ETSI/MTS(06)#43
43TD12
Sophia Antipolis
page 1 of 41
10-12 October 2006
MTS#43

43TDxx
Sophia Antipolis, 10-12 October 2006
page 2 of 2

Source:
Rapporteur (Steve Randall)
steve.randall@pqmconsultants.com
Title:
Draft ES 202 553: TPLan, A notation for expressing Test Purposes
	Decision
	X

	Discussion
	X

	Information
	

Document for:

TD <>
ETSI ES 202 553 V0.0.7 (2006-10)
Technical Specification
Methods for Testing and Specification (MTS);

TPLan: A notation for expressing test Purposes
<
Reference

DES/MTS-00100-TPLan
Keywords

Languages, methodology, testing, TTCN
ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2005.

All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

Contents

5Intellectual Property Rights

5Foreword

61
Scope

62
References

63
Definitions and abbreviations

63.1
Definitions

73.2
Abbreviations

84
Introduction

84.1
TPLan: A formal notation for expressing test purposes

84.2
The Test Suite Structure

84.3
Areas of application

94.4
Limitations of TPLan

105
Definition of TPLan

105.1
TPLan keywords

105.2
Case sensitivity

105.3
Comments

115.4
TPLan identifiers

115.5
Uniqueness of identifiers

126
TSS Header

126.1
Standard TSS header entries

126.2
User defined TSS Header entries

137
Cross references

137.1
References to base standards

137.2
References to test configurations

148
User definitions

148.1
User defined words

148.2
User-defined headers

148.3
User-defined test entities

148.4
User-defined messages and fields

158.5
User defined values

158.6
User defined conditions

169
Groups

1710
TP Header

1710.1
Standard TP Header entries

1710.2
User defined TP Header entries

1811
TP body

1811.1
TP body structure

1811.2
TP pre-conditions

1911.3
TP actions

1911.4
TP responses

2011.5
Precedence of TPLan statements

2011.6
Other behavioural statements

2011.7
Using user defined test entities, states and words

2111.8
Glue words and readability

22A.1
Syntactic Rules

22A.2
TPLan EBNF Productions

27B.1
IPT naming conventions

27B.1.1
IPT identifiers

27B.1.2
The Requirements Identifier

27B.1.3
The Configuration Identifier

27B.1.4
The Test Purpose Identifier

27B1.5
The Test Case Identifier

28B1.6
The Test Description Identifier

29B.2
IPT cross references

29B.2.1
References to the Requirements Catalogue

29B.2.2
References to test configurations

30C.1
IPv6 Interoperability Test Purposes

35C.2
QSIG Interoperability Test Purposes

37C.3
ISDN Conformance Test Purposes

39History

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Specification (TS) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).

1
Scope

This ETSI Standard specifies the syntax and use of a notation for the definition of Test Purposes, TPLan. This notation provides a structure and a common set of English keywords for the specification of Test Purposes. The basic notation is oriented towards testing of reactive, black-box communication systems and uses terminology derived from ISO 9646‑1 [4]. However, facilities are also included to allow users to extend the notation with application‑specific keywords of their own.

The use of TPLan as the means of specifying Test Purposes is optional but, if it is used, the requirements specified in the present document shall be met.
2
References

The following documents contain provisions which, through reference in this text, constitute provisions of the present document.

· References are either specific (identified by date of publication and/or edition number or version number) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· For a non-specific reference, the latest version applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

[1]
ETSI ES 201 873‑1 (2005): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language"

[2]
ETSI TS 102 237-1 (V4.1.1): "Telecommunications and Internet Protocol Harmonization Over Networks (TIPHON) Release 4; Interoperability test methods and approaches; Part 1: Generic approach to interoperability testing"
EDITOR'S NOTE: Should update to new IOP (MTS) when/if ready
[3]
ETSI TS 102 351 (2005): "Methods for Testing and Specification (MTS); Internet Protocol Testing (IPT); IPv6 Testing: Methodology and Framework"

EDITOR'S NOTE: Should update to generic framework when/if ready
[4]
ISO/IEC 9646-1 (1992): "Information Technology - Open Systems Interconnection - Conformance Testing Methodology and Framework - Part 1: General concepts".
EDITOR'S NOTE: Check if part 2 needed as well
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:
notation: a textual means of representing ideas
programming language: an artificial language that can be used to control the behaviour of a machine

test case: a specification of the actions required to achieve a specific test purpose, starting in a stable testing state, ending in a stable testing state and defined in either natural language for manual operation or in a machine‑readable language (such as TTCN-3) for automatic execution

test description: a systematic specification of the test steps (generally in tabulated text) that must be taken to reach a specific test verdict
test purpose: a description of a well-defined objective of testing, focussing on a single interoperability requirement or a set of related interoperability requirements.
test suite: a completely defined set of test cases

test suite structure: a logical grouping of test purposes and test cases which should be both relevant and convenient
3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

EUT
Equipment Under Test

IUT
Implementation Under Test

PICS
Protocol Implementation Conformance Statement

MSC
Message Sequence Chart

QE
Qualified Equipment

RFC
Request For Comments (IETF terminology for a draft standard)

RQ
Requirement

TC
Test Case

TD
Test Description

TP
Test Purpose

TSS
Test Suite Structure

TTCN-3
Testing and Test Control Notation edition 3

4
Introduction
4.1
TPLan: A formal notation for expressing test purposes

ISO9646 [4] recommends that test specifications include a concise and unambiguous description of each test which focuses on its purpose. These Test Purposes, or TPs, define what is to be tested rather than how the testing is performed. The TPs are based on the requirements identified in the relevant standard (or standards) from which the test specification is derived. The detailed coding of each Test Purpose is specified in a Test Case. Often Test Cases, or TCs, are written in a test specification language such as TTCN-3 [1]. The specification of Test Cases is outside the scope of this present document.

Generally, Test Purposes are written in prose (possibly displayed in a tabular format). There is considerable benefit to be gained by having all TPs written in a similar and consistent way. With this in mind, a simple, structured notation called TPLan (Test Purpose Language) has been developed for the expression of TPs.
The benefits of using TPLan are:
· consistency in test purpose descriptions - less room for misinterpretation;

· clear identification of the TP pre-conditions, test description, and verdict criteria;

· automatic syntax checking and syntax highlighting in text editors;

· a basis for a TP transfer format and representation in tools;

· possible stub code generation (e.g., MSC or TTCN-3);

· possibility to graphically or textually render TP descriptions for different kinds of users.

4.2
Extensibility of TPLan

TPLan provides a framework for a consistent representation (format, layout, structure and logical ordering) and a consistent use of words and patterns of words for expressing TPs. This is achieved without unnecessarily restricting the expressive power of pure prose.

TPLan allows the use of keywords in combination with free-text strings (enclosed by single quotes). Thus, the TP writer has considerable freedom of expression in the use of unstructured text between the keywords.
The basic set of pre-defined TPLan keywords has been kept to a minimum. These keywords are mainly concerned with providing structure to the TPs. The intention is that this set of keywords is extended by the user for specific testing applications through the use of user-defined keywords (see clause 8).

4.3
The Test Suite Structure

Test Purposes may be grouped in a logical, tree-like structure. This structure is known as the Test Suite Structure, or TSS. The combination of structure and Test Purposes is known as the TSS&TP [4].

The general composition of a TPLan TSS&TP is as follows:

 TSS Header

-- title, author, version etc.
 Cross References
-- references to base standards, configuration descriptions etc.
 Definitions

-- user-defined words, events, test entities, conditions, headers etc.
 TSS Groups

-- if any and possibly nested
 Test Purposes

-- contained in the groups (if any)

4.4
Areas of application

TPLan is not specific to a particular type or area of testing. The fundamental set of predefined TPLan keywords is oriented towards conformance and interoperability testing (keywords such as IUT, TESTER and TD) but the extensibility of the language means that the user can adapt TPLan to a wide range of testing contexts.

TPLan keywords such as sends, receives, discards and rejects have no explicit semantics in the language itself. Their meaning is derived from how these words are used in the relevant base standards and in any given testing context.

4.5
Limitations of TPLan

The TPLan grammar provides limited syntax checking and an enhanced visual representation of the TP in, for example, a syntax sensitive text editor. However, in order to retain expressive power, TPLan is only loosely defined in that no strict relation between certain words (especially the user-defined words) is specified. Thus, it is possible to write nonsensical constructions if care is not taken. Of course, appropriate tools may be able to identify such constructions but there are no constructs for doing this explicitly in the notation.

5
Definition of TPLan
5.1
TPLan keywords

The TPLan keywords are listed in .

Table 1: TPLan keywords

	TSS header keywords
	Test entity keywords

	author
	IUT

	date
	TESTER

	title
	TPLan glue words

	TSS
	a

	version
	an

	Cross-references keywords
	as

	xref
	in

	Definitions keywords
	is

	condition
	no

	context
	of

	def
	the

	entity
	Logical words

	event
	and

	value
	not

	word
	or

	TP grouping keywords
	Stimulus and Response words

	end
	receives

	group
	sends

	objective
	Data-related words

	TP header keywords
	containing

	config
	indicating

	id
	Direction-related words

	ref
	from

	role
	to

	RQ
	Time- and order-related words

	summary
	after

	TC
	before

	TD
	ordered

	TP
	within

	TP body keywords
	State- and Condition-related words

	ensure
	state

	that
	

	with
	

	when
	

	then
	

5.2
Case sensitivity

For conciseness and with a few notable exceptions, the keywords in table 1 are shown in lower-case. However, TPLan keywords are not fully case sensitive and may be capitalized. For example, the keyword group may also be written as Group.
Other combinations of upper- and lower-case letters in keywords should be strictly avoided.
Certain keywords such as TP, IUT, PICS, RQ, TC, TD and TESTER should always appear in upper case.

5.3
Comments

Comments shall be introduced by the string "--" and terminated at the end of the same line.
5.4
TPLan identifiers
Because TPLan is not a true programming language, letters and numbers as well as special characters may be used in a TPLan identifier, as follows:

· alphabetic
· a..z;
· A..Z;
· numeric
· 0..9;
· special characters
· |._-&%$*@?!></\#
Typical TPlan identifiers are TP identifier, event names, cross reference identifiers and requirements identifiers. For example:
 MyTSS&TP

 TP_UMTS_0789_01
 RQ_001_789
 REQ3952.Arev2
 CONF/HOST/INVALID/#75
 CF_MOB_02
 PICS_c.2

A TPLan identifier shall not contain any white space (e.g., tabs or spaces).

NOTE:
In certain contexts it can be desirable to overlay TPLan with an additional level of checking related to a particular methodology or naming convention. Generally, such overlays are outside the scope of this present document. However, the ETSI IPT Testing Framework [3] includes naming rules for TPs and other identifiers. These conventions are summarized in Annex B.
5.5
Uniqueness of identifiers

All user-defined words, headers, entities, conditions and events shall be unique in the scope of one TSS&TP. Parameter names of events shall be unique in the scope of the list in which they are declared.

No user-defined name shall be the same as any pre-defined TPLan keyword.

6
TSS Header

6.1
Standard TSS header entries

A TPLan specification (i.e., a TSS&TP) shall begin with the following headers (though not all entries are mandatory, see Annex A):

· TSS identifier

· the keyword TSS followed the formal identifier of the TTS&TP;

· Title
· the keyword title followed by the name of the TSS&TP as quoted free text;
· Version
· the keyword version followed by the version number as any number of numeric values separated by dots (".");
· Date

· the keyword date followed by three numeric values (dd.mm.yyyy or mm.dd.yyyy) separated by dots (".") or forward slash ("/") or dash ("-");
· Author

· the keyword author followed by the document author as quoted free text.

Each TSS header keyword may be followed by a colon (":").

A complete TSS&TP header:

 TSS id : UMTS_TSS

 title : 'My TSS&TP as an example'
 version : 1.0

-- other examples may be 1.0.0 or 11.01
 date : 29.11.2004
-- could also be written as 29/11/2004 or 29-11-2004
 author : 'ETSI PTCC'
6.2
User defined TSS Header entries

Additional user-defined TSS&TP headers may follow the standard headers. A user-defined TSS header may comprise one or more defined header words, followed by a list of one or more identifiers separated by commas, or a quoted string (optionally separated by a colon). For example

 TSS id : UMTS_TSS
 title : 'My TSS&TP as an example'
 version : 1.0
 date : 29.11.2004
 author : 'ETSI PTCC'
 status : 'Public' -- user-defined TSS header
A user-defined header may also use the predefined keyword ref. For example:

 3GPP ref : 'Release 7'

7
Cross references

7.1
References to base standards

For information, references to the base standards or other sources from which the TPs have been derived may be declared using the xref keyword and an identifier indicating the type of the reference, followed by a list of one or more references to the relevant documentation. For example:
 xref BaseStandards {TS123456-1, TS789345}
In the case where a PICS [4] is used the reference might be:
 xref PICS {TS123456-1, TS123456-2}

The TPLan syntax allows reference to be made in any appropriate form such as Object identifiers or URLs. For example:
 xref MyWebDocs {www.tplan.info}

NOTE:
For use of cross references within the IPT Testing Framework see Annex B.

7.2
References to test configurations

References to explicit test configurations may be made using the keyword xref followed by a configuration identifier followed by a list of one or more references to where the description (e.g., prose or drawing) can be found. For example:

 xref TestConfig1 {3GPPSpecXYZ_AnnexA_page10_fig1}
8
User definitions
8.1
User defined words

TPLan may be extended by the user with the def word keywords followed by one or more identifiers separated by commas.

 def word tunnels, forwards

For information to the reader each word definition may be followed by a description of that word as a quoted string. For example:

 def word forwards -- receive a packet on one interface and transmit
 -- that packet unchanged on another interface

These words may be used in the with, when and then statements of the TP body (see clause 11).

8.2
User-defined headers

The TSS and TP headers may be extended using the def header keywords followed by one or more identifiers separated by commas.

 def header status

For information to the reader each header definition may be followed by a description of the meaning of that header as a quoted string.

8.3
User-defined test entities

Explicit test entity names may be defined using the def entity keywords followed by one or more identifiers separated by commas.

 def entity EUT, QE

For information to the reader each entity definition may be followed by a description of the meaning of that entity as a quoted string.

These test entity names may be used in the with, when and then statements of the TP body (see clause 11).
8.4
User-defined events and parameters
Explicit event names may be defined using the def event keywords followed by one or more identifiers separated by commas. There is no strong definition of what an event is in TPLan, but typically these would be messages, timers or some other form of action. In the present document the term "message" is generally used as an example of an event and, for clarity, event parameters are referred to as message fields, or fields for short. For example,

 def event ICMP_Packet, SETUP

Optionally, the event name may be followed by a list of one or more parameter identifiers or values separated by commas. For example:

 def event SETUP {f1, f2}

 -- or

 def event T1 {30sec}

For information to the reader each event definition may be followed by a description of the meaning of that event as a quoted string.

These event and parameter names may be used in the when and then statements of the TP body (see clause 11).

NOTE:
These are abstract definitions of events and are not intended to be, for example, records or similar constructs found in common programming languages.

8.5
User defined values

Values may be defined using the def value keywords followed by one or more identifiers or literal values separated by commas.

 def value T1, 3sec, FFFF, A76.4FF.321.255, ERRCODE, 200OK

For information to the reader each value definition may be followed by a description of the meaning of that value as a quoted string.

These values may be used in the with, when and then statements of the TP body (see clause 11).

Integer values (e.g., 1, 653, 001, 0) and real values of the form number dot number (e.g., 37.12, 1.5, 0.002) are built-in and need not be explicitly defined.

8.6
User defined conditions
Conditions or states may be defined using the def condition keywords followed by one or more identifiers or literal values separated by commas.

 def condition Idle, Ready, SESSION_ESTABLISHED

For information to the reader each condition definition may be followed by a description of the meaning of that condition as a quoted string.

These conditions may be used in the with, when and then statements of the TP body (see clause 11).

8.7
Using keywords in context

If required, the use of certain keywords may be constrained to appear only in combination with other keywords. For example, a user may wish to define the word requested and restrict its use so that it can appear only in the context of is requested to.

Such restrictions shall be expressed by using the def context keywords followed by one or more predefined or user-defined keywords.

def context is ~requested to
The tilde(~) character shall be used to indicate that a particular word shall only appear in that context. Words not preceded by tilde may appear in any context. Predefined keywords shall not be preceded by tilde.

Keywords that are optional within the defined context shall be expressed by enclosing them in square brackets, for example:

def context is [not] ~requested to

-- which means that the word requested can only be used in the following contexts:

-- is requested to

-- is not requested to

NOTE:
Although the def context construct is of benefit to human readers, it can also be used by tools to automatically include additional checking.

9
Groups
The TSS (Test Suite Structure) shall be expressed using the group keyword . Groups may be nested to provide sub-grouping. The contents of a group may be other groups (sub-groups) or TPs or both sub-groups and TPs. A TSS&TP does not have to be structured but, if it is, each group in that structure shall have the following group header:

· Begin group

· the keyword group denotes the start of a new group. This keyword shall be followed by the group number and by an optional string of free text. The group number is any number of digits separated appropriately by dots ('.') except for the last number in the series (e.g., 1 or 1.9 or 1.12.3).

· Group objective

· the keyword objective followed by a quoted free text description of the objective of the test group. This entry is optional.
· End group

· the keywords end group denote the end of a group. These keywords shall be followed by the group number that corresponds to the begin group number.

An example of one group and a sub group:
 group 1 'Router(RT)' -- group number with optional free text
 objective 'Test Purposes for Router'

group 1.1 ' Router(RT)/Provide IPv6 Services(PS)' -- a sub-group

objective 'Test Purposes for IPv6 Services'
 -- TPs and/or more subgroups can go here
 end group 1.1
 -- TPs and/or more subgroups can go here
 end group 1
10
TP Header

10.1
Standard TP Header entries

Each TP shall begin with a header (though not all entries are mandatory, see Annex A):
· TP id

· the keywords TP id followed by the TP Identifier;

· TP summary
· the keyword summary followed by a free text high-level description (overview) of the TP in quotes;
· Requirements reference
· the keywords RQ ref followed by the reference identifier;
· Role

· the keyword role followed by a list of one or more identifiers indication the role or roles of the object being tested by the TP (e.g., router or host);
· Configuration reference
· the keyword config followed by a reference to the relevant testing configuration;
· The Test Case or Test Description reference

· the keywords TC ref or TD ref followed by a reference to the corresponding Test Case or Test Description.

Header keywords may be followed by a colon (":").

For example:
 TP id : TP_COR_0001
 summary : 'Test for determining the correct use of the Pad1 option'
 RQ ref : RQ_COR_0001
 role : host

 config : CF_001_C
 TC Ref : TC_COR_0001
10.2
User defined TP Header entries

Additional user-defined TP headers may follow the standard headers (see clause 8.2). A user-defined TP header may comprise one or more defined header words and the predefined keyword ref followed by a list of one or more identifiers separated by commas, or a quoted string (optionally separated by a colon). For example:

 TP id : TP_COR_0001
 summary : 'Test for determining the correct use of the Pad1 option'
 RQ ref : RQ_COR_0001
 role : host

 config : CF_001_C
 TC ref : TC_COR_0001
 select : 'Profile A'
 PICS ref : PICS_001, PICS_345 -- where PICS has previously been defined as a header and

the identifiers as xrefs
 web ref : 'www.tplan.org/profileA.htm' -- where 'web' has previously been defined as a header

11
TP body

11.1
TP body structure

The body of the TP follows the header and it is here that the Test Purpose is described in detail. The TP is generally written from the viewpoint of the Implementation Under Test (IUT).
The general structure of a TP is:

 Pre-conditions -- optional initial conditions
 TP behaviour description -- comprising sequences of:

Stimuli and Responses

Each TP behaviour description shall begin with the keywords ensure that followed by the remainder of the description enclosed in curly braces ('{' and '}').

For example:
 ensure that {

 -- TP behaviour description goes here
 }

The when and then statements describe stimuli and responses (interactions) as seen from the point of view of the IUT. Generally these are of the form:
 ensure that {
 when { ... } -- stimuli described from the viewpoint of the IUT.
 then { ... } -- IUT responses and other behaviour
 }
This pair of statements may be repeated any number of times, for example:
 ensure that {
 when { ... }
 then { ... }
 when { ... }
 then { ... }
 }

11.2
TP pre-conditions
The with statement may be used to express the initial state or condition of the IUT from which the TP description begins. If used, the with statement shall precede the ensure that statement. The with statement does not define the steps or actions needed to reach the starting condition, only the condition itself. The conditions shall be expressed as free text. Multiple conditions shall be logically concatenated using the Boolean operators and, or, not. The general format of the with statement is:
 with { IUT 'condition 1' and 'condition 2' and not ...etc...}

For example:
 with { IUT 'in idle state' and 'port80 open' }
 ensure that {
 when { ... }
 then { ... }
 }
Conditions may be defined as described in clause 8.6. In which case the condition above might be:

 with { IUT in Idle and 'port80 open' }
11.3
TP stimuli
The when statement shall express some form of stimulus. In most cases such stimuli are caused by the tester and experienced by the IUT. Typically this will be a receives statement (i.e. the IUT has received a stimulus) with the name or description of the received event.
 IUT receives 'a message'
In cases where there is more than one possible source of event (e.g., an incoming message) in the test configuration the keyword from may be added to the receives in order to identify that source.
 IUT receives 'a message' from 'some interface'
Optionally, the expected message fields may be described using the containing keyword followed by a free text description. Also optionally, the values of these fields may be described in free text following the indicating keyword or the set to keywords.

 IUT receives 'a message' containing 'description of a field'
 indicating 'expected value of a field'
Using defined message names rather than strings allows for consistency checking of message names throughout the TSS&TP. For example:

 def event AMessage {f1}
 . . .

 . . .

 IUT receives AMessge containing f1
 indicating 'expected value of a field'
Further consistency checking can be achieved by defining the source of an event as an entity, thus:
 def entity Router1
 . . .

 . . .

 IUT receives MyMessge from Router1
The keywords and, or and not may be used to concatenate and qualify actions and conditions within the when statement. For example:
 when { IUT receives 'a message' from 'node 1'
 containing 'field 1' indicating 'any valid value'
 and containing 'field 2' set to 22
 and containing 'field 3' not set to 33
 }
11.4
TP responses
The then statement shall express the expected response to the previous when statement. In most cases the response is performed by the IUT and observed by the tester. Typically this will be a sends statement followed by the name or description (expressed as free text) of the sent message.
 IUT sends 'a message'
In cases where there is more than one possible message destination in the test configuration the keyword to may be added to the sends in order to identify that destination. For example:
 IUT sends 'a message' to 'some interface'
The syntax of the contents of sent messages is the same as that for the received messages. For example:
 IUT sends 'a message' containing 'description of a field' indicating 'expected value of a field'
The keywords and, or and not may be used to concatenate and qualify responses and conditions within the then statement. For example:
 then { IUT sends 'another message' to 'node 1'
 containing 'field 3' indicating 'any valid value'
 and containing 'field 4' indicating 'any valid value'
 and IUT sends 'yet another message'
 }
As with the receives statement, user‑defined messages and field names may be used in place of quoted strings.

11.5
Precedence of TPLan statements

In cases where successive logical operations are performed in the TP body it may not be clear what the intended order of evaluation may be. Parentheses shall be used to resolve such ambiguities. For example:

 with { IUT ('condition 1' and 'condition 2') or 'condition 3'} -- is not the same as:
 with { IUT 'condition 1' and ('condition 2' or 'condition 3')}
11.6
Temporal ordering of TPLan statements

If the strict sequence of TPLan behavioural statements is important, this shall be expressed using the pre-defined words ordered, before and after. For example,

 when {IUT receives message1

 before IUT receives message2 }

 then {}

Statements may also be enclosed by parentheses to make the intended sub-ordering clear. For example,

 when {IUT receives message1

 (before IUT receives message2

 before IUT receives message3)}

 then {}

Normally, sequential TPLan statements shall be evaluated in the order that they appear. For example, the following TPLan:

 when { IUT receives A

 and IUT receives B}

means that the IUT shall respond to the receipt of message A followed by message B. Using the keyword ordered (as in the example below) does not change the order evaluation, but in long sequences of events it may be useful to explicitly state this.

 when { ordered (IUT receives A

 and IUT receives B)}

However, the keywords not ordered have a very different effect.

 when { not ordered (IUT receives A

 and IUT receives B)}

means that the IUT shall respond to the receipt of either message A followed by message B or message B followed by message A. Again, parentheses may be used to clearly show what the scope of the ordering should be.
11.7
Other behavioural statements

This clause describes other predefined behavioural words that may be used in the with, when and then statements of the TP body (see clause 11).

The state keyword shall be used to express state information. For example:
 IUT state 'changes from IDLE to ACTIVE'
 -- or

 IUT state 'remains in IDLE'
The keywords before, within and after may also be used to express ordering, especially in the context of timers.

For example:
 before 'timer T1 expires'
 -- or
 within 'two minutes'
 -- or
 after '15 seconds'
In the following example, note also the use of the defined value 15s in place of the string '15 seconds'):
 then { IUT sends 'a message' to 'Node 1' within 15s
 }
11.8
Using user defined test entities, states and words

In some cases the pre-defined TPLan keywords may not be adequate. In such cases users may define additional keywords suited to particular needs (see clause 8.3). For example, it would be beneficial to define the entities EUT (Equipment Under test) and QE (Qualified Equipment) and the word forwards in order to make an interoperability TP clearer, thus:

 then { EUT accepts 'an incoming IPv6 Packet'
 and EUT forwards 'the packet' to 'Node 1' within 15s
 }

A timer may be defined as a test entity (see clause 8.3), for example:

 when { T1 expires ... } -- this example assumes the defined word 'expires'
Defined conditions (see clause 8.6) may be used to express states instead of quoted strings, for example:

 IUT changes from the IDLE state to the ACTIVE state -- assumes the defined word 'changes' as

 -- well as the definition of the ACTIVE
 -- and IDLE conditions
11.9
Glue words and readability

To aid readability, TPLan allows the use of 'glue' words such as a, an and the. For example

 then { the EUT accepts an 'incoming IPv6 Packet'
 and the EUT forwards a 'message' to 'Node 1' within '15 seconds'
 }

Syntax highlighting (i.e., use of multiple colours) can also aid readability:

 then { the EUT accepts an IPv6_Packet
 and the EUT forwards an ICMP_Packet to RouterA within '15 seconds'
 }
Annex A (normative):
The TPLan Grammar
A.1
Syntactic Rules
This annex defines the TPLan grammar in EBNF (Extended Backus-Nauer Form). This can be used either as a reference or as input to parser generator tools. Table A.1 defines the syntactic conventions that should be used when reading the TPLan EBNF.

Table A.1: The syntactic metanotation

	::=
	is defined to be

	abc
	the non-terminal symbol abc

	abc xyz
	abc followed by xyz

	abc | xyz
	alternative (abc or xyz)

	[abc]
	0 or 1 instances of abc

	{abc}
	1 or more instances of abc

	[{abc}]
	0 or more instances of abc

	<n,m>
	length restriction in range n to m

	'...'
	denotes a regular expression

	(...)
	denotes a textual grouping

	"abc"

	the terminal symbol abc

A.2
TPLan EBNF Productions
// BNF grammar for TSS & TP language (TPLan)

// MTS-IPT

// Version: 2.3

// Date: 05.10.2006

// Author: Anthony Wiles, ETSI PTCC

// TSS header

tss_header

::= KWD_tss [DELIM] tss_id

[tss_title]

[tss_version]

[tss_date]

[tss_author]

[{user_tss_header}]

tss_body;

tss_title

::= KWD_title [DELIM]

qstring;

tss_version

::= KWD_version [DELIM]

numeric [{DOT numeric}];

tss_date

::=
KWD_date [DELIM]

 '[0-9][0-9]' DOT '[0-9][0-9]' DOT '[0-9][0-9][0-9][0-9]'

| '[0-9][0-9]' F_SLASH '[0-9][0-9]' F_SLASH '[0-9][0-9][0-9][0-9]'

| '[0-9][0-9]' DASH '[0-9][0-9]' DASH '[0-9][0-9][0-9][0-9]';

tss_author

::= KWD_author [DELIM]

qstring;

user_tss_header
::=
{header_id | KWD_ref} [DELIM] //Hid -> header_id

(user_header_list | qstring);

user_header_list::= extended_id [{SEPARATOR extended_id}];
// TSS body

tss_body

::= [{xrefs}]

[{definitions}]

{group | tp};

// References and definitions

xrefs

::= KWD_xref

xref_id

L_BRACE extended_id [{SEPARATOR extended_id}]R_BRACE;

definitions

::=
KWD_def

(define_word

| define_header

| define_event

| define_value

| define_entity

| define_condition

| define_context) [qstring];

define_word

::=
KWD_word

word_id [{SEPARATOR word_id}];

define_header
::=
KWD_header

header_id [{SEPARATOR header_id}];

define_event
::=
KWD_event

event_id [field_list] [{SEPARATOR event_id [field_list]}];

field_list

::=
L_BRACE field_id [{SEPARATOR field_id}] R_BRACE;

// STATIC SEMANTICS: field_id shall be unique in the field list

define_value
::=
KWD_entity entity_id [{SEPARATOR entity_id}];

define_entity
::=
KWD_value value_id [{SEPARATOR value_id}];

define_condition::=
KWD_condition condition_id [{SEPARATOR condition_id}];

define_context
::=
KWD_context L_BRACE {context} R_BRACE;

context

::= [L_BRACKET] context_id [R_BRACKET];

// Grouping

group

::= group_header

[group_objective]

[{group | tp}]

KWD_end KWD_group [numeric [{DOT numeric}]];

group_header
::= KWD_group

group_num

[qstring];

group_objective
::=
KWD_objective [DELIM]

[qstring];

tp

::= tp_header

tp_body;

// TP Header

tp_header

::= tp_identifier

[summary]

[req_ref]

[role]

[config_ref]

[tc_or_td_ref]

[{user_tp_header}];

tp_identifier
::= KWD_tp KWD_id [DELIM]

TP_id;

summary

::= KWD_tp_summary [DELIM]

[qstring];

req_ref

::= cat_ref;
cat_ref

::=
KWD_req KWD_ref [DELIM]

[cat_ref_list];

role

::= KWD_role [DELIM]

[role_ref_list];

config_ref

::= KWD_config [DELIM]

[CF_id];

tc_or_td_ref
::=
tc_ref | td_ref;

tc_ref

::=
KWD_tc KWD_ref [DELIM]

TC_id;

td_ref

::=
KWD_td KWD_ref [DELIM]

TD_id;

cat_ref_list
::= RQ_id [{SEPARATOR RQ_id}];

role_ref_list
::=
role_id [{SEPARATOR role_id}];

user_tp_header
::=
{TPLan_Hid | KWD_ref} [DELIM]

(user_header_list | qstring);

// TP body

tp_body

::= [preconditions]

KWD_ensure KWD_that

begin_tp

{[stimuli] responses}

end_tp;

preconditions
::= KWD_precondition

begin_conditions

[[R_PAREN] precondition [L_PAREN]]

end_conditions;

precondition
::=
[test_object]

[[{TPLan_word}] [qstring] {[{TPLan_word}] [L_PAREN][qstring] [R_PAREN]}];

stimuli

::= KWD_stimulus

begin_stimuli

[{[L_PAREN] stimulus [R_PAREN]}]

end_stimuli;

stimulus

::= test_object

[[{TPLan_word}] [qstring] {[{TPLan_word}] [qstring]}];

responses

::= KWD_response

begin_responses

[{[L_PAREN]response [R_PAREN]}]

end_responses;

response

::= test_object

[[{TPLan_word}] [qstring] {[{TPLan_word}] [qstring]}];

TPLan_word

::=
predefined_words

| num_id

| TPLan_id;

test_object

::= TPLan_Eid | KWD_IUT | KWD_TESTER;

// TPLan identifiers

// STATIC SEMANTICS: no identifier of any kind shall be the same as any

// other predefined or user-defined TPLan keyword or identifier

group_num
 ::= numeric [{DOT numeric}];

num_id

::=
'[0-9.]+';

tss_id

 ::= extended_id;

xref_id

 ::= extended_id;

RQ_id

 ::= extended_id;

CF_id

 ::= extended_id;

TC_id

 ::= extended_id;

TD_id

 ::= extended_id;

TP_id

 ::= extended_id;

condition_id ::= extended_id;
context_id
 ::= extended_id;

entity_id
 ::= extended_id;
field_id
 ::= extended_id;
header_id
 ::= extended_id;
event_id
 ::= extended_id;
role_id

 ::= extended_id;

value_id
::= extended_id;
word_id

 ::= extended_id;
TPLan_id
 ::= extended_id;

TPLan_Eid
 ::= extended_id;

TPLan_Hid
 ::= extended_id;

extended_id
 ::= '[a-zA-Z0-9|._&$*@%?></\\#!\-]+';

// TSS header keywords

KWD_author

::= "author";

KWD_date

::= "date";

KWD_title

::= "title";

KWD_tss

::=
"TSS";

KWD_version

::= "version";

// Reference and definition keywords

KWD_xref

::=
"xref";

KWD_condition
::= "condition";

KWD_context

::=
"context";

KWD_def

::= "def";

KWD_entity

::= "entity";

KWD_event

::= "event";

KWD_header

::=
"header";

KWD_value

::=
"value";

KWD_word

::= "word";

// Group keywords

KWD_end

::= "end";

KWD_group

::= "group";

KWD_objective
::= "objective";

//TP header keywords

KWD_config

::= "config";

KWD_id

::= "id";

KWD_ref

::=
"ref";

KWD_role

::=
"role";

KWD_req

::= "RQ";

KWD_tp_summary
::= "summary";

KWD_TC

::=
"TC";

KWD_TD

::=
"TD";

KWD_TP

::= "TP";

//TP body (structure) keywords

KWD_ensure

::= "ensure";

KWD_that

::= "that";

KWD_response
::= "then";

KWD_stimulus
::= "when";

KWD_precondition::= "with";

//Test entity keywords

KWD_IUT

::=
"IUT";

KWD_TESTER

::=
"TESTER";

//Predefined words

predefined_words
::=
// glue words

"a"

| "an"

| "as"

| "in"

| "is"

| "no"

| "of"

| "the"

// logical words

| "and"

| "not"

| "or"

// stimulus and response words

| "receives"

| "sends"

// data-related words

| "containing"

| "indicating"

//direction words

| "from"

| "to"

// time- or order-related words

| "after"

| "before"

| "orderd"

| "within"

// State-related words

| "state";

// Begin/End symbols

begin_stimuli

::= L_BRACE;

end_stimuli

::= R_BRACE;

begin_conditions
::= L_BRACE;

end_conditions

::= R_BRACE;

begin_responses
::= L_BRACE;

end_responses

::= R_BRACE;

begin_tp

::= L_BRACE;

end_tp

::= R_BRACE;

// Delimiters, seperators etc.

DASH

::=
"-";

DELIM

::= ":";

DOT

::=
".";

F_SLASH

::= "/";

L_BRACE

::= "{";

R_BRACE

::= "}";

L_BRACKET

::=
"[";

R_BRACKET

::=
"]";

L_PAREN

::=
"(";

R_PAREN

::=
")";

LT

::=
"<";

RT

::=
">";

SEPARATOR

::=
",";

U_SCORE

::=
"_";

qstring

::=
"'" *("'") "'";

// Whitespace and comments

space_symbol <TERMINAL,HIDDEN> ::=

{
'[\32\r\n\t]'

// regular whitespace

| "--" *("\n")

// ASN.1 style comment

,0,0

};
Annex B (normative):
Use of the IPT Testing Framework

B.1
IPT naming conventions
B.1.1
IPT identifiers

The IPT Testing Framework [3] naming conventions provide traceability to other components of a complete test specification. For example, to the base standards, requirements catalogue or PICS, configuration descriptions or Test Cases. These conventions are defined in ETSI TS 102 351 [3] but are repeated here for convenience.

If the TPLan user wishes to follow these conventions then the syntax defined in [3] shall be used.
B.1.2
The Requirements Identifier

The Requirements Identifier is of the form RQ_nnnn_mmmm where 'nnn' is a 3-digit number and 'mmmm' is a 4-digit number (see also 7.1). The Requirements Identifier uniquely identifies a requirement in the corresponding Requirements Catalogue, derived from the relevant base standards. For example:

 RQ_201_1001
In cases where a PICS (or profile PICS) is used rather than a Requirements Catalogue then the reference to the relevant PICS entry will depend on the naming conventions followed by the relevant PICS. A typical example might be:

 PICS_101_Table1.item3
B.1.3
The Configuration Identifier

The Configuration Identifier is of the form CF_aa..a_nn where 'aa..a' is an alphanumeric string of length 1-8 and 'nn' is a 2-digit number (see also 7.2). The alphanumeric string may be the same as the TSS identifier in the TSS header (often it will be the same, but not necessarily). The Configuration Identifier uniquely identifies a specific test configuration (if any). For example:

 CF_MOBILITY_03

B.1.4
The Test Purpose Identifier
The Test Purpose Identifier is of the form TP_aa..a_nnnn_mm where 'aa..a' is an alphanumeric string of length 1-8, 'nnnn' is a 4-digit number and 'mm' is a 2-digit number. The alphanumeric string shall be the same as the TSS identifier in the TSS header. The Test Purpose Identifier uniquely identifies the TP.

 TP_MOBILITY_0001_99

B1.5
The Test Case Identifier
The Test Case Identifier is of the form TC_aa..a_nnnn_mm where 'aa..a' is an alphanumeric string of length 1-8, 'nnnn' is a 4-digit number and 'mm' is a 2-digit number. The alphanumeric string shall be the same as the TSS identifier in the TSS header. The Test Case Identifier uniquely identifies a corresponding (TTCN-3) test case (if any).

 TC_MOBILITY_0001_99

B1.6
The Test Description Identifier
The Test description Identifier is of the form TC_aa..a_nnnn_mm where 'aa..a' is an alphanumeric string of length 1-8, 'nnnn' is a 4-digit number and 'mm' is a 2-digit number. The alphanumeric string shall be the same as the TSS identifier in the TSS header. The Test Description Identifier uniquely identifies a test description (if any).

 TD_MOBILITY_0001_99
B.2
IPT cross references

B.2.1
References to the Requirements Catalogue

When the IPT Testing Framework [3] is used each TP shall refer to one or more requirements defined in the relevant Requirements Catalogue. Each requirement is uniquely identified as described in Annex B.1. The first three digits in the requirement reference identify the source documents from which a particular set of requirements are derived. This is specified using the xref keyword, followed by a list of one or more references to base standards and/or profiles and relevant requirements catalogue.
 xref RQ_001 {TS123456-1, RFC1234}

 .

 .

 RQ ref: RQ_001_0728

 --In this example the requirement RQ_001_0728 identifies requirement 0728
 -- extracted from the base standards TS123 456-1 and RFC 1234.

B.2.2
References to test configurations

References to explicit IPT test configurations are made using the keyword xref followed by a configuration identifier as defined in Annex B.1 followed by a list of one or more references to where the description (e.g., prose and/or drawing) can be found. For example:

xref CF_UMTS_007 {3GPPSpecXYZ_AnnexA_page10_fig1}

Annex C (informative):
Some examples

C.1
IPv6 Interoperability Test Purposes

TSS : COR

Title : 'RFC2460 IPv6 Core Specification'

Version : 1.0.1

Date : 05.10.2006

Author : 'Steve Randall (ETSI TC-MTS)'

-- Cross references
xref RQ_001 {RFC2460, RFC2461}

xref CF_COR_11 {ETSI_TS_102_517_Annex_B}

xref CF_COR_21 {ETSI_TS_102_517_Annex_B}

xref CF_COR_23 {ETSI_TS_102_517_Annex_B}

-- Definitions
-- Entities
def entity EUT
def entity QE1
def entity QE2
-- Keywords - Pre-conditions
def word configured
-- Keywords - Stimuli
def word indicates
def word requested
def word requiring
def word send
def context {is ~requested to}

-- Keywords - Responses
def word decrements
def word discards
def word receipt
def word response
def word unchanged
def context {sends no ~response}

-- Keywords - Glue
def word between
def word exactly
def word greater
def word less
def word octets
def word same
def word than
def word valid
-- Messages
def event data{packet_length}

def event ICMP_error_message {parameter_problem}

def event packet {source_address,

 destination_address,

 routing_header,

 hop_by_hop_options,

 Hop_Limit,

 flow_label,

 Type_0_routing_header, EUT_address,

 request_for_response}

-- Values
def value Path_MTU
--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--
Group 1 'RFC2460'

Group 1.1 'Process IPv6 Packet'

Group 1.1.1 'Process IPv6 Header'

TP id : TP_COR_1097_01

Summary : 'EUT processes a packet with its size equals to its link MTU'

RQ ref : RQ_001_1097

Config : CF_COR_11

TD ref : TD_COR_1097_01

with { QE1 configured 'with a unique global unicast address '

 and EUT configured 'with a unique global unicast address'

 and EUT 'having a link MTU smaller than the link MTU of QE1'

 }

ensure that {

 when { EUT receives a packet 'with its size equal to link MTU of EUT'

 containing QE1 as the source_address
 and containing EUT as the destination_address
 and containing a request_for_response }

 then { EUT sends a valid response to QE1 }

 }

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--
TP id : TP_COR_1097_02

Summary : 'EUT processes a traversed packet with its size equals to its

 incoming link MTU'

RQ ref : RQ_001_1097

Config : CF_COR_21

TD ref : TD_COR_1097_02

with { QE1 configured 'with a unique global unicast address '

 and QE2 configured 'with a unique global unicast address'

 and EUT configured 'with two unique global unicast addresses on the link

 connecting QE1 and EUT, and, the link connecting QE2

 and EUT, respectively'

 and QE1 'having larger link MTU than EUT'

 and EUT 'having larger or equivelant link MTU than QE2'

 }

ensure that {

 when { EUT receives a packet 'with its size equal to its

 incoming link MTU'

 containing QE1 as the source_address
 and containing QE2 as the destination_address }

 then { EUT sends the packet to QE2 }

 }

Group 1.1.1.1 'Process Hop Limit'

TP id : TP_COR_1002_01

Summary : 'EUT decreases the Hop Limit field of a traversed IPv6 packet and

 forwards it'

RQ ref : RQ_001_1002

Config : CF_COR_21

TD ref : TD_COR_1002_01

with { QE1 configured 'with a unique global unicast address '

 and QE2 configured 'with a unique global unicast address'

 and EUT configured 'with two unique global unicast addresses on the

 link connecting QE1 and EUT, and the link connecting

 QE2 and EUT, respectively'

 }

ensure that {

 when { EUT receives a packet

 containing QE1 as the source_address
 and containing QE2 as the destination_address
 and containing a Hop_Limit greater than 1 }

 then { EUT decrements the Hop_Limit
 and EUT sends the packet to QE2 }

 }

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--
TP id : TP_COR_1002_02

Summary : 'EUT drops a traversed IPv6 packets with a zero Hop Limit and

 returns an ICMP error message to the source'

RQ ref : RQ_001_1002

Config : CF_COR_21

TD ref : TD_COR_1002_02

with { QE1 configured 'with a unique global unicast address '

 and QE2 configured 'with a unique global unicast address'

 and EUT configured 'with two unique global unicast addresses on the

 link connecting QE1 and EUT, and on the link connecting

 QE2 and EUT, respectively'

 }

ensure that {

 when { EUT receives a packet
 containing QE1 as the source_address
 and containing QE2 as the destination_address
 and containing a Hop_Limit of 0 }

 then { EUT discards the packet
 and EUT sends an ICMP_error_message to QE1 }

 }

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--
TP id : TP_COR_1058_01

Summary : 'EUT drops a packet with a Type 0 routing header and Hop Limit<=1

 and returns an ICMP error messsage to the source'

RQ ref : RQ_001_1058

Config : CF_COR_21

TD ref : TD_COR_1058_01

with { QE1 configured 'with a unique global unicast address '

 and QE2 configured 'with a unique global unicast address'

 and EUT configured 'with two unique global unicast addresses on the

 link connecting QE1 and EUT, and on the link connecting

 QE2 and EUT, respectively'

 }

ensure that {

 when { EUT receives a packet
 containing QE1 as source_address
 and containing QE2 as destination_address
 and containing a Type_0_routing_header
 and containing a Hop_Limit less than 2 }

 then { EUT discards the packet
 and EUT sends an ICMP_error_message to QE1 }

 }

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--
TP id : TP_COR_1059_01

Summary : 'EUT forwards a traversed packet with a Type 0 routing header

 and Hop Limit > 1'

RQ ref : RQ_001_1059

Config : CF_COR_21

TD ref : TD_COR_1059_01

with { QE1 configured 'with a unique global unicast address '

 and QE2 configured 'with a unique global unicast address'

 and EUT configured 'with two unique global unicast addresses on the

 link connecting QE1 and EUT, and on the link connecting

 QE2 and EUT, respectively'

 }

ensure that {

 when { EUT receives a packet
 containing QE1 as the source_address
 and containing QE2 as the destination_address
 and containing a Type_0_routing_header indicating the EUT_address
 and containing Hop_Limit greater than 1 }

 then { EUT decrements the Hop_Limit

 and EUT sends the packet to QE2 }

 }

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--
End Group 1.1.1.1

Group 1.1.1.2 'Process Flow Label'

TP id : TP_COR_1130_01

Summary : 'EUT detects two packets with different hop-by-hop option contents

 but the same source and destination addresses in the flow label'

RQ ref : RQ_001_1130

Config : CF_COR_21

TD ref : TD_COR_1130_01

with { QE1 configured 'with a unique global unicast address '

 and QE2 configured 'with a unique global unicast address'

 and EUT configured 'with two unique global unicast addresses on the link

 connecting QE1 and EUT and, the link connecting QE2 and

 EUT, respectively'

 }

ensure that {

 when { EUT receives packet 1
 containing QE1 as the source_address in the flow_label
 and containing QE2 as the destination_address in the flow_label
 and EUT receives packet 2
 containing hop_by_hop_options not the same as in packet 1
 and containing QE1 as the source_address in the flow_label
 and containing QE2 as the destination_address in the flow_label }

 then { EUT sends an ICMP_error_message
 indicating a parameter_problem to QE1
 and EUT discards packet 1
 and EUT discards packet 2 }

 }

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--
TP id : TP_COR_1130_02

Summary : 'EUT detects two packets with different routing header contents but

 the same source and destination addresses in the flow label'

RQ ref : RQ_001_1130

Config : CF_COR_21

TD ref : TD_COR_1130_02

with { QE1 configured 'with a unique global unicast address '

 and QE2 configured 'with a unique global unicast address'

 and EUT configured 'with two unique global unicast addresses on the link connecting QE1 and EUT and, the link connecting QE2 and EUT, respectively'

 }

ensure that {

 when { EUT receives packet 1
 containing QE1 as the source_address in the flow_label
 and containing QE2 as the destination_address in the flow_label
 and EUT receives packet 2
 containing a routing_header not the same as in packet 1
 and containing QE1 as the source_address in the flow_label
 and containing QE2 as the destination_address in the flow_label }

 then { EUT sends an ICMP_error_message
 indicating a parameter_problem to QE1
 and EUT discards packet 1
 and EUT discards packet 2 }

 }

End Group 1.1.1.2

End Group 1.1.1

End Group 1.1

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--
Group 1.2 'Generate Extension Headers'

Group 1.2.1 'Generate Fragmented Packets'

TP id : TP_COR_1064_01

Summary : 'EUT fragments a packet larger than the available Path MTU before

 sending it'

RQ ref : RQ_001_1064

Config : CF_COR_23

TD ref : TD_COR_1064_01

ensure that {

 when { EUT is requested to send data requiring a packet_length

 greater than the Path_MTU to QE1 }

 then { QE2 indicates receipt of the same data unchanged }

 }

End Group 1.2.1

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--
Group 1.2.2 'Process Fragmented Packets'

TP id : TP_COR_1100_01

Summary : 'EUT reassembles a fragmented packet of an original length less

 than 1500 octets'

RQ ref : RQ_001_1100

Config : CF_COR_23

TD ref : TD_COR_1100_01

with { 'the MTU on the path from QE1 towards the EUT set at 1280 octets' }

ensure that {

 when { QE1 is requested to send data requiring a packet_length

 of between 1288 and 1492 octets to the EUT }

 then { EUT indicates receipt of the same data unchanged }

 }

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--
TP id : TP_COR_1100_02

Summary : 'EUT reassembles a fragmented packet of an original length equal

 to 1500 octets'

RQ ref : RQ_001_1100

Config : CF_COR_11

TD ref : TD_COR_1100_02

with { 'the MTU on the path from QE1 towards the EUT set at 1280 octets' }

ensure that {

 when { QE1 is requested to send data requiring a packet_length

 of exactly 1500 octets to EUT }

 then { EUT indicates receipt of the same data unchanged }

 }

--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx--
TP id : TP_COR_1101_01

Summary : 'EUT reassembles a fragmented packet of an original length

 greater than 1500 octets'

RQ ref : RQ_001_1101

Config : CF_COR_11

TD ref : TD_COR_1101_01

with { 'the MTU on the path from QE1 towards the EUT set at 1280 octets' }

ensure that {

 when { QE1 is requested to send data requiring a packet_length

 of greater than 1500 octets to EUT }

 then { EUT indicates receipt of same data unchanged }

 }

End Group 1.2.2

End Group 1.2

End Group 1
C.2
QSIG Interoperability Test Purposes

TSS : BS

Title : 'QSIG Interoperability: Basic Service with Call Forward, Call Transfer and Call Completion Supplementary Services'

Version : 1.2

Date : 15.08.2001

Author : 'Steve Randall'

-- Cross References
xref PICS_01 {ECMA_143}

xref CF_BS_01 {PQM_BS_IOTv1b}

-- Definitions
-- Header fields
def header PICS
-- Entitities
def entity user_A -- Connected to PINX Equipment Under Test
def entity user_B -- Connected to Qualified Equipment PINX
def entity user_C
-- Keywords - Pre-conditions
def word configured
-- Keywords - Stimuli
def word call -- causing a call setup to be sent
def word requested
def context {is ~requested to}

-- Keywords - Responses
def word answers
def word communicate
def word presents
-- Keywords - Glue
def word can
-- Messages
-- Values
def value Line_Identity
--xxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxxx
Group 1 'QSIG Interoperability Tests'

Group 1.1 'Basic Service'

Group 1.1.1 'Simple call set-up'

TP id : TP_BS_001

Summary : 'EUT PINX supports outgoing call establishment with en-bloc sending'

PICS ref : PICS_01.B6

Config : CF_BS_01

TD ref : TD_BS_001

with { user_A configured 'with Bearer Capability set to "Speech, 64kbit/s" '

 and user_B configured 'with Bearer Capability set to "Speech, 64kbit/s" '

 and user_A configured 'to send address information in en-bloc

 sending mode'

 and user_B configured 'to receive address information in en-bloc

 sending mode'

 }

ensure that {

 when { user_A is requested to call user_B

 and user_B answers }

 then { user_A and user_B can communicate }

 }

--xxxxxxxxxxxxxxxxxxxxxxx
TP id : TP_BS_002

Summary : 'EUT PINX supports incoming call establishment with en-bloc sending'

PICS ref : PICS_01.B6

Config : CF_BS_01

TD ref : TD_BS_001

with { user_A configured 'with Bearer Capability set to "Speech, 64kbit/s" '

 and user_B configured 'with Bearer Capability set to "Speech, 64kbit/s" '

 and user_B configured 'to send address information in en-bloc

 sending mode'

 and user_A configured 'to receive address information in en-bloc

 sending mode'

 }

ensure that {

 when { user_B is requested to call user_A
 and user_A answers }

 then { user_A and user_B can communicate }

 }

--xxxxxxxxxxxxxxxxxxxxxxx
TP id : TP_BS_003

Summary : 'EUT PINX supports outgoing call establishment with

 overlap sending'

PICS ref : PICS_01.B6

Config : CF_BS_01

TD ref : TD_BS_001

with { user_A configured 'with Bearer Capability set to "Speech, 64kbit/s" '

 and user_B configured 'with Bearer Capability set to "Speech, 64kbit/s" '

 and user_A configured 'to send address information in overlap

 sending mode'

 and user_B configured 'to receive address information in overlap

 sending mode'

 }

ensure that {

 when { user_A is requested to call user_B

 and user_B answers }

 then { user_A and user_B can communicate }

 }

--xxxxxxxxxxxxxxxxxxxxxxx
TP id : TP_BS_004

Summary : 'EUT PINX supports incoming call establishment with

 overlap sending'

PICS ref : PICS_01.B6

Config : CF_BS_01

TD ref : TD_BS_001

with { user_A configured 'with Bearer Capability set to "Speech, 64kbit/s" '

 and user_B configured 'with Bearer Capability set to "Speech, 64kbit/s" '

 and user_B configured 'to send address information in overlap

 sending mode'

 and user_A configured 'to receive address information in overlap

 sending mode'

 }

ensure that {

 when { user_B is requested to call user_A
 and user_A answers }

 then { user_A and user_B can communicate }

 }

End Group 1.1.1

--xxxxxxxxxxxxxxxxxxxxxxx
Group 1.1.2 'Call set-up with line identities'

TP id : TP_BS_005

Summary : 'EUT PINX supports incoming call establishment with

 Connected Line identity'

PICS ref : PICS_01.J8

Config : CF_BS_01

TD ref : TD_BS_005

with { user_A configured 'with Bearer Capability set to "Speech, 64kbit/s" '

 and user_B configured 'with Bearer Capability set to "Speech, 64kbit/s" '

 and user_A configured 'to present the Connected Line Identity

 on connection'

 and user_B configured 'to allow the presentation of its Line Identity

 on connection'

 }

ensure that {

 when { user_A is requested to call user_B

 and user_B answers }

 then { user_A presents the Line_Identity from user_B }

 }

End Group 1.1.2

End Group 1.1

End Group 1

C.3
ISDN Conformance Test Purposes
TSS : CW

Title : 'ISDN DSS1 Call Waiting Supplementary Service'

Version : 1.1

Date : 05.10.2006

Author : 'ETSI STC-SPS5'

--***Cross references***
xref CW_U {ETS_300_058_1}

--***Definitions***
-- Messages
def event SETUP {Channel_identification_IE}

def event ALERTING
def event RELEASE_COMPLETE {Cause_IE}

-- Values
def value no_B_channel_available
def value no_circuit_or_channel_available
-- Conditions (ISDN states)
def condition Busy 'ISDN defined Busy state'

def condition Null 'ISDN defined NULL state'

def condition U00 'Sub-state of NULL'

def condition information_channel_control 'Any call establishment state'

-- Keywords
def word compatible
def word valid
--xxxxxxxxxxxxxxxxxxxxxxxxx--
Group 1 'User (S/T)'

Group 1.1 'Valid behaviour'

TP id : CW_U01_001

Summary : 'A busy IUT with an avaiable B-Channel responds to an incoming SETUP'

RQ ref : 9.5.1

Role : user

with { IUT in the Busy state

 and 'at least one B-Channel free to the IUT'

 }

ensure that

 {

 when { the IUT receives a valid and compatible SETUP from the TESTER}

 then { the IUT sends ALERTING to the TESTER }

 }

--xxxxxxxxxxxxxxxxxxxxxxxxx--
TP id : CW_U01_002

Summary : 'A busy IUT with information channel control but no B-Channel responds

 to an incoming SETUP'

RQ ref : 9.5.1

Role : user

with { IUT in an information_channel_control state
 and 'no B-Channel free to the IUT'

 }

ensure that

 {

 when { the IUT receives a valid and compatible SETUP from the TESTER
 containing a Channel_identification_IE
 indicating no_B_channel_available }

 then { the IUT sends ALERTING to the TESTER }

 }

--xxxxxxxxxxxxxxxxxxxxxxxxx--
TP id : CW_U01_003

Summary : 'A free IUT with no resources available responds to an incoming SETUP'

RQ ref : 9.5.2

Role : user

with { the IUT in the Null state U00
 and the IUT 'having all resources in use'

 }

ensure that

 {

 when { the IUT receives a valid and compatible SETUP from the TESTER
 containing a Channel_identification_IE
 indicating no_B_channel_available }

 then { the IUT sends a RELEASE_COMPLETE to the TESTER
 containing a Cause_IE
 indicating no_circuit_or_channel_available }

 }

End Group 1.1

End Group 1

History

	Document history

	V0.0.1-3
	June 2006
	ToC and first drafts

	V0.0.4
	July 2006
	IPT-specific clauses moved to annex B

	V0.0.5
	July 2006
	Added "def condition" statement

	V0.0.6
	August 2006
	Changed title. Definitions added

	V0.0.7
	October 2006
	Minimum set of pre-defined keywords. Context introduced. Messages -> event etc.

	V0.0.8
	October 2006
	Corrected table of keywords to replace missing words

	
	
	

Last saved by Steve Randall

[image: image1.wmf]

_1065009619.doc

