[image: image2.wmf]

TD <>
Draft ETSI ES 2XX XXX V<0.1.0> (2010-08)
ETSI Standard
Methods for Testing and Specification (MTS);

Model-Based Testing (MBT);

Concepts for Model Specification
<
Reference

DES/MTS-00128 MBTmodConc
Keywords

TESTING, TTCN
ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification

Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2010.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM, TIPHONTM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE™ is a Trade Mark of ETSI currently being registered
for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.
Contents

3Logos on the front page

Copyrights on page 2
3
Intellectual Property Rights
5
Foreword
5
Multi-part documents
5
Parts

5
Parts (for multi-part deliverables containing different deliverable types, e.g. TSs and ENs)
6
Sub-parts

6
Introduction
6
1
Scope
7
2
References
7
2.1
Normative references
8
2.2
Informative references
8
3
Definitions, symbols and abbreviations
8
3.1
Definitions
8
Definition format
9
3.2
Symbols
9
Symbol format
9
3.3
Abbreviations
9
Abbreviation format
9
4
User defined clause(s) from here onwards
9
4.1
User defined subdivisions of clause(s) from here onwards
9
Proforma copyright release text block
9
Annex <A> (normative):
Title of normative annex
10
Annex (informative):
Title of informative annex
10
B.1
First clause of the annex
10
B.1.1
First subdivided clause of the annex
10
Abstract Test Suite (ATS) text block
11
<x1>
The TTCN Graphical form (TTCN.GR)
11
<x2>
The TTCN Machine Processable form (TTCN.MP)
11
Annex <y> (informative):
Bibliography
12
History
13
History box entries
13

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES)
has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

Introduction

Based on the recent success and deployment of model-based testing
in industry, TC MTS investigated work on model-based testing specifically in the context of standardized test specification development [i.1]. Contrary to currently used methods and approaches, which focus mainly on test execution automation, model-based testing targets to automate the test design phase which is performed manually today
.
Model-based testing facilitates a more thorough and earlier validation of standards as well as the automatic generation of test specification artefacts, e.g., MSC based test descriptions or TTCN-3 test suites. Due to its independence of the output format, model-based testing allows the review of standardized test specifications by non-testing experts
. In addition, automation of test design allows ETSI as well as other organizations to cope with the ever-growing demand for standards to support interoperability since it provides implementers of standards access to different and much larger test sets as well as a more effective use of resource for test specification development.

The motivation for the development of this standard were:

1) to help users of model-based testing technology such as product vendors, tool makers, test service providers, government agencies, procurement personell, students and researchers
to understand necessary basics of modeling for testing
2) to establish a common, consistent, and agreed terminology as well as concepts for modelling and instrumentation of models for model-based test generation and test selection

3) to enable the specification of models for derivation of standardized conformance and interoperability tests
4) to facilitate the use of model-based testing for product certification
5) to create a basis for an open, competitive model-based testing market for tools which process such models
6) to decouple model-based testing from specific tool solutions and improve interoperability of model-based testing tools

7) to further increase tool maker credibility as well as to enable consumer accountability (including also for legal issues)
To ensure its success and quality, this standard has been developed by a group of experts from all types of stakeholders involved in test specification developement, i.e., researchers, tool makers, industrial users, as well as testing experts of ETSI’s Centre for Testing and Interoperability.
This document lays the foundation for the deployment of model-based testing in standardization since it specifies requirements for model specifications to be suitable for the generation of tests in the context of standardization. Such tests need to adhere to well established concepts defined and used in manual test specification [i.2, i.3., i.4]. In addition, it defines the criteria that need to be fulfilled by a model specification in order to be included in a standardized ETSI test specification.

1
Scope

The present document identifies and collects all concepts that modelling notations are required support to allow the generation of tests suitable for standardization, i.e., to specify models for the specific purpose of testing. These concepts have been developed mainly from the recommendations collected in ETSI TR 102 840 [i.1]. Model-based testing tools, which use a modelling notation that complies to the requirements stated in this standard, can be used to automatically generate tests suitable for standardization.
The concepts described in this standard are specified independent of a specific modelling notation or syntax. Mappings of concepts to concrete modelling languages is beyond the scope of this document.

Black-box functional testing is the purpose of the generated tests.
SUT external behaviour is modelled.
2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· Non-specific reference may be made only to a complete document or a part thereof and only in the following cases:
· if it is accepted that it will be possible to use all future changes of the referenced document for the purposes of the referring document;
· for informative references.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE:
While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.
2.1
Normative references

The following referenced documents are indispensable for the application of the present document. For dated references, only the edition cited applies. For non-specific references, the latest edition of the referenced document (including any amendments) applies.

 [1]
ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Parts 1: TTCN-3 Core Language" (also published as ITU-T Recommendation series Z.140).
[2]
ISO/IEC 11404: "Information technology - General-Purpose Datatypes (GPD)"
[3]
ISO/IEC 10646: "Information technology - Universal Multiple-Octet Coded Character Set (UCS)"
2.2
Informative references
The following referenced documents are not essential to the use of the present document but they assist the user with regard to a particular subject area. For non-specific references, the latest version of the referenced document (including any amendments) applies.
 [i.1]
ETSI TR 102 840: "Methods for Testing and Specifications (MTS); Model driven testing in standardization".

[i.2]
ISO/IEC 9646-1: "Information technology - Open Systems; Interconnection - Conformance testing methodology and framework - Part 1: General concepts".

[i.3]
ETSI EG 202 237: "Methods for Testing and Specification (MTS); Internet Protocol Testing (IPT); Generic approach to interoperability testing".

[i.4]
ETSI EG 202 810: "Methods for Testing and Specification (MTS); Automated Interoperability Testing; Methodology and Framework".
3
Definitions and abbreviations

3.1
Definitions

Clause numbering depends on applicability.

· A definition shall not take the form of, or contain, a requirement.
· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).
· The terms and definitions shall be presented in alphabetical order.
For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply:

<defined term>: <definition>

deterministic SUT behavior

model-based testing: an umbrella of approaches that generates test specifications from model specifications. Model specifications can be system models, models of the environment, graphical test case specifications, etc
modeled test system interface: a component that represents interfaces available for testing at the system under test in the model specification

non-deterministic SUT behavior: a SUT behaves in a non-deterministic manner if it can react with more than one valid response in a given situation

system model (specification): computer-readable behavioural model that describes the intended external operational characteristics of a system, i.e. how the system being modelled interacts with its environment

NOTE:
A system model may only capture one or more behavioral and structural aspects of a system under test
System Under Test (SUT): See ISO 9646-1 [i.2].

test case

test description

test generation: the automatic derivation of test cases or test descriptions
from a model based on test selection criteria
test instrumentation: information added to a system model specification specifically for the purpose of testing
test selection criteria: the set of criteria which have to be covered by a set of test cases
generated from a model
3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

IP
Internet Protocol

IMS
IP Mulitmedia Subsystem

MBT
Model-Based Testing
MSC

Message Sequence Chart

SIP
Session Initiation Protocol

SUT
System Under Test

TTCN-3
Testing and Test Control Notation version 3

<ACRONYM3>
<Explanation>

4
Modeling in test development
Model-based testing refers to an umbrella of approaches that generate test artefacts from a variety of different forms of models. This standard addresses specifically the approach where tests are from behavioural models describing SUT behavior. It is a black-box testing technique which is applicable to conformance [i.2] as well as interoperability testing [i.3, i.4].

As shown in Figure 1, in model based testing formal system models are specified based on a modelling notation. They capture one or more aspects of the external behavior of a SUT and encode testable requirements as specified in an informal specification, e.g., one or more standards. This model is then further instrumented
or extended by further constraining configuration information and data value ranges in the model specification for the purpose of testing. Contrary to conventional test script development, system models are specified abstractly, i.e., they focus on specific aspects of interest of SUT behavior relevant for testing. The refined system model is then used in conjunction with a set of test selection criteria and a model-based testing tool to automatically generate tests that comply to these criteria. Tests may be generated as one or more different formats including informal documents, MSCs, or different scripting languages such as TTCN-3 [1].
[image: image1.png]

Figure 1. Model-based testing with system models in test development

This standard provides the foundation for the specification of system models as well as directing the generation of test cases
from them. The document first defines concepts required from modelling notations to express model structure and behavior, and to instrument system models for testing. In addition, it specifies other requirements on modelling notations which are needed to produce tests suitable for standardization.
Guidelines for the specification of system models as well as the integration of generated tests in automated test systems are beyond the scope of this document.
5
General requirements

This section covers general requirements on modeling notations which can not be easily directly associated with model structure or behavior.

The modelling notation shall provide a means:

· to express structural and behavioral aspects based on precise operational semantics
· to lay out a model specification in a modular manner across multiple files

· to specify constant data values

· to store and manage information such as variables
· to document model specifications with comments.

6
Structural concepts

6.1
Modelled test system interface

To enable the specification of models for testing purposes, a modelling notation shall support a means to specify a precise definition of the boundary of the SUT, i.e., a representation of interfaces with unique identifiers available to steer and observe the operation SUT. This boundary is called the modelled test system interface
. This definition shall include a list of access points
to interfaces.
The abstraction level of the modelled test system interface should be higher than real test system interfaces used by test scripts such as [1].

6.2
Interfaces

Interface specifications shall allow the definition of supported direction of communication
, type of communication
, and the data type of information exchanges via this interface. As the type of communication the notation shall at least support message-based and may support procedure-based communication. The information type shall be defined using data types.
EXAMPLE:
An example of a message based interface is a SipInterface which can receive SIP requests and send SIP response messages.
6.3
Data

A fairly rich set of logical data types including basic and aggregate types is required to properly capture the structure of information in system models, e.g., in interface, constant or variable definitions. In addition, support for the specification of placeholder values
is needed for all data types.
In general, all data types shall be derived from and comply to ISO 11404 [2]. More specifically a modelling notation shall at least support the data types boolean, enumerated, integer, real, characterstring, as well as record, sequence and choice
. The following clauses specify further requirements and operation that are required to be supported for each of these types.
It is recommended that data types used from a modelling notation are compatible to data types that are used by and available in the targeted test scripting and test system implementation languages.
6.3.1
Boolean

A data type capturing values true and false. The Equal operation shall be supported for boolean types.
6.3.2
Enumerated

A data type comprises a finite number of distinguished values having an intrinsic order. At least Equal and InOrder operations shall be supported for enumerated types.

EXAMPLE:
Example values for a type TrafficLightColor could be red, yellow, and green
6.3.3
Integer

A data type comprising all positive and negative exact integral values. At least Equal, Add, Multiply, Negate, and InOrder operations shall be supported for integer types. The precision of integer values may not be limited.

EXAMPLE: Example values are 0 or -1000 or 99
6.3.4
Real

A data type comprising all positive and negative real numbers which are expressed to some finite precision and must be distinguishable to at least that precision. At least Equal, Add, Multiply, Negate, and InOrder operations shall be supported for real types. The precision of real values may not be limited.

EXAMPLE: Example values are 0.0 or -1.07 or 99.9999
6.3.5
Character string

A data type comprising represent strings of symbols, i.e., an arbitrary number (possibly zero) of characters, from the standard character set specified by ISO 10646 [3]. At least Append, Equal, Empty, and IsEmpty operations shall be supported for character string types.
EXAMPLE:
Example values are "sip:alice@127.0.0.1:5062" or "Yrjö Åberg" or "x" or "" or "-2.0".
6.3.6
Record

A data type collecting a fixed number of named values of any data type listed in this clause 6.3. At least Equal, FieldSelect, and FieldReplace operations shall be supported for record types. In the context of records also the Optional generator and its corresponding IsPresent operation shall be supported.

EXAMPLE:
An example value for a Name record could be first name "John", omitted middle name, and surname "Smith".
6.3.7
Sequence

A data type representing all finite sequences of values from the same element data type including the empty sequence: T he element data type can be any type listed in clause 6.3. At least IsEmpty, Head, Equal, Empty, and Append operations shall be supported for sequence types.

EXAMPLE: An example value for a ListOfFiveIntegers sequence type could be 42, 0, 333, -6, 1000
6.3.8
Choice

A data type where a value can only be one of a set of alternatives. Each alternative can be of any type listed in clause 6.3. At least Equal, Tag, Cast, and Discriminant operations shall be supported for choice types.
EXAMPLE:
An example value for an Uri union type should be one of its alternatives SipUri, TelUri, or AbsoulteUri.

6.3.9
Procedure

Wolfgang
Concepts signatures, exceptions, operations, parameters and their direction, return values ..
call/getcall, etc

The support of this data type and its operations is optional.
6.3.10
Miscalleneous

Concept for a object reference/interface identifier?
Need for domain specific types? Example: Magic objects (connection)

6.4
Architecture

In some forms of testing, e.g., interoperability testing,
the SUT is not just one single but a collection of interacting entities which have to be also represented in the model specification, e.g., in order to observe that the communication between SUT entities complies to standards
[i.3]. For this purpose the modelling notation should support also the specification of a model in terms of dynamic model components, i.e., independent execution threads, which can interact with the modelled test system interface and each other via communication channels.

NOTE:
Multi component models may also be useful to use in the conformance testing of more complex systems such as IMS networks. This model design choice may in some cases however create conflicts with the goal to keep the abstraction level of system models as high as possible.
Similarly, as in the case of the definition of the modelled test system interface in clause 6.1. a model component type shall be defined by a set of interface access points that can be used to establish dynamically communication channel to the modelled test system interface or other test components in case that communication type, information type, and directionality permit to do so.
Modelling notations shall support operations
to dynamically create and associate unique identifiers with model component instances, to associate and start the execution of behavior on a component, to establish and tear down communication channels between components as well as components and the modelled test system interface and to terminate the execution of a component.

7
Modelling of Behaviour
This clause defines general concepts required for describing life cycles of model components. In general this encompasses the processing and exchange of abstract information or data as well as its relation to time. A number of different behavioral modelling techniques with different levels of expressitivity have established themselves in model-based testing tools. An overview about these techniques is given in Annex A.
NOTE:
Although two tools may use different behavioural modelling techniques it is still possible to transfer or convert models from notations with the same or greater expressive power. Some model information may be lost in the transfer of model information.

This standard collects requirements which are common to all behavioural modelling techniques and shall be accessible for the specification of model component behavior. They are specified formally in the labelled state transition diagram shown in Figure 2 (wolfgang) and explained in the following text.
Figure 2. Formal specification of behavioural modelling concepts

7.1
Unique entry point

The modelling notation shall support the concept of one unique entry point for a behavioural specification. This entry point shall associate a modelled test system interface with the behavior, and optionally create and start the execution behavior on the first model component.
NOTE:
An entry point is only in part defined by an initial state of a state machine.

7.2
Rich State

The modelling notation shall support the concept of a rich state which is composed of bound and unbound data values, received information, time and if applicable connections to other components. State-based notations shall allow the management and access of state information via component variables.
7.3
Transitions

The modelling notation shall support a means to specify behavioural transitions and to associate them with actions such processing of data, exchange of data via the modelled test system interface or with other model components, or management of timing constraints.
7.4
Logical expressions, conditions and loops

A modelling notation shall enable the specification of alternative SUT behavior by allowing the specification of expressions based on the logical operators and, or, and not and conditions. Depending on the expressitivity of the modelling notation, it should also support the specification of recursive behavior, i.e., loops.
7.5
Timing constraints
Modeling notations shall at least support the specification of timeout constraints.
7.6
Composition of behavior

A modelling notation shall support the unique identification and specification of parts of behavior and allow the composition or their invocation. This also enables the association of behavior with component instances.

EXAMPLE:
Functions or methods are one way of allowing composition of behavior.

7.8

Non-determinsm

A modelling notation shall be able to express non-deterministic SUT behavior.
7.9

Exit points
A modelling notation should support the specification of one or more termination criteria for behavior.

NOTE:
This is not a hard requirement since the termination of tests can be left generally to the test generation algorithms.
EXAMPLE:
An exit point in a state based notation can be a final state.
8
Test instrumentation
8.1
Informal requirements

In order to facilitate requirements-based test selection and enable tracebility of requirements, a modelling notation shall allow the association of informal requirements or references to such in the specification of behavior. It should also be possible to specify requirement groupings.

8.2
Data value restrictions

8.3
Preferred execution paths
Models of SUT behavior generally include a number of conditions r as well as exceptional behavior. In order to be able to produce sensible tests a test generator needs to be guided about preferred execution paths. A modelling notation shall provide some means to identify one or more preferred paths through a behavioural specifications. This can be achieved, e.g., via the specification of a preferred final state or specification of a partial trace.
Introduce test selection / coverage (requirements/probabilistic/stochastic/ model structure)

Concept of preferred termination criterion in case of multiple termination criterions.

Specify for off line testing mandatory coverage criteria

Structural and behavioural features.

Specify for online testing optional/”conditionally mandatory” requirements

Marking of optional vs mandatory features
9
Miscellaneous

Concept of comments for documentation of model specifications
Concept of log operation.

Concept of modular model specification.

Operations for component instantiation, association of behavior

Execution vs design time vs hybrid test selection (on-the-fly vs test script execution)

Presentation of different system characteristics (wolfgang)

Explain non-determinism in SUT execution behavior

1. underspecified (SUT) execution time behavior

2. (SUT) execution time behavior with predictable outcome

3. (SUT) execution time behavior with unpredictable outcome (requires fairness for testing)

10
User defined clause(s) from here onwards
<Text>
9.1
User defined subdivisions of clause(s) from here onwards

<Text>

Annex <A> (informative):
Overview of behavioural modelling techniques (Wolfgang)
This annex a short overview about some formalisms used by different modelling notations and model-based testing tools on the market.

· Process oriented
· Programming language with state charts (Conformiq)
· Rule-based

· Programming language with state chart (MS)
· Extended Finite State Machine (Elvior)
Extended Finite State Machine Model (EFSM) is an enhanced model based on the traditional finite state machine (FSM), which is a model of behavior composed of states, transitions and actions. In a conventional FSM, the transition is associated with a set of input Boolean conditions & a set of output Boolean functions [http://en.wikipedia.org/wiki/Extended_finite_state_machine].
In an EFSM model:

· Interractions have certain parameters, which are typed.

· The machine has a certain number of local variables, which are typed.

· Each transition is associated with an enabling predicate. The predicate can be any expression that evaluates to a Boolean (TRUE or FALSE). It depends on parameters of the received input and/or current values of local variables.

· Whenever a transition is fired, local variables can be updated accordingly and parameters of the output are computed.
· Interaction-based

· Pre- and postconditions (Smartesting)

· Message Sequence Charts (Siemens?)

Annex (informative):
Title of informative annex

Each annex shall start on a new page.

Use the Heading 8 style for the title and the Normal style for the text.

B.1
First clause of the annex

<Text>

B.1.1
First subdivided clause of the annex

<Text>

Annex <y> (informative):
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itselft (see clause 12.2 of the EDRs http://portal.etsi.org/edithelp/other/EDRs_Navigator.chm).

It shall not include the following:

· normative references (such references shall be listed in clause 2.1);

· informative references (such references shall be listed in clause 2.2).

Use the Heading 8 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>
History

	Document history

	0.0.1
	April 2001
	First draft for Table of Contents

	
	
	

	
	
	

	
	
	

	
	
	

A few examples:
	Document history

	V1.1.1
	April 2001
	Publication

	V1.2.1
	February 2002
	Membership approval Procedure
MV XXXX: yyyy-mm-dd to yyyy-mm-dd

	V1.1.1
	June 2001
	Pre-processed by the ETSI Secretariat editHelp! e-mail: mailto:edithelp@etsi.org

2009-02-23

�For standards development

�For publication

�This table needs to be updated but somehow my MS Word prevents me from doing this.

�ES vs TS?

�This is the first term we should agree. Is it “model-based testing” or “automated test design”. There are people who say that testing is always model-based even if the model is only in the brains of testers. More correct would be either “model-based test generation” or “automated test design”.

�The standard may live long. We don’t know what is the case at this time.

�This is arguable. We can say that model is easier to review and maintain than tests in executable output format e.g. TTCN-3.

�This is vague

�Add also some end-user like “test engineers”

�Mappings could be introduced in a separate standard or in later versions as normative annexes

�Vague term, “...interface is a component...”. “modelled test system” , what is this?

“Interface of SUT model that represents the abstraction of interface between SUt and its environment that is available for testing”.

�Taken as is from TR 102 840

�Do we have common understanding what is “test case” and “test description”. In case of non-deterministic models tests are generated on-the-fly during the tests execution. How do we express such situation? In Elvior test generator case a test automaton (in TTCN-3 language) is the output of offline phase of test generation based on the test selection criteria. In online phase the automaton generates inputs for the system taken into account SUT non-deterministic outputs.

�Not always “test cases”, see previous comment.

�This is optional step. For example, this can be done by complementary model that is concatenated with the original model before the tests generation.

�What is “test model”?

�Only?

�See my comment in terms chapter

�Trying to avoid the word or concept of a “port” as it may not be available or be easily mappable into in all modelling notations in use today ... correct me if I am wrong

�Which interfaces and which access points?

�Why?

�Is it really needed. On the model abstraction level you often don’t care is the communication message-based or procedure-based.

�What is this?

�Isn’t it too ttcn-3 specific?

�This is general statement that SUT can be collection of interacting entities. Also SUT in conformance tests can be complex system consisting of many components.

�Of course, this is interoperability test specific only.

�Thread is implementation-level term and should not be presented on the model level.

�Do we need more elaborate operation definitions (like in TRI standard)

�Heading just for the lack of a better name least for the moment

�I am not sure what this adds to directly modeling or the standard. I think the writing should be left agnostic of the approach taken to generation/selection

�I think this is beyond the scope of the standard. This is better to discuss in a methodology/guidelines document.

�As such property of te SUT) this is not easyto integrate here. Again maybe more suitable for a methodology or guide (like how to deal with this).

[image: image2.wmf]_1065009619.doc

