[image: image2.wmf]

TD <>
Draft ETSI ES 2XX XXX V<0.2.1> (2010-08)
ETSI Standard
Methods for Testing and Specification (MTS);

Model-Based Testing (MBT);

Concepts for Model Specification
<
Reference

DES/MTS-00128 MBTmodConc
Keywords

TESTING, TTCN
ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification

Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2010.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM, TIPHONTM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE™ is a Trade Mark of ETSI currently being registered
for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.
Contents

3Logos on the front page

Copyrights on page 2
3
Intellectual Property Rights
5
Foreword
5
Multi-part documents
5
Parts

5
Parts (for multi-part deliverables containing different deliverable types, e.g. TSs and ENs)
6
Sub-parts

6
Introduction
6
1
Scope
7
2
References
7
2.1
Normative references
8
2.2
Informative references
8
3
Definitions, symbols and abbreviations
8
3.1
Definitions
8
Definition format
9
3.2
Symbols
9
Symbol format
9
3.3
Abbreviations
9
Abbreviation format
9
4
User defined clause(s) from here onwards
9
4.1
User defined subdivisions of clause(s) from here onwards
9
Proforma copyright release text block
9
Annex <A> (normative):
Title of normative annex
10
Annex (informative):
Title of informative annex
10
B.1
First clause of the annex
10
B.1.1
First subdivided clause of the annex
10
Abstract Test Suite (ATS) text block
11
<x1>
The TTCN Graphical form (TTCN.GR)
11
<x2>
The TTCN Machine Processable form (TTCN.MP)
11
Annex <y> (informative):
Bibliography
12
History
13
History box entries
13

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES)
has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

Introduction

Based on the recent success and deployment of model-based testing in industry, TC MTS investigated work on model-based testing specifically in the context of standardized test specification development [i.1]. Contrary to currently used methods and approaches, which focus mainly on test execution automation, model-based testing targets to automate the test design phase which is performed manually today.
Model-based testing facilitates a more thorough and earlier validation of standards as well as the automatic generation of test specification artefacts, e.g., MSC based test descriptions or TTCN-3 test suites. Due to its independence of the output format, model-based testing allows the review of standardized test specifications by non-testing experts. In addition, automation of test design allows ETSI as well as other organizations to cope with the ever-growing demand for standards to support interoperability since it provides implementers of standards access to different and much larger test sets as well as a more effective use of resource for test specification development.
The motivation for the development of this standard were:

1) to help users of model-based testing technology such as product vendors, tool makers, test service providers, government agencies, procurement personell, students and researchers to understand necessary basics of modeling for testing
2) to establish a common, consistent, and agreed terminology as well as concepts for modelling and instrumentation of models for model-based test generation and selection

3) to enable the specification of models for derivation of standardized conformance and interoperability tests
4) to facilitate the use of model-based testing for product certification
5) to create a basis for an open, competitive model-based testing market for tools which process such models
6) to decouple model-based testing from specific tool solutions and improve interoperability of model-based testing tools

7) to further increase tool maker credibility as well as to enable consumer accountability (including also for legal issues)
To ensure its success and quality, this standard has been developed by a group of experts from all types of stakeholders involved in test specification developement, i.e., researchers, tool makers, industrial users, as well as testing experts of ETSI’s Centre for Testing and Interoperability.
This document lays the foundation for the deployment of model-based testing in standardization since it specifies requirements for model specifications to be suitable for the generation of tests in the context of standardization. Such tests need to adhere to well established concepts defined and used in manual test specification [i.2, i.3., i.4]. In addition, it defines the criteria that need to be fulfilled by a model specification in order to be included in a standardized ETSI test specification.

1
Scope

The present document identifies and collects all required concepts of a modelling notation supporting the specification of models for the specific purpose of testing. These concepts have been developed mainly from the recommendations collected in ETSI TR 102 840 [i.1]. Model-based testing tools that use a modelling notation that complies to the requirements stated in this standard, can be used to automatically generate tests suitable for standardization.
The concepts described in this standard are specified independent of a specific modelling notation or syntax. The mapping of concepts to concrete modelling notations is beyond the scope of this document.

2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific.

· For a specific reference, subsequent revisions do not apply.

· Non-specific reference may be made only to a complete document or a part thereof and only in the following cases:
· if it is accepted that it will be possible to use all future changes of the referenced document for the purposes of the referring document;
· for informative references.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE:
While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.
2.1
Normative references

The following referenced documents are indispensable for the application of the present document. For dated references, only the edition cited applies. For non-specific references, the latest edition of the referenced document (including any amendments) applies.

 [1]
ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Parts 1: TTCN-3 Core Language" (also published as ITU-T Recommendation series Z.140).
[2]
ISO/IEC 11404: "Information technology - General-Purpose Datatypes (GPD)"
[3]
ISO/IEC 10646: "Information technology - Universal Multiple-Octet Coded Character Set (UCS)"
2.2
Informative references
The following referenced documents are not essential to the use of the present document but they assist the user with regard to a particular subject area. For non-specific references, the latest version of the referenced document (including any amendments) applies.
 [i.1]
ETSI TR 102 840: "Methods for Testing and Specifications (MTS); Model driven testing in standardization".

[i.2]
ISO/IEC 9646-1: "Information technology - Open Systems; Interconnection - Conformance testing methodology and framework - Part 1: General concepts".

[i.3]
ETSI EG 202 237: "Methods for Testing and Specification (MTS); Internet Protocol Testing (IPT); Generic approach to interoperability testing".

[i.4]
ETSI EG 202 810: "Methods for Testing and Specification (MTS); Automated Interoperability Testing; Methodology and Framework".
[i.5]
IETF RFC 3261: "SIP: Session Initiation Protocol".

3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:

Action: an input or output of the SUT (see Input, Output)
Behavior: the functional behaviour of a SUT in terms of the sequences of inputs and outputs of the SUT.
Design time test generation: test generation ahead of test execution time (see test generation).
Input: a stimuli accepted by the SUT, represented as a message, operation call, or other kind of communication means. An input may carry parameters (data).
Model-based testing: an umbrella of approaches that generates test specifications from model specifications. Model specifications can be system models, models of the environment, graphical test case specifications, etc
Model state: a situation in which the model predicts certain inputs to be accepted or outputs to be issued by the SUT
Modeled test system interface
: a model component that defines (in an abstract manner) external SUT interfaces available for testing, i.e. the inputs and outputs of the SUT.
Non-deterministic behavior: a system behaves in a non-deterministic manner if it can react with more than one valid output in a given system state. A model allows non-determinstic behavior if it predicts more than one possible output in a given model state.
Offline test generation: see design time test generation.
Online testing: see runtime test generation.
On-the-fly testing: see runtime test generation.
Output: a response issued by the SUT, as a reaction on inputs, or spontaneously. An output may carry parameters (data).
Slicing: see test selection.
System model: computer-readable behavioural model that describes the intended external operational characteristics of a system, i.e. how the system being modelled interacts with its environment

NOTE:
Instead of describing the full system, a system model may only capture one or more behavioral and structural aspects of a system under test
System state: a situation in which the SUT accepts certain inputs or issues certain outputs
System Under Test (SUT): See ISO 9646-1 [i.2].

Test automation: the automated execution of test steps, test cases and test suites
Test case: an atomic unit of a single test executed agains the SUT, usually compromised of several test steps.
Test generation: the automatic derivation of test cases or test descriptions from a model based on test selection criteria
Test instrumentation: information added to a system model specification specifically for the purpose of testing
Test selection: the process or the result of chosing a subset of tests from a larger or infinite set of tests which can be derived from a model.
Test selection criteria: the set of criteria which have to be covered by a set of test cases generated from a model
Test step: a single step of a test case, usually compromised by a single input provided to the SUT, or a set of outputs expected by the SUT. A test step may be executed using test automation or may be executed by a human.
Test suite: a set of test cases which together address a set of test selection criterias.
Transition coverage: a test selection criteria where the objective is that each transition of the model is covered in at least one test case.
Runtime test generation: dynamic test generation from a model during test execution,
State transition: a transition of a model (model state transition) or the system (system state transition) from one state to the next, usually associated with an input or output which causes the transition.
State coverage: a test selection criteria where the objective is that each state of the model is covered in at least one test case.
3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

IP
Internet Protocol

IMS
IP Mulitmedia Subsystem

MBT
Model-Based Testing
MSC

Message Sequence Chart

SIP
Session Initiation Protocol

SUT
System Under Test

TTCN-3
Testing and Test Control Notation version 3

<ACRONYM3>
<Explanation>

4
Modeling in test development
Model-based testing (MBT) refers to an umbrella of approaches that generate test suites from a variety of different forms of models. This standard addresses specifically the approach where tests are generated from models describing the behaviour of a system-under-test (SUT).
MBT is a black-box testing technique which is applicable to conformance [i.2] as well as interoperability testing [i.3, i.4], as well as functional testing.
As shown in Figure 1, in model based testing formal system models are specified based on a modelling notation. They capture one or more aspects of the external behavior of a SUT and encode testable requirements as specified in an informal specification, e.g., one or more standards. This model is then further instrumented or refined by further constraining configuration information and data value ranges in the model specification for the purpose of testing.
Contrary to conventional test script development, system models are specified abstractly, i.e., they focus on specific aspects of interest of SUT behavior and structure relevant for testing. The refined system model is then used in conjunction with a set of test selection criteria and a model-based testing tool to automatically generate tests that comply to these criteria. Tests may be generated as one or more different formats including informal documents, MSCs, programming languages such as Java or C#, or scripting languages such as TTCN-3 [1].
[image: image1.png]
Figure 1. Model-based testing with system models in test development

This standard provides the foundation for the specification of system models as well as directing the generation of test cases from them. The document defines concepts required from modelling notations to express model structure and behavior
, and to instrument system models for testing. In addition, it specifies other requirements on modelling notations which are needed to produce tests suitable for standardization
.
Guidelines for the specification of system models as well as the integration of generated tests in automated test systems are beyond the scope of this document.
5
General requirements

Models are software artifacts, and as such must be amenable to standard techniques of modern software engineering.
The modelling notation shall provide a means for the following:
·
· laying out a model specification in a modular manner across multiple documents
· expressing relations between modules or other gross-structuring units
· enabling procedural and data abstraction, as well as reuse of those abstractions across multiple model artifacts
· documenting model specifications with comments.
· to express structural and behavioral aspects based on precise operational semantics

6
Structural concepts

6.1
Modelled test system interface

To enable the specification of models for testing purposes, a modelling notation shall support a means to specify a precise definition of the boundary of the SUT, i.e., a representation of interfaces with unique identifiers available to steer and observe the operation SUT. This boundary is called the modelled test system interface. This definition shall include a list of access points
to interfaces. The abstraction level of the modelled test system interface definition should be higher that the abstract and real test system interfaces used by test scripts as defined in [1].

Alternative formulation: To enable the specification of models for testing purposes, a modelling notation must support a means to specify the interface to the SUT in terms of the actions -- inputs and outputs -- of the system for reference from the model. Actions must represent at least (one-way) messages exchanged between a test suite and SUT, and may also include procedure calls (two-way messages), as described below. Actions must be capable of carrying data parameters, which must be at least of basic data types, but may also be of aggregated data types (see below 6.3).
The abstraction level of the actions may be higher than the actual test interface of the SUT, in which case a test adapter need to be provided to close the gap between modelled test suite and SUT. The techniques used for defining test adapters are out-of-scope of this document.
The binding of the SUT or adapter against model actions is out of the scope of this document. Typical examples of binding techniques may use unique identifiers for groups of actions clustered in interfaces which are mapped to according constructs in the SUT; in other instances, the binding may be given on a per-action base.
6.2.1 Messages

To enable the specification of basic information exchange, the modelling notation must support messages (or a similar concept) as inputs and outputs of the SUT. A message must have a unique identifier and be capable of carry data as specified in Sect. 6.3.

The SUT is not required to be input enabled, meaning that it accepts any message at any point of time.
6.2.2 Procedures

To enable the specification of service-oriented systems, the modelling notation should support procedures. A procedure represents a two-way communication between a client and the SUT.
Technically, a procedure consists of a call message (sometimes also called a request) and a return message (sometimes also called response). In addition to a return message, their may be also an exception message representing a error as a response. The modelling notation should be able to describe procedures as actions in a natural way such that call, return, and exception messages are automatically derived from one action declaration.
If a modelling notation does not support procedures directly, they can be simulated by explicitly declaring call/return/exception messages.
6.2
Interfaces

Interface specifications shall allow the definition of the type of communication, direction of communication, and the type of information exchanged via an interface. Of the different types of communication, the notation shall at least support message based but may also support procedure based communication. The type of information information to be exchanged shall be defined using data types.
EXAMPLE:
An example for a message based interface definition is a SIP [i.5] server interface which receives SIP request and send SIP response messages.

6.3
Data

A fairly rich set of logical data types including basic and aggregate types is required to properly capture the structure of information in models specified for the purpose of testing. Beyond these types, the modelling notation shall support the definition of constant and placeholder values for any data type. In addition, a modelling notation shall provide a means to store and manage information such as variables
.
In general, all data types shall be derived from and comply to ISO 11404 [2]. More specifically the modelling notation shall at least support the types boolean, enumerated, integer, real, character string as well as record, sequence and choice. The following clauses specify further requirements and operation that are required to be supported for each of these types.
It is recommended that data types used from a modelling notation represent physical domains which are compatible to data types that are used by and available in the targeted test scripting and test system implementation languages, instead of idealized mathematical domains.
6.3.1
Boolean

A data type capturing values true and false. The Equal operation shall be supported for boolean types.
6.3.2
Enumerated

A data type comprises a finite number of distinguished, named values having an intrinsic order. At least Equal and InOrder
operations shall be supported for enumerated types.

EXAMPLE:
Example values for an enumerated type TrafficLightColor could be red, yellow, and green
6.3.3
Integer

A data type comprising all positive and negative exact integral values. At least Equal, Add, Multiply, Negate, and InOrder operations shall be supported for integer types. The precision of integer values may not be limited
.

EXAMPLE: Example integer values are 0 or -1000 or 99
6.3.4
Real

A data type comprising all positive and negative real numbers which are expressed to some finite precision and must be distinguishable to at least that precision. At least Equal, Add, Multiply, Negate, and InOrder operations shall be supported for real types. The precision of real values may not be limited.

EXAMPLE: Example real values are 0.0 or -1.07 or 99.9999
6.3.5
Character string

A data type comprising represent strings of symbols, i.e., an arbitrary number (possibly zero) of characters, from the standard character set specified by ISO 10646 [3].
At least Append, Equal, Empty, and IsEmpty operations shall be supported for character string types.
EXAMPLE:
Example character string values are "sip:alice@127.0.0.1:5062" or "Yrjö Åberg" or "x" or "" or "-2.0".
6.3.6
Record

A data type collecting a fixed number of named values of any data type listed in this clause 6.3. At least Equal, FieldSelect, and FieldReplace operations shall be supported for record types. In the context of records also the Optional generator and its corresponding IsPresent operation shall be supported
.

EXAMPLE:
An example value for a Name record type could be first name "John", an omitted middle name, and surname "Smith".
6.3.7
Sequence

A data type representing all finite sequences of values from the same element data type including the empty sequence: The element data type can be any type listed in clause 6.3. At least IsEmpty, Head, Equal, Empty, and Append operations shall be supported for sequence types.

EXAMPLE: An example value for a ListOfFiveIntegers sequence type could be 42, 0, 333, -6, 1000
6.3.8
Choice

A data type where a value can only be one of a set of alternatives. Each alternative can be of any type listed in clause 6.3. At least Equal, Tag, Cast, and Discriminant operations shall be supported for choice types.
EXAMPLE:
An example value for an Uri choice type should be one of its alternatives SipUri, TelUri, or AbsoluteUri.

6.3.9
Procedure

Wolfgang
Concepts signatures, exceptions, operations, parameters and their direction, return values ..
call/getcall, etc

The support of this data type and its operations is optional.

6.3.10
Miscalleneous

Concept for a object reference/interface identifier?
Need for domain specific types? Example: Magic objects (connection)

6.4
Architecture

In some forms of testing, e.g., interoperability testing, the SUT is consider to consist not just of one single but a collection of equipment
interacting via standardized interfaces which has to be also reflected in the model specification, e.g., in order to observe that equipment communication complies to standards [i.3]. For this purpose, the modelling notation should support also the specification of a model in terms of dynamic model components, i.e., independent execution threads, which can interact with the modelled test system interface and each other via communication channels.

NOTE:
Multi component models may also be useful to use in the conformance testing of more complex systems such as IMS networks. The use of multiple model components may in some cases however create conflicts with the goal to keep the abstraction level of system models as high as possible.
Similarly, as in the case of the definition of the modelled test system interface in clause 6.1. a model component shall be defined by a set of interface access points that can be used to establish dynamically communication channels to the modelled test system interface or other test components.
The modelling notation shall support operations
to dynamically create and associate unique identifiers with model component instances, to associate and start the execution of behavior on a component, to establish, exchange information, and tear down communication channels in case that communication type, information type, and directionality of interfaces permit to do so, and to terminate the execution of behavior on a component.

Alternate formulation:

Many systems are compromised by a set of components which concurrently interact with each other using communication channels or other kinds of communication means. In some cases the topology of this components my be dynamically evolving, in other cases it may be statically defined for the lifetime of a system.
The modelling notation should support describing individual components with concurrent activity and the interfaces between them. Ideally, the notion of an interface between components of the system is the same as the notion of an interface between the SUT and the test suite derived from a model – i.e. it is given in terms of inputs and outputs, described as messages or procedures, contained in interface access points.
For describing dynamically evolving architectures, the modelling notation should support the dynamic creation and disposal of components and connections between them.
7
Modelling of Behaviour
This clause defines concepts required for describing system behaviour.
A number of different behavioral modelling techniques with different levels of expressitivity have established themselves in model-based testing tools. An overview about these techniques is given in Annex A.

NOTE:
Although two tools may use different behavioural modelling techniques it is still possible to transfer or convert models from notations with the same or greater expressive power. Some model information may be lost in the transfer of model information.

This standard collects generic requirements which are common to different behavioural modelling techniques and shall be accessible for the specification of model component behavior. In order to characterize those requirements, a common semantic model based on labelled transition system and alternating refinement is used.
7.1
Semantic Model

7.1.1
Labelled Transition Systems

In order to formulate requirements on behaviour modelling techniques, a simple semantic framework is introduced, which is based on labelled transition systems (LTS).
LTS are used to describe sequences of input and output actions of a component or a set of components. If supported by the notation, these sequences are augmented by timing constraints.
An LTS consists of a (potentially infinite) set of states and a (potentially infinite) set of transition between those states. Some finte set of states are marked as initial states, and some (potentially infinite) set are marked as final states. The transitions are labelled with actions. Data parameters of those actions are considered to be values and being part of the labels. Tools may represent those values symbolically, being able to represent an infinite LTS by a finite representation.
A sequence produced by an LTS is simply a concatenation of transitions where target and source state are matched. A possible run of an LTS is a sequence which starts with an intial state and ends with a final state.
Each state of the LTS corresponds to a model state. The enabled transitions in a given model state are those whose source is the given state. The enabled actions are the labels of the enabled transitions. The enabled actions can be partitioned into inputs and into outputs.
7.1.2
Alternating Simulation

Given a model state S and a system state I, the SUT is considered to be conforming with the model if I is an alternate simulation of S, i.e. if the inputs of S are a subset of the inputs of I, the outputs of S are a superset of the outputs of I, and conformance recursively continues on the target states of the matching transitions.
For an infinite run of an LTS, conformance is given if the SUT simulates a finite prefix of that run which ends in a final state.
Some notations and tools may use the notion of quiescene to deal with conformance of potentially infinite runs. These notations can be mapped into the given framework by considering quiescene as special output of the test adapter of the SUT, and marking only those states as final which can be reached via a transition labelled with quiescence.
7.1.3
Real-Time Constraints
Some notations and tools may support real-time constraints. In case of real-time constraints, a transition is labelled not only with an action and its parameters, but also with a time interval describing the minimal and maximal delay until the transition can be taken. A transition of the SUT can only simulate a transition of the model iff the delay until it is taken is within this interval. (CHECK: How does that fit with Uppal/QTronics/etc.)
7.2
Requirements

7.2.1
Initial state or states
The modelling notation shall support a way to describe the initial state (or states) of the underlying LTS.

This entry point shall associate a modelled test system interface with the behavior.

NOTE:
An entry point is only in part defined by an initial state of a state machine.

7.2.2
Final state

The modelling notation shall support a way to describe the final state (or states) of the underlying LTS.
7.2.3
Rich State

The modelling notation should support the concept of a rich state which is composed of bound and unbound data values, time and if applicable connections to model other components. State-based notations shall allow the management and access of state information via component variables.

7.2.4
Transitions

The modelling notation must support a means to specify transitions of the LTS and to associate them with actions which are parameterized with data.
7.2.5
Timing

The modeling notation should support the association of timing constraints with state transitions.

7.2.6
Composition of behavior

A modelling notation should support the specification of parts of behaviour and allow their composition or invocation.

EXAMPLE:
Functions or methods are one way of allowing composition of behavior.

7.3.7

Non-determinsm

A modelling notation shall provide a means to express non-deterministic SUT behavior.

7.3.8 Compound expressions, conditions and loops

A modelling notation shall allow the specification of conditions based on compound expressions with arithmetic, relational and logical operators. The modelling notation should also support the specification of recursive behaviour and of loops.
NOTE:
This is not a hard requirement since the termination of tests can be left generally to test generation algorithms.

7.3
Modeling Styles

Numerous modelling styles can be used for describing behaviour, and each of those can be understood as producing an LTS when instrumented for test generation.
7.2.1
Process-oriented modeling

In process-oriented modelling, a system of components is specified by describing the activity of each component as an independent sequential process (or thread). The process is usually described using an imperative modelling or programming language. Each process has its independent data state, compromised by a set of state variables. During its lifetime, the process actively listens to inputs from its environment and produces outputs, usually by using the concept of ports or channels.
Process-oriented models map to LTS by collecting the traces of inputs and outputs visible on the ports. Parallel activity of processe is constructed by interleaving the traces of two sub-systems. Real-time constraints are described by programmatic delays and timeouts.

Process-oriented models are expressive enough to represent all concepts for behavioural models described in this standard, and are close to the way how actual systems are implemented.
7.2.2
Rule-oriented modeling

In rule-oriented modelling (sometimes also called action-oriented modelling, or event-oriented modeling) a system of components is specified based on a global data state and a set of rules which classify under which condition over the state an action is possible, and what update on the global state its presence causes.
Rule-oriented models are straightforwardly mapped to LTS by choosing each reachable configuration of the global state to be a state of the LTS, and drawing transitions according to the rules. These models can directly describe real-time constraints by associating delays directly with rules.

Rule-oriented models are expressive enough to represent all concepts for behavioural models described in this standard, and are in particular well suited if large amounts of processing behaviour need to be described in a modular way, rule by rule. However, as rule-oriented models do not incorporate imperative control flow every such context must be explicitly simulated in the global state.
Rule-oriented models are a superset of finite state machine models. To this end, the finite state machine’s state can be stored in a variable of the global date state.

Statecharts are a variation of rule-oriented models, where a particular part of the global state, the statecharts control flow, is represented as variable of the global data state.
7.2.2
Finite State Machine Modeling

Finite state machine modelling is a special case of rule-oriented modelling, where the global state is finite, and therefore only a finite number of configurations exists.
Extended finite state machines are a notation which allows to represent finite state machines with a large state space in a more comprehensive way.

Finite state machine models are not as expressive as process-oriented or rule-oriented models, as they can only represent systems with finite states. The simplicity of finite state machines, however, may make them better suited for certain analysis techniques.

8
Test instrumentation
This clause collects concepts which needs to be supported for the refinement of system models specifically for the purpose of testing.
8.1
Informal requirements

In order to facilitate test selection based on requirements coverage and enable requirement traceability, the modelling notation shall allow the association of informally specified requirements, e.g., in English prose, or references to such with the specification of behavior.
8.2
Constraining of data values

The modelling notation shall support the constraining of data values or ranges especially for information received by the system.

 NOTE:
This requirement enables to enable the selection of meaningful values in test generation, e.g., for information modelled as integer and float.

8.3
Preferred execution paths
Models of SUT behavior frequently includes many execution and conditional branches which allow to cover a specific requirement in many ways. Not in every case the first branch necessarily leads to acceptable execution path. To enable the identification of such paths, a modelling notation shall provide some means to mark or specify one or more preferred paths through a behavioural specification.
 EXAMPLE:
The marking of a preferred final state or specification a partial sequence of transitions are examples for the selecting a preferred execution path.
8.4
Identification of optional features

Informal specifications generally contain mandatory and optional features. Tests specified for such specifications should generally avoid to cover optional features to ensure their applicability to the biggest set of implementations. In order to support a generation of such tests, a modelling notation should support the marking or identification of parts of a model specification which are associated with optional features.
Annex <A> (informative):
Overview of behavioural modelling techniques (Wolfgang)
This annex a short overview about some formalisms used by different modelling notations and model-based testing tools on the market.

· Process oriented
· Programming language with state charts (Conformiq)
· Rule-based

· Programming language with state chart (MS)
· Extended Finite State Machine (Elvior)
· Interaction-based

· Pre- and postconditions (Smartesting)

· Message Sequence Charts (Siemens?)

Annex (informative):
Title of informative annex

Each annex shall start on a new page.

Use the Heading 8 style for the title and the Normal style for the text.

B.1
First clause of the annex

<Text>

B.1.1
First subdivided clause of the annex

<Text>

Annex <y> (informative):
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itselft (see clause 12.2 of the EDRs http://portal.etsi.org/edithelp/other/EDRs_Navigator.chm).

It shall not include the following:

· normative references (such references shall be listed in clause 2.1);

· informative references (such references shall be listed in clause 2.2).

Use the Heading 8 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>
History

	Document history

	0.0.1
	April 2001
	First draft for Table of Contents

	
	
	

	
	
	

	
	
	

	
	
	

A few examples:
	Document history

	V1.1.1
	April 2001
	Publication

	V1.2.1
	February 2002
	Membership approval Procedure
MV XXXX: yyyy-mm-dd to yyyy-mm-dd

	V1.1.1
	June 2001
	Pre-processed by the ETSI Secretariat editHelp! e-mail: mailto:edithelp@etsi.org

2009-02-23
�For standards development

�For publication

�This table needs to be updated but somehow my MS Word prevents me from doing this.

�ES vs TS?

�Mappings could be introduced in a separate standard or in later versions as normative annexes

�Is that the notion used in TTCN-3 standards? I would have expected ‘test adapter’ instead of ‘test system interface’.

�Taken as is from TR 102 840

�Do we settle on American or English writing? (Behavior vs. Behaviour). Whatever we do it should be applied consistently (

�… of communicating systems? Or of other classes of systems? The requirements may vary dependent on that. We need to clarify whether we are going to focus this on communicating systems/protocols.

�I’m not sure whether we restrict on operational description here. Perhaps remove this and instead break down in detailed requirements as attempted above.

�As mentioned in the gloassary, we should sync that with test adapter or other TTCN-3 notion.

�Trying to avoid the word or concept of a “port” as it may not be available or be easily mappable into in all modelling notations in use today ... correct me if I am wrong

�I would try to put this a bit different, using the notions of inputs and outputs as introduced in the gloassary.

�I’m not sure whether we need this independently of the test system interfaces. I understand that it is nice to have the interface mechanism for the SUT as for internal model abstraction, but it appears to me a requirement which is too specific. By having stated as a general requirement modularity and compositionality in Sect.5, we may have covered this already.

�Not sure what that means. If it is a state variable, it should be tackled in Sect. 7

�We probably would need to specify what that means? Or is that part of the IEEE?

�Limited or unlimited?

�Is the Unicode? I thinking asking for Unicode would be practical.

�This may be harder to achieve if Java or C# like modelling languages are used.

�This is now covered under 6.2.2 and can be removed here, unless something else was meant than procedures on the SUT interface.

�I think we should skip this.

�Is that a standard notation in this context? Sounds a bit unusual to me (What about using ‘component’?

�I guess we still need to elaborate more operation semantics (maybe at a similar level as in the TRI standard)

�I feel this a bit too specific, the below reformulation attempts to abstract from notions like threads and ids.

�Don’t understand why this needed.

�I think that would not be enough.

�This could arguably accounted to 8.1 or 8.3 or realized via these solutions.

[image: image2.wmf]_1065009619.doc

