[image: image4.wmf]

ETSI ES/MTS-201 873-9 V1.1.1 (2006-10)
ETSI Standard

Methods for Testing and Specification (MTS);

The Testing and Test Control Notation version 3;

Part 9: Using XML Schema with TTCN-3
Reference

DES/MTS-xxx

Keywords

MTS, Testing, TTCN, XML

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://www.etsi.org/tb/status/
If you find errors in the present document, send your comment to:
editor@etsi.fr
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.

All rights reserved.
Contents

21
Scope

22
References

23
Abbreviations

24
Introduction

25
Mapping XML Schemas

25.1
Namespaces and document references

25.2
Identifier name conversion

25.3
Unsupported features

26
Built-in data types

26.1
Mapping of facets

26.1.1
length

26.1.2
minLength

26.1.3
maxLength

26.1.4
pattern

26.1.5
enumeration

26.1.6
whiteSpace

26.1.7
minInclusive

26.1.8
maxInclusive

26.1.9
minExclusive

26.1.10
maxExclusive

26.1.11
totalDigits

26.2
String types

26.2.1
token

26.2.2
string

26.2.3
hexBinary

26.2.4
base64Binary

26.2.5
anyURI

26.2.6
QName

26.2.7
NOTATION

26.2.8
normalizedString

26.2.9
language

26.2.10
NMTOKEN

26.2.11
ENTITY

26.2.12
Name

26.2.13
NCName

26.2.14
ID

26.2.15
IDREF

26.3
Integer types

26.3.1
integer

26.3.2
positiveInteger

26.3.3
nonPositiveInteger

26.3.4
negativeInteger

26.3.5
nonNegativeInteger

26.3.6
long

26.3.7
unsignedLong

26.3.8
int

26.3.9
unsignedInt

26.3.10
short

26.3.11
unsignedShort

26.3.12
byte

26.3.13
unsignedByte

26.4
Float types

26.4.1
decimal

26.4.2
ﬂoat

26.4.3
double

26.5
Time types

26.5.1
duration

26.5.2
dateTime

26.5.3
time

26.5.4
date

26.5.5
gYearMonth

26.5.6
gYear

26.5.7
gMonthDay

26.5.8
gDay

26.5.9
gMonth

26.6
Sequence types

26.6.1
NMTOKENS

26.6.2
IDREFS

26.6.3
ENTITIES

26.7
Boolean type

27
Mapping XSD components

27.1
Attributes of XSD component declarations

27.1.1
id

27.1.2
ref

27.1.3
name

27.1.4
minOccurs and maxOccurs

27.1.5
default and fixed

27.1.6
form

27.1.7
type

27.1.8
mixed

27.1.9
abstract

27.1.10
block and final

27.2
schema component

27.3
element component

27.4
attribute components

27.5
simpleType components

27.5.1
Derivation by restriction

27.5.2
Derivation by list

27.5.3
Derivation by union

27.6
complexType components

27.6.1
complexType containing simpleContent

27.6.1.1
Extending simpleContent

27.6.1.2
Restricting simpleContent

27.6.2
complexType containing complexContent

27.6.2.1
Extending complexContent

27.6.2.2
Restricting complexContent

27.6.3
group components

27.6.4
all content

27.6.5
choice content

27.6.5.1
choice with nested element

27.6.5.2
choice with nested group

27.6.5.3
choice with nested choice

27.6.5.4
choice with nested sequence

27.6.5.5
choice with nested any

27.6.6
sequence content

27.6.6.1
sequence with nested element content

27.6.6.2
sequence with nested group content

27.6.6.3
sequence with nested choice content

27.6.6.4
sequence with nested sequence content

27.6.6.5
sequence with nested any content

27.6.7
attributeGroup components

27.7
annotation

2Annex A (normative): XSDAUX.ttcn3

2Annex B (informative): Examples

2Example 1

2Example 2

2Example 3

2Example 4

2Annex C (informative): History

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://www.etsi.org/ipr).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
1 Scope

The present document defines the mapping rules for W3C Schema (as defined in [5, 6]) to TTCN-3 (as defined in ES 201 873-1 [1]) to enable testing of XML-based systems, interfaces and protocols. It is part 9 of a multi-part deliverable covering the Testing and Test Control Notation version 3, as identified below:
Part 1:
"TTCN-3 Core Language";
Part 2:
"TTCN-3 Tabular presentation Format (TFT)";

Part 3:
"TTCN-3 Graphical presentation Format (GFT)";

Part 4:
"TTCN-3 Operational Semantics";
Part 5:
"TTCN-3 Runtime Interface (TRI)";
Part 6:
"TTCN-3 Control Interface (TCI)";

Part 7:
"Using ASN.1 with TTCN-3";
Part 8:
"Using IDL with TTCN-3";
Part 9:
"Using XML Schema with TTCN-3";

Part 10:
"Using C/C++ with TTCN-3".
The specification of other mappings is outside the scope of the present document.

This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).

2 References

For the purpose of this ETSI Standard (ES) the following references apply:

[1]
ETSI ES 201 873-1: 2005-06, "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language", Version 3.1.1
[2]
W3C XML: 2004, Extensible Markup Language (XML) 1.1, W3C Recommendation, World Wide Web Consortium, http://www.w3.org/TR/xml11.

[3]
W3C XML Namespaces: 1999, Namespaces in XML, W3C Recommendation, World Wide Web Consortium, http://www.w3.org/TR/1999/REC-xmlnames-19990114, http://www.w3.org/XML/Schema

[4]
W3C XML Schema: 2004, XML Schema Part 0: Primer, W3C Recommendation, World Wide Web Consortium, http://www.w3.org/TR/xmlschema-0

[5]
W3C XML Schema: 2004, XML Schema Part 1: Structures, W3C Recommendation, World Wide Web Consortium, http://www.w3.org/TR/xmlschema-1

[6]
W3C XML Schema: 2004, XML Schema Part 2: Datatypes, W3C Recommendation, World Wide Web Consortium, http://www.w3.org/TR/xmlschema-2

[7]
IETF RFC 3986: 2005, "Uniform Resource Identifiers (URI): Generic Syntax"

[8]
W3C SOAP version 1.2 Specification: 2003, W3C Recommendation, World Wide Web Consortium, http://www.w3.org/TR/soap12
[9]
I. Schieferdecker, B. Stepien: Automated Testing of XML/SOAP based Web Services, 13. Fachkonferenz der Gesellschaft für Informatik (GI) Fachgruppe "Kommunikation in verteilten Systemen" (KiVS), Leipzig, 26.-28. Feb. 2003.

[10]
Dafina Maria Jeaca: XML Schema to TTCN-3 Mapping: Importing XMLSchema datatypes into TTCN-3, MSc Thesis, Politehnica University of Bucharest, Department of Computer Science, September 2004.

3 Abbreviations

For the purpose of the present document, the following abbreviations apply:

ASN.1
Abstract Syntax Notation One

TTCN-3
Testing and Test Control Notation

URI
IETF Uniform Resource Identifier

W3C
World Wide Web Consortium

XML
W3C Extensible Markup Language

XSD
W3C XML Schema
SOAP
Simple Object Access Protocol


The whitespace character

4 Introduction

An increasing number of distributed applications use the XML format to exchange data for various purposes like data bases queries or updates or event telecommunications operations such as provisioning. All of these data exchanges follow very precise rules for data format description in the form of Document Type Description (DTD) [2, 3] or more recently the proposed XML Schemas [4, 5, 6]. There are even some XML based communication protocols like SOAP [8] that are based on XML Schemas. Like any other communication-based systems, components and protocols, XML based systems, components and protocols are candidates for testing using TTCN-3 [1]. Consequently, there is a need for establishing a mapping between XML data description techniques like DTD or Schemas to TTCN-3 standard data types.

The core language of TTCN-3 is defined in ES 201 873-1 [1] and provides a full text-based syntax, static semantics and operational semantics as well as a definition for the use of the language with ASN.1 in part 7 of the standard. The XML mapping provides a definition for the use of the core language with XML Schema structures and types, enabling integration of XML data with the language as shown in Figure 1.

[image: image1.wmf]

TTCN

-

3

Core

Language

Presentation

format

n

TTCN

-

3 User

ASN.1 Types

& Values

Other Types

& Values

 n

Graphical

format

X

SD Types

The shaded boxes are not

defined in this document

Tabular

format

Figure 1: User's view of the core language and the various presentation formats

5 Mapping XML Schemas

There are two approaches to the integration of XML Schema and TTCN-3, which will be referred to as implicit and explicit mapping. The implicit mapping makes use of the import mechanism of TTCN-3, denoted by the keywords language and import. It facilitates the immediate use of data specified in other languages. Therefore, the definition of a specific data interface for each of these languages is required. The explicit mapping translates XML Schema definitions directly into appropriate TTCN-3 language artefacts.
The present document defines the mapping rules that have to be used by both of the approaches. XML DTDs need to be translated first into XML Schema before being mapped to TTCN-3. This may be done easily using available free or commercial tools.
This document is structured in two distinct parts:

Chapter 6 “Built-in data types” defines the TTCN-3 mapping for all basic XSD data types like strings (see clause 6.2), integers (see clause 6.3), floats (see clause 6.4), etc. and facets (see clause 6.1) that allow for a simple modification of types by restriction of their properties (e.g. restricting the length of a string or the range of an integer).

Chapter 7 “Mapping XSD components” covers the translation of more elaborate structures that are formed using the components shown in Table 1 and a set of XSD attributes (see clause 7.1) which allow for modification of constraints of the resulting types.

Table 1: Overview of XSD constructs

	Element
	Defines tags that can appear in a conforming XML document.

	attribute
	Defines attributes for element tags in a conforming XML document.

	simpleType
	Defines the simplest types. They may be a built-in type, a list or choice of built-in types and they are not allowed to have attributes.

	complexType
	Defines types that are allowed to be composed, e.g. have attributes and an internal structure.

	named model group
	Defines a named group of elements.

	attribute group
	Defines a group of attributes that can be used as a whole in definitions of complexTypes.

	identity constraint
	Defines that a component has to exhibit certain properties in regard to uniqueness and referencing.

5.1 Namespaces and document references

A single XSD Schema will be translated to a single TTCN-3 Module. Any XSD include / import statements are mapped to equivalent TTCN-3 import statements.

XML namespaces are supported only by means of incorporating any namespace qualifiers into the translated TTCN-3 identifier, as TTCN-3 does not offer a namespace concept. To do this, a translator has to first bring all XSD identifers to a unique qualified form (e.g. by evaluating the targetNamespace, elementFormDefault, and attributeFormDefault attributes of the XSD schema component and the xmlns and name attribute of every XSD component and combining them to a identifiers which are unique across all used schemas) and than translate these unique qualified names to TTCN-3 identifiers as described in clause 5.2.

For sake of clarity namespaces have been omitted from all of the examples in this document.

5.2 Identifier name conversion

During the translation from XSD to TTCN-3 care has to be exercised when translating identifiers (e.g. type or field names). For different reasons a valid XSD identifier may not be valid in TTCN-3. For example it would be fine to specify both an attribute and an element of the same name in XSD. When mapped in a naïve fashion this would result in two different types with the same name in TTCN-3. A translator must therefore apply a name conversion scheme that guarantees unique identifier names in TTCN-3. As the name conversion may depend upon a concrete implementation of the TTCN-3 tool chain (e.g. not all compilers may be able to handle identifiers with prefixed underscores) the name conversion itself is not standardised.
A name conversion algorithm has to guarantee that the translated identifier name…

a) is unique within the scope it is to be used

b) contains only valid characters

c) is not a TTCN-3 keyword

d) is not a reserved word (“base” or “content”)

All identifiers within the examples of this document use the following algorithm for translation:

1. If the given type refers to a field:
Then go to rule 3

2. If the type is not named, has no id or does not references a type with a name:
Then use the name “ANONYM” and a sequential number (e.g. ANONYM1)
Else use the type’s name, id or referenced type’s name

NOTE:
The sequential number needs to be unique per module as anonymous types are not to be used outside of a module.
3. If the name is a TTCN-3 keyword or a reserved word:
Then convert the name to uppercase letters

4. If the type is not an element:
Then postfix name with two underscores and and the type (e.g. foo__attribute)

5. If the type is defined in a namespace:
Then prefix the name with the namespace’s name and an underscore (e.g. ns_foo)
5.3 Unsupported features
XSD and TTCN-3 are very distinct languages. Therefore some features of XSD have no equivivalent in TTCN-3 or make no sense when translated to the TTCN-3 language. The following list contains a compilation of these unsupported features.

a) Numeric types are not allowed to be restricted by patterns.

b) List types are not allowed to be restricted by enumerations or patterns.

c) Specifying the number of fractional digits for float types is not supported.

d) Mixed content is not supported.

e) Translation of the form attribute is not supported.

f) Translation of the abstract attribute is not supported.

g) Translation of the block attribute is not supported.

h) Translation of the final attribute is not supported.

i) All time types (see clause 6.5) restrict year to 4 digits.
6 Built-in data types

Built-in datatypes may be primitive or derived types. The latter are gained from primitive types by means of a restriction mechanism called facets. For the mapping of primitive types, a specific TTCN-3 module XSDAUX is provided which defines the relation of XSD primitive types to TTCN-3 types. In addition, specific extensions are used that allow codecs to keep track of the original XSD nature of a given TTCN-3 type.

Whenever a new simpleType is deﬁned, with the base type a built-in one, it will be mapped directly from types defined in XSDAUX:

Example:
<simpleType name="e1">

<restriction base="integer"/>

</simpleType>
Becomes
type XSDAUX.integer_ e1__simpleType;

In the following clauses both the principle mappings of facets and the translation of primitive types are given. The complete content of the XSDAUX module is given in Annex A.
6.1 Mapping of facets

Table 2 summarises the facets for the built-in types that are supported in TTCN-3. Some of them may be supported in XML Schema but have no counterpart in TTCN-3 and therefore no mark in this table.

Table 2: Mapping support for facets of built-in types

	[image: image4.wmf]
	length
	min
Length
	max
Length
	pattern
	enum.
	min
Incl.
	max
Incl.
	min
Excl.
	max
Excl.
	total
Digits
	white

Space

	string
	(
(Note 1)
	(
(Note 2)
	(
(Note 2)
	(
(Note 2)
	(
	
	
	
	
	
	(
(Note 3)

	integer
	
	
	
	
	(
	(
	(
	(
	(
	(
	

	float
	
	
	
	
	(
	(
	(
	(
	(
	
 (Note 4)
	

	time
	
	
	
	(
	(
	
	
	
	
	
	

	list
	(
	(
	(
	
	
	
	
	
	
	
	

	boolean
	
	
	
	
	
	
	
	
	
	
	

	NOTE 1: With the exception of QName which does not support length restriction.
NOTE 2: With the exception of hexBinary which does not support patterns.

NOTE 3: With the exception of some types (see clause 6.1.6).

NOTE 4: With the exception of decimal which does support totalDigits.

6.1.1 length

The facet length describes, how many units of length a value of the given simple type must have. For string and datatypes derived from string, length is measured in units of characters. For hexBinary and base64Binary and datatypes derived from them, length is measured in octets (8 bits) of binary data. For datatypes derived by list, length is measured in number of list items. A length-restricted XSD type is mapped to a corresponding length restricted type in TTCN-3, e.g.

<simpleType name="e2">

<restriction base="string">

<length value="10"/>

</restriction>
</simpleType>
Is translated to the following TTCN-3 type
type XSDAUX.string e2__simpleType length(10);
For built-in list types (see clause 6.6) the number of elements of the resulting set will be restricted. For example consider the following translation:

<simpleType name="e3">

<restriction base="NMTOKENS">

<length value="10"/>

</restriction>
</simpleType>
Mapped to TTCN-3:
type set length(10) of NMTOKEN e3__simpleType;

6.1.2 minLength

The facet minLength describes, how many units of length a value of the given simple type at least must have. It is mapped to a length restriction in TTCN-3 with a set lower boundary and an open upper boundary. Usage of the attribute fixed (see clause 7.1.5) has to be ignored. Consider this example:

<simpleType name="e4">

<restriction base="string">

<minLength value="3"/>

</restriction>
</simpleType>
Is translated to
type XSDAUX.string e4__simpleType length(3 .. infinity);
6.1.3 maxLength

The facet maxLength describes, how many units of length a value of the given simple type at most must have. It is mapped to a length restriction in TTCN-3 with a set upper boundary and a lower boundary of zero. Usage of the attribute fixed (see clause 7.1.5) has to be ignored. Consider this example:

<simpleType name="e5">

<restriction base="string">

<maxLength value="5"/>

</restriction>
</simpleType>
Is mapped to
type XSDAUX.string e5__simpleType length(0 .. 5);
6.1.4 pattern

The facet pattern describes a constraint in terms of a regular expression applied on a value space of a data type. For string based types this can be directly translated using the support in TTCN-3 for defining regular expression patterns on character sequences. It is not supported for numerical or boolean types. As the syntax for regular patterns differs between XSD and TTCN-3 a mapping of the pattern expression has to be applied. The symbols (,), |, [,], ^, - do not change and are translated directly. For the mapping of all other symbols please refer to Table 3 and Table 4.

[image: image2]
Unicode characters in XSD patterns are directly translated but the syntax changes from &#xgprc; in XSD to \q{g, p, r, c} in TTCN-3, where g, p, r, and c each represent a single hexadecimal character. Please note that in TTCN-3 only supports uppercase letters for hexadecimal characters and requires that all vallues have to be set.

Escaped characters in XSD are mapped to an escaped character in TTCN-3 or directly to the character (e.g. '.', and '+'). The double quote character must be mapped to an escaped double quote character. Character categories and blocks (like \p{Lu} or \p{IsBasicLatin}) are not supported. The correctness of the regular expression mappings themselves should be checked according to [1] Annex B.1.5. Consider the following example:
<simpleType name="e6">

<restriction base="string">

<pattern value="(ahi|eho|cre|dve)@(f|F)okus"/>

</restriction>
</simpleType>
Will be mapped to the following TTCN-3 expresion:
type XSDAUX.string e6__simpleType (pattern "(ahi|eho|cre|dve)@(f|F)okus");
6.1.5 enumeration

The facet enumeration constraints the value space to a specified set of values for a type. It is not corresponding to the enumeration construct in TTCN-3, but will be mapped to a list of supplied values instead, e.g.
<simpleType name="e7">

<restriction base="string">

<enumeration value="rock"/>

<enumeration value="paper"/>

<enumeration value="scissors"/>

</restriction>
</simpleType>
Is mapped to
type XSDAUX.string e7__simpleType ("rock", "paper", "scissors");
This mapping is done similar for other types (e.g. numerical types).
6.1.6 whiteSpace

The whiteSpace facet has no corresponding feature in TTCN-3 but is preserved for the codec using a with-clause. For example:
<simpleType name="e8">

<restriction base="string">

<whiteSpace value="replace"/>

</restriction>
</simpleType>
This can be mapped into a charstring, sending information about the whiteSpace facet to the codec.
type XSDAUX.string e8__simpleType with {

extension "whiteSpace replace"

};

For most built-in types the value of the whiteSpace facet is set to “collapse”, only the string type normalizedString (see clause 6.2.8), token (see clause 6.2.1), language (see clause 6.2.9), Name (see clause 6.2.12) and NCName (see clause 6.2.13) are allowed to specify this facet.
6.1.7 minInclusive

The minInclusive facet is only valid for numerical types. It specifies the lowest bound for a number, including the boundary. This is mapped to a range restriction in TTCN-3 with a given lower boundary and the upper boundary of the base type (or infinity if not set). Consider the following example:
Mapping of elements of type integer with minInclusive facet:

<simpleType name="e9">

<restriction base="integer">

<minInclusive value="-5"/>

</restriction>
</simpleType>
Is mapped to
type XSDAUX.integer_ e9__simpleType (-5 .. infinity);
6.1.8 maxInclusive

The maxInclusive facet is only valid for numerical types. It specifies the upmost bound for a number, including the boundary. This is mapped to a range restriction in TTCN-3 with a given upper boundary and the lower boundary of the base type (-infinity if not set). Consider the following example:
Mapping of elements of type integer with minInclusive facet:

<simpleType name="e10">

<restriction base="positiveInteger">

<maxInclusive value="100"/>

</restriction>
</simpleType>
Is mapped to
type XSDAUX.positiveInteger e10__simpleType (1 .. 100);
6.1.9 minExclusive

The mapping of minExclusive is very similar to minInclusive (see clause 6.1.7) only the given bound is not part of the range. A direct mapping of this is not possible in TTCN-3, as ranges are always including the given boundaries. To get around this a value delta needs to be defined which is the smallest possible number handled by the TTCN-3 compiler for a given type (e.g. 1 for integer types and something very small for a double). The boundary is then modified by adding the delta. Considering the mapping result of the example in clause 6.1.7 a translation with minExclusive facet would look like:

type XSDAUX.integer_ e11__simpleType (-4 .. infinity);

(The original boundary of -5 has been modified by the addition of a delta of 1).
6.1.10 maxExclusive

The mapping of maxExclusive is very similar to maxInclusive (see clause 6.1.8) only the given bound is not part of the range. A direct mapping of this is not possible in TTCN-3, as ranges are always including the given boundaries. To get around this a value delta needs to be defined which is the smallest possible number handled by the TTCN-3 compiler for a given type (e.g. 1 for integer types and something very small for a double). The boundary is then modified by subtracting the delta. Considering the mapping result of the example in clause 6.1.8 a translation with maxExclusive facet would look like:

type XSDAUX.positiveInteger e12__simpleType (1 .. 99);
(The original boundary of 100 has been modified by the subtraction of a delta of 1).
6.1.11 totalDigits

This facet defines the total number of digits a numeric value is allowed to have. It is mapped to TTCN-3 using ranges by converting the value of totalDigits to the proper boundaries of the numeric type in question, e.g.

<simpleType name="e13">

<restriction base="negativeInteger">

<totalDigits value="3"/>

</restriction>
</simpleType>
Will be translated to
type XSDAUX.negativeInteger e13__simpleType (-999 .. -1);
6.2 String types

XSD string types are generally converted to TTCN-3 as subtypes of charstring or octetstring. For an overview of the allowed facets please refer to Table 2 in clause 6.1. Following are details on the mapping of all string types of XSD.

6.2.1 token

The token type is translated to TTCN-3 using the following pattern-restricted charstring in XSDAUX:

type charstring token (pattern "([^\t\r\n]#(1,)([^\t\r\n]#(1,))#(0,))|") with {

extension "XSD:token"
};
6.2.2 string

The string type is translated to TTCN-3 as a plain charstring in XSDAUX:

type charstring string with {

extension "XSD:string"
};
6.2.3 hexBinary

The hexBinary type is translated to TTCN-3 using a plain octetstring in XSDAUX:

type octetstring hexBinary with {

extension "XSD:hexBinary"
};
A translation has to be aware of the fact that XSD hexBinary allows for the usage of lowercase letters (a, b, c, d, e, and f) for specification of values. These need to be converted to upper case for TTCN-3.

It is not legal to specify patterns for hexBinary types.
6.2.4 base64Binary

The XSD base64Binary type is translated to a pattern-restricted character string in TTCN-3. As base64Binary is defined on 4-tuples of characters in XSD and charstring is defined on single characters in TTCN-3, a mapping has to take care of length adjustments (e.g. multiplying by four during translation). It is also necessary to strip possible trailing equal signs (“=”) from the XSD input before translating, which has implications on the length as well (a translated character string might be up to three characters shorter than calculated). Please refer to [6], clause 3.2.16 for more information on the specific padding mechanism.
The base64Binary type mapped into TTCN-3 in XSDAUX ﬁle is:

type charstring base64Binary (pattern "([0-9]|[a-z]|[A-Z]|\+|/)#(0,)") with {

extension "XSD:base64Binary"
};
Consider this example regarding length adjustmens with base64Binary types:

<simpleType name="e14">

<restriction base="base64Binary">

<length value="5"/>

</restriction>

</simpleType>

The length needs to be multiplied by four to accommodate the 4-tuples of characters. Together with the length adjustment for the potentially removed padding this translates to:

type XSDAUX.base64Binary e14__simpleType length(18 .. 20);
6.2.5 anyURI

The anyURI type is containing a URI is translated to TTCN-3 as a plain charstring in XSDAUX:

type charstring anyURI with {

extension "XSD:anyURI"
};
NOTE:
Finding a general pattern to restrict a charstring to all valid URIs may be possible (for the format see [7]), but the result would be complex, therefore decision was taken against specifying such a pattern.
6.2.6 QName

The QName type is translated to TTCN-3 as a plain charstring in XSDAUX:

type charstring QName with {

extension "XSD:QName"
};
It is not legal to specify length restrictions for QName types.
6.2.7 NOTATION

The XSD NOTATION type is not translated to TTCN-3.
6.2.8 normalizedString

The normalizedString type is translated to TTCN-3 using the following pattern-restricted charstring in XSDAUX:

type charstring normalizedString (pattern "[^\n\r\t]#(0,)") with {

extension "XSD:normalizedString"
};
6.2.9 language

The language type is translated to TTCN-3 using the following pattern-restricted charstring in XSDAUX:

type charstring languageXSD (pattern "[a-zA-Z]#(1,8)(-[\w]#(1,8))#(0,)") with {

extension "XSD:language"
};
6.2.10 NMTOKEN

The NMTOKEN type is translated to TTCN-3 using the following pattern-restricted charstring in XSDAUX:

type charstring NMTOKEN (pattern "[\d\w_.:-]#(0,)") with {

extension "XSD:NMTOKEN"
};
6.2.11 ENTITY

The ENTITY type is translated to TTCN-3 using a pattern-restricted charstring in XSDAUX:

type charstring ENTITY (pattern "[\w_]#(1,)[\w\d_-.]#(0,)") with {

extension "XSD:ENTITY"
};
6.2.12 Name

The NAME type is translated to TTCN-3 using the following pattern-restricted charstring in XSDAUX:

type charstring Name (pattern "[\w_:]#(1,)[\w\d_:-.]#(0,)") with {

extension "XSD:Name"
};
6.2.13 NCName

The NCNAME type is translated to TTCN-3 using the following pattern-restricted charstring in XSDAUX:

type charstring NCName (pattern "[a-zA-Z_]#1[\w_-.]#(0,)") with {

extension "XSD:NCName"
};
6.2.14 ID

The ID type is translated to TTCN-3 using a pattern-restricted charstring in XSDAUX:

type charstring ID (pattern "[\w_]#(1,)[\w\d_-.]#(0,)") with {

extension "XSD:ID"
};
6.2.15 IDREF

The IDREF type is translated to TTCN-3 using a pattern-restricted charstring in XSDAUX:

type charstring IDREF (pattern "[\w_]#(1,)[\w\d_-.]#(0,)") with {

extension "XSD:IDREF"
};
6.3 Integer types

XSD integer types are generally converted to TTCN-3 as subtypes of integer-based types. For an overview of the allowed facets please refer to Table 2 in clause 6.1. Following are details on the mapping of all integer types of XSD.

6.3.1 integer

The integer type is not range-restricted in XSD and translated to TTCN-3 as a plain integer in XSDAUX:

type integer integer_ with {

extension "XSD:integer"
};
As “integer” is already a keyword, an underscore has to be appended to the name.

6.3.2 positiveInteger

The positiveInteger type is translated to TTCN-3 as a range-restricted integer in XSDAUX:

type integer positiveInteger (1 .. infinity) with {

extension "XSD:positiveInteger"
};
6.3.3 nonPositiveInteger

The nonPositiveInteger type is translated to TTCN-3 as a range-restricted integer in XSDAUX:

type integer nonPositiveInteger (-infinity .. 0) with {

extension "XSD:nonPositiveInteger"
};
6.3.4 negativeInteger

The negativeInteger type is translated to TTCN-3 as a range-restricted integer in XSDAUX:

type integer nonPositiveInteger (-infinity .. -1) with {

extension "XSD:negativeInteger"
};
6.3.5 nonNegativeInteger

The nonNegativeInteger type is translated to TTCN-3 as a range-restricted integer in XSDAUX:

type integer nonNegativeInteger (0 .. infinity) with {

extension "XSD:nonNegativeInteger"
};
6.3.6 long

The long type is 64bit based and translated to TTCN-3 as a plain longlong in XSDAUX:

type longlong long_ with {

extension "XSD:long"
};
As “long” is already a keyword, an underscore has to be appended to the name.

6.3.7 unsignedLong

The unsignedLong type is 64bit based and translated to TTCN-3 as a plain unsignedlonglong in XSDAUX:

type unsignedlonglong unsignedLong with {

extension "XSD:unsignedLong"
};
6.3.8 int

The int type is 32bit based and translated to TTCN-3 as a plain long in XSDAUX:

type long int with {

extension "XSD:int"
};
6.3.9 unsignedInt

The unsignedInt type is 32bit based and translated to TTCN-3 as a plain unsignedlong in XSDAUX:

type unsignedlong unsignedInt with {

extension "XSD:unsignedInt"
};
6.3.10 short

The short type is 16bit based and translated to TTCN-3 as a plain short in XSDAUX:

type short short_ with {

extension "XSD:short"
};
As “short” is already a keyword, an underscore has to be appended to the name.
6.3.11 unsignedShort

The unsignedShort type is 16bit based and translated to TTCN-3 as a plain unsignedshort in XSDAUX:

type unsignedshort unsignedShort with {

extension "XSD:unsignedShort"
};
6.3.12 byte

The byte type is 8bit based and translated to TTCN-3 as a plain byte in XSDAUX:

type byte byte_ with {

extension "XSD:byte"
};
As “byte” is already a keyword, an underscore has to be appended to the name.
6.3.13 unsignedByte

The unsignedByte type is 8bit based and translated to TTCN-3 as a plain unsignedbyte in XSDAUX:

type unsignedbyte unsignedByte with {

extension "XSD:unsignedByte"
};
6.4 Float types

XSD float types are generally converted to TTCN-3 as subtypes of float. For an overview of the allowed facets please refer to Table 2 in clause 6.1. Following are details on the mapping of all float types of XSD.

6.4.1 decimal
The decimal type is translated to TTCN-3 as a plain float in XSDAUX:
type float decimal with {

extension "XSD:decimal"
};
6.4.2 ﬂoat

The float type is translated to TTCN-3 as an IEEE754float in XSDAUX:
type IEEE754float float_ with {

extension "XSD:float"
};
As “float” is already a keyword, an underscore has to be appended to the name.
6.4.3 double

The double type is translated to TTCN-3 as an IEEE754double in XSDAUX:
type IEEE754double double with {

extension "XSD:double"
};
6.5 Time types

XSD time types are generally converted to TTCN-3 as pattern restricted subtypes of charstring. For an overview of the allowed facets please refer to Table 2 in clause 6.1. Following are details on the mapping of all time types of XSD.

6.5.1 duration

The duration type is translated to TTCN-3 using the following pattern-restricted charstring in XSDAUX:

type charstring duration (pattern "-?P([\d]+Y)#(0,)([\d]+M)#(0,1)([\d]+D)#(0,1) (T([\d]+H)#(0,1)([\d]+M)#(0,1)([\d]+(.[\d]+)#(0,1)S)#(0,1))#(0,1)") with {

extension "XSD:duration"
};
6.5.2 dateTime

The dateTime type is translated to TTCN-3 using the following pattern-restricted charstring in XSDAUX:

type charstring dateTime (pattern "-?[\d]#(4)-((0[1-9])|[10-12])-((0[1-9])|[10-31])T((0[1-9])|[10-23]):((0[1-9])|[10-59]):((0[1-9])|[10-59])(.[\d]+)#(0,1)([+-]?[\d:Z]+)#(0,1)") with {

extension "XSD:dateTime"
};
6.5.3 time

The time type is translated to TTCN-3 using the following pattern-restricted charstring in XSDAUX:

type charstring time (pattern "((0[1-9])|[10-23]):((0[1-9])|[10-59]):((0[1-9])|[10-59])(.[\d]+)#(0,1)([+-]?[\d:Z]+)#(0,1)") with {

extension "XSD:time"
};
6.5.4 date

The date type is translated to TTCN-3 using the following pattern-restricted charstring in XSDAUX:

type charstring date (pattern "-?[\d]#(4)-((0[1-9])|[10-12])-((0[1-9])|[10-31])([+-]?[\d:Z]+)#(0,1)") with {

extension "XSD:date"
};
6.5.5 gYearMonth

The gYearMonth type is translated to TTCN-3 using the following pattern-restricted charstring in XSDAUX:

type charstring gYearMonth (pattern "[\d]#(4)-((0[1-9])|[10-12])([+-]?[\d:Z]+)#(0,1)") with {

extension "XSD:gYearMonth"
};
6.5.6 gYear

The gYear type is translated to TTCN-3 using the following pattern-restricted charstring in XSDAUX:

type charstring gYear (pattern "-?\d#(4)([+-]?[\d:Z]+)#(0,1)") with {

extension "XSD:gYear"
};
6.5.7 gMonthDay

The gMonthDay type is translated to TTCN-3 using the following pattern-restricted charstring in XSDAUX:

type charstring gMonthDay (pattern "--((0[1-9])|[10-12])-((0[1-9])|[10-31])([+-]?[\d:Z]+)#(0,1)") with {

extension "XSD:gMonthDay"
};
6.5.8 gDay

The gDay type is translated to TTCN-3 using the following pattern-restricted charstring in XSDAUX:

type charstring gDay (pattern "---((0[1-9])|[10-31])([+-]?[\d:Z]+)#(0,1)") with {

extension "XSD:gDay"
};
6.5.9 gMonth

The gMonth type is translated to TTCN-3 using the following pattern-restricted charstring in XSDAUX:

type charstring gMonth (pattern "--((0[1-9])|[10-12])([+-]?[\d:Z]+)#(0,1)") with {

extension "XSD:gMonth"
};
6.6 Sequence types

XSD sequence types are generally converted to TTCN-3 as a set of their respective base types. For an overview of the allowed facets please refer to Table 2 in clause 6.1. Following are details on the mapping of all sequence types of XSD.

6.6.1 NMTOKENS

The NMTOKENS type is mapped to TTCN-3 using a set of construct of type NMTOKEN in XSDAUX:

type set of NMTOKEN NMTOKENS with {

extension "XSD:NMTOKENS"

};
6.6.2 IDREFS

The IDREFS type is mapped to TTCN-3 using a set of construct of type IDREF in XSDAUX:

type set of IDREF IDREFS with {

extension "XSD:IDREFS"

};
6.6.3 ENTITIES

The ENTITIES type is mapped to TTCN-3 using a set of construct of type ENTITY in XSDAUX:

type set of ENTITY ENTITIES with {

extension "XSD:ENTITIES"

};
6.7 Boolean type
The boolean type is mapped to TTCN-3 using as a boolean in XSDAUX:

type boolean boolean_ with {

extension "XSD:boolean"
};
As “boolean” is already a keyword, an underscore has to be appended to the name. During translation of XSD boolean values it is necessary to handle all four values that XSD allows for booleans (“true”, “false”, “0”, and “1”); “true” and “1” have to be mapped to true, whereas “false” and “0” have to be mapped to false.
7 Mapping XSD components

After mapping the basic layer of XML Schema (i.e. the built-in types) a mapping of the structures has to follow. Every structure that may appear, globally or not, needs to have a corresponding mapping to TTCN-3.

7.1 Attributes of XSD component declarations

Table 5 and Table 6 contain an overview about the major attributes that are encountered during mapping. It is not complete: special attributes that are only used by a single XSD component are described in the corresponding subclauses. Table 5 and Table 6 show which attributes are needed to be evaluated when converting to TTCN-3, depending on the XSD component to be translated.

Table 5: Attributes of XSD component declaration #1

	
[image: image3]
	element
	attribute
	simple
type
	complex
type
	simple
content
	complex
content
	group

	id
	(
	(
	(
	(
	(
	(
	(

	final
	(
	
	(
	(
	
	
	

	name
	(
	(
	(
	(
	
	
	(

	maxOccurs
	(
	
	
	
	
	
	(

	minOccurs
	(
	
	
	
	
	
	(

	ref
	(
	(
	
	
	
	
	(

	abstract
	(
	
	
	(
	
	
	

	block
	(
	
	
	(
	
	
	

	default
	(
	(
	
	
	
	
	

	fixed
	(
	(
	
	
	
	
	

	form
	(
	(
	
	
	
	
	

	type
	(
	(
	
	
	
	
	

	mixed
	
	
	
	(
	
	(
	

Table 6: Attributes of XSD component declaration #2

	
	all
	choice
	sequence
	attribute
Group
	annotation
	restriction
	list
	union
	extension

	id
	(
	(
	(
	(
	(
	(
	(
	(
	(

	name
	
	
	
	(
	
	
	
	
	

	maxOccurs
	(
	(
	(
	
	
	
	
	
	

	minOccurs
	(
	(
	(
	
	
	
	
	
	

	ref
	
	
	
	(
	
	
	
	
	

It is also necessary to consider default values for attributes coming from the original definitons of the XSD components (e.g. minOccurs is set to 1 for element components by default) when translating.

7.1.1 id

The attribute id enables a unique identification of an XSD component. They are mapped to TTCN-3 as simple type references, e.g. any component mapping to a type with name typeName and an attribute id="ID" should result in an additional TTCN-3 type declaration:

type typeName ID;
7.1.2 ref
The ref attribute may reference an id or any global type (see clause 7.2).
If the attribute is referring to an id it’s directly mapped as a simple type, e.g. a component with an attribute ref="REF" is translated to:
type REF typeName;

In the case that REF references a global type the name of the global type has to be substituted, e.g.

type globalType typeName;

7.1.3 name

The attribute name holds the specified name for an XSD component. A component without this attribute is either defined anonymously or given by a reference (see clause 7.1.2). Names are directly mapped to TTCN-3 identifiers; please refer to clause 5.2 on constraints and properties of this conversion.
7.1.4 minOccurs and maxOccurs
The minOccurs and maxOccurs attributes provide for the number of times a XSD component can appear in a context. It is translated to a length restricted set of in TTCN-3. For example a XSD component with minOccurs and maxOccurs attributes would be translated as:

<complexType name="e15">

<sequence minOccurs="5" maxOccurs="10">

<element name="foo" type="integer"/>

<element name="bar" type="float"/>

</sequence>
</complexType>
Is translated to a record (for the inner sequence, see clause 7.6.6) and a length-restricted set of:
type record ANONYM1__sequence {

XSDAUX.integer_ foo,

XSDAUX.float_ bar

}
type set length(5 .. 10) of ANONYM1__sequence e15__complexType;

If only one boundary is given, the other boundary is established by the type or default value of the XSD structure. If a boundary value is unbounded the TTCN-3 keyword infinity has to be used. Also if minOccurs has a value of 0 a translator has to make sure that the resulting type is set to optional, if in this case maxOccurs has a value of 1 the whole set of generation has to be skipped.
7.1.5 default and fixed

The default attribute assigns a default value to a component in cases where it is missing in the XML data.

The fixed attribute gives a ﬁxed constant value to a component according to the given type, so in some XML data the value of the component may be omitted.
The mapping of these special values should generate a special template alongside the translated type itself. For example:

<element name="elementDefault" type="string" default="defaultValue"/>

<element name="elementFixed" type="string" fixed="fixedValue"/>
The special value is put into a template of the previous type:

template elementDefault := "defaultValue";

template elementFixed := "fixedValue";
7.1.6 form
Mapping of the form attribute is not supported by the standard.
7.1.7 type
The type attribute holds the type information of the XSD component. The value is a reference to the global definition of simpleType, complexType or built-in type. If type is not given the component must define either an anonymous (inner) type, or contain a reference attribute (see clause 7.1.2), or use the XSD ur-type definition.

7.1.8 mixed

Mixed content is not supported. All content has to be described by a schema.
7.1.9 abstract
Mapping of the abstract attribute is not supported by the standard.
7.1.10 block and final

Mapping of the block and final attributes are not supported by the standard.
7.2 schema component

This is the root component of a XSD declaration. It is translated to the general structure of a TTCN-3 module containing all mapped types of the XSD schema. All direct children of schema are treated global and therefore need to be identifiable by id or name.

7.3 element component
A XSD element component deﬁnes a new XML element. Elements may be global (as a child of either schema or redeﬁne), in which case they are obliged to contain a name attribute or may be deﬁned locally (as a child of all, choice or sequence) using a name or ref attribute.

An example of a globally deﬁned element:

<element name="e16" type="typename"/>
is translated to:
type typename e16;
Locally defined elements will be mapped to fields, refer to clause 7.6 about examples on this kind of mapping.

Among the possible attributes an element may posses are the special attributes nillable and substitutionGroup.

The nillable attribute, when set to true, gives the possibility of an element having the special value "xsi:nill" value in any XML data. This value loosely correspondences to null in TTCN-3. As the usage of null cannot be suppressed in TTCN-3, the nillable attribute is ignored.

Mapping of the substitutionGroup attribute is not supported by the standard.
For conversion of other attributes refer to clause 7.1.
7.4 attribute components

Attributes deﬁne valid attributes for XML data and are used when defining complex types. Just like elements attributes can be deﬁned globally (as a child of schema or redeﬁne) and then be referenced from other deﬁnitions or deﬁned locally (as a child of complexType, restriction, extension or attributeGroup) without the possibility of being used outside of their context. Attributes are basically mapped in the same way as elements (see clause 7.3) and an appended with- clause marking them as attributes. For example, a globally deﬁned attribute:

<attribute name="e17" type="typename"/>
is mapped to:
type typename e17__attribute with {

extension "Attribute"
};
Locally defined attributes will be mapped to a TTCN-3 set containing a reference to the type definition they are belonging to and using either a generated name (if defined anonymously) or their assigned name. The generated structures are also appended with a with-clause marking the fields in question as attributes. Take for an example a generated with-clause for a type with two attributes foo and bar:

type set … {
… definition of fields foo and bar …

} with {

extension "Attribute: foo, bar"
};
Refer to the appropriate subsections of clause 7.6 for examples on this kind of mapping.

Besides the general attributes (as laid out in clause 7.1) attribute declarations may contain the special attribute use. The use attribute speciﬁes whether an attribute (declared inside a structured type) is mandatory or not. The values of this attribute are: optional, prohibited and required. The value required does not to be translated as the existence of values is mandatory in TTCN-3. The value prohibited is used only in case of restricting complexTypes (see clause 7.6.1.1 or 7.6.2.2 on restricting content of complex types). The value optional is translated by using the TTCN-3 keyword optional with the appropriate fields.

7.5 simpleType components

Simple types may be deﬁned globally (as child of schema and using a mandatory name attribute) or locally (as a child of element, attribute, restriction, list or union) in a named or anonymous fashion. The simpleType components are used to deﬁne new simple types by three means:

· Restricting a built-in type by applying a facet to it

· Building lists

· Building unions of other simple types.
These means are quite different in their translation to TTCN-3 and are explained in the following clauses. For the translation of attributes for simple types please refer to the general mappings defined in clause 7.1. Please note that a simpleType is not allowed to contain elements or attributes, redefinition of these is done by using complexType (see clause 7.6).
7.5.1 Derivation by restriction
For information about restricting built-in types, please refer to chapter 6 which contains an extensive description on the translation of restricted simpleType using facets to TTCN-3.

It is also possible to restrict an anonymous simple type. The translation follows the mapping for built-in datatypes, but instead of using the base attribute to identify the type to apply the facet to, the base attribute type is omitted and the type of the inner, anonymous simpleType is used. Consider the following example restricting an anonymous simpleType using a pattern facet (the bold part marks the inner simpleType):

<simpleType name="e18">

<restriction>

<simpleType>

<restriction base="string"/>

</simpleType>

<pattern value="(ahi|eho|cre|dve)@(f|F)okus"/>

</restriction>

</simpleType>
This will generate a mapping for the inner type and a restriction thereof:
type XSDAUX.string e18__simpleType (pattern "((ahi|eho|cre|dve)@(f|F)okus)#(1)");
7.5.2 Derivation by list
XSD list components are mapped to the TTCN-3 set of type. In their simplest form lists are mapped by directly using the listItem attribute as the resulting type, e.g.

<simpleType name="e19">

<list itemType="float"/>
</simpleType>
Will translate to
type set of XSDAUX.float_ e19;
When using any of the supported facets (length, maxLength, minLength) the translation is more complex and follows the mapping for built-in list types, with the difference that the base type is determined by an anonymous inner list item type (This is similar to clause 7.5.1). Consider this example:

<simpleType name="e20">

<restriction>

<simpleType>

<list itemType="float"/>

</simpleType>

<length value="3"/>

</restriction>

</simpleType>

Will map to
type set length(3) of XSDAUX.float_ e20__simpleType;
The other facets are mapped accordingly (refer to respective 6.1 clauses). If no itemType is given, the mapping has to be implemented using the given inner type (for an example refer to clause 7.5.3)

7.5.3 Derivation by union
A union is considered as a set of mutually exclusive alternatives types for a simpleType. As this is compatible with the union concept of TTCN-3 a simpleType union in XSD is mapped to a union structure in TTCN-3. e.g.

<simpleType name="e21">

<union>

<simpleType>

<restriction base="string"/>

</simpleType>

<simpleType>

<restriction base="float"/>

</simpleType>

</union>
</simpleType>
Results in the following mapping

type union e21__union {

XSDAUX.string union_1,

XSDAUX.float_ union_2
}
Using the attribute memberTypes, a union allows for a direct specification of member types as a whitespace separated list of type identifiers. The mapping to TTCN-3 is done in the same way as for the attribute listItem of the list derivation component (see clause 7.5.2).

As union fields in TTCN-3 are more limited than pure type definitions it is necessary to introduce additional types when converting more complex types (e.g. a simpleType of a length-restricted list as given as example in clause 7.5.2). To do these conversions, the introduction of an additional intermediate anonymous type is inevitable.

The only supported facet is enumeration, allowing mixing enumerations of different kinds. Consider this example:

<simpleType name="e22">

<restriction base="e21">

<enumeration value="20"/>

<enumeration value="50"/>

<enumeration value="small"/>

</restriction>
</simpleType>
Translates to

type e21__union e22__simpleType(20, 50, "small");
7.6 complexType components

The complexType is used for creating new types that contain other elements and attributes. Just like simpleType, complexType may be deﬁned globally (as child of schema or redefine). In this case the name attribute is mandatory and the resulting TTCN-3 type will be mapped to the value of this attribute. A complexType may also be deﬁned locally (as a child of element) in an anonymous fashion (without the name attribute), therefore prohibiting to be referenced from other type deﬁnitions.

The mapping of a complexType is done by translating every child that this complexType may have and subsequently combining them by using a TTCN-3 set type or direct reference. A set type has to be used when the complexType contains attributes and a direct reference is used when no additional attributes are declared. The content of a complexType consists of either a simpleContent or complexContent component or a valid combination of group, all, choice, sequence, attribute, attributeGroup or anyAttribute components (see clause 3.4.2 in document [5]). Following is a description of the mapping for the different possible content components.
7.6.1 complexType containing simpleContent
A simpleContent component is translated to types that may only have a simpleType as base. It is possible to extend or restrict the base type and to add attributes, but not elements.

7.6.1.1 Extending simpleContent
When extending simpleContent further attributes may be added to the original type. The example below extends a built-in type by adding an attribute. The mapping result of an extended simpleContent type with added attributes is always a set containing the base type as a field referenced by the reserved name base.

<complexType name="e23">

<simpleContent>

<extension base="string">

<attribute name="foo" type="float"/>

</extension>

</simpleContent>

</complexType>

Will be mapped as
type set e23__complexType {

XSDAUX.string base,

XSDAUX.float_ foo optional

} with {

extension "Attribute: foo"

};

7.6.1.2 Restricting simpleContent

To restrict simpleContent additional, more restrictive, facets are applied to the base type or to attributes of the base type. The whole type needs to be redefined in the restricted version, translating to a completely new type definition in TTCN‑3. Consider the following example for restriction of a base type:

<complexType name="e24">

<simpleContent>

<restriction base="e23">

<length value="4"/>

</restriction>

</simpleContent>

</complexType>

Is translated to

type XSDAUX.string e24__complexType length(4);

As the restricted complex type would translate to a set with only one field, the field is directly used as type. Other base types are dealt with accordingly, see clause 6.
7.6.2 complexType containing complexContent
In contrast to simpleContent, complexContent is allowed to have elements. It is possible to extend a base type by adding attributes or elements, it is also possible to restrict a base type to certain elements or attributes.

7.6.2.1 Extending complexContent

By using extension for a complexContent it is possible to add attributes, elements or groups of those (group, attributeGroup) to the complex base type. This is translated to TTCN-3 by creating a record containing a reference to the base type using the reserved word “base” and the extension components.

For an example consider the following complexType:
<complexType name="e25">

<sequence>

<element name="title" type="string"/>

<element name="forename" type="string"/>

<element name="surname" type="string"/>

</sequence>
</complexType>
The resulting mapping (according to clause 7.6.6) of the above complexType is:

type record e25__complexType {

XSDAUX.string title,

XSDAUX.string forename,

XSDAUX.string surname
}

Now a type is defined that extends foo by adding a new element
<complexType name="e26">

<complexContent>

<extension base="e25">

<sequence>

<element name="age" type="integer"/>

</sequence>

</extension>

</complexContent>
</complexType>
This translates to the TTCN-3 structure
type record e26__complexType {

e25__complexType base,

XSDAUX.integer_ age

}
As the base content and extension content are of the same structure (sequence), the extension content is directly mapped to the result structure (e26__complexType). In the case of different structures an anonymous type would be generated and referenced as content. Consider an extension with a different structure:
<complexType name="e27">

<complexContent>

<extension base="e25">

<choice>

<element name="age" type="integer"/>

<element name="birthday" type="date"/>

</choice>

</extension>

</complexContent>
</complexType>
This translates to the following TTCN-3 structures

type union ANONYM2__choice {

XSDAUX.integer_ age,

XSDAUX.date_ birthday
}
type record e27__complexType {

e25__complexType base,

ANONYM2__choice content
}
7.6.2.2 Restricting complexContent
The restriction uses a base type and restricts some of its components. This is mapped to a new type containing only the components of the restriction. In the example below anyType (any possible type) is used as the base type and it is restricted to only two elements. As the resulting type is a sequence without additional attributes a TTCN-3 record is used (see clause 7.6.6 on mapping of sequences), otherwise a set would be constructed containing base type and attributes. Take for an example:
<complexType name="e28">

<complexContent>

<restriction base="anyType">

<sequence>

<element name="size" type="nonPositiveInteger"/>

<element name="unit" type="NMTOKEN"/>

</sequence>

</restriction>

</complexContent>
</complexType>
Is translated to:
type record e28__complexType {

XSDAUX.nonPositiveInteger size,

XSDAUX.NMTOKEN unit
}
7.6.3 group components

A group component defines an atomic group of elements for inclusion in other deﬁnitions. Groups can be local (anonymous) or global (with a mandatory name or id) and may consist of a single choice, sequence or all component. This translates to a single TTCN-3 type definition which is identified by the name (resp. id) of the group. Refer to the appropriate parts of clause 7.6 for more detailed information on the mapping of choice, sequence or all structures.

7.6.4 all content

An all content structure defines an unordered collection of optional elements. This is translated in TTCN-3 as a set containing only optional fields, e.g.
<complexType name="e29">

<all>

<element name="foo" type="integer"/>

<element name="bar" type="float"/>

<element name="ding" type="string"/>

</all>

</complexType>
Is mapped to the following TTCN-3 structure:
type set e29__comnplexType {

XSDAUX.integer_ foo optional,

XSDAUX.float_ bar optional,

XSDAUX.string ding optional
}
7.6.5 choice content

A choice content defines a collection of mutually exclusive alternatives for a type. It is thus mapped to the union type in TTCN-3, as it allows only one of the components to appear in the instance. The content for a choice component may be any combination of element, group, choice, sequence or any.

The following subsections give examples of the mapping for various contents nested in a choice component.
7.6.5.1 choice with nested element

Nested elements are directly mapped to a union containing the choice’s content, e.g.

<complexType name="e30">

<choice>

<element name="foo" type="integer"/>

<element name="bar" type="float"/>

</choice>
</complexType>
Will be translated as
type union e30__complexType {

XSDAUX.integer_ foo,

XSDAUX.float_ bar
}

7.6.5.2 choice with nested group

Nested group components will be mapped along other content as a field in the union . The following example shows this with a sequence group and an element:

<group name="e31">

<sequence>

<element name="foo" type="string"/>

<element name="bar" type="string"/>

</sequence>
</group>
<complexType name="e32">

<choice>

<group ref="e31"/>

<element name="ding" type="string"/>

</choice>
</complexType>
The group is mapped to a record (it is a sequence, see clause 7.6.6) and then the choice is translated to a union:
type record e31__group {

XSDAUX.string foo,

XSDAUX.string bar

}

type union e32__complexType {

e31__group choice_1,

XSDAUX.string ding

}

7.6.5.3 choice with nested choice

A choice with a nested choice is translated as nested unions in TTCN-3, e.g.

<complexType name="e33">

<choice>

<choice>

<element name="foo" type="string"/>

<element name="bar" type="string"/>

</choice>

<element name="ding" type="string"/>

</choice>

</complexType>
Will be mapped as
type union ANONYM3__choice {

XSDAUX.string foo,

XSDAUX.string bar
}
type union e33__complexType {

ANONYM3__choice choice_1,

XSDAUX.string ding

}
7.6.5.4 choice with nested sequence

A choice with a nested sequence will be mapped to a union containing a record, e.g.
<complexType name="e34">

<choice>

<sequence>

<element name="foo" type="string"/>

<element name="bar" type="string"/>

</sequence>

<element name="ding" type="string"/>

</choice>
</complexType>
Is translated to
type record ANONYM4__sequence {

XSDAUX.string foo,

XSDAUX.string bar
}

type union e34__complexType {

ANONYM4__sequence choice_1,

XSDAUX.string ding

}

7.6.5.5 choice with nested any

As the TTCN-3 anytype is defined to be a union of all types of the present module and every other imported module, a choice containing XSD any types will translate to anytype in TTCN-3, e.g.

<complexType name="e35">

<choice>

<element name="foo" type="string"/>

<any namespace="other"/>

</choice>
</complexType>
Will translate to

type anytype e35__complexType;

7.6.6 sequence content

A sequence defines an ordered collection of components and is mapped to a record in TTCN-3. The content of a sequence may be any combination of element, group, choice, sequence or any.
The following subsections give examples of the mapping for various contents nested in a sequence component.
7.6.6.1 sequence with nested element content

Sequences that contain only elements are mapped as a plain record in TTCN-3, e.g.

<complexType name="e36">

<sequence>

<element name="foo" type="integer"/>

<element name="bar" type="float"/>

</sequence>
</complexType>
Is mapped to
type record e36__sequence {

XSDAUX.integer_ foo,

XSDAUX.float_ bar

}
7.6.6.2 sequence with nested group content
Nested group components will be mapped along other content as a field in the record. The following example shows this translation with a choice group and an element:

<group name="e37">

<choice>

<element name="foo" type="string"/>

<element name="bar" type="string"/>

</choice>
</group>
<complexType name="e38">

<sequence>

<group ref="e37"/>

<element name="ding" type="string"/>

</sequence>
</complexType>
The group is mapped to a union (it is a choice, see clause 7.6.5) and then the sequence is translated to a record:
type union e37__group {

XSDAUX.string foo,

XSDAUX.string bar

}

type record e38__complexType {

e37__group sequence_1,

XSDAUX.string ding

}

7.6.6.3 sequence with nested choice content
A sequence with a nested choice will be mapped to a record containing a union, e.g.
<complexType name="e39">

<sequence>

<choice>

<element name="foo" type="string"/>

<element name="bar" type="string"/>

</choice>

<element name="ding" type="string"/>

</sequence>
</complexType>
Is translated to
type union ANONYM5__choice {

XSDAUX.string foo,

XSDAUX.string bar
}

type record e39__complexType {

ANONYM5__choice sequence_1,

XSDAUX.string ding

}

7.6.6.4 sequence with nested sequence content
A sequence with a nested sequence is translated as nested records in TTCN-3, e.g.

<complexType name="e40">

<sequence>

<sequence>

<element name="foo" type="string"/>

<element name="bar" type="string"/>

</sequence>

<element name="ding" type="string"/>

</sequence>

</complexType>
Will be mapped as
type record ANONYM6__sequence {

XSDAUX.string foo,

XSDAUX.string bar
}
type record e40__complexType {

ANONYM6__sequence sequence_1,

XSDAUX.string ding

}
7.6.6.5 sequence with nested any content
A sequence with nested any maps to a TTCN-3 record containing an anytype (see clause 7.6.5.5), e.g.

<complexType name="e41">

<sequence>

<element name="foo" type="string"/>

<any/>

</sequence>
</complexType>
Will translate to

type record e41__complexType {

XSDAUX.string foo,

anytype sequence_1

}

7.6.7 attributeGroup components

An attributeGroup deﬁnes a group of attributes that can be included together inside other deﬁnitions. Attribute groups map to a set in TTCN-3 with all optional fields and a mandatory with-extension marking them as an attributeGroup. They are globally defined (as direct child of schema or redefine and requiring a name attribute) and locally referenced (requiring a ref attribute). If an attributeGroup is referenced within another attributeGroup all attributes referenced need to be merged in a single set. Consider the following example:
<attributeGroup name="e42">

<attribute name="foo" type="float"/>

<attribute name="bar" type="float"/>

</attributeGroup>

<attributeGroup name="e43">

<attributeGroup ref="e42"/>

<attribute name="ding" type="string"/>
</attributeGroup>
Translates to TTCN-3 as
type set e42__attributeGroup {

XSDAUX.float_ foo optional,

XSDAUX.float_ bar optional
} with {

extension "AttributeGroup"

};
type set e43__attributeGroup {

XSDAUX.float_ foo optional,

XSDAUX.float_ bar optional,

XSDAUX.string ding optional
} with {

extension "AttributeGroup"

};
If attributeGroup components are referenced from a complexType, restriction or extension, a reference to the attributeGroup is generated and inserted in the mapped construct, e.g.

<complexType name="e44">

<sequence>

<element name="ding" type="string"/>

</sequence>

<attributeGroup ref="e42"/>

</complexType>
type set e44__complexType {

XSDAUX.string ding,

e42__attributeGroup attributeGroup_1

}
7.7 annotation

An annotation is used to include additional information in the XSD data. Annotations may appear in every component and will be mapped to a corresponding comment in TTCN-3. The comment should appear in the TTCN-3 code just before the mapped structure that it belongs to. This standard does not describe a format in which the comment is to be put into the TTCN-3 code. An example may look like:
<annotation>

<appinfo>Note</appinfo>

<documentation xml:lang="en">This a helping note!</documentation>
</annotation>
And could translate to

/* Note: This is a helping note ! */

Annex A (normative): XSDAUX.ttcn3

module XSDAUX {

// String types

type charstring token(pattern "([^ \t\r\n]#(1,)([^ \t\r\n]#(1,))#(0,))|") with {

extension "XSD:token"

};

type charstring string with {

extension "XSD:string"

};

type octetstring hexBinary with {

extension "XSD:hexBinary"

};

type charstring base64Binary(pattern "([0-9]|[a-z]|[A-Z]|\ + |/)#(0,)") with {

extension "XSD:base64Binary"

};

type charstring anyURI with {

extension "XSD:anyURI"

};

type charstring QName with {

extension "XSD:QName"

};

type charstring normalizedString (pattern "[^\n\r\t]#(0,)") with {

extension "XSD:normalizedString"

};

type charstring languageXSD (pattern "[a-zA-Z]#(1,8)(-[\w]#(1,8))#(0,)") with {

extension "XSD:language"

};

type charstring NMTOKEN (pattern "[\d\w_.:-]#(0,)") with {

extension "XSD:NMTOKEN"

};

type charstring ENTITY (pattern "[\w_]#(1,)[\w\d_-.]#(0,)") with {

extension "XSD:ENTITY"

};

type charstring Name (pattern "[\w_:]#(1,)[\w\d_:-.]#(0,)") with {

extension "XSD:Name"

};

type charstring NCName (pattern "[a-zA-Z_]#1[\w_-.]#(0,)") with {

extension "XSD:NCName"

};

type charstring ID (pattern {"[\w_]#(1,)[\w\d_-.]#(0,)") with {

extension "XSD:ID"

};

type charstring IDREF (pattern "[\w_]#(1,)[\w\d_-.]#(0,)") with {

extension "XSD:IDREF"

};

// Integer types

type integer integer_ with {

extension "XSD:integer"

};

type integer positiveInteger (1 .. infinity) with {

extension "XSD:positiveInteger"

};

type integer nonPositiveInteger (-infinity .. 0) with {

extension "XSD:nonPositiveInteger"

};

type integer nonPositiveInteger (-infinity .. -1) with {

extension "XSD:negativeInteger"

};

type integer nonNegativeInteger (0 .. infinity) with {

extension "XSD:nonNegativeInteger"

};

type longlong long_ with {

extension "XSD:long"

};

type unsignedlonglong unsignedLong with {

extension "XSD:unsignedLong"

};

type long int with {

extension "XSD:int"

};

type unsignedlong unsignedInt with {

extension "XSD:unsignedInt"

};

type short short_ with {

extension "XSD:short"

};

type unsignedshort unsignedShort with {

extension "XSD:unsignedShort"

};

type byte byte_ with {

extension "XSD:byte"

};

type unsignedbyte unsignedByte with {

extension "XSD:unsignedByte"

};

// Float types

type float decimal with {

extension "XSD:decimal"

};

type IEEE754float float_ with {

extension "XSD:float"

};

type IEEE754double double with {

extension "XSD:double"

};

// Time types

type charstring duration (pattern "-?P([\d]+Y)#(0,)([\d]+M)#(0,1)([\d]+D)#(0,1) (T([\d]+H)#(0,1)([\d]+M)#(0,1)([\d]+(.[\d]+)#(0,1)S)#(0,1))#(0,1)") with {

extension "XSD:duration"

};

type charstring dateTime (pattern "-?[\d]#(4)-((0[1-9])|[10-12])-((0[1-9])|[10-31])T((0[1-9])|[10-23]):((0[1-9])|[10-59]):((0[1-9])|[10-59])(.[\d]+)#(0,1)([+-]?[\d:Z]+)#(0,1)") with {

extension "XSD:dateTime"

};

type charstring time (pattern "((0[1-9])|[10-23]):((0[1-9])|[10-59]):((0[1-9])|[10-59])(.[\d]+)#(0,1)([+-]?[\d:Z]+)#(0,1)") with {

extension "XSD:time"

};

type charstring date (pattern "-?[\d]#(4)-((0[1-9])|[10-12])-((0[1-9])|[10-31])([+-]?[\d:Z]+)#(0,1)") with {

extension "XSD:date"

};

type charstring gYearMonth (pattern "[\d]#(4)-((0[1-9])|[10-12])([+-]?[\d:Z]+)#(0,1)") with {

extension "XSD:gYearMonth"

};

type charstring gYear (pattern "-?\d#(4)([+-]?[\d:Z]+)#(0,1)") with {

extension "XSD:gYear"

};

type charstring gMonthDay (pattern "--((0[1-9])|[10-12])-((0[1-9])|[10-31])([+-]?[\d:Z]+)#(0,1)") with {

extension "XSD:gMonthDay"

};

type charstring gDay (pattern "---((0[1-9])|[10-31])([+-]?[\d:Z]+)#(0,1)") with {

extension "XSD:gDay"

};

type charstring gMonth (pattern "--((0[1-9])|[10-12])([+-]?[\d:Z]+)#(0,1)") with {

extension "XSD:gMonth"

};

// Sequence types

type set of NMTOKEN NMTOKENS with {

extension "XSD:NMTOKENS"

};

type set of IDREF IDREFS with {

extension "XSD:IDREFS"

};

type set of ENTITY ENTITIES with {

extension "XSD:ENTITIES"

};

// Boolean type

type boolean boolean_ with {

extension "XSD:boolean"

};

}

Annex B (informative): Examples

The following examples show how a mapping would look like for example XML Schemas. It is only intended to give an impression of how the different elements have to be mapped and used in TTCN-3.

Example 1

XML Schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<!-- This is an embedded example. An element with a sequence body and an attribute.

The sequence body is formed of elements, two of them are also complexTypes.-->

<xs:element name="shiporder">

<xs:complexType>

<xs:sequence>

<xs:element name="orderperson" type="xs:string"/>

<xs:element name="shipto">

<xs:complexType>

<xs:sequence>

<xs:element name="name" type="xs:string"/>

<xs:element name="address" type="xs:string"/>

<xs:element name="city" type="xs:string"/>

<xs:element name="country" type="xs:string"/>

</xs:sequence>

</xs:complexType>

</xs:element>

<xs:element name="item" >

<xs:complexType>

<xs:sequence>

<xs:element name="title" type="xs:string"/>

<xs:element name="note" type="xs:string" minOccurs="0"/>

<xs:element name="quantity" type="xs:positiveInteger"/>

<xs:element name="price" type="xs:decimal"/>

</xs:sequence>

</xs:complexType>

</xs:element>

</xs:sequence>

<xs:attribute name="orderid" type="xs:string" use="required"/>

</xs:complexType>

</xs:element>

</xs:schema>

TTCN-3 Module:
module Example1 {

import from XSDAUX all;

type record ANONYM1__sequence {

XSDAUX.string name,

XSDAUX.string ADDRESS,

XSDAUX.string city,

XSDAUX.string country

}

type record ANONYM2__sequence {

XSDAUX.string title,

XSDAUX.string note optional,

XSDAUX.positiveInteger quantity,

XSDAUX.decimal price

}

type record ANONYM3__sequence {

XSDAUX.string orderperson,

ANONYM1__sequence shipto,

ANONYM2__sequence item

}

type set ANONYM4__complexType {

ANONYM3__sequence content,

XSDAUX.string orderid

} with {

extension "Attribute: orderid"

}

type ANONYM4__complexType shiporder;

}

Example 2

XML Schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema">

<xs:simpleType name="S1">

<xs:restriction base="xs:integer">

<xs:maxInclusive value="2"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="S2">

<xs:restriction base="S1">

<xs:minInclusive value="-23"/>

<xs:maxInclusive value="1"/>

</xs:restriction>

</xs:simpleType>

<xs:simpleType name="S3">

<xs:restriction base="S2">

<xs:minInclusive value="-3"/>

<xs:maxExclusive value="1"/>

</xs:restriction>

</xs:simpleType>

<xs:complexType name="C1">

<xs:simpleContent>

<xs:extension base="S3">

<xs:attribute name="A1" type="xs:integer"/>

<xs:attribute name="A2" type="xs:float"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>
</xs:schema>
TTCN-3 Module:

module Example2 {

import from XSDAUX all;

type XSDAUX.integer_ S1__simpleType (-infinity .. 2);

type S1__simpleType S2__simpleType (-23 .. 1);

type S2__simpleType S3__simpleType (-3 .. 0);

type set C1__complexType {

S3__simpleType base,

XSDAUX.integer_ A1 optional,

XSDAUX.float_ A2 optional

} with {

extension "Attribute: A1, A2"

}

}
Example 3

XML Schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns="nsA" targetNamespace="nsA">

<xs:complexType name="C1">

<xs:simpleContent>

<xs:extension base="xs:integer">

<xs:attribute name="A1" type="xs:integer"/>

<xs:attribute name="A2" type="xs:integer"/>

</xs:extension>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="C2">

<xs:simpleContent>

<xs:restriction base="C1">

<xs:minInclusive value="23"/>

<xs:maxInclusive value="26"/>

<xs:attribute name="A1" type="xs:byte" use="required"/>

<xs:attribute name="A2" type="xs:negativeInteger"/>

</xs:restriction>

</xs:simpleContent>

</xs:complexType>

<xs:complexType name="C3">

<xs:simpleContent>

<xs:restriction base="C2">

<xs:minInclusive value="25"/>

<xs:maxInclusive value="26"/>

</xs:restriction>

</xs:simpleContent>

</xs:complexType>

</xs:schema>
TTCN-3 Module:
module Example3 {

import from XSDAUX all;

type set nsA_C1_complexType {

XSDAUX.integer_ base,

XSDAUX.integer_ A1 optional,

XSDAUX.integer_ A2 optional

} with {

extension "Attribute: A1, A2"

}

type XSDAUX.integer_ ANONYM1_simpleType (23 .. 26);

type set nsA_C2_complexType {

ANONYM1_simpleType base,

XSDAUX.byte_ A1,

XSDAUX.negativeInteger A2 optional

} with {

extension "Attribute: A1, A2"

}

type XSDAUX.integer_ nsA_C3_complexType (25 .. 26);

}

Example 4

XML Schema:

<xs:schema xmlns:xs="http://www.w3.org/2001/XMLSchema" xmlns:NA="nsA" targetNamespace="nsA">

<xs:include schemaLocation="Example3.xsd"/>

<xs:import schemaLocation="Example2.xsd"/>

<xs:complexType name="newC1">

<xs:complexContent>

<xs:extension base="NA:C1"/>

</xs:complexContent>

</xs:complexType>

<xs:simpleType name="newS1">

<xs:restriction base="S1"/>

</xs:simpleType>

</xs:schema>

TTCN-3 Module:
module Example4 {

import from XSDAUX all;

import from Example2 language "XMLSchema" all;

import from Example3 language "XMLSchema" all;

type Example3.nsA_C1__complexType nsA_newC1__complexType;

type Example2.S1__simpleType nsA_newS1__simpleType;

}

Annex C (informative): History

	Document history

	V1.0.0
	March 2004
	ToC

	V1.0.0
	March 2005
	First stable draft

	V1.0.0
	July 2006
	Corrected Draft

	V1.0.0
	October 2006
	Finalised Draft

	
	
	

type

facet

Table � SEQ Table * ARABIC �3�: Translation of special characters

XSD�
TTCN-3�
�
.�
?�
�
\s�
[\t\n\r]�
�
\S�
[^\t\n\t]�
�
\d�
\d�
�
\D�
[^\d]�
�
\w�
\w�
�
\W�
[^\w]�
�
\i�
[\w\d:]�
�
\I�
[^\w\d:]�
�
\c�
[\w\d.\-_:]�
�
\C�
[^\w\d.\-_:]�
�

Table � SEQ Table * ARABIC �4�: Translation of quantifiers

XSD�
TTCN-3�
�
?�
#(0,1)�
�
+�
#(1,)�
�
*�
#(0,)�
�
{n,m}�
#(n,m)�
�
{n}�
#(n)�
�
{n ,}�
#(n,)�
�

component

attribute

component

attribute

_1220274101.doc

Tabular format

The shaded boxes are not defined in this document

�XSD Types

Graphical format

Other Types & Values n

ASN.1 Types & Values

TTCN-3 User

Presentation formatn

TTCN-3 Core

Language

_1001833466.doc
������

