstring[10];
var S2 charstring[10];

create two variables of distinct types. To create variables of the same type, use

var S1:S2 charstring[10];

or

type MyString ::= charstring[10];

var S1 MyString, S2 MyString;

17.6.2. Type compatibility
Every type is compatible with itself.

For the purpose of this clause value "b" is called the actual value to be assigned, passed as
parameter etc. , type "B" is called the type of value "b" and type "A" is called the type definition
of the value, which is to obtain the actual value of value "b".

17.6.2.1. Type compatibility of non-structured types
For non-structured variables, constants, templates etc. the value "b" is compatible to type "A"if
type "B" resolves to the same root type as type "A" (i.e. integer) and it does not violate
subtyping (e.g. ranges, length restrictions) of type "A".

17.6.2.2. Type compatibility of structured types
In the case of structured types (except the enumerated type) a value "b" of type "B" is
compatible with type "A", if the effective value structures of type "B" and type "A" are
compatible, in which case assignments, instantiations and comparisons are allowed.

17.6.2.2.1.Type compatibility of enumerated types

Enumerated types are never compatible with other basic or structured types (i.e. for enumerated
types strong typing is required).

17.6.2.2.2.Type compatibility of sequence types

For sequence types the effective value structures are compatible if the number, type, and
optionality of the fields at the textual order of definition are identical and values of each existing
field of the value "b" is compatible with the type of its corresponding field in type "A". Values of
each field in the value "b" are assigned to the corresponding field in the value of type "A".

17.6.2.2.3.Type compatibility of sequence of types

For sequence of types the effective value structures are compatible if their component types
are compatible and value "b" of type "B" does not violate any length subtyping of the sequence
of type or dimension of the sequence of type "A". Values of elements of the value "b" shall be
assigned sequentially to the instance of type "A", including undefined elements.

17.6.2.2.4.Compatibility between slices

The rules defined in this clause for structured types compatibility are also valid for the sub-
structure of such types i.e. equivalence between slices.
Page 122 of 226

18. Basic program statements
Basic program statements are expressions, assignments, operations, loop constructs etc. All basic
program statements can be used in the control part of a module and in ATDL functions.

18.1. Local variable declaration statements
Every local variable declaration statement is immediately contained by a block. Local variable
declaration statements may be intermixed freely with other kinds of statements in the block.

A local variable declaration can also appear in the header of a for statement. In this case it is
executed in the same manner as if it were part of a local variable declaration statement.

18.2. The task statements
Apart from assignments [17], task boxes may contain ATDL statements like the bind, release,
SUT operation, interface typecast statement or write operation.

Concrete textual grammar
402 TaskStatement ::= Assignment | ConstDef | VarInstance | WriteStatement | BindStatement

| ReleaseStatement | SUTStatement

Concrete graphical grammar

Table 22: Overview of ATDL basic program statements

Basic program statements

Statement Associated keyword
or symbol

Associated
graphical symbol

Expressions (…) <task symbol>
Assignments := <task symbol>
Logging write <task symbol>
Label label <inline expression symbol>
Break break <break symbol>
Continue continue <continue symbol>
If statement without else if […] <inline expression symbol>
If statement with else branch if […] {…} else {…} <decision symbol>
For loop for (…) {…} <inline expression symbol>
While loop while […] <inline expression symbol>
Do while loop do {…} while […] <inline expression symbol>

Figure 14. Write Statement

write(“Message x sent to MyPort”);

Graphical presentation Textual presentation

 write(“Message x sent to MyPort”);

405 <task area> ::= <task symbol> contains ({TaskStatement [SemiColon]}+)

18.2.1. The Write statement
The write statement provides the means to write a character string to some logging device
associated with test control or the test component in which the statement is used.

ATDL concrete textual grammar
403 WriteStatement ::= “write” “(“ [Cstring] “)”

The write statement shall be represented within a <task symbol> (Figure 14).

18.2.2. External actions
In some testing situations some electrical interface(s) to the SUT may be missing or unknown a
priori (e.g. management interface) but it may be necessary that the SUT is stimulated to carry out
certain actions (e.g. send a message to the test system). Also certain actions may be required from
the test executing personnel (e.g. to change the environmental conditions of testing like the
temperature, voltage of the power feeding etc.).

The required action may be defined as a string.

EXAMPLE 2:

sutaction("Send MyTemplate on lower PCO"); // Informal description of the SUT action

or as a reference to a template which specifies the structure of the message to be sent by the SUT.

In both cases there is no specification of what is done to or by the SUT to trigger this action, only
an informal specification of the required action itself.

SUT actions can be specified in test cases, functions, altsteps and module control.

ATDL concrete textual grammar
404 SUTStatement ::= “sutaction” “(“ (FreeText | TemplateRefWithPara) “)”

External actions are represented within <task symbol>s (Figure 15). The syntax of the external
action is placed within that symbol.

18.2.3. Expression statements
Certain kinds of expressions may be used as statements by following them with semicolons.

18.3. The If-else statement
The if-else statement, also known as the conditional statement, is used to denote branching in the
control flow due to boolean expressions. Schematically the conditional looks as follows:

if [expression1]

Figure 15. External actions

sutaction("Send MyTemplate on lower PCO ");

Graphical presentation Textual presentation

sutaction("Send MyTemplate on lower PCO ");
Page 124 of 226

statementblock1

[else]
statementblock2

Where statementblockx refers to a block of statements.

18.3.1. The if statement with else branch
In statement graphs, all of the paths leaving a branch must eventually merge in a subsequent join
in the model. Furthermore, multiple layers of branches and merges must be well nested. A
statement diagram expresses a decision when guard conditions are used to indicate different
possible statement blocks that depend on guard conditions of the owning object. ATDL provides
a shorthand notation for showing decisions and merging their separate paths back together.

Figure 16. Decision and merge

Decision branch. A decision branch is a set of transitions leaving a single node such that exactly
one guard condition on one of the transitions must always be satisfied. The guard conditions
essentially represent a branch of control. A decision branch is notated as a diamond with one
input arrow and two or more output arrows. Each output is labeled with a guard condition.

Decision merge. A decision merge is a place at which two or more alternate paths of control
come together. It is the inverse of a decision branch. A diamond is the symbol for either a
decision branch or decision merge.

The meaning of a branching pseudo-events is as follows: if only a guard condition is specified:
the guard condition is evaluated and execution continues with subsequent behavior, if the guard
condition evaluates to true; if it evaluates to false the next alternative is attempted. If no
alternative exists, then this is a test case error.

Concrete textual grammar
447 DecisionConstruct ::= “if” GuardCondition StatementBlock {ElseIfClause}* [ElseClause]

449 ElseIfClause ::= “else” “if” GuardCondition StatementBlock

Concrete graphical grammar
453 <decision area> ::= <decision symbol> is_followed_by

(<decision if part> {<decision if part>}* [<decision else part>]) set
454 <decision if part> ::= <flow line symbol> is_associated_with GuardCondition

is_followed_by <statement block area>
is_connected_to <decision outlet symbol>

455 <decision outlet symbol> ::= <decision symbol>

456 <decision else part> ::= <flow line symbol>
is_associated_with (“[“ else “]”)
is_followed_by <statement block area>
is_connected_to <decision outlet symbol>

The icon provided for a decision is the traditional diamond shape, with one incoming flow line
arrow and with two or more outgoing flow line arrows, each labeled by a distinct guard condition
with no event trigger. The reserved word else can be used as a guard condition.

Calculate
total cost

Charge

account
customer’s

Get authorization

[cost < $50]

[cost >= $50]

The same icon can be used to merge decision branches back together, in which case it is called a
merge. In the case of a merge, there are two or more incoming flow line symbol and one outgoing
flow line symbol. No guard conditions are necessary.

18.3.2. Control icons
Control icons are used to define decision branch and alternative fork behavior. A pseudo-event is
an abstraction that encompasses different types of transient vertices in the statement diagram.
Pseudo-events include decision, merge, alternative fork and join. They are used, typically, to
connect multiple statement blocks into more complex statement blocks paths. Pseudo-events are
intended for use in statement diagrams, but they can also be used in ETSCs, if desired.

18.4. The Choice statement
The choice statement transfers control to one of several statements depending on the value of an
expression. The choice statement provides an alternative to complex nested if conditionals.

The body of a choice statement must be a block. Any statement immediately contained by the
block may be labeled with one or more ChoiceSelector or else clauses. Each value represented
by a ChoiceSelector must be unique in the choice statement; subranges and lists cannot overlap.
A choice statement can have a final else clause.

When a choice statement is executed, at most one of its constituent statement blocks is executed.
Whichever ChoiceSelector has a value equal to that of SingleExpression determines the statement
block to be used. If none of the guard conditions has the same value as SingleExpression, then the
statement in the else clause (if there is one) is executed.

The choice statement

choice I of {
[1..5] { Caption := “Low”; }
[6..9] { Caption := “High”; }
[0, 10..99] { Caption := “Out of range”; }
[else] { Caption := “”; }

}

is equivalent to the nested conditional

if [I in (1..5)] { Caption := “Low” }

else if [I in (6..10)] { Caption := “High” }

else if [(I == 0) | (I in (10..99)] { Caption := “Out of range” }

else { Caption := “” }

Concrete textual grammar
450 ChoiceConstruct ::= “choice” SingleExpression “of” “{“ ChoiceList [ElseClause] “}”

451 ChoiceList ::= {ChoiceSelector StatementBlock}*

452 ChoiceSelector ::= “[“ SingleConstExpression “]”

Concrete graphical grammar
454 <choice area> ::= <decision symbol> contains SingleExpression is_followed_by

({<choice selector part>}* [<decision else part>]) set
454 <choice selector part> ::= <flow line symbol> is_associated_with ChoiceSelector

is_followed_by <statement block area>
is_connected_to <decision outlet symbol>
Page 126 of 226

18.5. The in-line expressions
Structured statements are built from other statements. Use a structured statement when you want
to execute other statements sequentially, conditionally, or repeatedly. Structured inline statements
include if statement without else branch, while, for, do-while, and label.

The for, while, do while statement of allows the specification of cyclic behavior. These
statements are represented in ATDL/gr with an inline loop expression having in the upper left
side box the associated keyword. An inline loop expression has exactly one statement block area.

Concrete textual grammar
427 LoopConstruct ::= ForStatement | WhileStatement | DoWhileStatement | LabeledStatement

Concrete graphical grammar
438 <fgr inline expression area> ::= <fgr for area> | <fgr while area>

| <fgr do-while area> | <fgr labeled area> | <fgr opt area>

The <inline expression symbol> may contain only one operand.

18.5.1. The labeled statement
The label statement allows the specification of labels in test cases, functions, altstep and the
control part of a module. It can be used before or after an ATDL statement but shall not as first
statement of an alternative in an alt statement.

Unlike TTCN-3, ATDL has no goto statement; identifier statement labels are used with break or
continue statements appearing anywhere within the labeled statement.

A statement labeled by an identifier must not appear anywhere within another statement labeled
by the same identifier, or a compile-time error will occur. Two statements can be labeled with the
same identifier only if neither statement contains the other.

Concrete textual grammar
434 LabeledStatement ::= “label” LabelIdentifier StatementBlock

435 LabelIdentifier ::= Identifier

Concrete graphical grammar
442 <labeled area> ::= <inline expression symbol> contains

(label LabelIdentifier <statement block area>)

The labeled statement shall be represented by an <inline expression symbol> labelled with the
LabelIdentifier. A <flow line symbol> is drawn from the previous node to the <inline expression
symbol>, and another <flow line symbol> is drawn from the <inline expression symbol> to the
next node. Figure 21 illustrates a labeled statement in which the continue statement causes the
labeled statement to be repeated.

18.5.1.1. The page continuation
When any ATDL statement graph is too long to fit on a single page the following mechanism
shall be used:

a) A label statement is used with a continue statement, the continue statement is used to redirect
the interpretation to the next page;

b) There must be one label statement with the same name as the continue statement indicates the
entry point on the next page.

18.5.2. The if statement without else branch
The if statement without else branch shall be represented by an <inline expression symbol>
labelled with the if keyword and a Boolean expression. A <flow line symbol> is drawn from the
previous node to the <inline expression symbol>, and another <flow line symbol> is drawn from
the <inline expression symbol> to the next node.

Figure 17 illustrates an if statement with a single operand, which is executed when the Boolean
expression x>1 evaluates to true.

Concrete graphical grammar
459 <fgr opt area> ::= <inline expression symbol> contains

(if GuardCondition <statement block area>)

18.5.3. The For statement
The for statement defines a counter loop. The value of the index variable is increased, decreased
or manipulated in such a manner that after a certain number of execution loops a termination
criteria is reached.

The for statement contains two assignments and a boolean expression. The first assignment is
necessary to initialize the index (or counter) variable of the loop. The boolean expression
terminates the loop and the second assignment is used to manipulate the index variable.

Concrete textual grammar
428 ForStatement ::= “for” LoopCondition StatementBlock

429 LoopCondition ::= “(“ ForInit SemiColon BooleanExpression SemiColon ForUpdate “)”

430 ForInit ::= SingleVarInstance | Assignment

431 ForUpdate ::= Assignment

Concrete graphical grammar
439 <fgr for area> ::= <inline expression symbol> contains

(for LoopCondition <statement block area>)

The for statement shall be represented by an <inline expression symbol> labelled with a for loop
definition. The for body shall be represented as the operand of the for <inline expression
symbol>. A <flow line symbol> is drawn from the previous node to the <inline expression
symbol>, and another <flow line symbol> is drawn from the <inline expression symbol> to the
next node. Figure 18 represents a simple for statement.

Figure 17. If Statement without else branch

if [x>1] {
 MyChannel.send(Template1)
}

Graphical presentation Textual presentation

if [x>1]
MyChannel.Template1
Page 128 of 226

18.5.3.1. Initialization of for statement
If the ForInit code is a local variable declaration, it is executed as if it were a local variable
declaration statement appearing in a statement block. In this case, the scope of a declared local
variable is its own initializer and any further declarators in the ForInit part, plus the
BooleanExpression, ForUpdate, and contained Statement Block of the for statement.

18.5.3.2. Iteration of for statement
The termination criterion of the loop shall be expressed by the boolean expression. It is checked
at the beginning of each new loop iteration. If it evaluates to true, the execution continues with
the statement which immediately follows the for loop.

If execution of the Statement Block completes abruptly because of a break with no label, no
further action is taken and the for statement completes normally.

If execution of the Statement Block completes abruptly because of a continue with no label, then
the entire for statement is executed again.

If execution of the Statement Block completes abruptly because of a continue with label L, then
there is a choice:

- If the for statement has label L, then the entire for statement is executed again.

- If the for statement does not have label L, the for statement completes abruptly because of
a continue with label L.

18.5.4. The While statement
A while loop is executed as long as the loop condition holds. The loop condition shall be
checked at the beginning of each new loop iteration. If the loop condition does not hold, then the
loop is exited and execution shall continue with the statement, which immediately follows the
while loop. For example,

while [j<10] {... };

If the value of the Guard Condition is false the first time it is evaluated, then the Statement Block
is not executed.

If execution of the Statement Block completes abruptly because of a break with no label, no
further action is taken and the while statement completes normally.

If execution of the Statement Block completes abruptly because of a continue with no label, then
the entire while statement is executed again.

If execution of the Statement Block completes abruptly because of a continue with label L, then
there is a choice:

- If the while statement has label L, then the entire while statement is executed again.

Figure 18. For Statement

for (j:=0; j<10; j:=j+1) {
 MyChannel.send(Template1)
 :
}

Graphical presentation Textual presentation

for (j:=0; j<10; j:=j+1)

MyChannel.Template1

- If the while statement does not have label L, the while statement completes abruptly
because of a continue with label L.

Concrete textual grammar
432 WhileStatement ::= “while” GuardCondition StatementBlock

Concrete graphical grammar
440 <fgr while area> ::= <inline expression symbol> contains

(while GuardCondition <statement block area>)

The while symbol shall be represented by an <inline expression symbol> labelled with a while
definition. The while body shall be represented as the operand of the while <inline expression
symbol>. A <flow line symbol> is drawn from the previous node to the <inline expression
symbol>, and another <flow line symbol> is drawn from the <inline expression symbol> to the
next node. Figure 19 represents an example of a while statement.

18.5.5. The Do-while statement
The do-while loop is identical to a while loop with the exception that the loop condition shall
be checked at the end of each loop iteration. This means when using a do-while loop the
behaviour is executed at least once before the loop condition is evaluated for the first time.

EXAMPLE 3: do { … } while [j<10];

If execution of the Statement Block completes abruptly because of a break with no label, then no
further action is taken and the do statement completes normally.

If execution of the Statement Block completes abruptly because of a continue with no label, then
the Guard Condition is evaluated. Then there is a choice based on the resulting value:

- If the value is true, then the entire do while statement is executed again.

- If the value is false, no further action is taken and the do statement completes normally.

If execution of the Statement Block completes abruptly because of a continue with label L, then
there is a choice:

a) If the do statement has label L, then the Guard Condition is evaluated. Then there is a choice:

- If the value of the Guard Condition is true, then the entire do statement is executed again.

- If the value of the Guard Condition is false, no further action is taken and the do while
statement completes normally.

b) If the do while statement does not have label L, the do statement completes abruptly because
of a continue with label L.

Concrete textual grammar

Figure 19. While Statement

while [j<10] {
 MyChannel.send(Template1)
 :
}

Graphical presentation Textual presentation

while [j<10]
MyChannel.Template1
Page 130 of 226

433 DoWhileStatement ::= “do” StatementBlock “while” GuardCondition

Concrete graphical grammar
441 <fgr do-while area> ::= <inline expression symbol> contains

(do while GuardCondition <statement block area>)

The do-while statement shall be represented by an <inline expression symbol> labelled
with a do-while definition. The do-while body shall be represented as the operand of
the do-while <inline expression symbol>. A <flow line symbol> is drawn from the
previous node to the <inline expression symbol>, and another <flow line symbol> is
drawn from the <inline expression symbol> to the next node. Figure 20 represents an
example of a do-while statement.

18.6. The Break statement
A break statement transfers control out of an enclosing statement.

A break statement with no label attempts to transfer control to the innermost enclosing alt, do
while, while, or for statement; this statement, which is called the break target, then immediately
completes normally. To be precise, a break statement with no label always completes abruptly,
the reason being a break with no label. If no alt, while, do while, or for statement encloses the
break statement, a compile-time error occurs.

A break statement with Label Identifier attempts to transfer control to the enclosing labeled
statement that has the same Label Identifier as its label; this statement, which is called the break
target, then immediately completes normally. In this case, the break target need not be a while,
do while, for, or alt statement. To be precise, a break statement with Label Identifier always
completes abruptly, the reason being a break with Label Identifier. If no labeled statement with
Label Identifier as its label encloses the break statement, a compile-time error occurs.

It can be seen, then, that a break statement always completes abruptly.

The preceding descriptions say “attempts to transfer control” rather than just “transfers control”
because if there are any try statements within the break target whose try blocks contain the
break statement, then any catch-any clauses of those try statements are executed, in order,
innermost to outermost, before control is transferred to the break target.

If necessary, it is possible to enable/disable a break statement or a continue statement by means
of a Boolean expression placed between the '[]' brackets of the statement.

Concrete textual grammar
436 BreakStatement ::= [GuardCondition] “break” [LabelIdentifier]

Concrete graphical grammar
444 <flow line symbol> ::= <flow line symbol1> | <flow line symbol2>

445 <break area> ::= <break symbol> [is_associated_with LabelIdentifier]
[is_associated_with GuardCondition]

Figure 20. Do-while Statement

do {
 MyChannel.send(Template1)
 :
} while [j<10]

Graphical presentation Textual presentation

do while [j<10]
MyChannel.Template1

446 <break symbol> ::= <stop symbol>

The break statement shall be represented by a <stop symbol>, which is attached to the <flow line
symbol>.

18.7. The Continue statement
A continue statement may occur only in a while, do while, or for statement; statements of these
three kinds are called iteration statements. Control passes to the loop-continuation point of an
iteration statement.

A continue statement with no label attempts to transfer control to the innermost enclosing while,
do while, or for statement; this statement, which is called the continue target, then immediately
ends the current iteration and begins a new one. To be precise, such a continue statement always
completes abruptly, the reason being a continue with no label. If no while, do while, or for
statement encloses the continue statement, a compile-time error occurs.

A continue statement with Label Identifier attempts to transfer control to the enclosing labeled
statement that has the same Label Identifier as its label, that statement, which is called the
continue target, then immediately ends the current iteration and begins a new one. More
precisely, a continue statement with Label Identifier always completes abruptly, the reason being
a continue statement with Label Identifier. If no labeled statement with Label Identifier as its
label contains the continue statement, a compile-time error occurs.

It can be seen, then, that a continue statement always completes abruptly.

The preceding descriptions say “attempts to transfer control” rather than just “transfers control”
because if there are any try statements within the continue target whose try blocks contain the
continue statement, then any catch-any clauses of those try statements are executed, in order,
innermost to outermost, before control is transferred to the continue target.

Concrete textual grammar
437 ContinueStatement ::= [GuardCondition] “continue” [(LabelIdentifier | “alt”)]

Concrete graphical grammar
443 <continue area> ::= <repeat symbol> [is_associated_with LabelIdentifier]

[is_associated_with GuardCondition]

The continue statement shall be represented by a <repeat symbol>.

18.8. The Stop execution statement
The stop statement terminates execution in different ways depending on the context in which it
is used. When used in the control part of a module or in a function used by the control part of a

Figure 21. The Label, Break and Continue Statement

label MyLabel: { ...;
 :
 continue MyLabel;
 :
 break MyLabel;
 :
}

Graphical presentation Textual presentation

label MyLabel
MyLabel

MyLabel
Page 132 of 226

module, it terminates the test execution. When used in a test case, altstep or function that are
executed on a test thread, it terminates the relevant test thread.

NOTE 1: The semantics of a stop statement that terminates a test thread is identical to
the stop thread operation self.stop(see §21.2.5).

The stop execution operation shall be represented by a <stop symbol>, which is attached to the
<flow line symbol>, which performs the stop execution operation (Figure 22). It shall only be
used as last event of a component instance or as last event of an operand in an <inline expression
symbol>.

19. Behavioural program statements
Behavioural program statements may be used in test cases, functions and altsteps, except for:

(a) the return statement which shall only be used in functions; and

(b) the alt statement and the continue statement which may also be used in module control.

Behavioural program statements specify the dynamic behaviour of the test components over the
communication channels. Test behaviour can be expressed sequentially, as a set of alternatives or
combinations of both.

19.1. Alternative behaviour
A more complex form of behavior is where sequences of statements are expressed as sets of
possible alternatives to form a tree of execution paths. The alt statement denotes branching of test
behavior due to the reception and handling of communication and/or timer events and/or the
termination of parallel test components, i.e., it is related to the use of the ATDL operations
receive, trigger, synchronize, catch, timeout and done. The alt statement denotes a set of
possible events that are to be matched against a particular snapshot.

Concrete textual grammar
411 AltConstruct ::= “alt” “{“ AltGuardList “}”

412 AltGuardList ::= {GuardStatement [SemiColon]}+ [ElseClause [SemiColon]]

Figure 22. Stop execution operation

stop;

Graphical presentation Textual presentation

Table 23: Overview of ATDL behavioural program statements

Behavioural program
statements

Associated keyword
or symbol

Associated
graphical symbol

Alternative behavior alt {…} <alt symbol>
Start of a try statement try { … } <try symbol>
End of a try statement try { … } <connector symbol>
Raise exception (to a procedure) raise <exception out symbol>
Catch exception (from callee) catch <exception in symbol>
Returning control return <return symbol>

413 GuardStatement ::= AltGuardChar (AltstepInstance | GuardOp StatementBlock)

414 ElseClause ::= “[“ “else” “]” StatementBlock

19.1.1. Graphical notation
Fork vertices serve to split an incoming statement block into two or more statement blocks
terminating on orthogonal target vertices. Join vertices serve to merge several statement blocks
emanating from source vertices in different orthogonal regions. Antonym: join.

Execution starts at the <alt symbol>. Next, it continues with a node that follows one of the
outgoing edges of this symbol. These nodes are considered to be branches of an alt operator.
After execution of the selected node, the process of selection and execution is repeated for the
outgoing edges of the selected node. Each branch can be labeled with a guard condition. The
reserved word else can be used as a guard condition. Its value is true if all the other (explicit)
guard conditions are false.

A guarding condition means that the execution may not continue beyond the condition if it
evaluates to false. If all available branches are blocked by false conditions, and no <alt outlet
symbol> has been reached, the whole statement graph has no legal traces.

Note that the <alt symbol> can also be used for a join (the inverse of a fork), in which two
alternate paths come together, as shown in Figure 23. In the case of a join, there are two or more
input <flow line symbol>s and a single output <flow line symbol>.

Figure 23 illustrates an alternative behaviour in which either a message event is received with the
value defined by Template1, or a message event is received with the value defined by
Template2.

In addition, it is possible to call an altstep as the only event within an alternative operand. This
shall be drawn using a reference symbol (see §16.4.3).

Figure 23. Alternative behaviour statement

alt {
 [] MyChnnl.receive(Template1) {}
 [] MyChnnl.receive(Template2) {}
};

Graphical presentation Textual presentation

Figure 24. Alternative behaviour with altstep invocation

alt {
 [] MyChnnl.receive(Template1) {}
 [] MyAltStep()
};

Graphical presentation Textual presentation

MyChnnl.Template1 MyChnnl.Template2

MyChnnl.Template1 MyAltStep()
Page 134 of 226

Concrete graphical grammar
417 <fgr alt area> ::= <alt symbol> is_followed_by

((<graphical guard part>}+ [<alt else part>]) set)
418 <alt outlet symbol> ::= <alt symbol>

420 <graphical guard part> ::= <flow line symbol>
[is_associated_with GuardCondition]
is_followed_by <fgr guard area>
is_followed_by <statement block area>
is_connected_to <alt outlet symbol>

421 <fgr guard area> ::= <fgr receive area> | <fgr trigger area> |
<fgr synchronize area> | <fgr catch area> |
<fgr timeout area> | <fgr done area> | <altstep instance area>

19.1.2. Execution of alternative behaviour
The alternative statements are processed in their order of appearance. ATDL operational
semantics assume that the status of any of the events cannot change during the process of trying
to match one of a set of alternatives. This implies that snapshot semantics are used for received
events and timeouts i.e., each time around a set of alternatives a snapshot is taken of which
events have been received and which timeouts have fired. Only those identified in the snapshot
can match on the next cycle through the alternatives.

The alternative branches in the alt statement and the top alternatives of invoked altsteps and
altsteps that are activated as defaults are processed in the order of their appearance. If several
defaults are active, the activation order determines the evaluation order of the top alternatives in
the defaults. The alternative branches in active defaults are reached by the default mechanism
described in clause 19.7.

19.1.3. Selecting/deselecting an alternative
If necessary, it is possible to enable/disable an alternative by means of a Boolean expression
placed between the '[]' brackets of the alternative.

The evaluation of a Boolean expression guarding an alternative may have side-effects. To avoid
side effects that cause an inconsistency between the actual snapshot and the state of the
component the same restrictions as the restrictions for the initialization of local definitions within
altsteps shall apply.

Concrete textual grammar
415 AltGuardChar ::= “[“ [BooleanExpression] “]”

Figure 25. Selecting/deselecting an alternative

alt {
 [x>1] MyChnnl.receive(Template1) {}
 [x<=1] MyChnnl.receive(Template2) {}
};

Graphical presentation Textual presentation

MyChnnl.Template1 MyChnnl.Template2

[x>1] [x<=1]

It is possible to disable/enable an alternative operand by means of a guard condition. Figure 25
illustrates a simple alternative statement in which the first branch is guarded with the expression
x>1, and the second with the expression x <= 1.

19.1.4. Guard condition
A guard condition is a Boolean expression that is part of the specification of a guarded statement.
A guard condition must be a query i.e., it may not modify the value of the system or its state; it
may not have side effects.

Concrete textual grammar
448 GuardCondition ::= “[“ BooleanExpression “]”

Graphical notation

A guard condition is part of the string for a guarded statement. It has the form of a Boolean
expression enclosed in square brackets.

19.1.5. Else branch in alternatives
The last branch in an alt statement can be defined as an else branch by including the else
keyword between the open and close brackets at the beginning of the alternative. The else branch
shall not contain any of the actions allowed in branches guarded by a boolean expression (i.e. an
altstep call or a done, a timeout or a receiving operation). The statement block of the else branch
is always executed if no other alternative textually preceding the else branch has proceeded.

Concrete graphical grammar
419 <alt else part> ::= <flow line symbol>

is_associated_with (“[“ else “]”)
is_followed_by <statement block area>
is_connected_to <alt outlet symbol>

The else branch shall be denoted using a guard condition labelled with the else keyword. Figure
26 illustrates a simple alternative statement where the second branch represents an else branch.
The invocation of altsteps within alternatives is represented using the reference symbol (see §
16.4.3).

19.1.6. ATDL test events
An occurrence of an event has an actual parameter corresponding to each event parameter.

There are five kinds of events: catch event, synchronize event, message event, done event and
timeout event.

synchronize event: The receipt of a request to invoke an operation or method.

Figure 26. Else within an alternative

alt {
 [x>1] MyChnnl.receive(Template1) {}
 [else] MyErrorHandler()
};

Graphical presentation Textual presentation

MyChnnl.Template1 MyErrorHandler()

[x>1] [else]
Page 136 of 226

message event: The receipt of a message, which is an explicit named entity intended for explicit
communication between objects. A message has an explicit list of parameters, it is explicitly sent
by an object to another object or set of objects.

Concrete textual grammar
416 GuardOp ::= TimeoutStatement | ReceiveStatement | TriggerStatement |

SynchronizeStatement | CatchStatement | DoneStatement
/* STATIC SEMANTICS - GuardOp used within the module control part. Shall only contain the TimeoutStatement */

19.1.7. Re-evaluation of alt statements
The re-evaluation of an alt statement can be specified by using a continue statement (see clause
19.2).

19.1.8. Invocation of altsteps as alternatives
ATDL allows the invocation of altsteps as alternatives in alt statements.

Concrete graphical grammar
210 <altstep instance area> ::= <reference symbol> contains AltstepInstance

19.2. The Continue statement
The continue statement causes the re-evaluation of an alt statement, i.e. a new snapshot is taken
and the alternatives of the alt statement are evaluated in the order of their specification. The
continue statement shall only be used as last statement of an alternative in an alt statement or as
last statement of a top alternative in an altstep definition.

If a continue statement is used as last statement of an alternative in an alt statement, it causes a
new snapshot and the re-evaluation of the alt statement.

If a continue statement is used as last statement of a top alternative in an altstep definition, it
causes a new snapshot and the re-evaluation of the alt statement from which the altstep has been
called. The call of the altstep may either be done implicitly by the default mechanism or explicitly
in the alt statement

Graphical notation

The continue statement shall be represented by a <repeat symbol>. This symbol shall only be
used as last event of an alternative branch in an alt statement or as last event of an operand of the
top alternative in an altstep definition.

19.3. The Return statement
A return action causes a transfer of control to the caller of a function or constructor. The action
has an optional list of return values that are made available to the caller when it receives control.

A return statement with no Expression must be contained in the body of a function that is
declared, not to return any value, or in the body of a constructor. A return statement with no
Expression attempts to transfer control to the invoker of the function or constructor that contains it.
To be precise, a return statement with no Expression always completes abruptly, the reason being
a return with no value.

A return statement with an Expression must be contained in a function declaration that is
declared to return a value or a compile-time error occurs. The Expression must denote a variable
or value of some type T, or a compile-time error occurs. The type T must be assignable to the
declared result type of the method, or a compile-time error occurs.

A return statement with an Expression attempts to transfer control to the invoker of the function
that contains it; the value of the Expression becomes the value of the method invocation.

It can be seen, then, that a return statement always completes abruptly.

The preceding descriptions say “attempts to transfer control” rather than just “transfers control”
because if there are any try statements within the method or constructor whose try blocks contain
the return statement, then any catch-any clauses of those try statements will be executed, in
order, innermost to outermost, before control is transferred to the invoker of the method or
constructor.

Concrete textual grammar
409 ReturnStatement ::= “return” [Expression]

Concrete graphical grammar
410 <return area> ::= <return symbol> [is_associated_with Expression]

The return statement shall be represented by a <return symbol>. This may be optionally
associated with a return value. A <return symbol> shall only be used in a function diagram. It
shall only be used as last event of a component instance or as last event of an operand in an
<inline expression symbol>. Figure 27 illustrates a simple function that returns a value.

19.4. The Raise statement
A raise statement causes a remote exception or a self-exception to be raised. A remote-exception
is a reaction to an accepted procedure call the result of which leads to an exceptional event.

Exceptions are specified as types. Therefore the exception value may either be derived from a
template or be the value resulting from an expression (which of course can be an explicit value).
The optional exception field identifier in the value specification to the raise operation shall be
used in cases where it is necessary to avoid any ambiguity of the type of the value being sent.

Concrete textual grammar
270 RaiseStatement ::= Channel Dot “raise” “(“ TemplateInstance “)”

Concrete graphical grammar
282 <fgr raise area> ::= <exception out symbol> contains ([Channel Dot] TemplateInstance)

Exception sending. The sending of an exception may be shown as an <exception out symbol>.
The template instance of the exception is shown inside the symbol. A <flow line symbol> is

Figure 27. Return symbol with a return value

return ReturnValue;

Graphical presentation Textual presentation

Figure 28. The Raise statement

MyExChannel.raise(MyException: 5);

Graphical presentation Textual presentation

ReturnValue

 MyExChannel.MyException:5
Page 138 of 226

drawn from the previous node to the <exception out symbol>, and another <flow line symbol> is
drawn from the <exception out symbol>.

19.4.1. Raise a self-exception
The result of raising a self-exception is an immediate transfer of control that may exit multiple
statements evaluations and multiple constructor, and method invocations until a try statement is
found that catches the raised value. If no such try statement is found, then execution of the thread
that executed the raise statement is terminated.

If a self-exception raise statement is contained in a method declaration, but its value is not caught
by some try statement that contains it, then the invocation of the method completes abruptly
because of the raise statement.

If a self-exception raise statement is contained in a constructor declaration, but its value is not
caught by some try statement that contains it, then the class instance creation expression that
invoked the constructor will complete abruptly because of the raise statement.

19.4.2. Re-raising exceptions
When the reserved word raise occurs in an exception handling block without an object reference
following it, it raises whatever exception is handled by the try block. This allows a self-exception
handler to respond to an error in a limited way and then re-raise the exception. Re-raising is
useful when a test case or function has to clean up after an exception occurs but cannot fully
handle the exception.

19.5. Exception handling
Exception handling is a mechanism that allows two separately developed program components to
communicate when an exception is encountered during the execution of the program. In this
section we first look at how to associate handlers, or catch clauses, with a set of program
statements using a try block, and we look at how exceptions are handled by catch clauses.

19.5.1. The Try statement
The try statment is introduced in order to facilitate the specification of the alternatives of the
possible responses to the blocking call operation or method invocation. The try operation may be
followed by alternatives of catch and timeout.

A try block must enclose the statements that can throw exceptions. A try statement executes a
statement block. A try block begins with the try keyword followed by a sequence of program
statements enclosed in braces. Following the try block is a list of handlers called catch clauses.
The try block groups a set of statements and associates with these statements a set of handlers to
handle the exceptions that the statements can throw.

The handling of exceptions to a try statement is done by means of the catch operation. This
operation defines the alternative behavior depending on the exception (if any) that has been
generated as a result of the try statement. If a value is thrown and the try statement has one or
more catch clauses that can catch it, then control will be transferred to the first such catch clause.

If no exception occurs, the code within the try block is executed and the handlers associated with
the try block are ignored. When an exception is thrown, the statements following the statement
that throws the exception are skipped. Program execution resumes in the catch clause handling
the exception.

Concrete textual grammar
460 TryStatement ::= “try” [“(“ TimerValue “)”] (Statement | StatementBlock) CatchesStatementList

/* STATIC SEMANTICS - TimerValue must be of type float */

461 CatchesStatementList ::= { [AltGuardChar] CatchStatement StatementBlock [SemiColon] }+

Concrete graphical grammar
462 <try area> ::= <try symbol> contains [°(° TimerValue °)°]

is_associated_with ({<catch association area> }*
<try statement block area>) set

463 <try statement block area> ::= <statement block area>
is_connected_to <try out-connector symbol>

464 <catch association area> ::= <solid association symbol>
[is_associated_with GuardCondition]
is_connected_to <fgr catch area>
is_followed_by <statement block area>
is_connected_to <try out-connector symbol>

465 <try out-connector symbol> ::= <connector symbol>

The try statement is represented by use of the <try symbol>. An optional time supervision may
be placed within that symbol (Figure 29). In a <try area>, all of the paths leaving a <try symbol>
must eventually merge in a subsequent <try out-connector symbol>. If the last event of a catch
clause is the stop execution operation, a <dashed association symbol> shall be drawn from the
<stop symbol> to the <try out-connector symbol>.

19.5.2. The Catch clause
An ATDL exception handler is a catch clause. When an exception is thrown from statements
within a try block, the list of catch clauses that follows the try block is searched to find a catch
clause that can handle the exception.

The catch operation may be part of the exception handling part of a try statement or be used to
determine an alternative in an alt statement.

A catch clause consists of a catch statement with the keyword catch, and a set of statements
within a compound statement. If the catch clause is selected to handle an exception, the
compound statement is executed.

Exceptions are specified as types and thus, can be treated like messages e.g. templates can be
used to distinguish between different values of the same exception type. The (optional)
assignment part of the catch operation comprises the assignment of the exception value. The
keyword value is used to retrieve the value of an exception. For example,

Figure 29. The Try statement

try (7E-3) {
 MyTObject.MyTestCase1();
 MyTObject.MyTestCase2();
}
TSystemTimer.catch (timeout)
{
 setverdict(fail);
 stop;
}

Graphical presentation Textual presentation

 TSystemTimer.timeout

7E-3

MyTObject.
MyTestCase1()

failMyTObject.MyTestCase2()
Page 140 of 226

MyExChannel.catch(MyExType:?) -> (MyVar := value;)

// Catches an exception and assigns its value to MyVar.

Concrete textual grammar
277 CatchStatement ::= ChannelOrAny Dot “catch” [“(“ CatchOpParameter “)”] [AssignmentList]

278 CatchOpParameter ::= TemplateInstance | “timeout” | “all”

Concrete graphical grammar
287 <fgr catch area> ::= <exception in symbol>

contains [[ChannelOrAny Dot]“(“ CatchOpParameter “)”]
[is_associated_with <save area>]

Exception receipt. The receipt of an exception may be shown as an <exception in symbol>. The
template instance of the exception is shown inside the symbol. A <flow line symbol> is drawn
from the previous node to the <exception in symbol>, and another <flow line symbol> is drawn
from the <exception in symbol>.

The (optional) assignment part (denoted by the '->') shall be placed within a <save symbol>.

19.5.3. Catch a remote-exception
The catch remote-exception operation is used to catch exceptions raised by a peer entity as a
reaction to an operation call. The type of the caught exception shall be specified in the signature
of the operation that raised the exception.

The catch remote-exception operation removes the top exception from the associated incoming
channel queue if, and only if, that top exception satisfies all the matching criteria associated with
the catch operation. No binding of the incoming values to the terms of the expression or to the
template shall occur.

19.5.4. The Timeout exception
The try statement may optionally include a timeout. This is defined as an explicit value or
constant of float type and defines the length of time after the try statement has started that a
timeout exception shall be generated by the test system. If no timeout value part is present in the
try statement no timeout exception shall be generated.

The timeout exception is an emergency exit for cases where a called procedure neither replies
nor raises an exception within a predetermined time. For example:

MyChannel.catch(timeout); // Catches a timeout exception.

Catching timeout exceptions shall be restricted to the exception handling part of a try statement.

19.5.5. The catch all handler
A catch all clause allows any valid exception to be caught. For example,

Figure 30. The Catch statement

MyExChannel.catch(MyExceptionTemplate);

Graphical presentation Textual presentation

 MyExChannel.MyExceptionTemplate

MyExceptionChannel.catch(all);

19.5.6. The catch any clause
A method may want to perform some action before it exits with a raised self-exception even
though it cannot handle the exception that is thrown. For example, a method may acquire some
resource, such as opening a file or allocating memory on the heap, and it may want to release this
resource (close the file or release the memory) before it exits with the raised self-exception.

The release of a resource may be bypassed if a self-exception is thrown. To guarantee that the
resource is released, rather than provide a specific catch clause for every possible exception and
because we can't know all the exceptions that might be thrown, we can use a catch-any clause.

A catch any is used in combination with a re-raise expression. The resource that has been
locked is released within the compound statement of the catch clause before the self-exception is
propagated further up the list of function calls with a re-raise expression.

To ensure that the resource is appropriately released if a self-exception is raised and a method
exits with an exception a catch-any clause is used to release the resource before the exception is
propagated to functions further up the list of method calls. We can also manage the acquisition
and release of a resource by encapsulating the resource in a class, and having the class constructor
acquire the resource and the class destructor release the resource automatically.

To catch an exception on any channel use the any keyword. This statement will also catch the
timeout exception. For example,

any ExceptionChannel.catch;

A catch any clause can be used by itself or in combination with other catch clauses. If it is used
in combination with other catch clauses, we must take some care when organizing the set of catch
clauses associated with the try block.

Catch clauses are examined in turn, in the order in which they appear following the try block.
Once a match is found, subsequent catch clauses are not examined. This implies that if a catch
any is used in combination with other catch clauses, it must always be placed last in a list of
exception handlers; otherwise, a compiler error is issued.

19.6. Test verdict operations
Verdict operations allow to set and retrieve verdicts using the getverdict and setverdict
operations respectively. These operations shall only be used in test cases, altsteps and functions.

Each test component of the active configuration shall maintain its own local verdict. The local
verdict is an object which is created for each test component at the time of its instantiation. It is
used to track the individual verdict in each test component (i.e. in the MTC and in each and every
PTC).

Concrete textual grammar
406 SetLocalVerdict ::= “setverdict” “(“ SingleExpression “)”

Concrete graphical grammar
408 <set verdict area> ::= <condition symbol> contains VerdictValue

Table 24: Overview of ATDL test verdict operations

Test verdict operation Associated
keyword

Associated
graphical symbol

Set local verdict setverdict <condition symbol>
Get local verdict getverdict <task symbol>
Page 142 of 226

The verdict set operation setverdict is represented with a <condition symbol> within which the
values pass, fail, inconc or none are denoted (Figure 31).

ATDL does not provide any graphical representation for the getverdict operation (being an
expression). It is textually denoted at the places of its use.

19.6.1. Test case verdict
Additionally there is a global verdict that is updated when each test component (i.e. the MTC and
each and every PTC) terminates execution. This verdict is not accessible to the getverdict and
setverdict operations. The value of this verdict shall be returned by the test case when it
terminates execution. If the returned verdict is not explicitly saved in the control part (e.g.
assigned to a variable) then it is lost.

19.6.2. Verdict values and overwriting rules
The verdict can have five different values: pass, fail, inconc, none and error i.e. the
distinguished values of the verdicttype.

NOTE: inconc means an inconclusive verdict.

The setverdict operation shall only be used with the values pass, fail, inconc and none. For
example,

setverdict(pass);
setverdict(inconc);

The value of the local verdict may be retrieved using the getverdict operation. For example,

MyResult := getverdict; // Where MyResult is a variable of type verdicttype

When a test component is instantiated, its local verdict object is created and set to the value
none.

When changing the value of the local verdict (i.e. using the setverdict operation) the effect of
this change shall follow the overwriting rules listed in Table 25. The test case verdict is implicitly

Figure 31. Set local verdict

setverdict(pass);

Graphical presentation Textual presentation

Current Value of
Verdict New verdict assignment value

pass inconc fail none
none pass inconc fail none
pass pass inconc fail pass

inconc inconc inconc fail inconc
fail fail fail fail fail

Table 25: Overwriting rules for the verdict

pass

updated on the termination of a thread or a passive object. The effect of this implicit operation
shall also follow the overwriting rules listed in Table 25. For example,

:
setverdict(pass); // the local verdict is set to pass
:

19.6.2.1. Error verdict
The error verdict is special in that it is set by the test system to indicate that a test case (i.e. run-
time) error has occurred. It shall not be set by the setverdict operation and will not be returned
by the getverdict operation. No other verdict value can override an error verdict. This means that
an error verdict can only be a result of an execution of a test case.

19.7. Default Handling
ATDL allows the activation of altsteps (see clause 16.4) as defaults. For each test component the
defaults, i.e. activated altsteps, are stored in form of a list. The defaults are listed in the order of
their activation. The ATDL operations activate (see §19.7.3) and deactivate (see §19.7.4)
operate on the list of defaults. An activate appends a new default to the end of the list and a
deactivate removes a default from the list. A default in the default list can be identified by
means of default reference that is generated as a result of the corresponding activate operation.

A Default Signal Handler is called by ATDL underlying system when it cannot find a method for
a particular signal. Default Signal Handler provides signal handling for all signals for which an
object does not have specific handlers. Descendant classes that process signals activate different
Default Handler according to the types of signals they handle.

Concrete graphical grammar
424 <default area> ::= <default symbol> contains (ActivateStatement | DeactivateStatement)

Variables of type default can either be declared within a <task symbol> or within a <default
symbol> as part of an activate statement.

19.7.1. The default mechanism
The default mechanism is evoked at the end of each alt statement, if due to the actual snapshot
none of the specified alternatives could be executed. An evoked default mechanism invokes the
first altstep in the list of defaults and waits for the result of its termination. The termination can be
successful or unsuccessful. Unsuccessful means that none of the top alternatives of the altstep
(see clause 16.4) defining the default behaviour could be selected, successful means that one of
the top alternatives has been selected and executed.

In case of an unsuccessful termination, the default mechanism invokes the next default in the list.
If the last default in the list has terminated unsuccessfully, the default mechanism will return to
the place in the alt statement in which it has been invoked, i.e. at the end of the alt statement, and
indicate an unsuccessful default execution. An unsuccessful default execution will also be
indicated if the list of defaults is empty.

In case of a successful termination, the default may either stop the test component by means of a
stop statement, or the main control flow of the test component will continue immediately after
the alt statement from which the default mechanism was called or the test component will take
new snapshot and re-evaluate the alt statement. The latter has to be specified by means of a
continue statement (see §19.2). If the selected top alternative of the default ends without a
continue statement the control flow of the test component will continue immediately after the
alt statement.
Page 144 of 226

19.7.2. Default references
Default references are unique references to activated defaults. Such a unique default reference is
generated by a test component when an altstep is activated as a default, i.e. a default reference is
the result of an activate operation (see clause 19.7.3).

Default references have the special and predefined type default. Variables of type default can
be used to handle activated defaults in test components. The special value null is available to
indicate an undefined default reference, e.g. for the initialization of variables to handle default
references.

19.7.3. The activate operation
The activate operation is used to activate altsteps as defaults. An activate operation will
append the referenced altstep to the list of defaults and return a default reference. The default
reference is a unique identifier for the default and may be used in a deactivate operation for the
deactivation of the default.

Concrete textual grammar
422 ActivateStatement ::= “activate” ”(“ AltstepInstance “)”

The activation of defaults shall be represented by the placement of the activate
statement within a <default symbol> (Figure 32). A <flow line symbol> is drawn from the
previous node to the <default symbol>, and another <flow line symbol> is drawn from
the <default symbol> to the next node.

19.7.3.1. Activation of parameterized altsteps
The actual parameters of a parameterized altstep (see §16.4.1) that should be activated as a
default, shall be provided in the corresponding activate statement. This means the actual
parameters are bound to the default at the time of its activation (and not e.g. at the time of its
invocation by the default mechanism).

19.7.4. The deactivate operation
The deactivate operation is used to deactivate defaults, i.e. previously activated altsteps. A
deactivate operation will remove the referenced default from the list of defaults.

The effect of a deactivate operation is local to the test component in which it is called. This
means, a test component cannot deactivate a default in another test component.

Concrete textual grammar
423 DeactivateStatement ::= “deactivate” [“(“ Expression “)”]

The deactivation of defaults shall be represented by the placement of the deactivate statement
within a <default symbol> (Figure 33).

Figure 32. Default activation

MyDefaultVar:=activate(MyAltStep());

Graphical presentation Textual presentation

 MyDefaultVar:=activate(MyAltStep());

20. Expressions
Much of the work in an ATDL program is done by evaluating expressions, either for their side
effects, such as assignments to variables, or for their values, which can be used as arguments or
operands in larger expressions, or to affect the execution sequence in statements, or both.

ATDL allows the specification of expressions using the operators defined in Table 7. Expressions
are built from other (simple) expressions. Expressions may contain functions. The result of an
expression shall be the value of a specific type and the operators used shall be compatible with
the type of the operands.

Concrete textual grammar
470 Expression ::= SingleExpression | CompoundExpression

471 CompoundExpression ::= FieldExpressionList | ArrayExpression

20.1. Boolean expressions
An expression that evaluates to a Boolean value.

A boolean expression shall only contain boolean values and/or boolean operators and/or
relational operators and shall evaluate to a boolean value of either true or false.

Concrete textual grammar
478 BooleanExpression ::= SingleExpression

20.1.1. Conditional ? operator
The conditional operator ? : uses the boolean value of one expression to decide which of two
other expressions should be evaluated.

The conditional operator has three operand expressions; ? appears between the first and second
expressions, and : appears between the second and third expressions.

The first expression must be of type boolean, or a compile-time error occurs.

The conditional ? operator may be used to choose between second and third operands of numeric
type, or second and third operands of type boolean, or second and third operands that are each of
either reference type or the null type. All other cases result in a compile-time error.

At run time, the first operand expression of the conditional expression is evaluated first; its
boolean value is then used to choose either the second or the third operand expression:

- If the value of the first operand is true, then the second operand expression is chosen.

- If the value of the first operand is false, then the third operand expression is chosen.

Concrete textual grammar
482 SingleExpression ::= ConditionalExpression [? SimpleExpression Colon ConditionalExpression]

Figure 33. Deactivation of defaults

deactivate(MyDefaultVar);

Graphical presentation Textual presentation

 deactivate(MyDefaultVar);
Page 146 of 226

20.2. Primary expressions
Primary expressions include most of the simplest kinds of expressions, from which all others are
constructed: literals, field accesses, method invocations, and data object accesses. A
parenthesized expression is also treated syntactically as a primary expression.

ATDL concrete textual grammar
494 Primary ::= OpCall | DataObjectReference | Value | "(" Expression ")"

20.2.1. Self
The keyword self may be used only in the body of an instance method or constructor, or in the
initializer of an instance variable of a class. If it appears anywhere else, a compile-time error
occurs. When used as an object reference, the keyword self denotes a value, that is a reference to
the object for which the instance method was invoked, or to the object being constructed. Self is
useful for a variety of reasons. For example, a member identifier declared in a class type might be
re-declared in the block of one of the class’s methods. In this case, you can access the original
member identifier as self.Identifier.

The keyword self is also used in a special explicit constructor invocation statement, which can
appear at the beginning of a constructor body.

20.2.2. Parenthesized expressions
A parenthesized expression is a primary expression whose type is the type of the contained
expression and whose value at run time is the value of the contained expression.

20.3. Typecast expressions
The type of a typecast expression is the type whose name appears before the parentheses. (The
parentheses and the type are sometimes called the cast operator.) The result of a typecast
expression is not a variable, but a value, even if the result of the operand expression is a variable.
If the expression is a variable, the result is called a variable typecast; otherwise, the result is a
value typecast. While their syntax is the same, different rules apply to the two kinds of typecast.

At run time, the operand value is converted by casting conversion (see clause 9.10) to the type
specified by the cast operator. Not all typecasts are permitted by ATDL. Some typecasts result in
an error at compile time. For example, a primitive value may not be cast to a restricted type.
Some typecasts can be proven, at compile time, always to be correct at run time. For example, it
is always correct to convert a value of a class type to the type of its ancestor class; such a typecast
should require no special action at run time. Finally, some typecasts cannot be proven to be either
always correct or always incorrect at compile time. Such casts require a test at run time.

20.3.1. Value typecasts
In a value typecast, the type identifier and the cast expression must both be ATDL predefined
basic types. The resulting value is obtained by converting the expression in parentheses. This
may involve truncation or extension if the size of the specified type differs from that of the
expression. The expression’s sign is always preserved.

A value typecast cannot appear on the left side of an assignment statement.

20.3.2. Variable typecasts
You can cast any variable to any type, provided their sizes are the same.

20.4. Component instance creation expressions
A component instance creation expression is used to create new objects that are instances of
components. Creation of an component is the result of a signal that instantiates the object. A
creation operation may have actual parameters that are used for initialization of the new instance.
At the conclusion of the creation operation, the new object obeys the constraints of its class and
may receive signals.

To create an object, call the constructor method in a class type. For example,

MyNewComponent := MyComponentType.create;
MyNewComponent. MyComponentBehaviour1(...);

The arguments in the argument list, if any, are used to select a constructor declared in the body of
the named class type, using the same matching rules as for method invocations (§20.6). As in
method invocations, a compile-time method matching error results if there is no unique
constructor that is both applicable to the provided arguments and the most specific of all the
applicable constructors.

Concrete textual grammar
250 CreateOp ::= (ComponentType Dot | “inherited”) (“create” | ConstructorIdentifier [ActualParList])

Concrete graphical grammar
260 <create request area> ::= <create request symbol> contains [VarPrefix] CreateOp

Instance creation. The creation of an instance may be shown as a <create request symbol>. A
flow line symbol is drawn from the previous node to the <create request symbol>, and another
flow line symbol is drawn from the <create request symbol> (Figure 34). The <create request
symbol> contains the instance creation statement.

20.4.1. Initializing the test component
The MTC is the only thread which is automatically created when a test case starts. All other test
components (the PTCs) shall be created explicitly during test execution by Instance Creation
operations. A component is created with its full set of interfaces of which the incoming queues
are empty. Furthermore, its incoming interfaces shall be in a listening state ready to receive traffic
over the connection.

All component variables and timers are reset to their initial value (if any) and all component
constants are reset to their assigned values when the component is explicitly or implicitly created.

The Instance Creation operation shall return the unique component reference of the newly
created instance. The unique reference to the component will typically be stored in a variable and
can be used for connecting instances and for field access expressions.

Components can be created at any point in a behaviour definition providing full flexibility with
regard to dynamic configurations (i.e. any component can create any other PTC). The visibility of
component references shall follow the same scope rules as that of variables and in order to

Figure 34. Instance creation operation

MyComp := MyCType.create;

Graphical presentation Textual presentation

 MyComp := MyCType.create
Page 148 of 226

reference components outside their scope of creation the component reference shall be passed as
a parameter or as a field in a message.

20.4.2. Component instance
An object is an instance that originates from a class. A co-object is an instance that originates
from a co-class. A thread object is an instance that originates from a thread class.

An object is an instance of a component, which describes the set of possible objects that can exist.
An object can be viewed from two related perspectives: as an entity at a particular point in time
with a specific value and as a holder of identity that has different values over time.

A variable of a component type is actually a pointer that references an object. Hence more than
one variable can refer to the same object. Like other pointers, class-type variables can hold the
value null. But you don’t have to explicitly de-reference a class-type variable to access the object
it points to. For example, SomeObject.Size := 100 assigns the value 100 to the Size property of
the object referenced by SomeObject.

Concrete textual grammar
251 ComponentIdentifier ::= VariableRef | FunctionInstance | CastExpression

Graphical notation

The canonical notation for an object is a rectangle with two compartments. The top compartment
contains the object name and class, and the bottom compartment contains a list of property names
and values. There is no need to show methods because they are the same for all objects of a class.

The top compartment shows the name of the object and its class, all underlined, using the syntax:

objectname: classname

The property value compartment as a whole may be suppressed.

20.5. Field access expressions
A field access expression may access a field of an object, a reference to which is the value of
either an expression or the special keyword inherited. It is also possible to refer to a field of the
current instance or current class by using a simple name, if it is a simple name, then the field
name is treated exactly as if it had been the field access expression self.field identifier.

Fields are statically bound; that is, references to them are fixed at compile time. This lack of
dynamic lookup for field accesses allows ATDL to run efficiently with straightforward
implementations. The power of late binding and overriding is available in ATDL, but only when
instance methods are used. To see what this means, consider the following code.

class TAncestor { Value Smallint; }
class TDescendant extends TAncestor {

Value charstring; // hides the inherited Value field
}

{ var MyObject TAncestor;

 MyObject := TDescendant.Create;
 MyObject.Value := “Hello!”; // error
 TDescendant(MyObject).Value := “Hello!”; // works!
}

Although MyObject holds an instance of TDescendant, it is declared as TAncestor. The compiler
therefore interprets MyObject.Value as referring to the (integer) field declared in TAncestor. Both
fields, however, exist in the TDescendant object; the inherited Value is hidden by the new one,
and can be accessed through a typecast.

20.5.1. Field access using an object reference
The type of the variable reference must be a reference type T, or a compile-time error occurs. The
meaning of the field access expression is determined as follows:

a) If the field identifier names several accessible member fields of type T, then the field access is
ambiguous and a compile-time error occurs.

b) If the field identifier does not name an accessible member field of type T, then the field access
is undefined and a compile-time error occurs.

c) Otherwise, the field identifier names a single accessible member field of type T and the type of
the field access expression is the declared type of the field. At run time, the result of the field
access expression is computed as follows:

- If the field is static: a) If the field is a constant, then the result is the value of the specified
class constant in the class that is the type of the object reference. b) If the field is a class
variable, then the result is the value of the specified class variable in the class that is the
type of the variable reference.

- If the field is not static, then the result is a variable, namely, the specified instance
variable in the object referenced by the value of the variable reference.

20.5.2. Accessing inherited members
The special form using the keyword inherited is valid only in an instance method or constructor,
or in the initializer of an instance variable of a class; these are exactly the same situations in
which the keyword self may be used.

20.6. Method invocation expressions
A method invocation expression is used to invoke a class or instance method.

When you call a test case or function, program control passes from the point where the call is
made to the body of the routine. You can make the call using the routine’s declared name (with or
without qualifiers). In either case, if the routine is declared with parameters, your call to it must
pass parameters that correspond in order and type to the routine’s parameter list.

When calling a routine, remember that

- expressions used to pass typed template and in parameters must be assignment-
compatible with the corresponding formal parameters.

- expressions used to pass inout and out parameters must be identically typed with the
corresponding formal parameters.

- only assignable expressions can be used to pass inout and out parameters.

The signature arguments of the method invocation expression can be used to retrieve variable
values for out and inout parameters. The actual assignment of the out and inout parameter
values to variables shall implicitly be made in the method invocation.

A class or instance method can be called through an interface reference or an object reference.

If a method’s declaration specifies an inout parameter, you must pass an assignable expression
i.e., a variable to the method when you call it.

Concrete textual grammar
496 OpCall ::= ConfigurationOps | GetLocalVerdict | TimerOps | TestcaseInstance | FunctionInstance

| CallStatement | InterfaceOps | TemplateOps | ActivateStatement
Page 150 of 226

20.6.1. Invocation of functions
A function is invoked by referring to its name and providing the actual list of parameter.
Functions that do not return values shall be invoked directly. Functions that return values may be
invoked directly or inside expressions. The rules for actual parameter lists shall be followed as
defined in clause 5.2.

Special restrictions apply to functions bound to test threads using the start thread operation.
These restrictions are described in clause 21.2.4.

Concrete textual grammar
171 FunctionInstance ::= FunctionRef [ActualParList]

172 FunctionRef ::= [DataObjectReference Dot]
(FunctionIdentifier | DestructorIdentifier) | PreDefFunctionIdentifier

Concrete graphical grammar
181 <function instance area> ::= <reference symbol> contains [VarPrefix] FunctionInstance

The invocation of functions is represented by the reference symbol (Figure 35), except of external
and predefined functions and except where a function is called inside an ATDL language element
that has a graphical representation.

The syntax of the function invocation is placed within the reference symbol. The symbol may
contain: a) the invocation of a function with optional parameters; and b) an optional assignment
of the returned value to a variable.

The reference symbol is only used for user defined functions defined within the current module.
It shall not be used for external functions or predefined ATDL functions, which shall be
represented in their text form within a task form or other graphical symbols.

20.6.2. Execution of test cases
A test case is called using a test case invocation expression or a try statement. As the result
of the execution of a test case a test case verdict of either none, pass, inconclusive, fail or
error shall be returned and may be assigned to a variable for further processing.

Optionally, the try statement allows supervision of a test case by means of a timer duration (see
clause 19.5.1).

Concrete textual grammar
197 TestcaseInstance ::= TestcaseRef [ActualCrefParList]

198 TestcaseRef ::= [DataObjectReference Dot] TestcaseIdentifier

Concrete graphical grammar
202 <testcase instance area> ::= <reference symbol> contains [VarPrefix] TestcaseInstance

The invocation of test cases is represented by the reference symbol. The syntax of the test case
invocation is placed within the <reference symbol>. The symbol may contain:

Figure 35. Invocation of user defined function

MyVar:= MyFunction(MyParam1,MyParam2);

Graphical presentation Textual presentation

 MyVar:= MyFunction(MyParam1,MyParam2)

a) the invocation of a test case with optional parameters;

b) optionally, the assignment of the returned verdict to a verdicttype variable; and

c) optionally, the inline declaration of the verdicttype variable.

20.6.3. Determining the method
Resolving a method name at compile time is more complicated than resolving a field name
because of the possibility of method overloading. Invoking a method at run time is also more
complicated than accessing a field because of the possibility of instance method overriding.

Determining the method that will be invoked by a method invocation expression involves several
steps. The first step in processing a method invocation at compile time is to figure out the name of
the method to be invoked and which class to check for definitions of methods of that name. There
are several cases to consider, depending on the form that precedes the left parenthesis, as follows:

1) If the form is ComponentRef . Method Identifier, then the name of the method is the
Method Identifier and the class to be searched is the type of the ComponentRef expression.

2) If the form is inherited . Method Identifier, then the name of the method is the Method
Identifier and the class to be searched is the ancestor class of the class whose declaration contains
the method invocation. It follows that a method invocation of this form may appear only in a class
other than TObject, and only in the body of an instance method, the body of a constructor, the
body of a destructor, or an initializer for an instance variable.

The second step searches the class determined in the previous step for method declarations.This
step uses the name of the method and the types of the actual parameter expressions to locate
method declarations that are both applicable and accessible, that is, declarations that can be
correctly invoked on the given actual parameters. There may be more than one such method
declaration, in which case the most specific one is chosen. The descriptor (signature plus return
type) of the most specific method declaration is one used at run time to do the method dispatch.

A method declaration is applicable to a method invocation if and only if both of the following are
true: a) The number of formal parameters in the method declaration equals the number of actual
parameter expressions in the method invocation. b) The type of each actual parameter can be
converted by method invocation conversion to the type of the corresponding formal parameter.
Method invocation conversion is the same as assignment conversion.

The class determined by the first step is searched for all method declarations applicable to this
method invocation; method definitions inherited from ancestor classes are included in this search.

Whether a method declaration is accessible to a method invocation depends on the access
modifier (public, none, protected, or private) in the method declaration and on where the
method invocation appears.

If the class has no method declaration that is both applicable and accessible, then a compile-time
error occurs.

Figure 36. Test case execution

MyVerdict := MyTestCase(MyParameter);

Graphical presentation Textual presentation

 MyVerdict := MyTestCase(MyParameter)
Page 152 of 226

20.6.4. Choose the most specific method
If more than one method is both accessible and applicable to a method invocation or a remote
procedure call, it is necessary to choose one to provide the descriptor for the run-time method
dispatch. ATDL uses the rule that the most specific method is chosen.

The informal intuition is that one method declaration is more specific than another if any
procedure invocation handled by the first method could be passed on to the other one without a
compile-time type error.

A method is said to be maximally specific for a method invocation if it is applicable and
accessible and there is no other applicable and accessible method that is more specific.

If there is exactly one maximally specific method, then it is in fact the most specific method; it is
necessarily more specific than any other method that is applicable and accessible. It is then
subjected to some further compile-time checks as described in the first step.

It is possible that no method is the most specific, because there are two or more maximally
specific method declarations. In this case, we say that the procedure invocation is ambiguous, and
a compile-time error occurs.

20.7. References for data objects
In order to permit references to fields of structured data objects or data objects defined using
ASN1, ATDL provides three access mechanisms: record references, array references and bit
references.

Concrete textual grammar
468 DataObjectReference ::= [ModuleName Dot] ComponentRef [ExtendedFieldReference]

469 ExtendedFieldReference ::= { ArrayOrBitRef | (Dot (StructFieldIdentifier | ClassFieldIdentifier) }+

62 ArrayOrBitRef ::= “[“ FieldOrBitNumber “]”

63 FieldOrBitNumber ::= SingleConstExpression

20.7.1. Array references
An array reference may be used to reference a field of a data object of the type sequence of or
ASN.1 set of. An array reference shall be constructed using an index notation, appending the
index of the desired component to the data object identifier. The index, giving the position of the
field within the data object (when the object is viewed as a linear array), is enclosed within square
brackets. By definition within ASN.1, the indexing of fields starts with zero. The index may be an
expression, in which case it shall evaluate to a cardinal.

20.7.2. Record references
A record reference may be used to reference a struct field of a data object of the type sequence,
set or choice. A record reference is constructed using a dot notation, appending a dot and the
name (struct field identifier) of the desired component to the data object identifier. The struct
field identifier should be used in preference to the struct field position. You can access the fields
of a record by qualifying the field designators with the record’s name.

Recommendations X.680 defines set types having unordered components. This is relevant only
if values of that type are encoded and sent over the underlying service-provider. ATDL therefore
treats data objects of set type in the same way as objects of sequence type.

When a record field is chained to another record, a record reference may be used to identify a
component of the latter record type. The record reference shall identify the relevant complete
sequence of field or element names separated by dots, starting with a data object identifier which
resolves to the relevant record’s name. Beyond this initial data object identifier the sequence shall
not contain any record identifiers, but rather just the identifiers of the relevant fields.

EXAMPLE 4: Record references with chaining

type ASP1_type ::= sequence {
par1 octetstring,
par2 octetstring,
Pdu1 PDU1_type

}

type PDU1_type ::= sequence {
Field1 octetstring,
Field2 octetstring,
F F_type

}

type F_type ::= sequence {
Data1 charstring,
Data2 charstring

}

When using variables of type ASP1_type, PDU1_type and F_type, the values of Data1 and Data2
may be referenced as follows:

ASP1_Type.pdu1.F.Data1
ASP1_Type.pdu1.F.Data2

Similarly the whole PDU field F may be referenced as:

ASP1_Type.pdu1.F

20.7.3. String references
Individual elements in a string type may be accessed using an array-like syntax. Only single
elements of the string may be accessed. For this purpose, data objects of bitstring type are
assumed to be defined as sequence of {boolean}, data objects of octetstring type are assumed to
be defined as sequence of {octet}, data objects of hexstring type are assumed to be defined as
sequence of {hexdecimal}, data objects of charstring type are assumed to be defined as sequence
of {char}, data objects of wide charstring type are assumed to be defined as sequence of {wide
char}. Thus, a string reference may be constructed using the index notation as for array
references. The leftmost position has the index zero (0). Indexing shall begin with the value zero.
An expression used as an index in a string reference shall evaluate to a non-negative cardinal.

Units of length of different string type elements are indicated in Table 16.

20.8. Assignments
Values may be assigned to variables. This is indicated by the symbol ":=". The := symbol is
sometimes called the assignment operator. During execution of an assignment the righthand side
of the assignment shall evaluate to an element of the same type of the left-hand side.

The effect of an assignment is to bind the variable to the value of the expression. The expression
shall contain no unbound variables. All assignments occur in the order in which they appear, that
is left to right processing. The result of the first operand of an assignment operator must be a
variable, or a compile-time error occurs. This operand may be a named variable, such as a local
variable or a field of the current object or class, or it may be a computed variable, as can result
from a field access or a variable typecast, or a data object reference. The type of the assignment
expression is the type of the variable.

At run time, the result of the assignment expression is the value of the variable after the
assignment has occurred. The result of an assignment expression is not itself a variable.
Page 154 of 226

A compile-time error occurs if the type of the right-hand operand cannot be converted to the type
of the variable by assignment conversion.

Concrete textual grammar
467 Assignment ::= DataObjectReference ":=" Expression

20.8.1. Assignment rules for array types
Arrays are assignment-compatible only if they are of the same type. Because ATDL uses name-
equivalence for types, the following code will not compile.

var Int1 sequence [10] of Smallint;
var Int2 sequence[10] of Smallint;
:
Int1 := Int2;

To make the assignment work, declare the variables as

var Int1: Int2 sequence[10] of Smallint;

When dynamic-array variables are compared, their references are compared, not their array
values. Thus, after execution of the code

var A:B sequence of Smallint;
SetLength(A, 1);
SetLength(B, 1);
A[0] := 2;
B[0] := 2;

A == B returns False but A[0] == B[0] returns True.

Indexed value notations can be used on both the right-hand side and left-hand side of
assignments. The index of the first element shall be zero and the index value shall not exceed the
limitation placed by length subtyping. If the value of the element notated by the index at the right-
hand of an assignment is undefined, this shall cause a semantical or run-time error. If an indexing
operator at the left-hand side of an assignment refers to a non-existent element, the value at the
right-hand side is assigned to the element and all elements with an index smaller than the actual
index and without assigned value are created with an undefined value. Undefined elements are
permitted only in transient states (while the value remains invisible). Sending a sequence of
value with undefined elements shall cause a dynamic testcase error. For example,

var MyRecordVar sequence of Smallint;

SetLength(MyRecordVar, 6);

// The following two assignments

MyRecordVar := { 0, 1, -, 2, omit };

MyRecordVar[6] := 6;

// will result in { 0, 1, <unchanged>, 2, <undefined>, <undefined>, 6 };

// Note also, that the 3rd element would remain undefined if had no assigned value before.

// and the 6th element (with index 5) had no assigned value before this assignment.

This makes possible to copy sequence of values element by element in a for loop.

Concrete textual grammar
474 ArrayExpression ::= “{“ [NotUsedOrExpression {“,” NotUsedOrExpression}*] “}”

475 NotUsedOrExpression ::= Expression | “-”

20.8.2. Assignment rules for string types
If length-restricted string types are used within an assignment, the following rules apply:

a) if the destination string type is defined to be shorter than the source string, the source string is
truncated on the right to the maximum length of the destination string type;

b) if the source string is shorter than that allowed by the destination string type, then the source
string is left-aligned and padded with fill characters up to the maximum size of the destination
string type.

Fill characters are:

- " " (blank) for all CharacterStrings;

- "0" (zero) for bitstrings, hexstrings and octetstrings.

When an unbounded (i.e., arbitrary length) string type variable is used on the left-hand side of an
assignment, it shall become bound to the value of the right-hand side without padding. Padding is
only necessary when the variable is of a fixed length string type.

21. Object-based programming
Objects provide a way to divide a program up into independent sections. Often, you also need to
turn a program into separate, independentlyrunning subtasks. Each of these independent subtasks
is called a thread, and you program as if each thread runs by itself and has the CPU to itself.

A class template is a prescription for creating a class in which one or more types or values are
parameterized. A vector class, for example, may parameterize the generic type of the elements it
contains. A buffer class may parameterize not only the generic type of the elements it holds, but
the size of its buffer as well. This chapter discusses how to define a class template and how to
create specific instances of a class template.

21.1. Class templates
This section describes class templates, and how to define and use them. A class template is a
prescription for creating a class in which one or more types or values are parameterized. Let's
assume that we want to define a class to support the mechanism of a queue. A queue is a data
structure for a collection of objects in which objects are added at one end, the back, and removed
at the other end, the front. The behavior of a queue is spoken of as first in, first out, or FIFO.

A definition for our class Queue might look like this:

virtual class Queue {
public constructor Queue();
public destructor Destroy();
public function remove() return variant;
public function append (MyType variant);
public function is_empty() return boolean;
:
}

The question is, what type should we use for variant? Let's assume we choose to incarnate our
virtual class Queue, replacing variant with Shortint. The class Queue is then defined to handle
collections of objects of type Shortint. Because each object in the collection is an object of type
Shortint, the ATDL type system guarantees that only values of type Shortint can be assigned to
an object of type Queue. This is good when the programmer wishes to use a queue of objects of
type Shortint, of course. This is not as good, however, when the programmer wishes to use the
class Queue to represent a collection of floats, chars, or hexstrings.
Page 156 of 226

One method of coping is simply to use brute force. The programmer copies the entire Queue class
implementation, modifying it to work with floats, then with chars, then with hexstrings, and so
on. And, since class names cannot be overloaded, each implementation must be given a unique
name: ShortintQueue, FloatQueue, CharQueue, HexstringQueue. As each new class type is
needed, the code is copied, changed, and renamed.

What are the problems with this method of class type duplication? Not only there is the lexical
complexity of each uniquely named Queue class. And also, there is the administrative complexity
— imagine having to propagate a modification in the general implementation of the class
ShortintQueue to each specific instance. In general, providing manually generated copies for
individual types is a never-ending process and is endlessly complicated to maintain.

The ATDL class template facility provides for the automatic generation of class types. One can
use a class template to generate a class Queue automatically for a queue of any particular type.
The class template definition for the Queue class might look like this:

template class Queue(MyType variant) {
public constructor Create(inout MyType);
public destructor Destroy();
public function remove() return MyType;
public function append (MyType);
public function is_empty() return boolean;
:
}

The programmer writes

var qshortint Queue(Shortint);
var qchar Queue(char);
var qhexstring Queue(hexstring);

to generate, in turn, a Queue class of Shortints, chars, and hexstrings.

The implementation of our Queue class is presented in the following sections to illustrate the
definition and use of class templates. The incarnation uses a pair of class template abstractions:

1. The class template Queue itself provides the public interface described earlier, and a pair
of data fields: front and back. The class template Queue is implemented as a linked list.

2. The class template QueueItem represents one node of a Queue's linked list. Each item
entered into the queue is stored in a QueueItem object. A QueueItem object contains a pair
of data fields: value and next. The actual type of value varies with each instance of
Queue. next is a link to the next QueueItem object in the queue.

Here is the definition of the class template Queue.

template class Queue(MyType variant) {
public constructor Create(inout MyType);
public destructor Destroy();
public function remove() return MyType;
public function append (MyType);
public function is_empty() return boolean;
:
private front QueueItem(MyType);
private back QueueItem(MyType);

}

21.1.1. Class template definition
The template keyword always begins both a definition and a declaration of a class template. This
keyword is followed by a comma-separated list of template parameters enclosed in parentheses.
This list is referred to as the template parameter list of the class template. It cannot be empty. A
template parameter may be a generic type parameter or a non-generic type parameter.

A template generic type parameter consists of the type dentifiers followed by a generic type
keyword, such as integer or cardinal. The followed keyword indicates that the parameter name
represents a built-in or a user-defined type.

A class template can have multiple generic type parameters. Once declared, the generic type
parameter serves as a generic type specifier for the remainder of the class template definition. It
can be used in the class template definition in exactly the same way as a built-in or user-defined
type is used in a nontemplate class definition. For example, a generic type parameter can be used
to declare data members, member functions, and so forth.

A template non-generic type parameter consists of an ordinary parameter declaration. A non-
generic type parameter indicates that the parameter name represents a potential value. This value
represents a constant in the class template definition. For example, a Buffer class template may
have a non-generic type parameter to indicate the type of the elements it holds and a non-generic
type parameter that is a constant value representing its size.

A class definition follows the template parameter list. Except for the presence of the template
parameters, the definition of a class template looks the same as that of a non-template class:

template class QueueItem (MyType variant) {
public ... // ...
// MyType represents the type of a data field
private item MyType;
private next QueueItem; // next pointer with this class

};

In the example, MyType is used to indicate the type of the data field item. In the course of the
program, MyType will be substituted with various built-in and user-defined types. This process
of type substitution is called template instantiation.

The name of a template parameter can be used after it has been declared as a template parameter
and until the end of the template declaration or definition. If a variable with the same name as the
template parameter is declared in global scope, that name is hidden.

The name of a template parameter cannot be used as the name for a class member declared within
the class template definition. The name of a template parameter can be introduced only once
within the template parameter list.

Inside the class template definition, the name of the class template can be used as a type specifier
whenever a non-template class name can be used.

A class template is implicitly final, because its definition is complete and no descendant class
templates are desired or required. This implies that a class template cannot have any descendant
class templates.

Concrete textual grammar
117 ClassTemplateDef ::= “template” “class” ClassTemplateIdentifier

[TypeDefFormalParList] [ClassHeritage] ClassDefBody

118 ClassTemplateIdentifier ::= Identifier

21.1.2. Class template instantiation
A class template definition specifies how individual classes can be constructed given a set of one
or more actual types or values. The class template definition for Queue serves as a template for
Page 158 of 226

the automatic generation of type-specific instances of Queue classes. For example, a Queue class
for objects of type Shortint is created automatically from the generic class template definition
when the programmer writes

var qshortint := Queue(Byte);

This generation of a class from the generic class template definition is called class template
instantiation. When a Queue class for objects of type Byte is instantiated, each occurrence of the
template parameter MyType within the class template definition is replaced with type Byte.
Similarly, to create a Queue class for objects of type hexstring, the programmer writes

var qhexstring Queue(hexstring);

In this case, each occurrence of the generic type template parameter within the class template
definition is replaced by the actual type parameter hexstring.

There is no special relationship between the instantiations of a class template for different types.
Rather, each instantiation of a class template constitutes an independent class type. The template
actual parameters must be specified in a comma-separated list and enclosed in parentheses. The
name of a class template instantiation must always specify the template arguments explicitly.

Therefore, declaring variables and references to a class template instantiation do not cause the
class template to be instantiated. For example, the following function foo() declares a variable
and a reference to the class template instantiation Queue(Byte). However, these declarations do
not cause the template Queue to be instantiated:

// Queue(Byte) is not instantiated for its uses in foo()
function foo (QByte Queue(Byte))
{ var rQByte Queue(Byte);

// ...
}

A class template is therefore instantiated when an object is initialized with a type that is a class
template instantiation. In the following example, the definition of the object QByte causes the
template Queue(Byte) to be instantiated:

var QByte Queue(Byte) := Queue(Byte).Create; // Queue(Byte) is instantiated

The definition of the class Queue(Byte) becomes known to the compiler before its member
method is called.

Depending on the types with which a class template is instantiated, some design considerations
must be taken into account when defining a class template. For example,

template class QueueItem (MyType variant) {
public constructor QueueItem(MyType); // bad design choice
// ...

}

This definition of the QueueItem constructor implements the pass-by-value argument semantics.
This performs adequately when QueueItem is instantiated with a built-in type (as in the
instantiation of QueueItem(Byte), for example). However, when QueueItem is instantiated with
a large object type, the run-time impact of this choice is no longer acceptable. This is why the
argument to the constructor is declared as a reference to an inout type:

public constructor QueueItem(inout MyType);

Concrete textual grammar
119 ClassTemplateInstance ::= ClassTemplateIdentifier ActualParList

21.1.3. Template arguments for non-generic type parameters
A class template parameter can be a non-generic type template parameter. There are some
restrictions on the kind of template argument that can be used with such a non-generic type
template parameter. The expression to which a non-generic type parameter is bound must be a
constant expression. That is, it must be possible to evaluate it at compile-time. Constant
expressions that evaluate to the same value are considered equivalent template arguments for a
template non-generic type parameter.

21.1.4. Member methods of class templates
As with non-template classes, a member method of a class template can either be defined within
the class template definition, or the member function can be inherited from an ancestor virtual
class. All member methods defined within a class template are implicitly final, because it is
impossible to override or to hide them. It is not required for the declarations of such methods to
redundantly include the final keyword.

If a member class method of a class template is itself a method template (§13.6.1). ATDL requires
that such a member method be instantiated only when the class template is itself instantiated.

A member instance method of a class template can be a method template or an ordinary instance
method. A member instance method of a class template is not instantiated automatically when the
class template is itself instantiated. The member instance method is instantiated only if it is used
by the program, ATDL requires that such a member method be instantiated only when it is called.

Exactly when the member instance method of a class template is instantiated impacts how names
are resolved in the definition of a class template member method (§21.1.8) and when a member
method incarnation can be declared (§21.1.6).

21.1.5. Static members of class templates
Class templates can have static members, including static fields and class methods. Each of these
class members exists once per enclosing class type, that is, independently of the number of
objects of the enclosing class type and regardless of the number of instantiations of the generic
type that may be used somewhere in the program. The name of the static member consists - as is
usual for static members - of the scope (groups and enclosing class type) and the member's name.
If the enclosing class type of a static member is generic, then the type in the scope qualification
must be an ordinary or an instantiated generic-type, not a raw type or a parameterized type.

A class template can declare static fields. Each instantiation of the class template has its own set
of static fields. A static field is instantiated from the class template definition only if it is used in
a program. If a static field of a class template is itself a template. The template definition for the
static field does not cause any memory to be allocated. Memory is only allocated for particular
instantiations of the static field. Each static field instantiation corresponds to a class template
instantiation. An instantiation of a static data member, then, is always referred to through a
particular class template instantiation. For example,

// error: QueueItem is not an actual instantiation
var ival0 Smallint := QueueItem.QueueItem_chunk;
var ival1 char := QueueItem(char).QueueItem_chunk; // ok
var ival2 Smallint := QueueItem(Smallint).QueueItem_chunk; // ok

21.1.5.1. True constants
A true constant is a declared identifier whose value cannot change. For example,

const MaxValue cardinal := 237;

declares a constant called MaxValue that returns the cardinal 237.
Page 160 of 226

21.1.6. Class template incarnations
To see why our programs might need to define class template incarnations, let's add two new
member functions to the class template Queue. The member functions min() and max () iterate
through the items in the Queue to find the minimum value and the maximum value respectively.

template class Queue(MyType variant) {
// ...
public function min() return MyType;
public function max() return MyType;
//...
}

// find minimum value in the Queue

template function Queue(MyType).min() return MyType;
{ if [!is_empty()]

{
 var min_val MyType := front.item;
 for (var pq QueueItem := front.next; pq != null; pq := pq.next)
 { if [pq.item < min_val] { min_val := pq.item }}
}
return min_val;

}

// find maximum value in the Queue

template function Queue(MyType).max() return MyType;
{ if [!is_empty()]

{
 var max_val MyType := front.item;
 for (var pq QueueItem := front.next; pq != null; pq := pq.next)
 { if [pq.item > max_val] { max_val := pq.item }}
}
return max_val;

}

Let's assume that we have the IEEE754double type with which we would like to instantiate the
class template Queue. The following statement in the member function min() compares two
items in the Queue:

pq.item < min_val

If operator<() is not defined for IEEE754double type, and an attempt is made to call min() on a
Queue of items of this type, a compile-time error is issued at the point where the invalid
comparison operator is used in min(). However, no operator (<) exists to compare two values of
type IEEE754double, and the member functions min() and max() cannot be used with a Queue
of type Queue(IEEE754double). (A similar problem exists with the member function max()
and its use of operator(>).)

One solution to this problem is to define global operators (<) and (>) compare two values of type
Queue(IEEE754double). However, to introduce class template incarnations, we consider
another solution. We do not want the generic member function definitions for the class template
Queue to be used to instantiate the member functions min() and max() if the template argument
is the class type IEEE754double. Instead, we want to define instances for
Queue(IEEE754double).min() and Queue(IEEE754double).max() that use the
IEEE754double member function compareLess().

class IEEE754double {
// ...
public compareLess (min_val IEEE754double) return boolean;
private value IEEE754double;
}

We can do this by providing a specialized definition for a member of a class template
instantiation using an explicit incarnation definition. An explicit incarnation definition is a
definition in which the keyword template is followed by the definition of the incarnation for the
class member. In the following example, explicit incarnations are defined for the member
functions min() and max() of the class template instantiation Queue(IEEE754double):

// explicit incarnation definitions

template function Queue(IEEE754double).min() return IEEE754double;
{ if [!is_empty()]

{
 var min_val IEEE754double := front.item;
 for (var pq QueueItem := front.next; pq != null; pq := pq.next)
 { if [pq.item.compareLess(min_val)] { min_val := pq.item }}
}
return min_val;

}

template function Queue(IEEE754double).max() return IEEE754double;
{ if [!is_empty()]

{
 var max_val IEEE754double := front.item;
 for (var pq QueueItem := front.next; pq != null; pq := pq.next)
 { if [max_val.compareLess(pq.item)] { max_val := pq.item }}
}
return max_val;

}

Even though the class type Queue(IEEE754double) is instantiated from the generic class
template definition, each object of type Queue(IEEE754double) uses the specializations for the
member functions min() and max() — these member functions are not instantiated from the
generic member function definitions for the class template Queue.

Because the explicit incarnation definitions for the member functions min() and max() are
function definitions and not method template definitions, their headings must be placed within a
scope unit (groups or enclosing class type), it is just to declare a function template explicit
incarnation without defining it.

In some cases the entire class template definition may be inappropriate for use with a particular
type. In this case the programmer can provide an incarnation to specialize the entire class
template. For example, the programmer may choose to provide a complete definition of
Queue(IEEE754double):

template class Queue(IEEE754double) {
public constructor Queue(inout IEEE754double);
public destructor Destroy();
public function remove() return IEEE754double;
public function append (inout IEEE754double);
public function is_empty() return boolean;
public min() return IEEE754double;
Page 162 of 226

public max() return IEEE754double;
// Some particular implementation
// private ...
}

An explicit incarnation for a class template can be defined only after the general class template
has been declared. That is, the name must be known to be a class template name before the
template can be specialized. If we define a class template incarnation, we must also define each
member method or static data member associated with this incarnation. The generic member
definitions of the class template are never used to create the definitions for the members of an
explicit incarnation. This is because the class template incarnation may have a completely
different set of class members from the generic template. If we decide to provide an explicit
incarnation definition for the class type Queue(IEEE754double), not only must we provide the
definitions for the member functions min() and max(), but we must also provide the definitions
for all of the other member functions as well.

21.1.7. Class template partial incarnations
If a class template has more than one template parameter, one might want to specialize the class
template for a particular template argument or a set of template arguments without specializing
the template for every template parameter. That is, one might want to provide a template that
matches a generic template except that some of the template parameters have been replaced by
actual types or values. This is possible using a class template partial incarnation. A class
template partial incarnation might be needed to define a more appropriate or efficient
implementation than the generic template definition for a particular set of template arguments.

A class template partial incarnation is a template, and the definition of a partial incarnation looks
like a template definition. Such a definition begins with the keyword template followed by a
template parameter list enclosed in parentheses. The parameter list of a class template partial
incarnation differs from the parameter list of the corresponding generic class template definition.

21.1.8. Name resolution in class templates
In the discussion on name resolution in function templates in Section 16.5.3, we mention that this
resolution proceeds in two steps. The same two steps apply to the resolution of names used in
class template definitions and in the definition of their members. Each step applies to different
kinds of names: the first step applies to names that have the same meaning in all instantiations of
the class template, and the second step applies to names that have potentially different meanings
from one template instantiation to another.

21.1.9. Groups and class templates
As with any other global scope definitions, a class template definition can be placed in a group.
The meaning of such a class template definition is the same as when the class template is defined
in global scope, except that the name of the class template is hidden within the group. The class
template name must either be qualified by the group name when the class template is used outside
its group, or an import declaration must be provided.

21.2. Threads and operations
Thread operations are used to set up and control test threads. These operations shall only be used
in ATDL test cases and functions (i.e., not in the module control part).

Concrete textual grammar
247 ConfigurationStatement ::= DoneStatement | StartThreadStatement | StopThreadStatement

248 ConfigurationOps ::= CreateOp | ComponentIdExpression | ThreadRunningOp

254 ThreadId ::= ThreadIdentifier | (“any” | “all”) “thread”

258 ComponentRef ::= ComponentIdentifier | ComponentIdExpression | ClassInstance

Concrete graphical grammar
259 <configuration statement area> ::= <create request area> | <fgr done area> |

<start thread area> | <stop thread area> | <stop symbol>

21.2.1. Defining thread classes
ATDL provides several objects that make writing multi-threaded applications easier. Multi-
threaded applications are applications that include several simultaneous paths of execution. For
most applications, you can use a thread object to represent an execution thread in your
application. Thread objects simplify writing multi-threaded applications by encapsulating the
most commonly needed uses of threads.

Concrete textual grammar
120 ThreadClassDef ::= ThreadClassHeading “{“

[SupportingDefSpec]
[{ClassFieldSpec [SemiColon]}*]
[InterfaceDefSpec]
[ImplementedInterfaceList]
[RequiredInterfaceList]
[ClassMethodList] “}”

121 ThreadClassHeading ::= “thread” ThreadClassIdentifier [ThreadClassHeritage]

Concrete graphical grammar
128 <thread class diagram> ::= <thread class symbol> contains

(ThreadClassIdentifier <class properties area> <class methods area>)
[is_connected_to <component extends area>]
[is_connected_to {<required interface area>+ } set]
[is_connected_to {<supported interface area>+ } set]
[is_connected_to { <dependency symbol>+ } set]

An thread class is shown with a heavy border.

21.2.1.1. Declaring thread-local variables and timers
It is possible to declare constants, variables and timers local to a particular component.

Thread-local variables and timers are associated with the thread instance and follow the scope
rules defined in clause 5.4. Each new instance of a thread will thus have its own set of variables
and timers as specified in the thread definition (including any initial values, if stated).

You may declare variables that are global to all the routines running in your thread, but not shared
with other instances of the same thread class. You can do this by declaring thread-local variables.
Thread-local variables are associated with the thread instance and follow the scope rules defined

Table 26: Overview of ATDL thread operations

Thread operations Operation
Name

Associated
graphical symbol

Create parallel thread object create <create request symbol>
Get MTC address mtc <task symbol>
Get test system interface address system <task symbol>
Get own address self <task symbol>
Start execution of test thread start <procedure call symbol>
Stop execution of test thread stop <stop symbol>
Check termination of a PTC running <condition symbol>
Wait for termination of a PTC done <condition symbol>
Page 164 of 226

in clause 5.4. Each new instance of a thread will thus have its own set of variables as specified in
the thread type definition (including any initial values, if stated). For example,

thread MyPTCType { var MyLocalInteger Smallint;
timer MyLocalTimer;
...; }

declares an integer type variable that is private to each thread in the application, but global within
each thread.

21.2.1.2. Initializing the thread
If you want to write initialization code for your new thread class, you must override the create
method. Add a new constructor to the declaration of your thread class and write the initialization
code as its implementation. This is where you can assign a default priority for your thread and
indicate whether it should be freed automatically when it finishes executing.

21.2.1.3. Active object model
The active object model views a thread as an active entity which communicates with other
threads by sending signals. In this model, a thread is composed from instance data, a
communication module, an incoming signal queue and its own execution context. Each signal
arriving at the thread is, at first, spooled in the signal queue by the communication module. Each
thread also has the ability to select a signal from the queue to be executed next. If the thread
decides not to handle a signal at this moment, the signal can be pushed back into the signal queue.
Since each active object communicates with others only by sending signals, they can run
concurrently. ATDL has been implemented using this model.

21.2.1.4. Thread object
A thread object does not run within another thread, or stack frame. It has an independent locus of
control within the overall execution of a system.

Concrete textual grammar
123 ThreadClassIdentifier ::= Identifier

21.2.1.5. Thread references
Thread references are unique references to the test threads created during the execution of a test
case. This unique thread reference is generated by the test system at the time when a thread is
created, i.e., a thread reference is the result of a create operation. In addition thread references are
returned by the predefined functions system (returns the thread reference to identify the test
system interface), mtc (returns the thread reference of the MTC), self (returns the thread
reference of the component in which self is called), and sender (returns the component reference
from which the last input signal has been consumed).

In addition, the special value null is available to indicate an undefined thread reference, e.g., for
the initialization of variables to handle thread references.

The only operations allowed on thread references are assignment and equivalence.

Concrete textual grammar
249 ComponentIdExpression ::= “system” | “self” | “mtc” | “sender” | “inherited”

Example:

Reference: TTCN3 [1] clause 8.6

// A thread type definition

thread MyCompType {requires MyMessagePort1, MyMessagePort2; ...}

// Declaring two variables for the handling of references to threads of type MyCompType
// and creating a thread of this type
var MyPCO1 MyMessagePort1;
var MyPCO2 MyMessagePort2;
var MyCompInst MyCompType := MyCompType.create;

// Usage of thread references in configuration operations
// always referring to the thread created above
MyPCO1 := bind(MyMessagePort1, MyCompInst); // Obtaining the interface reference
MyPCO2 := bind(MyMessagePort2, system);
MyCompInst.start(MyBehavior(self)); // self is passed as a parameter to MyBehavior
MyPCO1.receive; // receive from MyCompInst
:
MyPCO2.receive(MyIntegerMessage1:*); // receive from SUT
:
MyPCO2.send(MyIntegerMessage1:5); // send to SUT
:
var MyMessage M1, MyResult M1;
var MyInst1 MyCompType1 := null;
var MyInst2 MyCompType2 := null;
var MyInst3 MyCompType3:= null;
:
alt {

[] MyMessagePort1(MyCompType1).receive(M1:*) // interface typecast
-> (MyMessage:=value; MyInst1:=sender) { }

[] MyMessagePort1(MyCompType2).receive(M1:*) // interface typecast
-> (MyMessage:=value; MyInst2:=sender) { }

[] MyMessagePort1(MyCompType3).receive(M1:*)
-> (MyMessage:=value; MyInst3:=sender) { }

}
:
MyResult := MyMessageHandling(MyMessage); // some result is retrieved from a function
:
if (MyInst1 != null) {MyPCO1(MyInst1).send(MyResult)};
if (MyInst2 != null) {MyPCO1(MyInst2).send(MyResult)};
if (MyInst3 != null) {MyPCO1(MyInst3).send(MyResult)};
:

21.2.2. The Priority field (informative)
Priority indicates how much preference the thread gets when the operating system schedules CPU
time among all the threads in your application. Use a high priority thread to handle time critical
tasks, and a low priority thread to perform other tasks. To indicate the priority of your thread
object, set the Priority field.

For example, if writing a Windows application, Priority values fall along a seven-point scale.

Value Priority

tpIdle The thread executes only when the system is idle.

tpLowest The thread's priority is two points below normal.

tpLower The thread's priority is one point below normal.

tpNormal The thread has normal priority.

tpHigher The thread's priority is one point above normal.
Page 166 of 226

tpHighest The thread's priority is two points above normal.

tpTimeCritical The thread gets highest priority.

The following code shows the constructor of a low-priority thread that performs background
tasks which should not interfere with the rest of the application’s performance:

constructor TMyThread.Create(CreateSuspended boolean);
{

inherited Create(CreateSuspended);
Priority := tpLower; // set the priority to lower than normal
: // The thread's priority is one point below normal.

}

21.2.3. The Running operation
The running operation allows behaviour executing on a test component to ascertain whether
behaviour running on a different thread has completed. The running operation can be used for
PTCs only. The running operation is considered to be a boolean expression and, thus, returns
a boolean value to indicate whether the specified thread (or all threads) has terminated. In
contrast to the done operation, the running operation can be used freely in boolean
expressions.

Concrete textual grammar
255 ThreadRunningOp ::= ThreadId Dot “running”

Concrete graphical grammar
264 <fgr thread running area> ::= <condition symbol> contains ThreadRunningOp

21.2.4. The Start thread method
Once a thread has been created and connected behaviour has to be bound to this thread and the
execution of its behaviour has to be started. This is done by using the start operation (Thread
creation does not start execution of the thread behaviour). The reason for the distinction between
Instance Creation and start is to allow connection operations to be done before actually
running the thread component.

The start operation shall bind the required behaviour to the thread component. This behaviour is
defined by reference to an already defined function.

The following restrictions apply to a function invoked in a start thread operation:

1) If this function has parameters they shall only be in parameters, i.e., value parameters.

2) Channels and timers can only be passed into this function if they refer to channels and timers
in the thread class definition of the newly created thread object, i.e., channels and timers are local
to component instances and shall not be passed to other components.

Concrete textual grammar
256 StartThreadStatement ::= ThreadIdentifier Dot “start” “(“ FunctionInstance “)”

Concrete graphical grammar
262 <start thread area> ::= <procedure call symbol> contains StartThreadStatement

Start thread message sending. The sending of a start thread message may be shown as a
<procedure call symbol>. The <procedure call symbol> contains the start statement (Figure 37).
A <flow line symbol> is drawn from the previous node to the <procedure call symbol>, and
another <flow line symbol> is drawn from the <procedure call symbol> to the next node.

21.2.5. The Stop thread method
You can request that a thread end execution prematurely by calling the stop method. Stop method
sets the done property of the thread to true. The operation has no arguments. For example:

if [date == "1.1.2000"] { MyObject.stop; } // execution stops on the 1.1.2000

If the test component that is stopped is the MTC all remaining PTCs that are still running shall
also be stopped and the test case terminates.

All resources shall be released when a thread object terminates, either explicitly using the stop
operation or through reaching a return statement in the function that originally started the thread
object or implicitly when the thread object reaches the end of its behavior tree. Any variables
storing a stopped thread object reference shall refer to nothing.

Concrete textual grammar
257 StopThreadStatement ::= ThreadIdentifier Dot “stop” | “all” “thread” Dot “stop”

Concrete graphical grammar
263 <stop thread area> ::= <stop symbol> [is_associated_with (ComponentRef | “all”)]

The stop thread operation shall be represented by a <stop symbol>, which is attached to the <flow
line symbol>, which performs the stop thread operation. A <flow line symbol> is drawn from the
previous node to the <stop symbol>, and another <flow line symbol> is drawn from the <stop
symbol> to the next node. It shall have an associated expression that identifies the component to
be stopped (see Figure 38 (a)). The MTC may stop all PTCs in one step by using the stop
component operation with the keyword all (see Figure 38 (c)).

21.2.5.1. The FreeOnTerminate field (informative)
Usually, when threads finish their operation, they can simply be freed. In this case, it is easiest to
let the thread object free itself. To do this, set the FreeOnTerminate property to true.

Figure 37. Start thread class method

MyComp.start(MyCompBehaviour());

Graphical presentation Textual presentation

Figure 38. Stop test component operation

ComponentId.stop;

(a) Graphical presentation (b) Textual presentation (c) Stopping all PTCs

MyComp.start(MyCompBehaviour())

ComponentId all
Page 168 of 226

There are times, however, when the termination of a thread must be coordinated with other
threads. For example, you may be waiting for one thread to return a value before performing an
action in another thread. To do this, you do not want to free the first thread until the second has
received the return value. You can handle this situation by setting FreeOnTerminate to false and
then explicitly freeing the first thread from the second.

21.2.6. The Done operation
The done operation allows behaviour executing on a test component to ascertain whether the
behaviour running on a different test thread has completed. The done operation can be used for
PTCs only.

Concrete textual grammar
253 DoneStatement ::= ThreadId Dot “done”

Concrete graphical grammar
261 <fgr done area> ::= <condition symbol> contains DoneStatement

The done operation shall be represented within a <condition symbol>. The <condition symbol>
contains the done statement (Figure 39).

21.2.7. The MTC, System , Sender and Self operations
The thread reference (see clause 21.2.1.5) has three operations, mtc, sender and system
which return the reference of the master thread, the sender component and the test system
interface respectively. In addition, the operation self can be used to return the reference of the
thread in which it is called.

The sender method is supported for backward compatibility only. Its use is not recommended.

22. Communication operations
ATDL supports message-based (asynchronous) and operational (synchronous) communication.

Concrete textual grammar
266 CommunicationStatement ::= SendStatement | CallStatement | RaiseStatement |

ReceiveStatement | TriggerStatement |
SynchronizeStatement | CatchStatement

Concrete graphical grammar
279 <communication statement area> ::= <fgr call area> | <fgr send area> | <fgr raise area> |

<fgr receive area> | <fgr trigger area> |
<fgr synchronize area> | <fgr catch area>

Figure 39. Done operation

MyComp.done;

Graphical presentation Textual presentation

MyComp.done

22.1. Connection Points
A client uses the bind method to discover the functionality supported by an object. The more
interfaces that are common to the client and the object, the more intertwined their relationship is.
But regardless of the number of interfaces the object supports, the basic model remains the same:
the client calls the methods implemented by the object, the object performs the desired service,
and then the object returns the results to the client. This type of relationship is rather one-sided
the client always makes requests of the object. ATDL supports connection points, a technology
that enables an object to "talk back" to its client.

Objects that support connection points are often called connectable objects. Connection points
involve some rather peculiar terminology, which deserves a moment of attention. A source
interface, also called an outgoing interface, is an interface defined in the object but implemented
by the client. A sink object, which resides within the client, is the object that implements the
object's source interface. Knowing these definitions will help you understand connection points.

22.1.1. Simple connectable object
A connection point is an object managed by the server-side connectable object that implements
the Connection Point interface. The ATDL underlying system requires two important methods of
the Connection Point interface: Advise and Unadvise. The main purpose of this interface is to let
a client provide a connectable object with a pointer to the client's sink. Each connection point
supports exactly one source interface.

When a server side connectable object calls the interface typecast, the client calls the Advise
method to provide the server side connectable object with a pointer to the client's sink object. In a
way, you can consider this call a bind method in reverse. A client uses the bind method to
discover the interfaces exposed by a server object. It calls the Advise method to provide a server
object with a pointer to its sink.

Although the Advise method provides the server side connectable object with a pointer to the
client sink's interface, this pointer alone is not sufficient. To call the methods of the client's sink
object, we must obtain a pointer to one of the more interesting interfaces implemented by the
sink. Thus, the bind method is the first call made implicitly from the connectable object to the
client's sink! Then the Advise method returns a unique number to the client that identifies the

Table 27: Overview of ATDL communication operations

Communication operation keyword Associated
graphical symbol

Message-based communication
Send message send <message out symbol>
Receive message receive <message in symbol>
Trigger on message trigger <message in symbol>
Procedure-based communication
Invoke procedure call call <procedure call symbol>
Synchronize a procedure call synchronize <procedure in symbol>
Channel controlling operations
Bind client-side channel to component bind <task symbol>
Obtain an interface reference typecast <task symbol>
Release channel to component release <task symbol>
Give access to channel start <condition symbol>
Clear channel clear <condition symbol>
Stop access at channel stop <condition symbol>
Page 170 of 226

advisory relationship that has been established. The client retains this number, called a cookie, for
later use in terminating the connection.

Since this code is prepared to handle only a single connection, the cookie returned to the client is
a dummy placeholder. The connectable object then calls the sink object's bind method implicitly
to obtain a pointer to its Outgoing interface. This pointer is stored in a global variable for later
use. The implicit bind call might seem redundant. After all, since each connection point supports
one source interface, why doesn't the client simply provide that interface pointer in the Advise call
in place of the implicit bind method? The answer is that connection points are designed to be a
general-purpose mechanism for configuring bi-directional communication in ATDL. Because the
designers of the connection point interfaces had no way of knowing what custom interfaces a sink
object might implement, the implicit bind method was the only option.

The release method on the server-side calls the client side Unadvise method to terminate an
advisory relationship that was previously established using the Advise method. The cookie
argument passed to release identifies which connection should be terminated.

22.2. Interface references
A channel is an individual connection among two or more component instances. It is a tuple
(ordered list) of component references. The component instances must be direct or indirect
instances of the components at corresponding positions in the association contract.

Concrete textual grammar
265 Channel ::= ChannelIdentifier | VarIdentifier | InterfaceParIdentifier | CastExpression

273 ChannelOrAny ::= Channel | “any” “interface”

274 ChannelOrAll ::= Channel | “all” “interface”

Graphical notation

A binary channel is shown as a path between two component instances i.e., one or more
connected line segments or arcs (see component instance diagram).

As a convenience, the arrowheads may be omitted on channels that are navigable in both
directions. In theory, this can be confused with a channel that is not navigable in either direction,
but such a channel is unlikely in practice and can be explicitly noted if it occurs.

22.2.1. Interface typecast
An interface typecast shall return the unique interface reference. The unique reference to the
interface will typically be stored in the variable and can be used for communication purposes
such as sending and receiving. Interface types follow the same rules as class types in variable and
value typecasts. You can declare a variable of an interface type.

Class-type expressions can be cast to interface types — for example, IMyInterface(SomeObject)
— provided the class implements the interface.

On the client side, an interface typecast is a shorthand notation for a bind operation. On the
server side, an interface typecast dynamically queries a given client-side object and returns an
interface reference to the object.

22.3. General format of communication operations

22.3.1. General format of the sending operations
Sending operations consist of a send part and, in the case of a blocking procedure-based call
operation, a response and exception handling part.

The send part:

- specifies the channel at which the specified operation shall take place;

- defines the value of the information to be transmitted.

The channel name, operation name and value shall be present in all sending operations.

Response and exception handling is only needed in cases of procedure-based communication.
The response and exception handling part of the call operation is optional and is required for
cases where the called procedure returns a value or has out or inout parameters whose values
are needed within the calling component and for cases where the called procedure may raise
exceptions which need to be handled by the calling component.

The returned value and exception handling part of the call operation makes use of assignment
and catch operations to provide the required functionality.

22.3.2. General format of the receiving operations
A receiving operation consists of a receive part and an (optional) assignment part.

The receive part:

a) specifies the channel at which the operation shall take place;

b) defines a matching part which specifies the acceptable input which will match the statement.

The channel name, operation name and value part of all receiving operations shall be present.

The (optional) assignment part in a receiving operation is optional. For message-based channels it
is used when it is required to store received messages. In the case of procedure-based channels it
is used for storing the in and inout parameters of an accepted call or for storing exceptions. For
the assignment part strong typing is required, e.g. the variable used for storing a message shall
have the same type as the incoming message.

22.3.2.1. Value assignment
On a receiving event assignments are performed after the event occurs. If the match is successful,
the value removed from the channel queue can be stored in a variable. This is denoted by the
keyword value. For example,

 MyPort.receive(MyType:?) -> (MyVar := value); // The value of the received message is
 // assigned to MyVar.

Concrete textual grammar
466 AssignmentList ::= -> "(" Assignment {SemiColon Assignment}* ")"

Concrete graphical grammar
284 <save area> ::= <save symbol> contains (Assignment {SemiColon Assignment}*)

22.4. Message-based communication
Message-based communication is communication based on an asynchronous message exchange.
Message-based communication is non-blocking on the send operation, as illustrated in Figure
40, where processing in the SENDER continues immediately after the send operation occurs.
The RECEIVER is blocked on the receive operation until it processes the received message.

SENDER

send

RECEIVER

receive
Page 172 of 226

Figure 40. Illustration of the asynchronous send and receive

22.4.1. The Send operation
The send operation is used to place a value on an outgoing message channel queue. The value
may be specified by referencing a template, a variable, or a constant or can be defined in-line
from an expression (which of course can be an explicit value). When defining the value in-line
the optional message identifier field shall be used if there is ambiguity of the type of the value
being sent.

The send operation shall only be used on message-based channels and the type of the value to be
sent shall be in the list of outgoing types of the interface type definition.. For example:

MyChannel.send(MyTemplate(5,MyVar));
// Sends the template MyTemplate with the actual parameters 5 and MyVar via MyChannel.

Concrete textual grammar
267 SendStatement ::= Channel Dot “send” “(“ TemplateInstance “)”

Concrete graphical grammar
280 <fgr send area> ::= <message out symbol> contains ([Channel Dot] TemplateInstance)

Message sending. The sending of a message may be shown as a convex pentagon (Figure 41).
The template instance of the message is shown inside the symbol. A <flow line symbol> is drawn
from the previous node to the pentagon, and another <flow line symbol> is drawn from the
pentagon to the next node.

22.4.2. The Receive operation
The receive operation is used to receive a value from an incoming message channel queue. The
value may be specified by referencing a template, a variable, or a constant or can be defined in-
line from an expression (which of course can be an explicit value). When defining the value in-
line the optional type field shall be used to avoid any ambiguity of the type of the value being
received. The receive operation shall only be used on message-based channels and the type of the
value to be received shall be included in the list of incoming types of the interface definition.

The receive operation removes the top message from the associated incoming channel queue if,
and only if, that top message satisfies all the matching criteria associated with the receive
operation. No binding of the incoming values to the terms of the expression or to the template
shall occur.

If the match is not successful, the top message shall not be removed from the port queue i.e. if the
receive operation is used as an alternative of an alt statement and it is not successful the
execution of the test case shall continue with the next alternative of the alt statement.

An optional message identifier field in the matching criteria to the receive operation shall be
used to avoid any ambiguity of the type of the value being received.

Figure 41. The Send statement

MyChannel.send(MyTemplate(5,MyVar));

Graphical presentation Textual presentation

 MyChannel.MyTemplate(5, MyVar)

NOTE 1: Encoding attributes are also participating in matching in an implicit way, by
preventing the decoder to produce an abstract value from the received
message encoded in a different way than specified by the attributes.

Concrete textual grammar
271 ReceiveStatement ::= ChannelOrAny Dot “receive” ReceiveParameter [AssignmentList]

272 ReceiveParameter ::= [“(“ TemplateInstance “)”]

Concrete graphical grammar
283 <fgr receive area> ::= <message in symbol> contains ([ChannelOrAny Dot] ReceiveParameter)

[is_associated_with <save area>]

Message receipt. The receipt of a message may be shown as a concave pentagon <message in
symbol>. The template instance of the message is shown inside the <message in symbol>. A
<flow line symbol> is drawn from the previous node to the pentagon, and another <flow line
symbol> is drawn from the pentagon to the next node (Figure 42).

The (optional) assignment part (denoted by the '->') shall be placed within a <save symbol>.

22.4.3. The Trigger operation
The trigger operation filters messages with certain matching criteria from a stream of received
messages on a given incoming channel. The trigger operation shall only be used on message-
based channels and the type of the value to be received shall be included in the list of incoming
types of the interface definition. All messages that do not fulfill the matching criteria shall be
removed from the queue without any further action i.e., the trigger operation waits for the next
message on that queue. If a message meets the matching criteria, the trigger operation behaves in
the same manner as a receive operation.

The trigger operation can be used as a stand-alone statement in a behaviour description. In this
latter case the trigger operation is considered to be shorthand for an alt statement with only one
alternative, i.e. it has blocking semantics, and therefore provides the ability of waiting for the
next message matching the specified template or value on that queue.

Concrete textual grammar
275 TriggerStatement ::= ChannelOrAny Dot “trigger” ReceiveParameter [AssignmentList]

Concrete graphical grammar
285 <fgr trigger area> ::= <message in symbol> contains TriggerStatement

[is_associated_with <save area>]

Figure 42. The Receive statement

MyChannel.receive(MyTemplate(5, MyVar));

Graphical presentation Textual presentation

 MyChannel.MyTemplate(5, MyVar)
Page 174 of 226

The trigger operation shall be represented within the <message in symbol>. The <message in
symbol> contains the trigger statement (Figure 43).

22.5. Operation templates
Instances of operation parameter lists with actual values may be specified using templates.
Templates may be defined for any operation by referencing the associated operation definition.

For example,

// signature definition for a remote procedure

operation RemoteProc(in Par1 Word, out Par2 Smallint, inout Par3 Smallint) return Smallint;

// example templates associated to defined procedure signature

template Template2 RemoteProc:=
{

Par1 := 1,
Par2 := ?,
Par3 := 3

}

template Template3 RemoteProc:=
{

Par1 := 1,
Par2 := ?,
Par3 := ?

}

22.5.1. Templates for invoking procedures
An operation template used in a call operation defines a complete set of default parameter values
for all in and inout parameters. Default parameter values are limited to values that can be
specified by a constant expression. At the time of the call operation all in and inout parameters
in the template shall resolve to actual values, no matching mechanisms shall be used in these
fields, either directly or indirectly. Any template specification for out parameters is simply
ignored, therefore it is allowed to specify matching mechanisms for these fields, or to omit them.

For example,

// Given the examples in the introduction of clause (§22.5)

// Valid invocation since all in and inout parameters have a distinct value

MyChannel.call Template2(MyVar2, MyVar3);

// Invalid invocation because the inout parameter Par3 has a matching attribute not a value

Figure 43. The Trigger statement

MyChannel.trigger(MyMsg: MyTemplate);

Graphical presentation Textual presentation

 MyChannel.trigger(MyMsg: MyTemplate)

MyChannel.call Template3(MyVar2, MyVar3);

// Templates never return values. In the case of Par2 and Par3 the values returned by the

// call operation must be retrieved using assignable expressions

You can make the remote procedure call using the operation template’s declared name, in this
case you must omit all the default in parameters when passing them to a remote procedure.

When you call a remote procedure that uses default parameter values, all actual in parameters
must also use the default values. Expressions used to pass inout and out parameters must be
identically typed with the corresponding formal parameters, and only assignable expressions can
be used to pass inout and out parameters.

The precise definition is as follows. Suppose that an operation has m parameters and n in
parameters, then your call to an operation that uses a template must pass the remaining m-n inout
and out parameters that correspond in order and type to the operation’s parameter list.

Default values for inout parameters specified in a template override those specified individually.
Thus, given the declarations in the introduction of clause (§22.5)

var MyVar3 Smallint := 5;
:
MyChannel.call Template2(MyVar2, MyVar3);

result in the values (1, ?, 3) being passed to RemoteProc.

22.5.2. Templates for accepting operation invocations
A template used in a synchronize operation defines a data template against which the incoming
parameter fields are matched. Matching mechanisms, as defined in clause 15.7, may be used in
any templates used by this operation. No binding of incoming values to the template shall occur.
Any out parameters shall be ignored in the matching process. For example,

// Given the examples in the introduction of clause (§22.5)

// Valid synchronize call, it will match if Par1 == 1 and Par3 == 3
MyChannel.synchronize Template2;
// Valid synchronize call, it will match on Par1 == 1 and Any value of Par3
MyChannel.synchronize Template3;

22.5.3. In-line assignments for invoking operations
The in-line assignments used in a call method define a complete set of field values for all in
and inout parameters. At the time of the call operation all in and inout parameters in the
assignments shall resolve to actual values, no matching mechanisms shall be used in these fields,
either directly or indirectly. Any in-line assignments specification for out parameters is simply
ignored, therefore it is allowed to specify matching mechanisms for these fields, or to omit them.

For example,

// Given the examples in the introduction of clause (§22.5)

MyChannel.call RemoteProc(1, MyVar1:=?, MyVar2:=3)

// inline assignments for the call of RemoteProc

Default values for inout parameters specified in-line hide those specified in a template. For
example, given the declarations in the introduction of clause (§22.5)

MyChannel.call Template2(MyVar2, MyVar3:=5);

result in the values (1,?,5) being passed to RemoteProc.
Page 176 of 226

22.6. Procedure-based communication
The principle of procedure-based communication is to call procedures in remote entities. ATDL
supports blocking and non-blocking procedure-based communication. Blocking procedure-based
communication is blocking on the calling and the called side, whereas non-blocking procedure-
based communication only is blocking on the called side.

Figure 44. Illustration of blocking procedure-based communication

The communication scheme of blocking procedure-based communication is shown in Figure 44.
The CALLER calls a remote procedure in the CALLEE by using the call operation. The
CALLEE accepts the call by means of a synchronize operation and reacts by either using a
return statement to answer the call or by raising (raise operation) an exception. The CALLER
handles reply or exception by using assignable expressions or catch operations. In Figure 44,
the blocking of CALLER and CALLEE is indicated by means of dashed lines.

The communication scheme of non-blocking procedure-based communication is shown in Figure
45. The CALLER calls a remote procedure in the CALLEE by using the call operation and
continues its execution, i.e. does not wait for a reply or exception. The CALLEE accepts the call
by means of a synchronize operation and executes the requested procedure. If the execution is
not successful, the CALLEE may raise an exception to inform the CALLER. The CALLER may
handle the exception by using a catch operation in an alt statement. In Figure 45, the blocking
of the CALLEE until the end of the call handling and possible raise of an exception is indicated
by means of a dashed line.

Figure 45. Illustration of non-blocking procedure-based communication

22.6.1. The Call operation
The call operation is used to specify that a test component calls a procedure in the SUT or in
another test component. The call operation shall only be used on procedure-based interfaces. The
type definition of the interface at which the call operation takes place shall include the operation
name in its signature list i.e. it must be allowed to call this procedure at this interface.

The in parameters to be transmitted in the send part of the call operation can be defined in the
form of an operation template and be passed as actual parameters. The inout parameters to be
transmitted in the send part of the call operation is a signature that may either be defined in the
form of an operation template or be assigned in-line. All in and inout parameters of the signature
shall have a specific value i.e. the use of matching mechanisms such as AnyValue is not allowed.

The signature arguments of the call operation can be used to retrieve variable values for out and
inout parameters. The actual assignment of the out and inout parameter values to variables shall

call synchronize

return
raise exception

catch exception

CALLER CALLEE

call synchronize

raise exception

catch exception

CALLER CALLEE

implicitly be made in the call operation. The actual assignment of the procedure return value
shall be made by means of an assignment statement. For example:

// Given …

operation MyProc (out MyPar1 Smallint, inout MyPar2 boolean);

// a call of MyProc

MyChannel.call MyProc(MyVar1, MyVar2);

 // Assignable expressions are used to pass inout and out parameters.

 // Calls the remote procedure MyProc at MyChannel with the out and inout parameters

Operations that do not return values can be invoked directly. Operations that return values may be
invoked inside expressions. For example:

MyVar := MyChannel.call MyProc(MyVar1,MyVar2);
// The value returned by MyProc is assigned to MyVar.
// The types of the returned value and MyVar have to be the same

In general, a call operation is assumed to have blocking-semantics. However, ATDL also
supports non-blocking calls. A call, which has no return values, is assumed to be a non-blocking
call. Exceptions raised by a call without return values shall be caught within a try statement.

Example

The handling of exceptions to a call is done by means of the catch operation within a try
statement. This operation defines the alternative behavior depending on the exception (if any)
that has been generated as a result of the call operation. For example:

exception MyException {Exception1 Type1, Exception2 Type2, Exception3 Type3}
operation MyProc3 (out MyPar1 Smallint, inout MyPar2 Smallint) return MyResultType

raises (MyException);
:
// The following call operation shows the result return and exception handling mechanism of the
// call operation
try(30E-3) { MyResult := MyChannel.call MyProc3 (MyPar1Var,MyPar2Var:=5)

}
MyException.catch(Exception1: *)
{ // catch an exception

setverdict(fail); // set the verdict and
stop // stop as result of the exception

}
MyException.catch(Exception2: *) // catch a second exception

{setverdict(inconc); // set the verdict and continue after
 } // the call as result of the second exception
[MyCondition] MyException.catch(Exception3: *) {...}

// catch a third exception which
// may occur if MyCondition evalutates to true

MyChannel.catch(timeout) {...} // timeout exception i.e., the called party
 // does not react in time, nothing is done

Concrete textual grammar
268 CallStatement ::= Channel Dot “call” OperationRefWithPara
/* STATIC SEMANTICS - only out parameters may be omitted or specified with a matching attribute */

Concrete graphical grammar
281 <fgr call area> ::= <procedure call symbol> contains CallStatement
Page 178 of 226

[is_associated_with <save area>]

Call sending. The sending of a call may be shown as a <procedure call symbol>. The signature
of the call is shown inside the symbol. A <flow line symbol> is drawn from the previous node to
the <procedure call symbol>, and another <flow line symbol> is drawn from the <procedure call
symbol> to the next node.

22.6.1.1. Calling non-blocking operations
A non-blocking procedure has no out and inout parameters, no return value and the non-blocking
property is indicated in the corresponding signature definition by means of a noblock keyword.
When a client invokes an operation with the noblock attribute, the invocation semantics are best-
effort, which does not guarantee delivery of the call; best-effort implies that the operation will be
invoked at most once.

Possible exceptions raised by non-blocking procedures have to be removed from the channel
queue by using catch operations in subsequent alt statements.

22.6.2. Determining the method
Determining the method that will be invoked by a remote procedure call involves several steps.
The first step in processing a remote procedure call at compile time is to figure out the name of
the method to be invoked and which implementation class of the operational interface to check
for definitions of methods of that name.

The second step searches the implementation class of the interface determined in the previous
step for method declarations. This step uses the name of the method and the types of the actual
parameter expressions to locate method declarations that are both applicable and accessible, that
is, declarations that can be correctly invoked on the given actual parameters. There may be more
than one such method declaration, in which case the most specific one is chosen(§20.6.4).

22.6.3. The Synchronize operation
ATDL may describe control flows of not only via asynchronous messages, but also by means of
calls and returns. A control stimulus will cause a procedure to be invoked, raise an exception, or
cause an instance to be created or destroyed.

An activation represents the period during which an object performs an operation either directly
or through a subordinate operation. It models both the duration of the execution in time and the
control relationship between the execution and its callers.

Control flow comprises procedure-based (synchronous) communication mechanisms defined by
means of calls and replies.

Semantics

The synchronize event is a way to deliver requests from a client to an object implementation.
The synchronize event is a way of implementing an operation that is an alternative to the
execution of a procedure. The synchronize event is a shorthand notation for a pair of TTCN-3
getcall operation and reply operation. The synchronize operation is used to specify that a test
component accepts a call from the SUT, or another test component.

ATDL allows the specification of test components which may be executed concurrently, test
components may reside in a single machine or be distributed over several machines. A client does
not need to know where an object resides, it simply makes a call to an object’s interface. The
synchronize operation performs the necessary steps to make the call. These steps differ
depending on whether the object resides in the same process as the client, in a different process
on the client machine, or in a different machine across the network.

The different types of servers are known as: 1) In-process server: A thread running in the same
process space as the client. 2) Out-of-process server (or local server): Another thread running in

a different process space but on the same machine as the client. 3) Remote server: A thread or
another application running on a different machine from that of the client.

For in-process servers, pointers to the object interfaces are in the same process space as the client,
so the synchronize operation makes direct calls into the object implementation.

As with other ATDL receiving operations matching mechanisms are allowed in the synchronize
operation for run-time type checking. For example:

MyChannel.synchronize Template3;

// Will accept a call of RemoteProc at MyChannel with Par1 == 1 and Any value of Par3

To synchronize on any channel is denoted by the any keyword. For example:

any interface.synchronize MyProc;

Concrete textual grammar
276 SynchronizeStatement ::= ChannelOrAny Dot “synchronize” [“(“ TemplateInstance “)”]

Concrete graphical grammar
286 <fgr synchronize area> ::= <procedure in symbol> contains SynchronizeStatement

[is_associated_with <save area>]

The event of receiving a call for a procedure, the event may be shown as a <procedure in
symbol>. The signature of the call is shown inside the symbol. A <flow line symbol> is drawn
from the previous node to the <procedure in symbol>, and another <flow line symbol> is drawn
from the <procedure in symbol> to the next node.

22.7. Interceptors
This section defines ATDL operations that allow services such as dynamic type checking to be
inserted in the invocation path. Interceptors are not specific to dynamic type checking; they could
be used to invoke any ATDL function. Logically, an interceptor is interposed in the invocation
(and response) path(s) between a client and a target object. Interceptors are an optional extension
to ATDL to allow for backward compatibility with TTCN-3.

Interceptors provide a highly flexible means of adding portable Services to a ATDL-compliant
object system. The flexibility derives from the capacity of a binding between client and target
object to be extended and specialized to reflect the mutual requirements of client and target.

When remote invocation is required, the ATDL run-time system will transform the request into a
message, which can be sent over the network. As functions such as encryption are performed on
messages, a second kind on interceptor interface is required.

The ATDL code invokes each message-level interceptor via the send_message operation
(when sending a message, for example, the request at the client and the reply at the target) or the
receive_message operation (when receiving a message).

When a client message-level interceptor is activated to perform a send_message operation, it
transforms the message as required, and calls a call operation to pass the message on to the
ATDL run-time system and hence to its target. Unlike invoke operations, call operations may
return to the caller without completing the operation. The interceptor can then perform other
operations if required before exiting. The client interceptor may next be called either using
send_message to process another outgoing message, or using receive_message to process
an incoming message.
Page 180 of 226

22.8. Channel controlling operations
The channel control operations provide the essential functionality of an interface, i.e., dynamic
querying and lifetime management. This functionality is established in the three methods, ATDL
operations for controlling message-based, operational channels are:

- clear: remove the contents of a server-side channel queue;

- start: start listening at and give access to a channel;

- stop: stop listening and disallow sending operations at a channel.

Concrete textual grammar
290 ChannelStartStatement ::= ChannelOrAll Dot “start”

291 ClearStatement ::= ChannelOrAll Dot “clear”

292 ChannelStopStatement ::= ChannelOrAll Dot “stop”

Concrete graphical grammar
293 <channel controlling area> ::= <condition symbol> contains

(ClearStatement | ChannelStopStatement | ChannelStartStatement)

The server-side channel controlling methods shall be represented within the <condition symbol>.
The <condition symbol> contains the channel controlling statement.

22.8.1. The Bind method
The bind operation provides a method for dynamically querying a given server component and
obtaining interface references for the interfaces the component supports. The bind operation
determines if the object supports a particular ATDL interface. If it does, the system increases the
component's reference count, and the application can use that interface immediately.

A client program uses a remote co-object by obtaining a co-interface reference to the object. Co-
interface references are usually obtained using the bind operation in ATDL. The bind operation
in ATDL returns a co-interface reference to a run-time object to your client program. Your client
program can use the co-interface reference to invoke operations on the object that have been
defined in the object’s AODL co-interface specification.

If the application does not need to use the interface (co-interface) retrieved by a call to this
method, it must call the release operation for that interface (co-interface) to free it.

Concrete textual grammar
288 BindOp ::= “bind” “(“ (InterfaceType | ExceptionIdentifier) “,” ComponentRef “)”

Graphical notation

The bind statement shall be represented within a <task symbol>. The <task symbol> contains the
bind statement (Figure 46).

Figure 46. The bind statement

var MyChannel MyInterface
 := bind(MyInterface,SomeObject);

Graphical presentation Textual presentation

var MyChannel MyInterface
 := bind(MyInterface,SomeObject);

Mapping

The TTCN-3 connect and map operations are considered to be equivalent to ATDL bind
operations. For example, TTCN-3 statement:

connect(MyNewComponent:Port1, mtc:Port3);

Is equivalent to ATDL statement: Port1 := bind (Port3, mtc);

map(MyNewComponent:Port2, system:PCO1); // TTCN-3 statement

Is equivalent to ATDL statement: Port2 := bind(PCO1, system);

22.8.2. The Release method
Call release operation when you no longer need to use an interface reference, the release
operation decrements the reference count for the calling interface on a object. If the reference
count on the object falls to 0, the object is freed from memory.

Because co-interface references are opaque and ORB-dependent, it is not possible for clients or
implementations to allocate storage for them.

When a co-interface reference is no longer required by a program, its storage may be reclaimed
by use of the release operation. Note that the object implementation is not involved, and that
neither the object itself nor any other references to it are affected by the release operation.

Concrete textual grammar
289 ReleaseStatement ::= ChannelIdentifier Dot “release”

Mapping

The TTCN-3 disconnect and unmap operations are considered to be equivalent to ATDL release
operations. For example, TTCN-3 statement:

disconnect(MyNewComponent:Port1, mtc:Port3);

Is equivalent to ATDL statement: Port1.release;

TTCN-3 statement: unmap(MyNewComponent:Port2, system:PCO1);

Is equivalent to ATDL statement: Port2.release;

Graphical notation

The release operation shall be represented within a <task symbol>. The <task symbol> contains
the release statement.

22.8.3. The Clear channel operation
The clear operation removes the contents of the incoming queue of the specified channel. If the
channel queue is already empty then this operation shall have no action.

Figure 47. The release operation

MyChannel.release;

Graphical presentation Textual presentation

 MyChannel.release
Page 182 of 226

Graphical notation

The clear channel operation shall be represented within the <condition symbol>. The <condition
symbol> contains the clear channel statement.

22.8.4. The Start channel operation
If a channel is defined as allowing receiving operations then the start operation clears the
incoming queue of the named channel and starts listening for traffic over the channel. If the
channel is defined to allow sending operations then the operations are also allowed to be
performed at that channel.

By default, all channels of a component shall be started implicitly when a component is created.
The start channel operation will cause unstopped channels to be restarted by removing all
messages waiting in the incoming queue.

Graphical notation

The start channel operation shall be represented within the <condition symbol>. The <condition
symbol> contains the start channel statement.

22.8.5. The Stop channel operation
The stop operation causes listening at the named channel to cease. To cease listening at the
channel means that all receiving operations defined before the stop operation shall be completely
performed before the working of the channel is suspended.

The stop channel operation shall be represented within the <condition symbol>. The <condition
symbol> contains the stop channel statement (Figure 48).

22.8.6. Use of any and all with channels
The keywords any and all may be used with channel controlling operations. For example:

all interface.stop;
all interface.clear;

23. Timers and operations
Timers can be declared and used in the module control part. Additionally, timers can be declared
in component type definitions. These timers can be used in test cases, functions and altsteps
which are running on the given component type. A timer declaration may have an optional
default duration value assigned to it. The timer shall be started with this value if no other value is
specified. This value shall be a non-negative float value (i.e. greater or equal 0.0) where the base
unit is seconds. For example,

 timer MyTimer1 := 5e-3f; // declaration of the timer MyTimer1 with the default value of 5ms

Figure 48. Stop channel operation

MyChannel.stop;

Graphical presentation Textual presentation

MyChannel.stop

Concrete textual grammar
243 TimerInstance ::= “timer” TimerIdentifier [AssignmentChar TimerValue]

244 TimerIdentifier ::= Identifier

245 TimerValue ::= SingleConstExpression
/* STATIC SEMANTICS - SingleConstExpression shall resolve to a value of type float. */

246 TimerRef ::= TimerIdentifier | TimerParIdentifier

23.1. Timers as parameters
Timers can only be passed by reference to functions and altsteps. Timers passed into a function or
altstep are known inside the behaviour definition of the function or altstep.

Timers passed in as parameters by reference can be used like any other timer, i.e. it needs not to
be declared. A started timer can also be passed into a function or altstep. The timer continues to
run, i.e. it is not stopped implicitly. Thereby, possible timeout events can be handled inside the
function or altstep to which the timer is passed.

// Function definition with a timer in the formal parameter list

function MyBehaviour (timer MyTimer)

{ :

 MyTimer.start;

 :

}

23.2. Timer class methods
ATDL supports a number of timer class methods. These class methods may be used in test cases,
functions, altsteps and module control.

It is assumed that each ATDL scope unit in which timers are declared, maintains its own running-
timers list and timeout-list, i.e. a list of all timers that is actually running and a list of all timers
that has timed out. The timeout-lists are part of the snapshots that are taken when a test case is
executed. A timeout-list is updated, if a timer in the scope unit is started, is stopped, times out or
a timeout operation is executed.

NOTE: The running-timers list and the timeout-list are only a conceptual lists and
does not restrict the implementation of timers. Other data structures like a set,
where the access to timeout events is not restricted by, e.g. the order in which
the timeout events have happened, may also be used.

When a timer expires (conceptually immediately before a snapshot processing of a set of
alternative events), a timeout event is placed into the timeout-list of the scope unit in which the

Table 28: Overview of ATDL timer operations

Timer class method Associated
keyword

Associated
graphical

symbol

Start timer start <internal output symbol>
Stop timer stop <internal output symbol>
Read elapsed time read <task symbol>
Check if timer running running <condition symbol>
Timeout event timeout <internal input symbol>
Page 184 of 226

timer has been declared. The timer becomes immediately inactive. Only one entry for any
particular timer may appear in the timeout-list of the scope unit in which the timer has been
declared at any one time.

All running timers shall automatically be cancelled when the thread is explicitly or implicitly
stopped, or when the passive object is destroyed.

ATDL concrete textual grammar
294 TimerStatement ::= StartTimerStatement | StopTimerStatement | TimeoutStatement

295 TimerOps ::= ReadTimerOp | RunningTimerOp

ATDL concrete graphical grammar
303 <timer statement area> ::= <fgr timer start area> | <fgr timer stop area> | <fgr timeout area> | <fgr

timer running area>

23.2.1. The Start timer operation
The start timer operation is used to indicate that a timer should start running. Timer values shall
be non-negative float numbers (i.e. greater or equal 0.0). When a timer is started, its name is
added to the list of running timers (for the given scope unit).

The optional timer value parameter shall be used if no default duration is given, or if it is desired
to override the default value specified in the timer declaration. When a timer duration is
overridden, the new value applies only to the current instance of the timer, any later start
operations for this timer, which do not specify a duration, shall use the default duration.

Starting a timer with the timer value 0.0 means that the timer times out immediately. Starting a
timer with a negative timer value, e.g. the timer value is the result of an expression, or without a
specified timer value shall cause a runtime error.

The timer clock runs from the float value zero (0.0) up to maximum stated by the duration
parameter.

The start operation may be applied to a running timer, in which case the timer is stopped and re-
started. Any entry in a timeout-list for this timer shall be removed from the timeout-list.

Concrete textual grammar
296 StartTimerStatement ::= TimerRef Dot “start” [“(“ TimerValue “)”]

Concrete graphical grammar
304 <fgr timer start area> ::= <internal output symbol> contains StartTimerStatement

The start timer operation shall be represented within an <internal output symbol>. The <internal
output symbol> contains the start timer statement (Figure 49).

Figure 49. The start timer operation

MyTimer.start(10.0);

Graphical presentation Textual presentation

 MyTimer.start(10.0)

23.2.2. The Stop timer method
The stop operation is used to stop a running timer and to remove it from the list of running
timers. A stopped timer becomes inactive and its elapsed time is set to the float value zero (0.0).

Stopping an inactive timer is a valid operation, although it does not have any effect. Any entry in
a timeout-list for this timer shall be removed from the timeout-list.

The all keyword may be used to stop all timers that are visible in the scope unit in which the
stop operation has been called. For example,

MyTimer1.stop; // stops MyTimer1
all timer.stop; // stops all running timers

ATDL concrete textual grammar
297 StopTimerStatement ::= TimerRefOrAll Dot “stop”

ATDL concrete graphical grammar
305 <fgr timer stop area> ::= <internal output symbol> contains StopTimerStatement

The stop timer operation shall be represented within an <internal output symbol>. The <internal
output symbol> contains the stop timer statement (Figure 50).

23.2.3. The Read timer method
The read operation is used to retrieve the time that has elapsed since the specified timer was
started and to store it into the specified variable. This variable shall be of type float.

Applying the read operation on an inactive timer i.e. on a timer not listed on the running-timer
list, will return the value zero. For example,

 var MyVar ::= float;
 MyVar := MyTimer1.read; // assign to MyVar the time that has elapsed since MyTimer1 was started

Concrete textual grammar
299 ReadTimerOp ::= TimerRef Dot “read”

Figure 50. The stop timer operation

MyTimer.stop;

Graphical presentation Textual presentation

Figure 51. The read timer operation

MyVar := MyTimer.read;

Graphical presentation Textual presentation

 MyTimer.stop

 MyVar := MyTimer.read
Page 186 of 226

The read timer operation shall be put into a <task symbol> (Figure 51).

23.2.4. The Running timer operation
The running timer operation is used to check whether a timer is listed on the running-timer list
of the given scope unit or not (i.e. that it has been started and has neither timed out nor been
stopped). The operation returns the value true if the timer is listed on the list, false otherwise.
For example,

if [MyTimer1.running] { ... }

Concrete textual grammar
300 RunningTimerOp ::= TimerRefOrAny Dot “running”

Concrete graphical grammar
307 <fgr timer running area> ::= <condition symbol> contains RunningTimerOp

23.2.5. The Timeout operation
The timeout operation allows to check expiration of a timer, or of all timers, in a scope unit of a
test component or module control in which the timeout operation has been called.

When a timeout operation is processed, if a timer name is indicated, the timeout-lists of the
component or module control are searched according to the ATDL scope rules. If there is a
timeout event matching the timer name, that event is removed from the timeout-list, and the
timeout operation succeeds. The timeout shall not be used in a boolean expression, but it can
be used to determine an alternative in an alt statement or as stand-alone statement in a behaviour
description. In the latter case a timeout operation is considered to be shorthand for an alt
statement with only one alternative, i.e. it has blocking semantics, and therefore provides the
ability of passive waiting for the timeout of timer(s).

Concrete textual grammar
301 TimeoutStatement ::= TimerRefOrAny Dot "timeout"

Concrete graphical grammar
306 <fgr timeout area> ::= <internal input symbol> contains TimeoutStatement

The timeout operation shall be represented within an <internal input symbol>. The <internal
input symbol> contains the timeout statement (Figure 52).

23.2.6. Summary of use of any and all with timers
The keywords any and all may be used with timer operations as indicated in Table 29.

Concrete textual grammar
298 TimerRefOrAll ::= TimerRef | “all” “timer”

302 TimerRefOrAny ::= TimerRef | “any” “timer”

Figure 52. The timeout operation

MyTimer.timeout;

Graphical presentation Textual presentation

 MyTimer.timeout

24. Specifying attributes
Language attributes can be associated with ATDL language elements by means of the with
statement. The syntax for the argument of the with statement (i.e., the actual attributes) is simply
defined as a free text string.

There are four kinds of language attributes:

a) display: allows the specification of display attributes related to specific presentation formats;
b) encode: allows references to specific encoding rules;
c) variant: allows references to specific encoding variants;
d) extension: allows the specification of user-defined attributes.

Concrete textual grammar
385 WithStatement ::= “with” [“tabular”] WithAttribList

386 WithAttribList ::= SingleWithAttrib SemiColon | "{" MultiWithAttrib "}" [SemiColon]

387 MultiWithAttrib ::= SingleWithAttrib {SemiColon SingleWithAttrib} [SemiColon]

388 SingleWithAttrib ::= [“encode” | “display” | “extension”] [“override”] [AttribQualifier] AttribSpec

389 AttribQualifier ::= “(“ DefOrFieldRefList “)”

390 DefOrFieldRefList ::= DefOrFieldRef {“,” DefOrFieldRef}*

391 DefOrFieldRef ::= DefinitionRef | FieldReference

392 DefinitionRef ::= TypeIdentifier | InterfaceIdentifier | ComponentIdentifier |
ConstIdentifier | TemplateIdentifier | AltstepIdentifier |
TestcaseIdentifier | FunctionIdentifier | OperationIdentifier

393 AttribSpec ::= FreeText

Graphical notation

The attributes defined for the module control part, testcases, functions and altsteps are
represented within the text symbol. The syntax of the with statement is placed within that
symbol. An example is given in Figure 53.

Table 29: Any and All with Timers

Operation Allowed Example

any all
start

stop yes all timer.stop
read

running yes if [any timer.running] {…}
timeout yes any timer.timeout

Figure 53. Specifying attributes

testcase MyTestcase() {
 :
}
with {
extension “MySpecialLogging()”
}

Graphical presentation Textual presentation

testcase MyTestcase()

extension “MySpecialLogging()”
Page 188 of 226

24.1. Display attributes
All ATDL language elements can have display attributes to specify how particular language
elements should be displayed in, for example, a tabular format.

24.2. Encoding of values
Encoding rules define how a particular value, template etc. shall be encoded and transmitted over
a communication interface and how received signals shall be decoded. ATDL does not have a
default encoding mechanism. This means that encoding rules or encoding directives are defined
in some external manner to ATDL.

In ATDL, general or particular encoding rules can be specified by using encode and variant
attributes.

24.2.1. Encode attributes
The encode attribute allows the association of some referenced encoding rule or encoding
directive to be made to an ATDL definition.

The manner in which the actual encoding rules are defined (e.g. prose, functions etc.) is outside
the scope of the present document. If no specific rules are referenced then encoding shall be a
matter for individual implementation.

24.2.2. Variant attributes
To specify a refinement of the currently specified encoding scheme instead of its replacement, the
variant attribute shall be used.

24.2.3. Special strings
The following strings are the predefined (standardized) variant attributes for simple basic types
(see clause 10.10.1):

a) "8 bit" and "unsigned 8 bit" mean, when applied to integer and enumerated types, that the
integer value or the integer numbers associated with enumerations shall be handled as it was
represented on 8-bits (single byte) within the system.

b) "16 bit" and "unsigned 16 bit" mean, when applied to integer and enumerated types, that the
integer value or the integer numbers associated with enumerations shall be handled as it was
represented on 16-bits (two bytes) within the system.

c) "32 bit" and "unsigned 32 bit" mean, when applied to integer and enumerated types, that the
integer value or the integer numbers associated with enumerations shall be handled as it was
represented on 32-bits (four bytes) within the system.

d) "64 bit" and "unsigned 64 bit" mean, when applied to integer and enumerated types, that the
integer value or the integer numbers associated with enumerations shall be handled as it was
represented on 64-bits (eight bytes) within the system.

e) "IEEE754 float","IEEE754 double", "IEEE754 extended float" and "IEEE754 extended
double" mean, when applied to a float type, that the value shall be encoded and decoded
according to the standard IEEE 754.

The following strings are the predefined (standardized) variant attributes for char, wide char,
charstring and wide charstring (see clause 10.10.2):

a) "UTF-8" means, when applied to wide char and wide charstring types, that each character of
the value shall be individually encoded and decoded according to the UCS Transformation
Format 8 (UTF-8) as defined in annex R of ISO/IEC 10646 [7].

b) "UCS-2" means, when applied to wide char and wide charstring types, that each character of
the value shall be individually encoded and decoded according to the UCS-2 coded
representation form (see clause 14.1 of ISO/IEC 10646 [7]).

c) "8 bit" means, when applied to char, wide char, charstring and wide charstring types, that each
character of the value shall be individually encoded and decoded according to the coded
representation as specified in ISO/IEC 8859 (an 8-bit coding).

These variant attributes can be used in combination with the more general encode attributes
specified at a higher level. For example a wide charstring specified with the variant attribute
"UTF-8" within a module which itself has a global encoding attribute "BER:1997" will cause
each character of the values within the string to first be encoded following the UTF-8 rules and
then this UTF-8 value will be encoded following the more global BER rules.

24.2.4. Invalid encodings
If it is desired to specify invalid encoding rules then these shall be specified in a referenceable
source external to the module in the same way that valid encoding rules are referenced.

24.3. Extension attributes
All ATDL language elements can have extension attributes specified by the user.

NOTE: Because user-defined attributes are not standardized the interpretation of these
attributes between tools supplied by different vendors may differ or even not
be supported.

24.4. Scope of attributes
A with statement may associate attributes to a single language element. It is also possible to
associate attributes to a number of language elements by e.g. listing fields of a structured type in
an attribute statement associated with a single type definition or associating a with statement to
the surrounding scope unit or group of language elements.

24.5. Overwriting rules for attributes
An attribute definition in a lower scope unit will override a general attribute definition in a higher
scope.

A with statement that is placed inside the scope of another with statement shall override the
outermost with. This shall also apply to the use of the with statement with groups. Care should
be taken when the overwriting scheme is used in combination with references to single
definitions. The general rule is that attributes shall be assigned and overwritten according to the
order of their occurrence.

An attribute definition in a lower scope can be overwritten in a higher scope by using the
override directive.

The override directive forces all contained types at all lower scopes to be forced to the specified
attribute.

24.6. Changing attributes of imported language elements
In general, a language element is imported together with its attributes. In some cases these
attributes may have to be changed when importing the language element e.g. a type may be
displayed in one module as ASP, then it is imported by another module where it should be
displayed as PDU. For such cases it is allowed to change attributes on the import statement.
Page 190 of 226

25. The System module
This chapter discusses and summarizes standard library functions. Many of the functions listed
here are defined in the System module, which is implicitly compiled with every application.

25.1. The Group System.lang
The System.lang group contains classes that are fundamentalato the design of the ATDL
language. The most important classes are TObject, which is the root of the class hierarchy, and
TClass, instances of which represent classes at run time.

25.1.1. The Class TNumber
The virtual class TNumber has descendant classes TInteger, TCardinal, TFloat, and TDouble
which wrap primitive types, defining virtual methods to convert the represented numeric value to
pre-defined Integer, Cardinal, float, and Double.

virtual class TNumber {
public virtual function IntegerValue() return Integer;
public virtual function CardinalValue() return Cardinal;
public virtual function floatValue() return float;
public virtual function DoubleValue() return Double;
}

25.1.2. The Class TInteger
final class TInteger extends TNumber {

const MIN_VALUE Integer := -2147483648;
const MAX_VALUE Integer := 2147483647;
public constructor TInteger(value Integer);
public override function IntegerValue() return Integer;
public override function floatValue() return float;
public override function DoubleValue() return Double;
public class function toCharString(value Integer) return charstring;
public class function toHexString(value Integer, length Cardinal) return hexstring;
public class function toOctetString(value Integer, length Cardinal) return octetstring;
public class function toBitString(value Integer, length Cardinal) return bitstring;
public class function parseInteger(cs charstring) return Integer;
public class function valueOf(cs charstring) return Integer;
public class function valueOf(bs bitstring) return Integer;
public class function valueOf(hs hexstring) return Integer;
public class function valueOf(os octetstring) return Integer;
public class function valueOf(chr char) return Integer;
public class function valueOf(uchr wide char) return Integer;
}

25.1.2.1. Constructor Integer
public constructor TInteger(value Integer);

This constructor initializes a newly created TInteger object so that it represents the primitive
value that is the argument.

25.1.2.2. Get integer value
public override function IntegerValue() return Integer;

The integer value represented by this TInteger object is returned.

25.1.2.3. Integer to float
public override function floatValue() return float;

The integer value represented by this TInteger object is converted to type float and the result of
the conversion is returned.

25.1.2.4. Integer to double
public override function DoubleValue() return Double;

The integer value represented by this TInteger object is converted to type Double and the result
of the conversion is returned.

25.1.2.5. Integral to bitstring
public class function toBitString(value Integer, length Cardinal) return bitstring;

This function converts a single integer value to a single fixed length bitstring value. The
resulting string is length bits long.

For the purposes of this conversion, a bitstring shall be interpreted as a positive base 2 integer
value. The rightmost bit is least significant, the leftmost bit is the most significant. The bits 0 and
1 represent the decimal values 0 and 1 respectively. If the conversion yields a value with fewer
bits than the bitstring length, then the bitstring shall be padded on the left with zeros. A test
case error shall occur if the value is negative or if the resulting bitstring contains more bits than
the bitstring length.

25.1.2.6. Integer to hexstring
public class function toHexString(value Integer, length Cardinal) return hexstring;

This function converts a single integer value to a single fixed length hexstring value. The
resulting string is length hexadecimal digits long.

For the purposes of this conversion, a hexstring shall be interpreted as a positive base 16
integer value. The rightmost hexadecimal digit is least significant, the leftmost hexadecimal
digit is the most significant. The hexadecimal digits 0 … F represent the decimal values 0 … 15
respectively. If the conversion yields a value with fewer hexadecimal digits than specified in the
hexstring length, then the hexstring shall be padded on the left with zeros. A test case error
shall occur if the value is negative or if the resulting hexstring contains more hexadecimal
digits than the hexstring length.

25.1.2.7. Integer to octetstring
public class function toOctetString(value Integer, length Cardinal) return octetstring;

This function converts a single integer value to a single fixed length octetstring value. The
resulting string is length octets long.

For the purposes of this conversion, an octetstring shall be interpreted as a positive base 16
integer value. The rightmost hexadecimal digit is least significant, the leftmost hexadecimal
digit is the most significant. The number of hexadecimal digits provided shall be multiples of 2
since one octet is composed of two hexadecimal digits. The hexadecimal digits 0 .. F represent
the decimal values 0 .. 15 respectively. If the conversion yields a value with fewer hexadecimal
digits than the hexstring length, then the hexstring shall be padded on the left with zeros. A
Page 192 of 226

test case error shall occur if the value is negative or if the resulting hexstring contains more
hexadecimal digits than the hexstring length.

25.1.2.8. Integer to charstring
public class function toCharstring(value Integer) return charstring;

This function converts the integer value into its string equivalent (the base of the return string is
always decimal). The result is a charstring that represents the sign and magnitude (absolute value)
of the integer value. If the sign is negative, the first character of the result is “-”; if the sign is
positive, no sign character appears in the result. As for the magnitude m:

If m is infinity, it is represented by the characters “infinity”; thus, positive infinity produces the
result “infinity” and negative infinity produces the result “-infinity”.

25.1.2.9. Parse integer charstring
public class function parseInteger(cs charstring) return Integer;

The actual parameter is interpreted as representing a signed decimal integer. The components of
the charstring must all be decimal digits, except that the first character may be '-' to indicate a
negative value.

25.1.2.10.Charstring to integer
public class function valueOf(cs charstring) return Integer;

The actual parameter is interpreted as representing a signed decimal integer, exactly as if the
actual parameter were given to the parseInt method that takes one actual parameter. If the string
does not represent a valid integer value the function returns the value zero (0).

25.1.2.11.Bitstring to integer
public class function valueOf(bs bitstring) return Integer;

This function converts a single bitstring value to a single integer value.

For the purposes of this conversion, a bitstring shall be interpreted as a positive base 2
cardinal value. The rightmost bit is least significant, the leftmost bit is the most significant. The
bits 0 and 1 represent the decimal values 0 and 1 respectively.

25.1.2.12.Hexstring to integral
public class function valueOf(hs hexstring) return Integer;

This function converts a single hexstring value to a single integer value.

For the purposes of this conversion, a hexstring shall be interpreted as a positive base 16
cardinal value. The rightmost hexadecimal digit is least significant, the leftmost hexadecimal
digit is the most significant. The hexadecimal digits 0 .. F represent the decimal values 0 .. 15
respectively.

25.1.2.13.Octetstring to integral
public class function valueOf(os octetstring) return Integer;

This function converts a single octetstring value to a single integer value.

For the purposes of this conversion, an octetstring shall be interpreted as a positive base 16
cardinal value. The rightmost hexadecimal digit is least significant, the leftmost hexadecimal
digit is the most significant. The number of hexadecimal digits provided shall be multiples of 2
since one octet is composed of two hexadecimal digits. The hexadecimal digits 0 .. F represent
the decimal values 0 .. 15 respectively.

25.1.2.14.Character to integer
public class function valueOf(chr char) return Integer;

This function converts a char value of ISO/IEC 646 [6] into an integer value in the range of 0 …
127. The integer value describes the 8-bit encoding of the character.

25.1.2.15.Wide character to integral
public class function valueOf(uchr wide char) return Integer;

This function converts a wide char value of ISO/IEC 10646 [7] into an integer value in the
range of 0 … 2 147 483 647. The integer value describes the 32-bit encoding of the character.

25.1.2.16.Integer to character
This function converts an integer value in the range of 0 … 127 (8-bit encoding) into a character
value of ISO/IEC 646 [6]. The integer or cardinal value describes the 8-bit encoding of the
character.

25.1.2.17.Integer to wide character
This function converts an integer value (32-bit encoding) in the range of 0…2 147 483 647 into
a character value of ISO/IEC 10646 [7]. The integer or cardinal value describes the 32-bit
encoding of the character.

25.1.3. The Class TFloat
final class TFloat extends TNumber {

const MIN_VALUE float := 1.4E-45f;
const MAX_VALUE float := 3.4028235E38f;
const NaN float := 0.0f/0.0f;
public override function IntegerValue() return Integer;
public override function CardinalValue() return Cardinal;
public override function floatValue() return float;
public override function DoubleValue() return Double;
public class function toCharString(value float) return charstring;
}

25.1.3.1. MIN_VALUE float := 1.4E-45f
The constant value of this field is the smallest positive nonzero value of type float.

25.1.3.2. MAX_VALUE float := 3.4028235E38f
The constant value of this field is the largest positive finite value of type float.

25.1.3.3. NaN float := 0.0f/0.0f
The constant value of this field is the Not-a-Number value of type float.

25.1.3.4. Float to integral
public override function IntegerValue() return Integer;

The float value represented by this TFloat object is converted to type Integer by removing the
fractional part of the argument and returning the resulting Integer.
Page 194 of 226

25.1.3.5. Float to cardinal
public override function CardinalValue() return Cardinal;

The float value represented by this TFloat object is converted to type Cardinal by removing the
fractional part of the argument and returning the resulting Cardinal.

25.1.3.6. Get float value
public override function floatValue() return float;

The float value represented by this TFloat object is returned.

25.1.3.7. Float to double
public override function DoubleValue() return Double;

The float value represented by this TFloat object is converted (§17.2.2) to type Double and the
result of the conversion is returned.

25.1.3.8. Float to charstring
public class function toCharString(value float) return charstring;

The float type value is converted to a readable charstring format as follows. All characters and
characters in charstrings mentioned below are ISO/IEC 646 [6] characters.

a) If the argument is Not-a-Number (NaN) value, the result is the charstring "NaN".

b) Otherwise, the result is a charstring that represents the sign and magnitude (absolute value) of
the float value. If the sign is negative, the first character of the result is “-”; if the sign is positive,
no sign character appears in the result. As for the magnitude m:

- If m is greater than 10–3 or equal to but less than 107, then it is represented as the integer
part of m, in decimal form with no leading zeroes, followed by “.”, followed by one or
more decimal digits representing the fractional part of m.

- If m is less than 10–3 or not less than 107, then it is represented in so-called “computerized
scientific notation.”

25.1.4. The Class TDouble
final class TDouble extends TNumber {

const NEGATIVE_INFINITY := -1.0/0.0;
const POSITIVE_INFINITY := 1.0/0.0;
const NaN real := 0.0/0.0;
public override function IntegerValue() return Integer;
public override function CardinalValue() return Cardinal;
public override function floatValue() return float;
public override function DoubleValue() return Double;
public class function toCharString(value Double) return charstring;
}

25.1.4.1. NEGATIVE_INFINITY := -1.0/0.0
The constant value of this field is the negative infinity of type Double.

25.1.4.2. POSITIVE_INFINITY := 1.0/0.0
The constant value of this field is the positive infinity of type Double.

25.1.4.3. Double to integral
public override function IntegerValue() return Integer;

The Double value represented by this TDouble object is converted to type Integer by removing
the fractional part of the argument and returning the resulting Integer.

25.1.4.4. Double to float
public override function floatValue() return float;

The Double value represented by this TDouble object is converted to type float and the result of
the conversion is returned.

25.1.4.5. Get double value
public override function DoubleValue() return Double;

The Double value represented by this TDouble object is returned.

25.1.4.6. Double to charstring
public class function toCharString(value Double) return charstring;

The Double type value is converted to a readable charstring format as follows. All characters and
characters in charstrings mentioned below are ISO/IEC 646 [6] characters.

a) If the argument is Not-a-Number (NaN) value, the result is the charstring "NaN".

b) Otherwise, the result is a charstring that represents the sign and magnitude (absolute value) of
the real value. If the sign is negative, the first character of the result is “-”; if the sign is positive,
no sign character appears in the result. As for the magnitude m:

- If m is infinity, it is represented by the characters “infinity”; thus, positive infinity
produces the result “infinity” and negative infinity produces the result “-infinity”.

- If m is zero, it is represented by the characters "0.0"; thus, negative zero produces the
result "-0.0" and positive zero produces the result "0.0".

- If m is greater than 10–3 or equal to but less than 107, then it is represented as the integer
part of m, in decimal form with no leading zeroes, followed by “.”, followed by one or
more decimal digits representing the fractional part of m.

- If m is less than 10–3 or not less than 107, then it is represented in so-called “computerized
scientific notation.”

25.1.5. The Class TBitString
An object of type TBitString, once created, is immutable. It represents a fixed-length sequence of
bits. Compare this to the class TBitStringBuffer (§25.1.6), which represents a modifiable,
variable-length sequence of bits.

final class TBitString {
public class function toCharString(value bitstring) return charstring;
public class function toHexString(value bitstring) return hexstring;
public class function toOctetString(value bitstring) return octetstring;
public function getBit(position Cardinal) return boolean;
public function setBit(position Cardinal, value boolean);
public function getLength() return Cardinal;
}

Page 196 of 226

25.1.5.1. Bitstring to charstring
public class function toCharString(value bitstring) return charstring;

This function converts a single bitstring value to a single charstring. The resulting
charstring has the same length as the bitstring and contains only the characters '0' and '1'.

For the purpose of this conversion, a bitstring should be converted into a charstring. Each bit
of the bitstring is converted into a character '0' or '1' depending on the value 0 or 1 of the bit.
The consecutive order of characters in the resulting charstring is the same as the order of bits in
the bitstring.

25.1.5.2. Bitstring to hexstring
public class function toHexString(value bitstring) return hexstring;

This function converts a single bitstring value to a single hexstring. The resulting hexstring
represents the same value as the bitstring.

For the purpose of this conversion, a bitstring should be converted into a hexstring, where the
bitstring is divided into groups of four bits beginning with the rightmost bit. Each group of four
bits is converted into a hex digit as follows:

'0000'B -> '0'H, '0001'B -> '1'H, '0010'B -> '2'H, '0011'B -> '3'H, '0100'B -> '4'H, '0101'B -> '5'H,
'0110'B -> '6'H, '0111'B -> '7'H, '1000'B -> '8'H, '1001'B -> '9'H, '1010'B -> 'A'H, '1011'B -> 'B'H,
'1100'B -> 'C'H, '1101'B -> 'D'H, '1110'B ->'E'H, and '1111'B -> 'F'H.

When the leftmost group of bits does contain less than 4 bits, this group is filled with '0'B from
the left until it contains exactly 4 bits and is converted afterwards. The consecutive order of hex
digits in the resulting hexstring is the same as the order of groups of 4 bits in the bitstring.

25.1.5.3. Bitstring to octetstring
public class function toOctetString(value bitstring) return octetstring;

This function converts a single bitstring value to a single octetstring. The resulting
octetstring represents the same value as the bitstring.

25.1.5.4. The getBit function
public function getBit(position Cardinal) return boolean;

The result is true if the bit with index position is currently set in this TBitString; otherwise, the
result is false. Valid values for position are 0 to length - 1;

25.1.5.5. The setBit function
public function setBit(position Cardinal, value boolean);

Set the bit at position to value (0 | 1). position 0 denotes the first bit in this TBitString. Valid
values for position are 0 to length - 1;

25.1.5.6. Length of bitstring type
public function getLength() return Cardinal;

The length of the sequence of bits represented by this TBitString object is returned.

25.1.6. The Class TBitStringBuffer
A bitstring buffer is like a TBitString (§25.1.5), but can be modified. At any point in time it
contains some particular sequence of bits, but the length and content of the sequence can be
changed through certain method calls.

25.1.7. The Class TOctetString
An object of type TOctetString, once created, is immutable. It represents a fixed-length sequence
of octets. Compare this to the class TOctetStringBuffer (§25.1.8), which represents a modifiable,
variable-length sequence of octets.

final class TOctetString {
public class function toCharString(value octetstring) return charstring;
public class function toHexString(value octetstring) return hexstring;
public class function toBitString(value octetstring) return bitstring;
public function getOctet(position Cardinal) return char;
public function getLength() return Cardinal;
}

25.1.7.1. Octetstring to character string
public class function toCharString(value octetstring) return charstring;

This function converts an octetstring value to a charstring. The resulting charstring will
have the same length as the incoming octetstring. The octets are interpreted as ISO/IEC 646 [6]
codes (according to the IRV) and the resulting characters are stored in the returned value. Octet
values higher than 7F shall cause an error.

25.1.7.2. Octetstring to hexstring
public class function toHexString(value octetstring) return hexstring;

This function converts a single octetstring value to a single hexstring. The resulting
hexstring represents the same value as the octetstring.

For the purpose of this conversion, an octetstring should be converted into a hexstring
containing the same sequence of hex digits as the octetstring.

25.1.7.3. Octetstring to bitstring
public class function toBitString(value octetstring) return bitstring;

This function converts a single octetstring value to a single bitstring. The resulting bitstring
represents the same value as the octetstring.

25.1.7.4. Length of octetstring type
public function getLength() return Cardinal;

The length of the sequence of octets represented by this TOctetString object is returned.

25.1.8. The Class TOctetStringBuffer
An octetstring buffer is like a TOctetString (§25.1.7), but can be modified. At any point in time
it contains some particular sequence of octets, but the length and content of the sequence can be
changed through certain method calls.

class TOctetStringBuffer {
public function getOctet(position Cardinal) return char;
public function setOctet(position Cardinal, value Cardinal);
public function getLength() return Cardinal;
public function setLength(newLength Cardinal);
}

Page 198 of 226

25.1.8.1. Length of hexstring type
public function getLength() return cardinal;

This function returns the length of the sequence of octets currently represented by this
TOctetStringBuffer object. Returns zero if the value of this TOctetStringBuffer is omit.

25.1.8.2. The setLength function
public function setLength(newLength cardinal);

This octetstring buffer is altered to represent a new octet sequence whose length is specified by
the actual parameter.

25.1.8.3. The getOctet function
public function getOctet(position Cardinal) return char;

This function returns the value (0..255) at position of this ATDL octetstring. Position 0 denotes
the first octet of the ATDL octetstring.

25.1.8.4. The setOctet function
public function setOctet(position Cardinal, value Cardinal);

Sets the octet at position to value (0..255). Position 0 denotes the first octet in the octetstring.

25.1.9. The Class THexString
An object of type THexString, once created, is immutable. It represents a fixed-length sequence
of hexadecimal digits. Compare this to the class THexStringBuffer (§25.1.10), which represents
a modifiable, variable-length sequence of hexadecimal digits.

final class THexString {
public class function toCharString(value hexstring) return charstring;
public class function toOctetString(value hexstring) return octetstring;
public class function toBitString(value hexstring) return bitstring;
public function getLength() return Cardinal;
}

25.1.9.1. Hexstring to charstring
public class function toCharString(value hexstring) return charstring;

This function converts a single hexstring value to a single charstring. The resulting character
string has the same length as the hexstring and contains only the characters '0' to '9'and 'A' to 'F'.

For the purpose of this conversion, a hexstring should be converted into a charstring. Each
hex digit of the hexstring is converted into a character '0' to '9' and 'A' to 'F' depending on the
value 0 to 9 or A to F of the hex digit. The consecutive order of characters in the resulting
charstring is the same as the order of digits in the hexstring.

25.1.9.2. Hexstring to octetstring
public class function toOctetString(value hexstring) return octetstring;

This function converts a single hexstring value to a single octetstring. The resulting
octetstring represents the same value as the hexstring.

For the purpose of this conversion, a hexstring should be converted into an octetstring, where
the octetstring contains the same sequence of hex digits as the hexstring when the length of

the hexstring modulo 2 is 0. Otherwise, the resulting octetstring contains 0 as leftmost hex
digit followed by the same sequence of hex digits as in the hexstring.

25.1.9.3. Hexstring to bitstring
This function converts a single hexstring value to a single bitstring. The resulting bitstring
represents the same value as the hexstring.

For the purpose of this conversion, a hexstring should be converted into a bitstring, where the
hex digits of the hexstring are converted in groups of bits as follows:

'0'H -> '0000'B, '1'H -> '0001'B, '2'H -> '0010'B, '3'H -> '0011'B, '4'H -> '0100'B, '5'H -> '0101'B,
'6'H -> '0110'B, '7'H -> '0111'B, '8'H-> '1000'B, '9'H -> '1001'B, 'A'H -> '1010'B, 'B'H -> '1011'B,
'C'H -> '1100'B, 'D'H -> '1101'B, 'E'H -> '1110'B, and 'F'H -> '1111'B.

The consecutive order of the groups of 4 bits in the resulting bitstring is the same as the order of
hex digits in the hexstring.

25.1.9.4. Length of hexstring type
public function getLength() return Cardinal;

The length of the sequence of hexadecimal digits represented by this THexString object is
returned.

25.1.10. The Class THexStringBuffer
A hexstring buffer is like a THexString (§25.1.9), but can be modified. At any point in time it
contains some particular sequence of hexadecimal digits, but the length and content of the
sequence can be changed through certain method calls.

class THexStringBuffer {
public function getHex(position Cardinal) return char;
public function setHex(position Cardinal, value Cardinal);
public function getLength() return Cardinal;
public function setLength(newLength Cardinal);
}

25.1.10.1.Length of hexstring type
public function getLength() return Cardinal;

This function returns the length of the sequence of hexadecimal digits currently represented by
this THexStringBuffer object.

25.1.10.2.The setLength function
public function setLength(newLength Cardinal);

This hexstring buffer is altered to represent a new hexadecimal digit sequence whose length is
specified by the actual parameter.

25.1.10.3.The getHex function
public function getHex(position Cardinal) return char;

This function returns the value (0..15) at position of this ATDL hexstring. Position 0 denotes the
first hexadecimal digits of the ATDL hexstring. Valid values for position are from 0 to current
length - 1.
Page 200 of 226

25.1.10.4.The setHex function
public function setHex(position Cardinal, value Cardinal);

This function sets the hex digit at position to value (0..15). Position 0 denotes the first octet in
the hexstring. Valid values for position are from 0 to current length - 1.

25.1.11. The Class TCharString
An object of type TCharString, once created, is immutable. It represents a fixed-length sequence
of characters. Compare this to the class TCharStringBuffer (§25.1.12), which represents a
modifiable, variable-length sequence of characters.

final class TCharString {
public class function toOctetString(value charstring) return octetstring;
public class function valueOf(value integer) return charstring;
public function getLength() return Cardinal;
public function getChar(position Cardinal) return char;

}

25.1.11.1.Character string to octetstring
public class function toOctetString(value charstring) return octetstring;

This function converts a charstring value to an octetstring. The resulting octetstring will
have the same length as the incoming charstring. Each octet of the octetstring will contain
the ISO/IEC 646 [6] codes (according to the IRV) of the appropriate characters of the
charstring.

25.1.11.2.Integer to charstring
public class function valueOf(value integer) return charstring;

A charstring is created and returned. The charstring is computed exactly as if by the method
TInteger.toCharString of one argument (§25.1.2.8).

25.1.11.3.Length of charstring type
public function getLength() return Cardinal;

The length of the sequence of characters represented by this TCharString object is returned.

25.1.11.4.The getChar function
public function getChar(position Cardinal) return char;

This function returns the character indicated by the position argument within the sequence of
characters represented by this TCharString. The first character of the sequence is at index 0, the
next at index 1, and so on, as for array indexing. If the position argument is negative or not less
than the length of this string, then an Exception is raised.

25.1.12. The Class TCharStringBuffer
A charstring buffer is like a TCharString (§25.1.11), but can be modified. At any point in time it
contains some particular sequence of characters, but the length and content of the sequence can
be changed through certain method calls.

class TCharStringBuffer {
public function getLength() return Cardinal;
public function setLength(newLength Cardinal);

public function getChar(position Cardinal) return char;
public function setChar(position Cardinal, value char);
}

25.1.12.1.Length of charstring type
public function getLength() return Cardinal;

This function returns the length of the sequence of characters currently represented by this
TCharStringBuffer object.

25.1.12.2.The setLength function
public function setLength(newLength Cardinal);

This charstring buffer is altered to represent a new character sequence whose length is specified
by the actual parameter.

25.1.12.3.The getChar function
public function getChar(position Cardinal) return char;

The specified character of the sequence currently represented by the charstring buffer, as
indicated by the position argument, is returned. The first character of the sequence is at position
0, the next at position 1, and so on, as for array indexing. Valid values for position are from 0 to
current length - 1. If the position argument is negative or not less than the length of this
charstring, then a standard Exception is raised.

25.1.12.4.The setChar function
public function setChar(position Cardinal, value char);

The string buffer is altered to represent a new character sequence that is identical to the old
character sequence, except that it contains the character value at index position.

25.2. The Group System.io
Input and output in ATDL is organized around the concept of bitstring streams. A bitstring stream
is a sequence of bits, read or written over the course of time.

25.2.1. The Class DataInputStream
The class DataInputStream provides for reading bits from a bitstring stream and reconstructing
from them data in any of the ATDL primitive types.

class DataInputStream {
public final function getInteger () return integer raises IOException;
public final function getCardinal () return cardinal raises IOException;
public final function getFloat () return float raises IOException;
public final function getReal () return real raises IOException;
public final function getBoolean () return boolean raises IOException;
public final function getObjid () return objid raises IOException;
public final function getCharstring () return charstring raises IOException;
public final function getWideCharstring () return wide charstring raises IOException;
public final function getHexstring () return hexstring raises IOException;
public final function getBitstring () return bitstring raises IOException;
public final function getOctetstring () return octetstring raises IOException;
public final function getVerdict () return verdicttype raises IOException;
}

Page 202 of 226

25.2.1.1. The getInteger function
The getInteger function constructs and returns a basic ATDL integer type.

25.3. Predefined functions
ATDL contains a number of predefined (built-in) functions that need not be declared before use.

25.3.1. Number of elements in a structured type
sizeof(value structured_type) return integer;

The (sizeof) function returns the actual number of elements of a value that is of type sequence,
sequence of, template or ASN.1 equivalent type SEQUENCE OF or SET OF. Its result is fully
compatible with that of the equivalent ASN.1 SIZE constraint applied to objects of these types.

25.3.2. The IsPresent function
ispresent(value any_type) return boolean

This function returns the value true if and only if the value of the referenced field is present in the
actual instance of the referenced data object. The argument to ispresent shall be a reference to a
field within a data object that is defined as being optional.

25.3.3. The IsChosen function
ischosen(value any_type) return boolean

This function returns the value true if and only if the data object reference specifies the variant of
the choice type that is actually selected for a given data object.

25.3.4. The LowerBoundary function
lowerboundary(value any_ordinal_or_array_type) return integer;

This function returns the lowest value that is of type ordinal, or array. For ordinal types, it returns
the lowest value in the range of the type. For array types, it returns the lowest value within the
length range of the index type of the array.

25.3.5. The UpperBoundary function
This function returns the highest value that is of type ordinal, or array. For ordinal types, it returns
the highest value in the range of the type. For array types, it returns the highest value within the
length range of the index type of the array. For empty arrays, it returns -1.

26. ATDL BNF and static semantics
This clause defines the syntax of ATDL using extended BNF (henceforth just called BNF).

26.1. ATDL grammars
The following conventions have been used when defining the ATDL/gr and the ATDL/pr
grammar.

26.1.1. ATDL terminals
ATDL terminal symbols and reserved words are listed in Table 30.

Table 30: List of ATDL terminals which are reserved words

activate
all
alt
altstep
and
any

bind
bitstring
boolean
break

call
cardinal
catch
char
charstring
choice
class
clear
co
complement
const
constructor
continue
control
create

deactivate
default
destructor
display
do
done

else
encode
enumerated
error
exception

extends
extension
external

fail
false
final
float
for
from
function

get
getverdict
group

hexstring

if
ifpresent
implements
import
in
inconc
infinity
inherited
inout
instanceof
integer
interface

label
language

members
mod
modifies
module
mtc

noblock
none
not
null

objid
octetstring
of
omit
operation
optional
or
out
overload
override

pass
pattern
private
protected
public

raise
raises
read
real
receive
recursive
release
rem
requires
return
running

self
send
sender
sequence
set
setverdict
start
stop
supports
sutaction
synchronize
synchronized
system

template
testcase
thread
timeout
timer
trigger
true
try
type

uses

value
var
variant
verdicttype
virtual

while
with
wide
write

xor
Page 204 of 226

The following lists the special identifiers reserved for the predefined functions:

lengthof, sizeof, ischosen, ispresent, setlength

These terminals shall be written in all lowercase letters.

26.1.2. Meta-language for graphical grammar
The graphical syntax for ATDL/GR is defined on the basis of the graphical syntax of SDL-92
[17]. The graphical syntax definition uses a meta-language, which is explained in clause 5.4.3 of
[17]. Syntactic categories are the non-terminals indicated by one or more words enclosed
between angle brackets. See [17] for more details.

26.1.3. Static and dynamic objects
Making a static description of a system amounts to defining its architecture. A system defined by
ATDL, which respects the syntactical rules and verifies the conditions of the static description is
a valid system.

An ATDL description always begins with the module object, which is the object of the highest
hierarchical level in the description.

The aim of an ATDL module is to model a consistent set of communicating components grouped
as groups. Groups are the main conceptual language elements of the module. Each group must be
internally consistent and easy to understand.

The hierarchical decomposition of an ATDL module uses the structural objects listed in Table 31.

Table 31: ATDL Graphical Symbols for the Static Objects

<frame symbol> <group symbol> <module symbol>

<thread class symbol> <class symbol> <coclass symbol>

<text symbol> <comment symbol> <interface symbol 1>

<dashed association symbol> <dependency symbol> <entity kind symbol>

<component extends symbol> <separator symbol> <realization symbol>

<solid association symbol> <channel symbol>

<< >>

An ATDL model is described dynamically by communicating component instances. In ATDL,
these component instances are described by functions and test cases. The description of an ATDL
function or test case uses the dynamic objects listed in Table 32.

26.2. ATDL syntax BNF productions
This section defines the syntax of ATDL using extended BNF.

26.2.1. ATDL Module
1 ATDL_Module ::=ModuleHeading “{“ [ModuleDefinitionsPart] [ModuleControlPart] “}”

2 ModuleHeading ::= “module” ATDL_ModuleId [ModuleParList]

3 ATDL_ModuleId ::= ModuleIdentifier [DefinitiveIdentifier]

4 DefinitiveIdentifier ::= Dot ObjectIdType “{“ DefinitiveObjIdComponentList “}”

5 DefinitiveObjIdComponentList ::= {DefinitiveObjIdComponent}+

Table 32: ATDL Graphical Symbols for the Dynamic Objects

<internal input symbol> <message in symbol> <procedure in symbol>

<procedure call symbol> <create request symbol> <condition symbol>

<exception in symbol> <decision symbol> <return symbol>

<connector symbol> <save symbol> <stop symbol>

<statement start symbol> <statement end symbol> <repeat symbol>

<message out symbol> <try symbol> <internal output symbol>

<exception out symbol> <function start symbol> <inline expression symbol>

<reference symbol> <default symbol> <task symbol>

<flow line symbol> <alt symbol>
Page 206 of 226

6 DefinitiveObjIdComponent ::= NameForm | Number | NameForm “(“ Number “)”

7 ModuleIdentifier ::= Identifier

8 ModuleParList ::= “(“ ModulePar {“,” ModulePar}* “)”

9 ModulePar ::= [“in”] ModuleParIdentifier Type [“:=” ConstantExpression]
/* STATIC SEMANTICS - The Value of the ConstantExpression shall be of the same type as the stated type for the
Parameter */

10 ModuleParIdentifier ::= Identifier

26.2.1.1. Concrete graphical grammar
11 <module diagram> ::= <frame symbol> contains

(ModuleHeading {{<module text area>}*
{<group diagram>}* {<group reference area>}*
<component interaction area> } set)
[is_followed_by <control part area>]

12 <module text area> ::= <text symbol> contains
{(SupporingDef | ImportDef | ExtFunctionDef) [SemiColon]}*

13 <group reference area> ::= <reference symbol> contains GroupHeading

14 <separator area> ::= <separator symbol>

15 <control part area> ::= <reference symbol> contains (“control” ATDL_ModuleId)

16 <component interaction area> ::= {<component area> | <component dependency area>
| <interface definition area>}+

17 <component area> ::= <component reference area> | <component diagram>

18 <component diagram> ::= <thread class diagram> | <class diagram> | <coclass diagram>

19 <component dependency area> ::= <dependency symbol>
is_connected_to (<component area> <component area>)

20 <component reference area> ::= <reference symbol> contains ComponentType
[is_connected_to <component extends area>]
[is_connected_to { <required interface area>+ } set]
[is_connected_to { <supported interface area>+ } set]
[is_connected_to { <dependency symbol>+ } set]

26.2.2. Module Definitions Part
21 ModuleDefinitionsPart ::= {ModuleDefinition [SemiColon] }+

22 ModuleDefinition ::= (SupportingDef | TemplateDef | ImportDef | GroupDef | InterfaceDef
| FunctionDef | TestcaseDef | AltstepDef | ExtFunctionDef | ClassDef
| CoclassDef | ThreadClassDef | ClassTemplateDef) [WithStatement]

23 SupportingDef ::= TypeDef | ConstDef | ExceptionDef

26.2.2.1. Typedef Definitions
24 TypeDef ::= “type” TypeIdentifier “::=” Type

25 TypeIdentifier ::= Identifier

26 TypeDefFormalParList ::= “(“ FormalValuePar {“,” FormalValuePar}* “)”
/* STATIC SEMANTICS - FormalValuePar shall resolve to an in parameter */

27 SequenceType ::= “sequence” [TypeDefFormalParList] “{“ [StructFieldDef {“,” StructFieldDef}*] “}”

28 StructFieldDef ::= StructFieldIdentifier Type [SubTypeSpec] [“optional”]

29 StructFieldIdentifier ::= Identifier

30 SetType ::= “set” [TypeDefFormalParList] “{“ [StructFieldDef {“,” StructFieldDef}*] “}”

31 ChoiceType ::= “choice” “(” OrdinalType “)” “{“ ChoiceFieldDef {“;” ChoiceFieldDef}* “}”

32 ChoiceFieldDef ::= StructFieldIdentifier TaggedType [SubTypeSpec]

33 TaggedType ::= “[“ (SingleConstExpression | “else”) “]” Type
/* STATIC SEMANTICS - The value of the SingleConstExpression shall be of the same type as the TagTypeSpec. */

34 SequenceOfType ::= “sequence” [{LengthRestriction}+] “of” Type [SubTypeSpec]

35 SetOfType ::= “set” [{LengthRestriction}+] “of” Type [SubTypeSpec]

36 EnumType ::= “enumerated” “{“ NamedValue {“,” NamedValue}* “}”

37 NamedValue ::= NamedValueIdentifier [“(“ Number “)”]

38 NamedValueIdentifier ::= Identifier

39 ConstrainedType ::= BasicType [SubTypeSpec]

40 SubTypeSpec ::= SimpleValueSet | LengthRestriction
/* STATIC SEMANTICS - SimpleValueSet shall be of the same type as the field being subtyped */

41 SimpleValueSet ::= SimpleValueList | IntegerRange

42 SimpleValueList ::= “(“ SingleConstExpression {“,” SingleConstExpression}* “)”
/* STATIC SEMANTICS - SimpleValueList shall be of the same type as the field being subtyped */

43 IntegerRange ::= “(“ LowerBound “..” UpperBound “)”
/* STATIC SEMANTICS - IntegerRange shall only be used with ordinal types */
/* STATIC SEMANTICS - When subtyping charstring or wide charstring range and values shall not be mixed in the
same SubTypeSpec */

44 LowerBound ::= SingleConstExpression | Minus “infinity”

45 UpperBound ::= SingleConstExpression | “infinity”
/* STATIC SEMANTICS - LowerBound and UpperBound shall evaluate to types integer, cardinal, char, or wide char.
In case LowerBound or UpperBound evaluates to types char or wide char, only SingleConstExpression may be
present */

46 LengthRestriction ::= “[“ SingleConstExpression [“..” UpperBound] “]”
/* STATIC SEMANTICS - LengthRestriction will resolve to a value of cardinal type. LengthRestriction shall only be
used with String types, Integer types or to limit sequence of type */

26.2.2.2. Constant Definitions
47 ConstDef ::= “const” SingleConstDef {“,” SingleConstDef}*

48 SingleConstDef ::= ConstIdentifier Type “:=” ConstantExpression
/* STATIC SEMANTICS - The value of the ConstantExpression shall be of the same type as the stated type for the
constant */

49 ConstIdentifier ::= Identifier

26.2.2.3. Template Definitions
50 TemplateDef ::= “template” BaseTemplate [DerivedDef] AssignmentChar TemplateBody

51 BaseTemplate ::= TemplateIdentifier [FormalCrefParList]
(MessageIdentifier | Operation | ExceptionTypeIdentifier)

52 TemplateIdentifier ::= Identifier

53 DerivedDef ::= “modifies” TemplateRef

54 FormalCrefParList ::= FormalCrefPar {“,” FormalCrefPar}*

55 FormalCrefPar ::= FormalValuePar | FormalTemplatePar | FormalTypePar
/* STATIC SEMANTICS - FormalValuePar shall resolve to an in parameter */

56 TemplateBody ::= TemplateValue&Attributes | FieldSpecList

57 TemplateValue&Attributes ::= TemplateValue [ValueAttributes]

/* NOTE - TemplateValue&Attributes can be reached via DefinedValue in the ATDL and the ASN.1 syntax. See the
reference on the production 325 for Value. */
/* STATIC SEMANTICS - TemplateValue shall fulfil all restrictions defined for the ASP parameter, PDU field or
structure element type, including value ranges, value lists, alphabet restrictions and/or length restrictions */

58 FieldSpecList ::= “{“ [FieldSpec {“,” FieldSpec}*] “}”

59 FieldSpec ::= FieldReference AssignmentChar TemplateBody

60 FieldReference ::= StructFieldIdentifier | ArrayOrBitRef | OperationParIdentifier
/* OPERATIONAL SEMANTICS - OperationParIdentifier shall be a formal parameter Identifier from the associated
operation definition */

61 OperationParIdentifier ::= ValueParIdentifier
Page 208 of 226

62 ArrayOrBitRef ::= “[“ FieldOrBitNumber “]”
/* STATIC SEMANTICS - ArrayRef shall be optionally used for array types and ASN.1 SET OF and SEQUENCE
OF and ATDL sequence, array, and set type. The same notation can be used for a Bit reference inside an ASN.1
or ATDL bitstring type */

63 FieldOrBitNumber ::= SingleConstExpression
/* STATIC SEMANTICS - SingleConstExpression will resolve to a value of integer type */

64 TemplateValue ::= SingleConstExpression | MatchingSymbol | TemplateRefWithPara
/* STATIC SEMANTICS - VariableIdentifier (accessed via singleExpression) may only be used in inline template
definitions to reference variables in the current scope */

65 MatchingSymbol ::= CharStringMatch | Omit | AnyValue | AnyOrOmit | ValueList | IntegerRange

66 ValueAttributes ::= LengthRestriction | “ifpresent” | LengthRestriction “ifpresent”

67 CharStringMatch ::= “pattern” Cstring

68 Omit ::= “omit”
/* STATIC SEMANTICS - In ATDL constraints Omit shall be used only for sequence field that are declared optional */

69 AnyValue ::= “?”

70 AnyOrOmit ::= “*”

71 ValueList ::= “(“ TemplateBody {“,” TemplateBody}* “)”

72 TemplateInstance ::= InLineTemplate

73 TemplateRefWithPara ::= [ModuleName Dot] TemplateIdentifier [ActualCrefParList] |
TemplateParIdentifier

74 TemplateRef ::= [ModuleName Dot] TemplateIdentifier | TemplateParIdentifier

75 InLineTemplate ::= [(MessageIdentifier | ExceptionTypeIdentifier) InLineMatchingSymbol]
[DereivedDef “:=”] TemplateBody

/* STATIC SEMANTICS - The MessageIdentifier or ExceptionTypeIdentifier field may only be omitted when the type
is implicitly unambigous */

76 InLineMatchingSymbol ::= AssignmentChar | Colon | ">=" | "<=" | “==”

77 ActualCrefParList ::= “(“ ActualCrefPar {“,” ActualCrefPar}* “)”

78 ActualCrefPar ::= [VarIdentifier AssignmentChar] TemplateInstance | Type
/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type, the TemplateInstance
production shall resolve to one or more SingleExpressions */

79 TemplateOps ::= “value” “of” “(“ TemplateInstance “)” | “value”

26.2.2.4. Group Definitions
80 GroupDef ::= GroupHeading “{“

[SupportingDefSpec]
[InterfaceDefSpec]
[ComponentDefSpec]
MemberComponentList “}”

81 GroupHeading ::= “group” GroupIdentifier

82 GroupIdentifier ::= Identifier

83 SupportingDefSpec ::= { (SupportingDef | FunctionDef | TestcaseDef | AltstepDef) SemiColon }*

84 InterfaceDefSpec ::= {InterfaceDef SemiColon }*

85 ComponentDefSpec ::= { (CoclassDef | ClassDef | ThreadClassDef) SemiColon }*

86 MemberComponentList ::= “members” MemberComponentDef {“,” MemberComponentDef}* “;”

87 MemberComponentDef ::= GroupIdentifier | ComponentTypeIdentifier

Concrete graphical grammar
88 <group diagram> ::= <frame symbol>

contains {GroupHeading {{<group text area>}*
[<component interaction area>] {<group reference area>}*}set}

89 <group text area> ::= <text symbol> contains {(SupportingDef | InterfaceDef) [SemiColon]}*

26.2.2.5. Co-class Definitions
90 CoclassDef ::= CoclassHeading “{“

[ThreadPropertiesList]
[InterfaceDefSpec]
SupportedInterfaceList
[RequiredInterfaceList]
[ConstructorHeading] “}”

91 CoclassHeading ::= “co” “class” CoclassIdentifier [CoclassHeritage]

92 CoclassIdentifier ::= Identifier

93 CoclassHeritage ::= “extends“ CoclassIdentifier

94 SupportedInterfaceList ::= “supports” InterfaceType {“,” InterfaceType}* SemiColon

95 RequiredInterfaceList ::= “requires” InterfaceType {“,” InterfaceType}* SemiColon

Concrete graphical grammar
96 <coclass diagram> ::= <coclass symbol>

(CoclassIdentifier <class properties area> ConstructorHeading)
[is_connected_to <component extends area>]
[is_connected_to {<required interface area>+ } set]
[is_connected_to {<supported interface area>+ } set]
[is_connected_to { <dependency symbol>+ } set]

97 <component extends area> ::= <component extends symbol>
is_connected_to (<component area> <component area>)

98 <class properties area> ::= ({ ClassProperty SemiColon }*) set

26.2.2.6. Class Definitions
99 ClassDef ::= [(“virtual” | “final”)] “class” ClassIdentifier [ClassHeritage]

100 ClassDefBody ::= “{“ [ClassPropertiesList]
[ClassLocalInstList]
[InterfaceDefSpec]
[ImplementedInterfaceList]
[RequiredInterfaceList]
[ClassMethodList] “}”

101 ClassIdentifier ::= Identifier

102 ClassHeritage ::= “extends“ (ClassIdentifier | CoclassIdentifer)

103 ImplementedInterfaceList ::= “implements” InterfaceType {“,” InterfaceType}* “;”

104 ClassMethodList ::= {ClassMethodDef SemiColon}*

105 ClassMethodDef ::= ClassVisibility [Virtuality] MethodHeading [RaisesExpr]

106 Virtuality ::= “final” [“virtual”] | “override” | “overload” | “external” | “template”

107 MethodHeading ::= [“synchronized”] [“class”] RoutineHeading
| ConstructorHeading | DestructorHeading

108 RoutineHeading ::= FunctionHeading | TestcaseHeading | AltstepHeading

109 ClassLocalInstList ::= {(VarInstance | TimerInstance) SemiColon}*

110 ClassPropertiesList ::= { (SupportingDef | ClassFieldDef | DefaultAltstepDef) SemiColon}*

111 ClassFieldDef ::= ClassVisibility [“synchronized”] ClassFieldIdentifier VarInitializer

112 ClassVisibility ::= [“public” | “protected” | “private”]

113 ClassFieldIdentifier ::= Identifier

114 DefaultAltstepDef ::= ClassFieldIdentifier (MessageType | Operation) “default“ AltstepInstance

Concrete graphical grammar
115 <class diagram> ::= <class symbol> contains

(ClassIdentifier <class properties area> <class methods area>)
[is_connected_to <component extends area>]
Page 210 of 226

[is_connected_to {<required interface area>+ } set]
[is_connected_to {<supported interface area>+ } set]
[is_connected_to { <dependency symbol>+ } set]

116 <class methods area> ::= ({ ClassMethodDef <end> }*) set

26.2.2.7. Class Template Definitions
117 ClassTemplateDef ::= “template” “class” ClassTemplateIdentifier

[FormalParList] [ClassHeritage] ClassDefBody

118 ClassTemplateIdentifier ::= Identifier

119 ClassTemplateInstance ::= ClassTemplateIdentifier ActualParList

26.2.2.8. Thread Class Definitions
120 ThreadClassDef ::= ThreadClassHeading “{“

[SupportingDefSpec]
[{ClassFieldSpec [SemiColon]}*]
[ClassLocalInstList]
[InterfaceDefSpec]
[ImplementedInterfaceList]
[RequiredInterfaceList]
[ThreadMethodList] “}”

121 ThreadClassHeading ::= “thread” ThreadClassIdentifier [ThreadClassHeritage]

122 ThreadClassHeritage ::= “extends“ (ThreadClassIdentifer | CoclassIdentifer)

123 ThreadClassIdentifier ::= Identifier

124 ThreadMethodList ::= { [Virtuality] (RoutineHeading | ConstructorHeading) SemiColon}*

125 ComponentTypeIdentifier ::= ThreadClassIdentifier | ClassInstance | CoclassIdentifier

126 ClassInstance ::= ClassIdentifier | ClassTemplateInstance

127 ComponentType ::= [ModuleName Dot] ComponentTypeIdentifier

Concrete graphical grammar
128 <thread class diagram> ::= <thread class symbol> contains

(ThreadClassIdentifier <class properties area> <class methods area>)
[is_connected_to <component extends area>]
[is_connected_to {<required interface area>+ } set]
[is_connected_to {<supported interface area>+ } set]
[is_connected_to { <dependency symbol>+ } set]

26.2.2.9. Interface Definitions
129 InterfaceDef ::= MsgInterfaceDef | CpOpInterfaceDef | CoOpInterfaceDef

130 MsgInterfaceDef ::= MessageInterfaceHeader MessageAttribs

131 MsgInterfaceHeader ::= [“co”] “interface” MsgInterfaceTypeIdentifier [MsgInterfaceHeritage]

132 MsgInterfaceTypeIdentifier ::= Identifier

133 MsgInterfaceHeritage ::= “extends“ MsgInterfaceTypeIdentifier {“,” MsgInterfaceTypeIdentifier}*

134 CpOpInterfaceDef ::= CpOpInterfaceHeader OperationAttribs

135 CpOpInterfaceHeader ::= “interface” CpOpInterfaceTypeIdentifier [CpOpInterfaceHeritage]

136 CpOpInterfaceTypeIdentifier ::= Identifier

137 CpOpInterfaceHeritage ::= “extends“ CpOpInterfaceTypeIdentifier {“,”
CpOpInterfaceTypeIdentifier}*

138 CoOpInterfaceDef ::= CoOpInterfaceHeader OperationAttribs

139 CoOpInterfaceHeader ::= “co” “interface” CpOpInterfaceTypeIdentifier [CoOpInterfaceHeritage]

140 CoOpInterfaceIdentifier ::= Identifier

141 CoOpInterfaceHeritage ::= “extends“ CoOpInterfaceTypeIdentifier {“,”
CoOpInterfaceTypeIdentifier}*

142 InterfaceTypeIdentifier ::= MsgInterfaceTypeIdentifier | CpOpInterfaceTypeIdentifier |
CoOpInterfaceTypeIdentifier

143 InterfaceType ::= [ComponentType Dot] InterfaceTypeIdentifier

144 MessageAttribs ::= “{“ {MessageList [SemiColon]}+ “}”

145 MessageList ::= [Direction] MessageIdentifier Type

146 MessageIdentifier ::= Identifier

147 OperationAttribs ::= “{“ {OperationDef [SemiColon]}+ “}”

Concrete graphical grammar
148 <required interface area> ::= <dependency symbol>

is_connected_to (<component area> <interface area>)

149 <supported interface area> ::= <channel symbol>
is_connected_to (<interface area> <component area>)

150 <channel symbol> ::= <channel symbol 1> | <channel symbol 2> | <channel symbol 3>

151 <channel symbol 1> ::= <solid association symbol>

152 <interface area> ::= (<interface area 1> | <interface area 2>)
is_connected_to (<dependency symbol> <channel symbol>)
[is_connected_to {<interface extends area>*} set]

153 <interface extends area> ::= <interface extends symbol>
is_connected_to (<interface area> <interface area>)

154 <interface extends symbol> ::= <component extends symbol>

155 <interface area 1> ::= <interface symbol 1> contains
(<interface heading> (OperationAttribs | MessageAttribs))

156 <interface heading> ::= (<entity kind symbol> contains [co] interface) InterfaceIdentifier

157 <interface area 2> ::= <interface symbol 2> is_associated_with InterfaceIdentifier

158 <interface symbol 2> ::= <connector symbol>

26.2.2.10.Constructors and destructors
159 ConstructorHeading ::= “constructor” [QualifierId] ConstructorIdentifier [FormalParList]

160 ConstructorIdentifier ::= Identifier

161 DestructorHeading ::= “destructor” [QualifierId] DestructorIdentifier [FormalParList]

162 DestructorIdentifier ::= Identifier

26.2.2.11.Function Definitions
163 FunctionDef ::= MethodModifier FunctionHeading

| ConstructorHeading | DestructorHeading) StatementBlock

164 FunctionHeading ::= “function” [QualifierId] FunctionIdentifier [FormalParList] [ReturnType]

165 FunctionIdentifier ::= Identifier

166 MethodModifier ::= “overload” | “template | “class”

167 FormalParList ::= “(“ FormalPar&Type {“,” FormalPar&Type}* “)”

168 FormalPar&Type ::= FormalValuePar | FormalTimerPar | FormalTypePar
| FormalTemplatePar | FormalInterfacePar

/* STATIC SEMANTICS - In an operation or an encoding operation FormalPar&Type shall not be an Interface type */

169 ReturnType ::= “return” Type

170 QualifierId ::= (ComponentType | InterfaceIdentifier) Dot

171 FunctionInstance ::= FunctionRef [ActualParList]

172 FunctionRef ::= [DataObjectReference Dot]
(FunctionIdentifier | DestructorIdentifier) | PreDefFunctionIdentifier

/* STATIC SEMANTICS - the variable associated with DataObjectReference must be of class type or component
instance type */

173 PreDefFunctionIdentifier ::= Identifier
Page 212 of 226

/* STATIC SEMANTICS - The Identifier will be one of the pre-defined ATDL Function Identifiers */

174 ActualParList ::= “(“ ActualPar {“,” ActualPar}* “)”

175 ActualPar ::= TimerRef | TemplateInstance | Type | Channel | ComponentRef
/* STATIC SEMANTICS - When the corresponding formal parameter is not of template type the TemplateInstance
production shall resolve to one or more Expressions. */

Concrete graphical grammar
176 <function diagram> ::= <frame symbol>

contains ([“overload”] FunctionHeading
{{<function text area>}* <function graph area> } set)

177 <function text area> ::= <control text area>

178 <function graph area> ::= <function start area> is_followed_by <function block area>

179 <function block area> ::= <statement block area>
is_followed_by (<stop symbol> | <statement end symbol>)

180 <function start area> ::= <function start symbol> contains ([Virtuality])

181 <function instance area> ::= <reference symbol> contains [VarPrefix] FunctionInstance

26.2.2.12.Operation Definitions
182 OperationDef ::= [OpAttribute] “operation” OperationIdentifier [FormatParList] [ReturnType]

[RaisesExpr]

183 OperationIdentifier ::= Identifier

184 OpAttribute ::= “noblock” | “template”

185 Operation ::= [ModuleName Dot] OperationIdentifier

186 RaisesExpr ::= “raises” “(“ ExceptionName {“,” ExceptionName}* “)”

26.2.2.13.Exception Definitions
187 ExceptionDef ::= “exception” ExceptionIdentifier “{“ {ExceptionMember}* “}”

188 ExceptionIdentifier ::= Identifier

189 ExceptionMember ::= ExceptionTypeIdentifier Type [SemiColon]

190 ExceptionTypeIdentifier ::= Identifier

191 ExceptionName ::= [ModuleName Dot] ExceptionIdentifier

Concrete graphical grammar
192 <exception area> ::= <interface symbol 1> contains (<exception heading> {ExceptionMember}*)

193 <exception heading> ::= (<entity kind symbol> contains exception) ExceptionIdentifier

26.2.2.14.Testcase Definitions
194 TestcaseDef ::= MethodModifier TestcaseHeading StatementBlock

195 TestcaseHeading ::= “testcase” QualifierId TestcaseIdentifier [FormalCrefParList]

196 TestcaseIdentifier ::= Identifier

197 TestcaseInstance ::= TestcaseRef [ActualCrefParList]

198 TestcaseRef ::= [DataObjectReference Dot] TestcaseIdentifier
/* STATIC SEMANTICS - the variable associated with DataObjectReference must be of class type or component
instance type */

Concrete graphical grammar
199 <testcase diagram> ::= <frame symbol>

contains ([“overload”] TestcaseHeading
{{<function text area>}* <testcase graph area>} set)

200 <testcase graph area> ::= <function start area> is_followed_by <testcase block area>

201 <testcase block area> ::= <statement block area> is_followed_by <statement end symbol>

202 <testcase instance area> ::= <reference symbol> contains [VarPrefix] TestcaseInstance

26.2.2.15.Altstep Definitions
203 AltstepDef ::= [“overload”] AltstepHeading “{“ AltGuardList “}”

204 AltstepHeading ::= “altstep” [QualifierId] AltstepIdentifier [FormalParList]
/* STATIC SEMANTICS - all formal parameter must be value parameters i.e., in parameters */

205 AltstepIdentifier ::= Identifier

206 AltstepInstance ::= AltstepRef [ActualParList]

207 AltstepRef ::= [ModuleName Dot] AltstepIdentifier

Concrete graphical grammar
208 <altstep diagram> ::= <frame symbol>

contains ([“overload”] AltstepHeading <altstep body area>)

209 <altstep body area> ::= <fgr alt area>

210 <altstep instance area> ::= <reference symbol> contains AltstepInstance

26.2.2.16.Import Definitions
211 ImportDef ::= “import” ModuleId (ImportSpec | “{“ {ImportSpec [SemiColon]}* “}”) [“recursive”]

212 ImportSpec ::= ImportAllSpec | ImportGroupSpec | ImportInterfaceSpec | ImportConstSpec
ImportComponentSpec | ImportTypeDefSpec | ImportTemplateSpec |
 | ImportTestcaseSpec | ImportFunctionSpec | ImportAltstepSpec

213 ImportAllSpec ::= [DefKeyword] Dot “*”

214 ModuleId ::= ModuleName [“language” FreeText]
/* STATIC SEMANTICS - LanguageSpec may only be omitted if the referenced module contains ATDL notation */

215 ModuleName ::= GlobalModuleId | LocalModuleId

216 GlobalModuleId ::= ModuleIdentifier [Dot ObjectIdentifierValue]

217 LocalModuleId ::= ModuleIdentifier {Dot GroupIdentifier}*

218 DefKeyword ::= “type” | “const” | “class” | “interface” | “template” | “testcase” | “function” | “altstep”

219 ImportGroupSpec ::= “group” GroupIdentifier {“,” GroupIdentifier}*

220 ImportInterfaceSpec ::= “interface” InterfaceIdentifier {“,” InterfaceIdentifier}*

221 ImportComponentSpec ::= “class” ComponentTypeIdentifier {“,” ComponentTypeIdentifier}*

222 ImportTypeDefSpec ::= “type” TypeIdentifier {“,” TypeIdentifier}*

223 ImportTemplateSpec ::= “template” TemplateIdentifier {“,” TemplateIdentifier}*

224 ImportConstSpec ::= “const” ConstIdentifier {“,” ConstIdentifier}*

225 ImportTestcaseSpec ::= “testcase” TestcaseIdentifier {“,” TestcaseIdentifier}*

226 ImportFunctionSpec ::= “function” FunctionIdentifier {“,” FunctionIdentifier}*

227 ImportAltstepSpec ::= “altstep” AltstepIdentifier {“,” AltstepIdentifier}*

26.2.3. Control Part
228 ModuleControlPart ::= “control” “{“ ModuleControlBody “}” [WithStatement] [SemiColon]

229 ModuleControlBody ::= [ControlStatementOrDefList [“stop”] | “stop”]

230 ControlStatementOrDefList ::= {ControlStatementOrDef [SemiColon]}+

231 ControlStatementOrDef ::= ControlStatement | ClassLocalInst | ConstDef

26.2.3.1. Control Diagram
232 <control diagram> ::= <frame symbol> contains ((“control” ATDL_ModuleId)

({<control text area>}* <control graph area>) set)
233 <control text area> ::= <text symbol> contains

({ATDLComments}* [MultiWithAttrib] { ATDLComments}*)

234 <control graph area> ::= <statement start symbol> is_followed_by <control block area>

235 <control block area> ::= [<control statement block area> is_followed_by]
Page 214 of 226

(<stop symbol> | <statement end symbol>)

236 <control statement block area> ::= <control statement area>
[is_followed_by <control statement block area>]

26.2.3.2. Variable Instantiation
237 VarInstance ::= “var” SingleVarInstance {“,” SingleVarInstance}*

238 SingleVarInstance ::= VarIdentifier {Colon VarIdentifier}* VarInitializer

239 VarInitializer ::= Type [AssignmentChar Expression]

240 VarIdentifier ::= Identifier

241 VariableRef ::= (VarIdentifier | ValueParIdentifier | ClassFieldIdentifier) [ExtendedFieldReference]

242 VarPrefix ::= [“var”] VarIdentifier Type AssignmentChar

26.2.3.3. Timer Instantiation
243 TimerInstance ::= “timer” TimerIdentifier [AssignmentChar TimerValue]

244 TimerIdentifier ::= Identifier

245 TimerValue ::= SingleConstExpression
/* STATIC SEMANTICS - SingleConstExpression must resolve to a value of type float */

246 TimerRef ::= TimerIdentifier | TimerParIdentifier

26.2.3.4. Component Operations
247 ConfigurationStatement ::= DoneStatement | StartThreadStatement | StopThreadStatement

248 ConfigurationOps ::= CreateOp | ComponentIdExpression | ThreadRunningOp

249 ComponentIdExpression ::= “system” | “self” | “mtc” | “sender” | “inherited”

250 CreateOp ::= (ComponentType Dot | “inherited”) (“create” | ConstructorIdentifier [ActualParList])

251 ComponentIdentifier ::= VariableRef | FunctionInstance | CastExpression
/* STATIC SEMANTICS - the variable associated with VariableRef or the Return type associated with
FunctionInstance and CastExpression must be of component type */

252 ThreadIdentifier ::= ComponentIdentifier

253 DoneStatement ::= ThreadId Dot “done”

254 ThreadId ::= ThreadIdentifier | (“any” | “all”) “thread”

255 ThreadRunningOp ::= ThreadId Dot “running”

256 StartThreadStatement ::= ThreadIdentifier Dot “start” “(“ FunctionInstance “)”
/* STATIC SEMANTICS - the Function instance may only have in parameters */
/* STATIC SEMANTICS - the Function instance shall not have timer parameters */

257 StopThreadStatement ::= ThreadIdentifier Dot “stop” | “all” “thread” Dot “stop”

258 ComponentRef ::= ComponentIdentifier | ComponentIdExpression | ClassInstance

Concrete graphical grammar
259 <configuration statement area> ::= <create request area> | <fgr done area> |

<start thread area> | <stop thread area> | <stop symbol>

260 <create request area> ::= <create request symbol> contains [VarPrefix] CreateOp

261 <fgr done area> ::= <condition symbol> contains DoneStatement

262 <start thread area> ::= <procedure call symbol> contains StartThreadStatement

263 <stop thread area> ::= <stop symbol> [is_associated_with (ComponentRef | “all”)]

264 <fgr thread running area> ::= <condition symbol> contains ThreadRunningOp

26.2.3.5. Communication Operations
265 Channel ::= ChannelIdentifier | VarIdentifier | InterfaceParIdentifier | CastExpression
/* STATIC SEMANTICS - the variable associated with VarIdentifier and CastExpression must be of interface type*/

266 CommunicationStatement ::= SendStatement | CallStatement | RaiseStatement |

ReceiveStatement | TriggerStatement |
SynchronizeStatement | CatchStatement

267 SendStatement ::= Channel Dot “send” “(“ TemplateInstance “)”

268 CallStatement ::= Channel Dot “call” OperationRefWithPara

269 OperationRefWithPara ::= (Operation | TemplateIdentifier) [ActualCrefParList]
/* STATIC SEMANTICS - only out parameters may be omitted or specified with a matching attribute */

270 RaiseStatement ::= Channel Dot “raise” “(“ TemplateInstance “)”

271 ReceiveStatement ::= ChannelOrAny Dot “receive” ReceiveParameter [AssignmentList]
/* STATIC SEMANTICS - The AssignmentList option may only be present if the TemplateInstance option is also present */

272 ReceiveParameter ::= [“(“ TemplateInstance “)”]

273 ChannelOrAny ::= Channel | “any” “interface”

274 ChannelOrAll ::= Channel | “all” “interface”

275 TriggerStatement ::= ChannelOrAny Dot “trigger” ReceiveParameter [AssignmentList]
/* STATIC SEMANTICS - The AssignmentList option may only be present if the TemplateInstance option is also present */

276 SynchronizeStatement ::= ChannelOrAny Dot “synchronize” [“(“ TemplateInstance “)”]

277 CatchStatement ::= ChannelOrAny Dot “catch” [“(“ CatchOpParameter “)”] [AssignmentList]
/* STATIC SEMANTICS - The AssignmentList option may only be present if the CatchOpParameter option is also present */

278 CatchOpParameter ::= TemplateInstance | “timeout” | “all”

Concrete graphical grammar
279 <communication statement area> ::= <fgr call area> | <fgr send area> | <fgr raise area> |

<fgr receive area> | <fgr trigger area> |
<fgr synchronize area> | <fgr catch area>

280 <fgr send area> ::= <message out symbol> contains ([Channel Dot] TemplateInstance)

281 <fgr call area> ::= <procedure call symbol> contains [VarPrefix] CallStatement
[is_associated_with <save area>]

282 <fgr raise area> ::= <exception out symbol> contains ([Channel Dot] TemplateInstance)

283 <fgr receive area> ::= <message in symbol> contains ([ChannelOrAny Dot] ReceiveParameter)
[is_associated_with <save area>]

284 <save area> ::= <save symbol> contains (Assignment {SemiColon Assignment}*)

285 <fgr trigger area> ::= <message in symbol> contains TriggerStatement
[is_associated_with <save area>]

286 <fgr synchronize area> ::= <procedure in symbol> contains SynchronizeStatement
[is_associated_with <save area>]

287 <fgr catch area> ::= <exception in symbol>
contains [[ChannelOrAny Dot]“(“ CatchOpParameter “)”]
[is_associated_with <save area>]

26.2.3.6. Interface Operations
288 BindOp ::= “bind” “(“ (InterfaceType | ExceptionIdentifier) “,” ComponentRef “)”

289 ReleaseStatement ::= ChannelIdentifier Dot “release”

290 ChannelStartStatement ::= ChannelOrAll Dot “start”

291 ClearStatement ::= ChannelOrAll Dot “clear”

292 ChannelStopStatement ::= ChannelOrAll Dot “stop”

Concrete graphical grammar
293 <channel controlling area> ::= <condition symbol> contains

(ClearStatement | ChannelStopStatement | ChannelStartStatement)

26.2.3.7. Timer Operations
294 TimerStatement ::= StartTimerStatement | StopTimerStatement | TimeoutStatement
Page 216 of 226

295 TimerOps ::= ReadTimerOp | RunningTimerOp

296 StartTimerStatement ::= TimerRef Dot “start” [“(“ TimerValue “)”]

297 StopTimerStatement ::= TimerRefOrAll Dot “stop”

298 TimerRefOrAll ::= TimerRef | “all” “timer”

299 ReadTimerOp ::= TimerRef Dot “read”

300 RunningTimerOp ::= TimerRefOrAny Dot “running”

301 TimeoutStatement ::= TimerRefOrAny Dot "timeout"
/* STATIC SEMANTICS - The TimerRef may only be omitted within the exception handling part of a call. */

302 TimerRefOrAny ::= TimerRef | “any” “timer”

Concrete graphical grammar
303 <timer statement area> ::= <fgr timer start area> | <fgr timer stop area> | <fgr timeout area> | <fgr

timer running area>

304 <fgr timer start area> ::= <internal output symbol> contains StartTimerStatement

305 <fgr timer stop area> ::= <internal output symbol> contains StopTimerStatement

306 <fgr timeout area> ::= <internal input symbol> contains TimeoutStatement

307 <fgr timer running area> ::= <condition symbol> contains RunningTimerOp

26.2.4. Type
308 Type ::= BasicType | ConstrainedType | StructuredType | ReferencedType | RestrictedType

309 BasicType ::= OrdinalType | “float” | RealType | StringType | “objid” | VerdictType | BooleanType

310 StructuredType ::= SequenceType | SequenceOfType | SetType | SetOfType | ChoiceType

311 OrdinalType ::= IntegerType | CharType | WideChar | EnumType

312 StringType ::= “bitstring” | CharStringType | WideCharString | “octetstring” | “hexstring”

313 IntegerType ::= (“integer” | “cardinal”) [LengthRestriction]
/* STATIC SEMANTICS - The length restriction may only be omitted when used as generic-type template parameter
or return type associated with a procedure template. */

314 BooleanType ::= “boolean”

315 RealType ::= “real” [LengthRestriction]
/* STATIC SEMANTICS - The length restriction may only be omitted when used as generic-type template parameter
or return type associated with a procedure template. */

316 CharType ::= “char”

317 WideChar ::= “wide” “char”

318 CharStringType ::= “charstring”

319 WideCharString ::= “wide” “charstring”

320 ReferencedType ::= [GlobalModuleId Dot] TypeReference [ExtendedFieldReference]

321 TypeReference ::= TypeIdentifier TypeActualParList | ValueParIdentifier
/* STATIC SEMANTICS - ValueParIdentifier must be previously defined generic type template parameter */

322 RestrictedType ::= ComponentTypeIdentifier | ClassRefType
| InterfaceType | ExceptionIdentifier | “default“ | “variant”

323 ClassRefType ::= “class” “of” ClassIdentifer

324 TypeActualParList ::= “(“ SingleConstExpression {“,” SingleConstExpression}* “)”

26.2.5. Value
325 Value ::= LiteralValue | StringValue | ReferencedValue | TemplateValue&Attributes
/* REFERENCE - For the purposes of ATDL tabular presentation format this production is redefined to be: Value ::=
LiteralValue | ReferencedValue | ASN1_Value, Where ASN1_Value is Value as defined in ISO/IEC 8824 */

/* In ISO/IEC 8824 the production DefinedValue is defined as:
DefinedValue ::= Externalvaluereference | valuereference.

For the purposes of ATDL this production is redefined to be:
DefinedValue ::= TemplateValue&Attributes.

Note that this means that external value references are not allowed in ATDL */

326 LiteralValue ::= BooleanValue | ChoiceValue | IntegerValue | FloatingPointLiteral | CharValue
 | ObjectIdentifierValue | EnumeratedValue | VerdictValue | NullValue

327 StringValue ::= Bstring | CharStringValue | Ostring | Hstring

328 BooleanValue ::= "true" | "false"

329 ChoiceValue ::= StructFieldIdentifer Colon Value

330 IntegerValue ::= Number

331 ObjectIdentifierValue ::= “{“ ObjIdComponentList “}”
/* STATIC SEMANTICS - ReferencedValue shall be of type object Identifier */

332 ObjectIdComponentList ::= {ObjIdComponent}+

333 ObjIdComponent ::= NameForm | NumberForm | NameAndNumberForm

334 NumberForm ::= Number | ReferencedValue
/* STATIC SEMANTICS - ReferencedValue shall be of type cardinal and have a non negative Value */

335 NameAndNumberForm ::= Identifier NumberForm

336 NameForm ::= Identifier

337 VerdictValue ::= "pass" | "fail" | "inconc" | "none" | "error"

338 EnumeratedValue ::= NamedValueIdentifier

339 CharStringValue ::= Cstring | Quadruple

340 UnicodeInputCharacter ::= UnicodeEscape | Char

341 UnicodeEscape ::= \ UnicodeMarker Hex Hex Hex Hex

342 UnicodeMarker ::= {u}+

343 InputCharacter ::= UnicodeInputCharacter
/* STATIC SEMANTICS - The InputCharacter shall not be Carriage Return or Line Feed character */

344 FloatingPointLiteral ::= (FloatDotNotation | FloatENotation) [FloatTypeSuffix]

345 FloatDotNotation ::= Number Dot DecimalNumber

346 FloatENotation ::= Number [Dot DecimalNumber] Exponential [Minus] Number

347 Exponential ::= “e” | “E”

348 FloatTypeSuffix ::= “f” | “F” | “r” | “R”

349 ReferencedValue ::= [GlobalModuleId Dot] ValueReference [ExtendedFieldReference]

350 ValueReference ::= ConstIdentifier | ValueParIdentifier | ModuleParIdentifier | VarIdentifier

351 Number ::= (NonZeroNum {Num}*) | “0”

352 NonZeroNum ::= "1" | "2" | "3" | "4" | "5" | "6" | "7" | "8" | "9"
353 DecimalNumber ::= {Num}*

354 Num ::= “0” | NonZeroNum

355 CharValue ::= “‘” Char “‘” [“C”]

356 Bstring ::= " ’ " {Bin | Wildcard}* " ’ " “B”

357 Bin ::= "0" | "1"

358 Hstring ::= " ’ " {Hex | Wildcard}* " ’ " “H”

359 Hex ::= Num | "A" | "B" | "C" | "D" | "E" | "F"| "a" | "b" | "c" | "d" | "e" | "f"

360 Ostring ::= " ’ " {Oct | Wildcard}* " ’ " “O”

361 Oct ::= Hex Hex

362 Cstring ::= " " " {InputCharacter | Wildcard | “\”}* " " "

363 Char ::= /* REFERENCE - A character defined by the relevant CharacterString type. For charstring
a character from the character set defined in ISO/IEC 646. For wide charstring a character from
any character set defined in ISO/IEC 10646 */

364 Wildcard ::= AnyOne | AnyOrNone

365 AnyOne ::= “?”
/* STATIC SEMANTICS - AnyOne shall be used only within values of string types, and sequence of. */
Page 218 of 226

366 AnyOrNone ::= “*”
/* STATIC SEMANTICS - AnyOrNone shall be used only within values of string types, and sequence of.*/

367 Identifier ::= Alpha {AlphaNum | “_”}*

368 Alpha ::= UpperAlpha | LowerAlpha

369 AlphaNum ::= Alpha | Num

370 UpperAlpha ::= "A" | "B" | "C" | "D" | "E" | "F" | "G" | "H" | "I" | "J" | "K" | "L" | "M" |"N" | "O" | "P" | "Q"
| "R" | "S" | "T" | "U" | "V" | "W" | "X" | "Y" | "Z"

371 LowerAlpha ::= "a" | "b" | "c" | "d" | "e" | "f" | "g" | "h" | "i" | "j" | "k" | "l" | "m" |"n" | "o" | "p" | "q" | "r" |
"s" | "t" | "u" | "v" | "w" | "x" | "y" | "z"

372 ExtendedAlphaNum ::= /* REFERENCE - A graphical character from the BASIC LATIN or from the
LATIN-1 SUPPLEMENT character sets defined in ISO/IEC 10646 (characters from char (0,0,0,33)
to char (0,0,0,126), from char (0,0,0,161) to char (0,0,0,172) and from char (0,0,0,174) to char
(0,0,0,255) */

373 FreeText ::= “ “ “ {ExtendedAlphaNum}* “ “ “

374 NullValue ::= “null”

26.2.6. Parameterisation
375 Direction ::= “in” | “out” | “inout”

376 FormalValuePar ::= [Direction] ValueParIdentifier {“:” ValueParIdentifier}* Type

377 ValueParIdentifier ::= Identifier

378 FormalTypePar ::= [Direction] ValueParIdentifier
/* STATIC SEMANTICS - ValueParIdentifier must be previously defined generic type template parameter */

379 FormalInterfacePar ::= [“inout”] InterfaceParIdentifier InterfaceTypeIdentifier

380 InterfaceParIdentifier ::= Identifier

381 FormalTimerPar ::= [“inout”] “timer” TimerParIdentifier

382 TimerParIdentifier ::= Identifier

383 FormalTemplatePar ::= [“in”] “template” TemplateParIdentifier Type

384 TemplateParIdentifier ::= Identifier

26.2.7. With Statement
385 WithStatement ::= “with” [“tabular”] WithAttribList

386 WithAttribList ::= SingleWithAttrib SemiColon | "{" MultiWithAttrib "}" [SemiColon]

387 MultiWithAttrib ::= SingleWithAttrib {SemiColon SingleWithAttrib} [SemiColon]

388 SingleWithAttrib ::= [“encode” | “display” | “extension”] [“override”] [AttribQualifier] AttribSpec

389 AttribQualifier ::= “(“ DefOrFieldRefList “)”

390 DefOrFieldRefList ::= DefOrFieldRef {“,” DefOrFieldRef}*

391 DefOrFieldRef ::= DefinitionRef | FieldReference

392 DefinitionRef ::= TypeIdentifier | InterfaceIdentifier | ComponentTypeIdentifier |
ConstIdentifier | TemplateIdentifier | AltstepIdentifier |
TestcaseIdentifier | FunctionIdentifier | OperationIdentifier

393 AttribSpec ::= FreeText

26.2.8. Statement Blocks
394 StatementBlock ::= “{“ BlockStatement [TerminatorStatement] | TerminatorStatement “}”

395 BlockStatement ::= { ActionStatement [SemiColon]}+

396 ActionStatement ::= ControlStatement | ConfigurationStatement |
CommunicationStatement | SetLocalVerdict

397 TerminatorStatement ::= ReturnStatement | “stop” | RaiseStatement

Concrete graphical grammar

398 <statement block area> ::= [<action statement area> is_followed_by]
{ <return area> | <stop symbol> | <fgr raise area>}

399 <action statement area> ::= <control statement area> | <configuration statement area> |
<communication statement area> | <set verdict area>

26.2.9. Behavior Statements
400 ControlStatement ::= TestcaseInstance | FunctionInstance | AltConstruct | LoopConstruct

| DecisionConstruct | ActivateStatement | DeactivateStatement
| ChoiceConstruct | AltstepInstance | BasicStatement | TaskStatement

Concrete graphical grammar
401 <control statement area> ::= <testcase instance area> | <function instance area>

| <fgr inline expression area> | <default area>
| <altstep instance area> | <choice area>
| <decision area> | <task area>

26.2.9.1. Task
402 TaskStatement ::= Assignment | ConstDef | VarInstance | WriteStatement | BindStatement

| ReleaseStatement | SUTStatement

403 WriteStatement ::= “write” “(“ [Cstring] “)”

404 SUTStatement ::= “sutaction” “(“ (FreeText | TemplateRefWithPara) “)”

Concrete graphical grammar
405 <task area> ::= <task symbol> contains ({TaskStatement [SemiColon]}+)

26.2.9.2. Verdict Statement
406 SetLocalVerdict ::= “setverdict” “(“ SingleExpression “)”
/* STATIC SEMANTICS - SingleExpression must resolve to a value of type verdict */
/* STATIC SEMANTICS - The SetLocalVerdict shall not be used to assign the value error. */

407 GetLocalVerdict ::= “getverdict”

Concrete graphical grammar
408 <set verdict area> ::= <condition symbol> contains VerdictValue

26.2.9.3. Return
409 ReturnStatement ::= “return” [Expression]

Concrete graphical grammar
410 <return area> ::= <return symbol> [is_associated_with Expression]

26.2.9.4. Alternative behavior
411 AltConstruct ::= “alt” “{“ AltGuardList “}”

412 AltGuardList ::= {GuardStatement [SemiColon]}+ [ElseClause [SemiColon]]

413 GuardStatement ::= AltGuardChar (AltstepInstance | GuardOp StatementBlock)

414 ElseClause ::= “[“ “else” “]” StatementBlock

415 AltGuardChar ::= “[“ [BooleanExpression] “]”

416 GuardOp ::= TimeoutStatement | ReceiveStatement | TriggerStatement |
SynchronizeStatement | CatchStatement | DoneStatement

/* STATIC SEMANTICS - GuardOp used within the module control part. Shall only contain the TimeoutStatement */

Concrete graphical grammar
417 <fgr alt area> ::= <alt symbol> is_followed_by

((<graphical guard part>}+ [<alt else part>]) set)
Page 220 of 226

418 <alt outlet symbol> ::= <alt symbol>

419 <alt else part> ::= <flow line symbol>
is_associated_with (“[“ else “]”)
is_followed_by <statement block area>
is_connected_to <alt outlet symbol>

420 <graphical guard part> ::= <flow line symbol>
[is_associated_with GuardCondition]
is_followed_by <fgr guard area>
is_followed_by <statement block area>
is_connected_to <alt outlet symbol>

421 <fgr guard area> ::= <fgr receive area> | <fgr trigger area> |
<fgr synchronize area> | <fgr catch area> |
<fgr timeout area> | <fgr done area> | <altstep instance area>

26.2.9.5. The Activate and Deactivate statements
422 ActivateStatement ::= “activate” ”(“ AltstepInstance “)”

423 DeactivateStatement ::= “deactivate” [“(“ Expression “)”]
/* STATIC SEMANTICS - expression shall evaluate to a value of default type */

Concrete graphical grammar
424 <default area> ::= <default symbol> contains (ActivateStatement | DeactivateStatement)

26.2.10. Basic Statements
425 BasicStatement ::= TimerStatement | BreakStatement | ContinueStatement | TryStatement

Concrete graphical grammar
426 <basic statement area> ::= <timer statement area> | <continue area> |

<break area> | <try statement area>

26.2.10.1.Loop Construct
427 LoopConstruct ::= ForStatement | WhileStatement | DoWhileStatement | LabeledStatement

428 ForStatement ::= “for” LoopCondition StatementBlock

429 LoopCondition ::= “(“ ForInit SemiColon BooleanExpression SemiColon ForUpdate “)”

430 ForInit ::= SingleVarInstance | Assignment

431 ForUpdate ::= Assignment

432 WhileStatement ::= “while” GuardCondition StatementBlock

433 DoWhileStatement ::= “do” StatementBlock “while” GuardCondition

434 LabeledStatement ::= “label” LabelIdentifier StatementBlock

435 LabelIdentifier ::= Identifier

436 BreakStatement ::= [GuardCondition] “break” [LabelIdentifier]

437 ContinueStatement ::= [GuardCondition] “continue” [(LabelIdentifier | “alt”)]
/* STATIC SEMANTICS - The alt option may only be used within an alt construct. */

Concrete graphical grammar
438 <fgr inline expression area> ::= <fgr for area> | <fgr while area>

| <fgr do-while area> | <fgr labeled area> | <fgr opt area>

439 <fgr for area> ::= <inline expression symbol> contains
(for LoopCondition <statement block area>)

440 <fgr while area> ::= <inline expression symbol> contains
(while GuardCondition <statement block area>)

441 <fgr do-while area> ::= <inline expression symbol> contains
(do while GuardCondition <statement block area>)

442 <fgr labeled area> ::= <inline expression symbol> contains
(label LabelIdentifier <statement block area>)

443 <continue area> ::= <repeat symbol> [is_associated_with LabelIdentifier]
[is_associated_with GuardCondition]

444 <flow line symbol> ::= <flow line symbol1> | <flow line symbol2>

445 <break area> ::= <break symbol> [is_associated_with LabelIdentifier]
[is_associated_with GuardCondition]

446 <break symbol> ::= <stop symbol>

26.2.10.2.Desision
447 DecisionConstruct ::= “if” GuardCondition StatementBlock {ElseIfClause}* [ElseClause]

448 GuardCondition ::= “[“ BooleanExpression “]”

449 ElseIfClause ::= “else” “if” GuardCondition StatementBlock

450 ChoiceConstruct ::= “choice” SingleExpression “of” “{“ ChoiceList [ElseClause] “}”

451 ChoiceList ::= {ChoiceSelector StatementBlock}*

452 ChoiceSelector ::= “[“ SingleConstExpression “]”

Concrete graphical grammar
453 <decision area> ::= <decision symbol> is_followed_by

(<decision if part> {<decision if part>}* [<decision else part>]) set
454 <decision if part> ::= <flow line symbol> is_associated_with GuardCondition

is_followed_by <statement block area>
is_connected_to <decision outlet symbol>

455 <decision outlet symbol> ::= <decision symbol>

456 <decision else part> ::= <flow line symbol>
is_associated_with (“[“ else “]”)
is_followed_by <statement block area>
is_connected_to <decision outlet symbol>

457 <choice area> ::= <decision symbol> contains SingleExpression is_followed_by
({<choice selector part>}* [<decision else part>]) set

458 <choice selector part> ::= <flow line symbol> is_associated_with ChoiceSelector
is_followed_by <statement block area>
is_connected_to <decision outlet symbol>

459 <fgr opt area> ::= <inline expression symbol> contains
(if GuardCondition <statement block area>)

26.2.10.3.Try Statement
460 TryStatement ::= “try” [“(“ TimerValue “)”] (Statement | StatementBlock) CatchesStatementList
/* STATIC SEMANTICS - TimerValue must be of type float */

461 CatchesStatementList ::= { [AltGuardChar] CatchStatement StatementBlock [SemiColon] }+

Concrete graphical grammar
462 <try area> ::= <try symbol> contains [“(“ TimerValue “)”]

is_associated_with ({<catch association area> }*
| <try statement block area>) set

463 <try statement block area> ::= <statement block area>
is_connected_to <try out-connector symbol>

464 <catch association area> ::= <solid association symbol>
[is_associated_with GuardCondition]
is_connected_to <fgr catch area>
is_followed_by <statement block area>
is_connected_to <try out-connector symbol>
Page 222 of 226

465 <try out-connector symbol> ::= <connector symbol>

26.2.10.4.Expressions
466 AssignmentList ::= -> "(" Assignment {SemiColon Assignment}* ")"
/* STATIC SEMANTICS - The assignment list must be present in conjunction with a receiving event. */

467 Assignment ::= DataObjectReference ":=" Expression
/* OPERATIONAL SEMANTICS - The Expression on the Right-Hand Side of Assignment shall evaluate to an
explicit Value of the type of the LHS(Left-Hand Side). */

468 DataObjectReference ::= [ModuleName Dot] ComponentRef [ExtendedFieldReference]

469 ExtendedFieldReference ::= { ArrayOrBitRef | (Dot (StructFieldIdentifier | ClassFieldIdentifier) }+

470 Expression ::= SingleExpression | CompoundExpression

471 CompoundExpression ::= FieldExpressionList | ArrayExpression

472 FieldExpressionList ::= “{“ FieldExpressionSpec {“,” FieldExpressionSpec}* “}”

473 FieldExpressionSpec ::= FieldReference AssignmentChar Expression

474 ArrayExpression ::= “{“ [NotUsedOrExpression {“,” NotUsedOrExpression}*] “}”

475 NotUsedOrExpression ::= Expression | “-”

476 ConstantExpression ::= SingleConstExpression | CompoundConstExpression

477 SingleConstExpression ::= SingleExpression
/* STATIC SEMANTICS - SingleConstExpression shall not contain Variables or Module parameters and shall
resolve to a constant Value at compile time */

478 BooleanExpression ::= SingleExpression
/* STATIC SEMANTICS - BooleanExpression shall resolve to a Value of type Boolean */

479 CompoundConstExpression ::= FieldConstExpressionList | ArrayConstExpression

480 FieldConstExpressionList ::= FieldExpressionList

481 ArrayConstExpression ::= “{“ [ConstantExpression {“,” ConstantExpression}*] “}”

482 SingleExpression ::= ConditionalExpression [? SimpleExpression Colon ConditionalExpression]

483 ConditionalExpression ::= LogicalExpression {(“&&” | “||”) LogicalExpression}*

484 LogicalExpression ::= SimpleExpression {LogicalOp SimpleExpression}*
/* OPERATIONAL SEMANTICS - If both SimpleExpressions and the LogicalOp exist then the SimpleExpressions
shall evaluate to specific values of compatible types */

485 SimpleExpression ::= ["not"] EqualityExpression
/* OPERATIONAL SEMANTICS - Operands of the not operator shall be of type boolean (ATDL or ASN.1) or
derivatives of type Boolean. */

486 EqualityExpression ::= RelationalExpression [("==" | "!=") RelationalExpression]
/* OPERATIONAL SEMANTICS - the precedence of the operators is defined in Table 8 */

487 RelationalExpression ::= ShiftExpression [("<" | ">" | ">=" | "<=") ShiftExpression]
| ShiftExpression “instanceof” RestrictedType
| ShiftExpression "in" ShiftExpression

/* OPERATIONAL SEMANTICS - If both ShiftExpressions and the RelOp exist then the ShiftExpressions shall
evaluate to specific values of compatible types. */
/* OPERATIONAL SEMANTICS - If RelOp is "<" | ">" | ">=" | "<=" then each ShiftExpression shall evaluate to a
specific integer, cardinal, Enumerated, real or float Value. */

488 ShiftExpression ::= BitwiseExpression [ShiftOp BitwiseExpression]
/* OPERATIONAL SEMANTICS - Each BitwiseExpression shall resolve to a specific Value. If more than one
BitwiseExpression exists the right-hand operand shall be of type integer and if the shift op is '<<' or '>>' then the left-
hand operand shall resolve to either bitstring, hexstring or octetstring type. */

489 BitwiseExpression ::= SubResult {BitOp SubResult}*
/* OPERATIONAL SEMANTICS - If both SubResults and the BitOp exist then the SubResults shall evaluate to
specific values of compatible types. */

490 SubResult ::= ["not"] AdditiveExpression | “complement” ValueList
/* OPERATIONAL SEMANTICS - If the not operator exists, the operand shall be of type bitstring, octetstring or
hexstring. */
/* OPERATIONAL SEMANTICS - Operands of the complement operator shall be of type ValueList */

491 AdditiveExpression ::= MultiplicativeExpression { (“+” | “-”) MultiplicativeExpression}*

/* OPERATIONAL SEMANTICS - Each MultiplicativeExpression shall resolve to a specific Value. If more than one
MultiplicativeExpression exists then the MultiplicativeExpressions shall resolve to type integer, cardinal, real or float.
*/
/* OPERATIONAL SEMANTICS - Operands of the "+" or "-" operators shall be of type integer, cardinal, float or real
or derivations of integer, cardinal, float or real (i.e., sub-range) */
/* OPERATIONAL SEMANTICS - Operands of the string operator “+” shall be bitstring, hexstring, octetstring or
character string */

492 MultiplicativeExpression ::= UnaryExpression {MultiplyOp UnaryExpression}*
/* OPERATIONAL SEMANTICS - Each UnaryExpression shall resolve to a specific Value. If more than one
UnaryExpression exists then the UnaryExpressions shall resolve to type integer, cardinal, real or float. */

493 UnaryExpression ::= [("+" | "-")] Primary | CastExpression
/* OPERATIONAL SEMANTICS - The Primary shall resolve to a specific Value. If UnaryOp exists and is "not" then
Primary shall resolve to type BOOLEAN. If the UnaryOp resolves to “not4b” then the Primary shall resolve to the
type bitstring, hexstring or octetstring. */
/* OPERATIONAL SEMANTICS - Operands of the "+" or "-" operators shall be of type integer, cardinal, float or real
or derivations of integer, cardinal, float or real (i.e., sub-range). */

494 Primary ::= OpCall | DataObjectReference | Value | "(" Expression ")"

495 CastExpression ::= Type “(“ SingleExpression “)”

496 OpCall ::= ConfigurationOps | GetLocalVerdict | TimerOps | TestcaseInstance | FunctionInstance
| CallStatement | BindOp | TemplateOps | ActivateStatement

497 MultiplyOp ::= "*" | "/" | "mod" | "rem"

498 BitOp ::= “and” | “xor” | “or”
/* OPERATIONAL SEMANTICS - Operands of the and4b, or4b or xor4b operator shall be of type bitstring, hexstring
or octetstring or derivatives of these types. */
/* OPERATIONAL SEMANTICS - the precedence of the operators is defined in Table 8 */

499 LogicOp ::= “&” | “^” | “|”
/* OPERATIONAL SEMANTICS - Operands of the “&, “|” or “^” operators shall be of type boolean or derivatives of
type Boolean. */

500 ShiftOp ::= "<<" | ">>" | "<@" | "@>"

26.2.11. Miscellaneous productions
501 Dot ::= "."

502 Dash ::= "-"

503 Minus ::= Dash

504 SemiColon ::= ";"

505 Colon ::= ":"

506 BeginChar ::= “{“

507 EndChar ::= “}”

508 AssignmentChar ::= “:=”

509 ATDLComments ::= “//” FreeText

Concrete graphical grammar
510 <comment area> ::= <comment symbol> contains FreeText

is_connected_to <dashed association symbol>
Page 224 of 226

27. An INRES example
The example provided here uses the ATDL specification given in this document which provides
sequential and concurrent test cases for the INRES protocol [INRES].

An ATDL test case for the connection establishment procedure is given in Table 33. The test
purpose could be stated as whether the Responder SUT is capable to accept a connect request
within a given time limit. An ATDL test case graph for the connection establishment procedure is
shown in Figure 54. The sequential test cases use the test component MTC and two channels
ISAP1 and MSAP2.

Table 33: INRES example of an ATDL test case

testcase MTCType.mi_synch1() {
 activate (OtherwiseFail); //Default activation
 ISAP1.send ({}: ICONreq); // In-line template definition
 alt {
 [] ISAP1.receive (Disconnection_Indication)
 {setverdict(inconc);} // connection failure

[] MSAP2.receive (Medium_Connection_Request) {
 MSAP2.send (Medium_Connection_Confirmation); // use of a template
 alt {
 [] MSAP2.receive (Medium_Connection_Request)
 {setverdict(inconc);} // medium connection request repetition
 [] ISAP1.receive (Disconnection_Indication)
 {setverdict(inconc); } // connection failure
 [] ISAP1.receive (Connection_Confirmation) {
 ISAP1.send (Data_Request(TestSuitePar));
 alt {
 [] ISAP1.receive (Disconnection_Indication)
 {setverdict(inconc);} // connection failure
 [] MSAP2.receive (Medium_Data_Transfer) {
 MSAP2.send (cmi_synch1);
 ISAP1.send (Disconnection_Request);
 alt {
 [] ISAP1.receive (Disconnection_Indication) {
 MSAP2.receive (Medium_Disconnection_Request)
 {setverdict(pass);}
 }
 [] MSAP2.receive (Medium_Disconnection_Request) {
 ISAP1.receive (Disconnection_Indication)
 {setverdict(pass);}
 }
 [] MSAP2.receive (Medium_Data_Transfer)
 setverdict(inconc); // medium data transfer
 } // repetition
 }
 }
 }
 }
 }
 }
 stop
} /* End of test case mi_synch1 */

Figure 54. The INRES connection establishment procedure

Testcase MTCType.mi_synch1

activate(OtherwiseFail)

{}: ICONReq

Disconnection

inconc

Medium

Medium_Connection_Confirmation

DisconnectionConnection

Data_Request
inconc inconc

IndicationConnection_Request

Medium
Connection

Request
Confirmation

(TestSuitePar)

Indication

inconc

Medium

cmi_synch1

Disconnection_Request

Medium

Medium

pass

inconc

pass

Data_Transfer
Disconnection

Indication

Disconnection
Request

Medium
Data_Transfer

Disconnection
Indication

Disconnection

Indication

Disconnection
Request
Page 226 of 226

	1. Scope
	2. References
	3. Definitions and abbreviations
	3.1. Definitions
	3.2. Abbreviations�

	4. Introduction
	4.1. General
	4.1.1. The core language and presentation formats
	4.1.2. Differences between TTCN-3 and ATDL

	4.2. ATDL overview
	4.2.1. ATDL views
	4.2.2. Statement diagram
	4.2.3. Implementation view

	4.3. Static view
	4.3.1. Relationships

	4.4. ATDL grammars
	4.5. Unanimity of the specification
	4.6. Conformance
	4.7. Comparison of ATDL, C++ and Java

	5. Basic language elements
	5.1. General
	5.2. Parameterization
	5.2.1. Static and dynamic parameterization
	5.2.2. Formal and actual parameter lists
	5.2.3. Empty formal parameter list
	5.2.4. Nested parameter lists

	5.3. Parameter semantics
	5.3.1. In and inout parameters
	5.3.2. Template parameters
	5.3.3. Out parameters
	5.3.4. String parameters
	5.3.5. Array parameters
	5.3.6. Open array parameters

	5.4. Scope rules
	5.5. Identifiers and keywords
	5.6. Division of text
	5.7. General drawing rules
	5.7.1. Comments
	5.7.2. Diagram area
	5.7.3. Diagram heading
	5.7.4. Usage of semicolons
	5.7.5. Usage of task symbols

	5.8. Variables declarations
	5.8.1. Declaration of variables within <create request symbol>s
	5.8.2. Declaration of variables within <default symbol>s
	5.8.3. Declaration of variables within <reference symbol>s

	5.9. Special terminal symbols
	5.9.1. Separators
	5.9.1.1. Statement terminator symbols

	5.9.2. Operators

	6. Abstract Object Definition Language
	6.1. Conventions for the syntax description
	6.2. AODL keywords
	6.3. GORBA/AODL basics
	6.4. Modules
	6.5. Defining group types
	6.6. Defining co-class types
	6.6.1. Co-class type inheritance
	6.6.2. Required interface types
	6.6.3. Supported interface types
	6.6.4. Co-class diagrams

	6.7. Declaring exception types
	6.8. Defining co-interface types
	6.8.1. Co-interface type inheritance
	6.8.2. Defining operational co-interface types

	6.9. Importing from modules
	6.10. Templates for sending messages
	6.11. Summary
	6.11.1. Benefits of AODL

	7. Declaring ATDL/AODL signals
	7.1. Declaring messages
	7.2. Declaring operations
	7.2.1. Procedure signatures
	7.2.2. Operation attribute
	7.2.3. parameter lists
	7.2.4. Declaring parameters
	7.2.5. Value returning remote procedures
	7.2.6. Raises expressions

	8. Declaring ATDL/AODL constants
	8.1. Constant expressions

	9. ATDL/AODL operators
	9.1. Additive Operators
	9.1.1. Unary arithmetic operators

	9.2. String operators
	9.3. Multiplicative operators
	9.4. Relational operators
	9.4.1. The class operator

	9.5. Boolean logical operators
	9.5.1. Conditional logical operator

	9.6. Bitwise operators
	9.7. Shift operators
	9.8. Rotate operators
	9.9. Primary expressions
	9.10. Typecast expressions

	10. ATDL/AODL types and values
	10.1. Simple generic types
	10.2. Basic types and values
	10.2.1. Integral types and values
	10.2.2. Character types and values
	10.2.3. Real types and values
	10.2.4. Boolean type and value
	10.2.5. Objid type and values
	10.2.6. Ordinal types
	10.2.7. AODL specific native types
	10.2.8. ATDL specific verdict types
	10.2.9. Basic string types and values
	10.2.9.1. Char string types

	10.3. Sub-typing of basic types
	10.3.1. Value Set constructors
	10.3.1.1. Value Set operators
	10.3.1.2. Lists of values

	10.3.2. Length restriction
	10.3.3. Subrange type
	10.3.3.1. Infinite ranges
	10.3.3.2. Mixing lists and ranges

	10.4. Structured types and values
	10.4.1. Parameterized type
	10.4.2. Sequence type and values
	10.4.2.1. Optional elements in a struct
	10.4.2.2. Sequence constants

	10.4.3. Choice type and values
	10.4.4. Set type and values
	10.4.4.1. Optional elements in a set

	10.4.5. Enumerated type and values

	10.5. Array type and values
	10.5.1. Dynamic arrays
	10.5.2. Array constants

	10.6. Sets of types
	10.7. Variant types
	10.8. Changes to ASN.1
	10.9. Miscellaneous productions
	10.10. Pre-defined ATDL/AODL types
	10.10.1. Useful simple basic types
	10.10.1.1. Signed and unsigned short byte integers
	10.10.1.2. Signed and unsigned small integers
	10.10.1.3. Signed and unsigned long integers
	10.10.1.4. Signed and unsigned long long integers
	10.10.1.5. IEEE 754 floats

	10.10.2. Useful character string types
	10.10.2.1. UTF-8 character string "utf8string"
	10.10.2.2. BMP character string "bmpstring"
	10.10.2.3. ISO/IEC 8859 character string "iso8859string"

	11. Modules
	11.1. Module diagram
	11.2. Naming of modules
	11.3. Module parameters
	11.3.1. Default values for module parameters

	11.4. Module definitions part
	11.5. Module control part
	11.5.1. Termination of test cases
	11.5.2. Controlling execution of test cases
	11.5.3. Test case selection
	11.5.4. Use of timers in control
	11.5.5. Control diagram

	11.6. Groups
	11.6.1. Group members
	11.6.2. Host support for groups
	11.6.3. Unique group names
	11.6.4. Declaring groups
	11.6.4.1. Unnamed group

	11.6.5. Group diagram

	11.7. Importing from modules
	11.7.1. Rules on using import
	11.7.2. Recursive import
	11.7.3. Importing single definitions
	11.7.4. Import on demand
	11.7.5. Importing groups
	11.7.6. Handling name clashes on import
	11.7.7. Import definitions from non-ATDL modules

	12. Test configurations
	12.1. Test configurations at specification level
	12.1.1. Defining association contracts
	12.1.2. Abstract test system interface
	12.1.3. Configuration diagrams
	12.1.3.1. The usage dependency

	12.2. Test configurations at instance level
	12.2.1. Channel communication model
	12.2.2. Restrictions on connections

	12.3. Defining interface types
	12.3.1. Interface diagrams
	12.3.2. The message-based interface types
	12.3.3. Operational interfaces
	12.3.3.1. Defining operational interface types
	12.3.3.2. Inheritance and Overriding
	12.3.3.3. Implementing operational interfaces
	12.3.3.4. Changing inherited implementations

	12.3.4. Interface inheritance
	12.3.5. Declaring exception types

	13. Defining classes
	13.1. Defining class types
	13.1.1. Scope of a class type name
	13.1.2. Passive object
	13.1.3. Final classes
	13.1.4. Class inheritances
	13.1.4.1. The TObject class

	13.1.5. Ancestor interfaces
	13.1.5.1. Implementation inheritance

	13.2. Class members
	13.3. Declaring properties
	13.3.1. Signal handlers

	13.4. Declaring fields
	13.4.1. Static fields
	13.4.1.1. Constant fields

	13.4.2. Initialization of fields

	13.5. Visibility of class members
	13.6. Virtual classes
	13.6.1. Method template
	13.6.2. Incarnating
	13.6.3. Method template instantiation

	13.7. Declaring methods
	13.7.1. Method implementations
	13.7.1.1. Inherited

	13.7.2. Method binding
	13.7.2.1. Class methods
	13.7.2.2. Static instance methods
	13.7.2.3. Abstract methods
	13.7.2.4. Virtual instance methods
	13.7.2.5. Final methods
	13.7.2.6. External methods

	13.7.3. Inheritance, overriding, and hiding
	13.7.3.1. Overriding versus implementing
	13.7.3.2. Hiding
	13.7.3.3. Requirements in Overriding and Hiding

	13.7.4. Overloading methods
	13.7.5. Destructors
	13.7.6. Raises expressions

	13.8. Declaring constructors
	13.8.1. Constructor body
	13.8.2. Constructor overloading
	13.8.3. Default constructor
	13.8.4. Raises expressions

	13.9. Class references
	13.10. Coordinating threads
	13.10.1. Synchronized fields
	13.10.2. Synchronized methods

	13.11. Exceptions
	13.11.1. Self-exceptions
	13.11.2. Compile-Time Checking of Exceptions
	13.11.3. Unchecked exceptions
	13.11.4. The exceptions handling
	13.11.4.1. Handling of a self-exception

	14. Declaring variables
	14.1. Kinds of variables

	15. Declaring templates
	15.1. Declaring message templates
	15.1.1. Templates for receiving messages

	15.2. Parameterization of templates
	15.2.1. Parameterization with matching attributes
	15.2.2. Templates reference

	15.3. Template matching mechanisms
	15.4. Modified templates
	15.4.1. General
	15.4.2. Parameterization of modified templates
	15.4.3. In-line modified templates

	15.5. Changing template fields
	15.6. Value of Operation
	15.7. Matching incoming values
	15.7.1. In-line matching operators
	15.7.1.1. SuperSet
	15.7.1.2. SubSet

	15.7.2. Matching specific values
	15.7.2.1. Omit

	15.7.3. Constructed value
	15.7.3.1. Value List
	15.7.3.2. Complement
	15.7.3.3. Value ranges

	15.7.4. Instead of Value
	15.7.4.1. Any value
	15.7.4.2. Any value or none

	15.7.5. Inside Values
	15.7.5.1. Any One
	15.7.5.2. Any Or None

	15.7.6. Attributes of values
	15.7.6.1. Length restriction
	15.7.6.2. The IfPresent indicator

	15.7.7. Matching character pattern

	16. Routines and method templates
	16.1. Functions
	16.2. Test cases
	16.2.1. Test case diagram
	16.2.2. Parameterization of test cases

	16.3. Overloading test cases and functions
	16.4. Altsteps
	16.4.1. Parameterization of altsteps
	16.4.2. Altstep diagram
	16.4.3. Invocation of altsteps

	16.5. Method templates
	16.5.1. Method template definition
	16.5.2. Method template explicit incarnation
	16.5.3. Name resolution in method templates

	17. Overview of program statements and operations
	17.1. Statement block
	17.1.1. Statement diagrams
	17.1.2. Statements
	17.1.3. Unreachable Statements

	17.2. Kinds of conversion
	17.2.1. Identity conversions
	17.2.2. Widening primitive conversions
	17.2.3. Narrowing primitive conversions
	17.2.4. Widening reference conversions
	17.2.5. Narrowing reference conversions
	17.2.6. Charstring conversions
	17.2.7. Forbidden Conversions

	17.3. Assignment conversion
	17.4. Method invocation conversion
	17.5. Casting conversion
	17.6. Type compatibility and identity
	17.6.1. Type identity
	17.6.2. Type compatibility
	17.6.2.1. Type compatibility of non-structured types
	17.6.2.2. Type compatibility of structured types

	18. Basic program statements
	18.1. Local variable declaration statements
	18.2. The task statements
	18.2.1. The Write statement
	18.2.2. External actions
	18.2.3. Expression statements

	18.3. The If-else statement
	18.3.1. The if statement with else branch
	18.3.2. Control icons

	18.4. The Choice statement
	18.5. The in-line expressions
	18.5.1. The labeled statement
	18.5.1.1. The page continuation

	18.5.2. The if statement without else branch
	18.5.3. The For statement
	18.5.3.1. Initialization of for statement
	18.5.3.2. Iteration of for statement

	18.5.4. The While statement
	18.5.5. The Do-while statement

	18.6. The Break statement
	18.7. The Continue statement
	18.8. The Stop execution statement

	19. Behavioural program statements
	19.1. Alternative behaviour
	19.1.1. Graphical notation
	19.1.2. Execution of alternative behaviour
	19.1.3. Selecting/deselecting an alternative
	19.1.4. Guard condition
	19.1.5. Else branch in alternatives
	19.1.6. ATDL test events
	19.1.7. Re-evaluation of alt statements
	19.1.8. Invocation of altsteps as alternatives

	19.2. The Continue statement
	19.3. The Return statement
	19.4. The Raise statement
	19.4.1. Raise a self-exception
	19.4.2. Re-raising exceptions

	19.5. Exception handling
	19.5.1. The Try statement
	19.5.2. The Catch clause
	19.5.3. Catch a remote-exception
	19.5.4. The Timeout exception
	19.5.5. The catch all handler
	19.5.6. The catch any clause

	19.6. Test verdict operations
	19.6.1. Test case verdict
	19.6.2. Verdict values and overwriting rules
	19.6.2.1. Error verdict

	19.7. Default Handling
	19.7.1. The default mechanism
	19.7.2. Default references
	19.7.3. The activate operation
	19.7.3.1. Activation of parameterized altsteps

	19.7.4. The deactivate operation

	20. Expressions
	20.1. Boolean expressions
	20.1.1. Conditional ? operator

	20.2. Primary expressions
	20.2.1. Self
	20.2.2. Parenthesized expressions

	20.3. Typecast expressions
	20.3.1. Value typecasts
	20.3.2. Variable typecasts

	20.4. Component instance creation expressions
	20.4.1. Initializing the test component
	20.4.2. Component instance

	20.5. Field access expressions
	20.5.1. Field access using an object reference
	20.5.2. Accessing inherited members

	20.6. Method invocation expressions
	20.6.1. Invocation of functions
	20.6.2. Execution of test cases
	20.6.3. Determining the method
	20.6.4. Choose the most specific method

	20.7. References for data objects
	20.7.1. Array references
	20.7.2. Record references
	20.7.3. String references

	20.8. Assignments
	20.8.1. Assignment rules for array types
	20.8.2. Assignment rules for string types

	21. Object-based programming
	21.1. Class templates
	21.1.1. Class template definition
	21.1.2. Class template instantiation
	21.1.3. Template arguments for non-generic type parameters
	21.1.4. Member methods of class templates
	21.1.5. Static members of class templates
	21.1.5.1. True constants

	21.1.6. Class template incarnations
	21.1.7. Class template partial incarnations
	21.1.8. Name resolution in class templates
	21.1.9. Groups and class templates

	21.2. Threads and operations
	21.2.1. Defining thread classes
	21.2.1.1. Declaring thread-local variables and timers
	21.2.1.2. Initializing the thread
	21.2.1.3. Active object model
	21.2.1.4. Thread object
	21.2.1.5. Thread references

	21.2.2. The Priority field (informative)
	21.2.3. The Running operation
	21.2.4. The Start thread method
	21.2.5. The Stop thread method
	21.2.5.1. The FreeOnTerminate field (informative)

	21.2.6. The Done operation
	21.2.7. The MTC, System , Sender and Self operations

	22. Communication operations
	22.1. Connection Points
	22.1.1. Simple connectable object

	22.2. Interface references
	22.2.1. Interface typecast

	22.3. General format of communication operations
	22.3.1. General format of the sending operations
	22.3.2. General format of the receiving operations
	22.3.2.1. Value assignment

	22.4. Message-based communication
	22.4.1. The Send operation
	22.4.2. The Receive operation
	22.4.3. The Trigger operation

	22.5. Operation templates
	22.5.1. Templates for invoking procedures
	22.5.2. Templates for accepting operation invocations
	22.5.3. In-line assignments for invoking operations

	22.6. Procedure-based communication
	22.6.1. The Call operation
	22.6.1.1. Calling non-blocking operations

	22.6.2. Determining the method
	22.6.3. The Synchronize operation

	22.7. Interceptors
	22.8. Channel controlling operations
	22.8.1. The Bind method
	22.8.2. The Release method
	22.8.3. The Clear channel operation
	22.8.4. The Start channel operation
	22.8.5. The Stop channel operation
	22.8.6. Use of any and all with channels

	23. Timers and operations
	23.1. Timers as parameters
	23.2. Timer class methods
	23.2.1. The Start timer operation
	23.2.2. The Stop timer method
	23.2.3. The Read timer method
	23.2.4. The Running timer operation
	23.2.5. The Timeout operation
	23.2.6. Summary of use of any and all with timers

	24. Specifying attributes
	24.1. Display attributes
	24.2. Encoding of values
	24.2.1. Encode attributes
	24.2.2. Variant attributes
	24.2.3. Special strings
	24.2.4. Invalid encodings

	24.3. Extension attributes
	24.4. Scope of attributes
	24.5. Overwriting rules for attributes
	24.6. Changing attributes of imported language elements

	25. The System module
	25.1. The Group System.lang
	25.1.1. The Class TNumber
	25.1.2. The Class TInteger
	25.1.2.1. Constructor Integer
	25.1.2.2. Get integer value
	25.1.2.3. Integer to float
	25.1.2.4. Integer to double
	25.1.2.5. Integral to bitstring
	25.1.2.6. Integer to hexstring
	25.1.2.7. Integer to octetstring
	25.1.2.8. Integer to charstring
	25.1.2.9. Parse integer charstring
	25.1.2.10. Charstring to integer
	25.1.2.11. Bitstring to integer
	25.1.2.12. Hexstring to integral
	25.1.2.13. Octetstring to integral
	25.1.2.14. Character to integer
	25.1.2.15. Wide character to integral
	25.1.2.16. Integer to character
	25.1.2.17. Integer to wide character

	25.1.3. The Class TFloat
	25.1.3.1. MIN_VALUE float := 1.4E-45f
	25.1.3.2. MAX_VALUE float := 3.4028235E38f
	25.1.3.3. NaN float := 0.0f/0.0f
	25.1.3.4. Float to integral
	25.1.3.5. Float to cardinal
	25.1.3.6. Get float value
	25.1.3.7. Float to double
	25.1.3.8. Float to charstring

	25.1.4. The Class TDouble
	25.1.4.1. NEGATIVE_INFINITY := -1.0/0.0
	25.1.4.2. POSITIVE_INFINITY := 1.0/0.0
	25.1.4.3. Double to integral
	25.1.4.4. Double to float
	25.1.4.5. Get double value
	25.1.4.6. Double to charstring

	25.1.5. The Class TBitString
	25.1.5.1. Bitstring to charstring
	25.1.5.2. Bitstring to hexstring
	25.1.5.3. Bitstring to octetstring
	25.1.5.4. The getBit function
	25.1.5.5. The setBit function
	25.1.5.6. Length of bitstring type

	25.1.6. The Class TBitStringBuffer
	25.1.7. The Class TOctetString
	25.1.7.1. Octetstring to character string
	25.1.7.2. Octetstring to hexstring
	25.1.7.3. Octetstring to bitstring
	25.1.7.4. Length of octetstring type

	25.1.8. The Class TOctetStringBuffer
	25.1.8.1. Length of hexstring type
	25.1.8.2. The setLength function
	25.1.8.3. The getOctet function
	25.1.8.4. The setOctet function

	25.1.9. The Class THexString
	25.1.9.1. Hexstring to charstring
	25.1.9.2. Hexstring to octetstring
	25.1.9.3. Hexstring to bitstring
	25.1.9.4. Length of hexstring type

	25.1.10. The Class THexStringBuffer
	25.1.10.1. Length of hexstring type
	25.1.10.2. The setLength function
	25.1.10.3. The getHex function
	25.1.10.4. The setHex function

	25.1.11. The Class TCharString
	25.1.11.1. Character string to octetstring
	25.1.11.2. Integer to charstring
	25.1.11.3. Length of charstring type
	25.1.11.4. The getChar function

	25.1.12. The Class TCharStringBuffer
	25.1.12.1. Length of charstring type
	25.1.12.2. The setLength function
	25.1.12.3. The getChar function
	25.1.12.4. The setChar function

	25.2. The Group System.io
	25.2.1. The Class DataInputStream
	25.2.1.1. The getInteger function

	25.3. Predefined functions
	25.3.1. Number of elements in a structured type
	25.3.2. The IsPresent function
	25.3.3. The IsChosen function
	25.3.4. The LowerBoundary function
	25.3.5. The UpperBoundary function

	26. ATDL BNF and static semantics
	26.1. ATDL grammars
	26.1.1. ATDL terminals
	26.1.2. Meta-language for graphical grammar
	26.1.3. Static and dynamic objects

	26.2. ATDL syntax BNF productions
	26.2.1. ATDL Module
	26.2.1.1. Concrete graphical grammar

	26.2.2. Module Definitions Part
	26.2.2.1. Typedef Definitions
	26.2.2.2. Constant Definitions
	26.2.2.3. Template Definitions
	26.2.2.4. Group Definitions
	26.2.2.5. Co-class Definitions
	26.2.2.6. Class Definitions
	26.2.2.7. Class Template Definitions
	26.2.2.8. Thread Class Definitions
	26.2.2.9. Interface Definitions
	26.2.2.10. Constructors and destructors
	26.2.2.11. Function Definitions
	26.2.2.12. Operation Definitions
	26.2.2.13. Exception Definitions
	26.2.2.14. Testcase Definitions
	26.2.2.15. Altstep Definitions
	26.2.2.16. Import Definitions

	26.2.3. Control Part
	26.2.3.1. Control Diagram
	26.2.3.2. Variable Instantiation
	26.2.3.3. Timer Instantiation
	26.2.3.4. Component Operations
	26.2.3.5. Communication Operations
	26.2.3.6. Interface Operations
	26.2.3.7. Timer Operations

	26.2.4. Type
	26.2.5. Value
	26.2.6. Parameterisation
	26.2.7. With Statement
	26.2.8. Statement Blocks
	26.2.9. Behavior Statements
	26.2.9.1. Task
	26.2.9.2. Verdict Statement
	26.2.9.3. Return
	26.2.9.4. Alternative behavior
	26.2.9.5. The Activate and Deactivate statements

	26.2.10. Basic Statements
	26.2.10.1. Loop Construct
	26.2.10.2. Desision
	26.2.10.3. Try Statement
	26.2.10.4. Expressions

	26.2.11. Miscellaneous productions

	27. An INRES example

