[image: image6.wmf]

TD <>
Draft ETSI TR 1XX XXX V<m.t.e> (2009-04)
Technical Report

Methods for Testing and Specifications (MTS);

Requirements for High Level Test Descriptions
Reference

DTR/MTS-00103-HighLevTstDesc
Keywords

Testing, ???
ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute yyyy.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM, TIPHONTM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE™ is a Trade Mark of ETSI currently being registered
for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.
Contents

4Intellectual Property Rights

4Foreword

4Introduction

51
Scope

52
References

63
Definitions and abbreviations

63.1
Definitions

73.2
Abbreviations

74
Purposes and objectives

74.1
Purposes of High Level Test Descriptions

85
Identification of requirements for high-level test descriptions

85.1
General requirements

85.1.1
Structure

95.1.2
Format

95.2
Test Architecture Requirements

95.3
Test Behaviour Requirements

105.4
Test Data Requirements

105.5
(Tool) specific requirements

105.5.1
Validation

105.5.2
Transformation (Import/Export)

106
Concepts for High Level Test Descriptions

106.1
Structural concepts

116.2
Architectural concepts

116.2.1
Test architecture for concurrent test activities

126.2.2
Specification of SUT interfaces

136.2.3
Location of Test Configurations

146.2.4
Summary of requirements

146.3
Behavioural concepts

146.3.1
Test Actions

166.3.2
Timer functionality

176.3.3
Test verdicts

176.3.4
Specification of test pre-conditions

186.3.5
Summary of concepts

186.4
Test data concepts

186.4.1
Specification of data types

186.4.2
Specification of concrete values for data types

186.4.3
Summary of concepts

19Annex A.1: Textual Notations

19Annex A.2: Graphical Notations

20History

Intellectual Property Rights

This clause is always the first unnumbered clause.

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Report (TR) has been produced by the ETSI Technical Committee Methods for Testing and Specification (MTS).
Introduction

Black-Box Testing, including system test conformance test and interoperability test
T.B.D.
Since High Level Test Descriptions (HLTD) are located on a higher level of abstraction in comparison to executable test cases, they can not be executed on an implementation respectively system under test.
1 Scope

This technical report provides a compendium of general requirements for High Level Test Descriptions (HLTD). The purpose of such descriptions is to enable a non-technical, but yet formalized representation of test specifications. Those HLTDs may serve as an intermediary step towards test automation or provide a base for documenting manual testing in a systematic manner. The main benefits expected from HLTDs are the following:

1. To facilitate the traceability in test automation by providing a mean to bridge the gap between system specifications (including associated requirements) and test specifications.
2. To enforce the usage of certain patterns in specifying test cases, by ensuring that test specifications follow a predefined structure and meet certain semantic requirements through automated validation
3. To facilitate the exchange of test specifications between all parties involved in the testing process, e.g. test tool vendors, standardization bodies, system designers and testers (test analysts, test designers and test implementers)

Please note that the main objective of this report is not to specify a dedicated notation or language for HLTDs. However, such a notation format or language can be specified on the basis of requirements identified within this technical report.
2 References

[1] ETSI ES 201 873-1: “Methods for Testing and Specification (MTS); The Tree and Tabular Combined Notation version 3; Part 1: TTCN-3 Core Language”
[2] ETSI ES 202 553: “Methods for Testing and Specification (MTS); TPLan: A notation for expressing Test Purposes”
[3] ETSI TR DTR/MTS-00106-ModDrivTesting (not approved until now)
[4] ISO/IEC 9646-1: "Information Technology - Open Systems Interconnection - Conformance Testing Methodology and Framework - Part 1: General concepts"
[5] ISO/IEC 9646-2: "Information Technology - Open Systems Interconnection - Conformance Testing Methodology and Framework - Part 2: Abstract Test Suite specification"

[6] OMG formal/05-07-07: “UML 2.0 Testing Profile Specification”
[7] Nagin, K.; Kirshin, A.; AGEDIS – Test Suite User’s Guide. AGEDIS project, 13.04.2003
[8] Draft ETSI TR 102 763: “Technical characteristics of Detect-And-Avoid (DAA) mitigation techniques for SRD equipment using Ultra Wideband (UWB) technology”
[9] ETSI TS 186 011-2: “IMS NNI Interworking Test Specifications; Part 2: Test Descriptions for IMS NNI Interworking”
[10] ETSI TS 102 517: “Methods for Testing and Specification (MTS); Internet Protocol Testing (IPT): IPv6 Core Protocol; Interoperability Test Suite (ITS)”
[11] 3GPP TS 36.521-3: “User Equipment (UE) conformance specification Radio transmission and reception Part 3: Radio Resource Management Conformance Testing”
3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, terms and definitions specified in this section apply. A distinction is made between general terms and definitions and those which are dedicated to test case and test description related topics.
General definitions

The terms and definitions specified within this section apply for test case as well as test description related topics.

System under test: see ISO/IEC 9646-1 [4]
Test purpose: see ETSI ES 202 553 [2]
Test description: see ETSI ES 202 553 [2]
Test system: see ISO/IEC 9646-1 [4]
Test verdict: see ISO/IEC 9646-1 [4]
Test group: see ISO/IEC 9646-1 [6]
Test Action: an action to be performed by an element of test setup to stimulate, monitor or to verify the behavior of a SUT to assess its correctness.
Test suite: see ISO/IEC 9646-1 [6]
Test case related definitions

The following terms and definitions only apply in the context of test cases.
Communication port: see ETSI ES 201 873-1 [1]
Test architecture: specification of structural aspects of a test case or a test suite concerning the system under test, used test components and their configuration. In particular static communication relationships are specified within the test architecture.
Test behaviour: sequence of test actions, in example for sending or receiving a message, which are executed by a test component.
Test component: part of a test system which realizes a dedicated portion of the test behaviour. At least one test component resides within a test system. Test components have their own threats of control and therefore the test behaviour of each test component within a test system is executed concurrently.

Test description related definitions
The succeeding terms and definitions only applies for test description related topics.

Test Configuration: specification of logical configuration aspects of a test description resp. a group of test descriptions. In particular, a test configuration represents different test entities, including their logical links, involved in test descriptions.

NOTE: The concept of test configurations is similar to test architecture specifications used in the context of test cases. The difference between both concepts is that test configurations are less formal.
Test Entities: are the logical building blocks used to define test configurations. A single Test Entity represents a thread of sequential behavior. The presence of multiple Test Entities within a test configuration implies that concurrent test behavior is possible.
Test Action: Any action that needs to be performed to verify a given test objective or test purpose (e.g. to stimulate the SUT, to verify a reaction thereof or to fulfil some preconditions required for the test case)
3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

CTMF
Conformance Testing Methodology and Framework
FIFO
First In First Out
HLTD
High Level Test Description

IUT
Implementation Under Test
MSC
Message Sequence Chart

PCO
Point of Control and Observation
SUT
System Under Test
TC
Test Case
TCP
Test Coordination Procedures
TD
Test Description

TP
Test Purpose

TSI
Test System Interface

TTCN-3
Testing and Test Control Notation edition 3

UTP
UML Testing Profile
4 Purposes and objectives
4.1 Purposes of High Level Test Descriptions
Currently, a new workflow for the specification and development of test cases is being (has been?)
introduced within the standardization processes of ETSI. As shown in Fig. 1, this workflow consists of several steps starting from the extraction of test requirements up to the validation of specified test cases. The
 results of the first steps in that workflow are normally written in natural language. Whereas test purposes (TP) should be specified by using a standardized notation, i.e. TPLan [2], to express them in a formally to enable computerized. However, the processing capabilities of such a notation are limited to restricted syntax checking and an enhanced visual representation. The next step towards the specification of test cases are test descriptions (TD). In contrast to test purposes, it is assumed that the expressiveness of TDs is much higher than that of test purposes. Furthermore, it is expected that the computerized processing capabilities of test descriptions are more powerful than those of TPs. But in comparison to test cases (TC), per definition test descriptions are not necessarily executable, because there may be some information missing to allow such execution. Therefore some additional refinement steps would be required to obtain executable test cases, for example in the form of TTCN-3 test cases.
[image: image1.jpg]ETSI\(((%)) CONFORMIQ

Stages in ETSI (Test) Specification Development

Base Standard or Profile Specification

Cataloguing of Requirements

Creation of Implementation Check List (ICS/IFS)

Identification of Test Group Structure (TSS)

Specification of Test Purposes (TP)

Specification of Test Descriptions (TD)

Specification of Test Cases (TC)

Validation of Test Cases

MBT 2007 Invited talk: MBT in Standardization of ICT

Fig. 1: ETSI (Test) Specification Development (Source [2])
The detailed requirements for High Level Test Descriptions are specified in the following chapter.
[image: image2.png]System Description 2]

—_~ Test Specification

Requirements
- P

Informal
System
| Specification
—
Eem——————— 1
| System 1
1 Model :

+Test Requirements
+Test Suite Structure
(TsS)
+Test Objectives/

Test Purposes
+Test Procedures
*High-level Test Design

- 7)
UML,SysML, -t

Matlab/Simulink

Test Analysis

Optional artifact

N

Test

Executable

Test Suite

Executable

TTCN-3, JAVA,
Python,...

Testcases J

Documentationl

N\

Development

Test -

<TODO: Add caption for this figure>
<TODO: A few words on how the rest of the document is organized>
4.2 Identification of requirements for high-level test descriptions

4.3

·
·
·
·
·
·
·
·
4.4 General requirements
4.5 Structure
Within this section, relevant aspects of test descriptions are identified. For this purpose, already existing specifications of test descriptions [8] – [11] are examined. In general, most of these specifications define test descriptions in textual form rather than using formal specification techniques. Nevertheless, test purposes for test descriptions defined in [10] are specified in form of TPLan [2] notations. Commonalities of the previous mentioned test description specifications could be observed during their examination. That is because the structure and used elements of contained test description specifications are similar. Hence, it is presumed that common parts of test description specifications identified consecutively should become a part of HLTDs.

· Test description title:
This is a short title which describe the purpose of a test description

· Test description identifier:
This is an unique ID for a test description which can be used in order to reference test descriptions in other documents or specifications:
· References:
The reference section of a test description summarizes all relevant specifications, e.g. test objectives.
· Test configuration:
A test configuration specify the logical configuration respectively communication links between parts of a test system and a SUT, or its parts. Usually, the test configuration is depicted graphically with an optional textual explanation.

· Test pre-conditions:
The test pre-conditions section contains a list of instructions or requirements which have to be executed resp. fulfilled before the test execution. The pre-conditions are specified textually or with a formal notation, e.g. TPLan [2].
· Test procedure:
Atomic test actions which shall be applied to a SUT during the test execution are specified within the test procedure section of a test description. In general, the particular test actions of a test procedure are sequentially ordered. As in the case of pre-conditions, also test procedures are defined textually or with a formal notation.
· Test sequence:
Similar to test procedures, test sequences specify atomic test actions in a sequential order. In contrast to test procedures, within test sequences a distinction is made between an stimuli action applied to the SUT and a 'check' action which is used to observe the behavior of the SUT. When the behavior of the SUT complies to a condition formulated in the scope of a 'check' action, than the verdict of the test case shall be set to pass. Otherwise, the verdict shall be set to fail. Usually, test sequences are represented as Message Sequence Charts (MSC) or in a tabular format.
·
Optional parts:
Apart from the already mentioned parts, test descriptions can also specify timer actions and test data contents. Usually, these two optional parts are combined with test sequences.
4.6

4.7 Format
1)
2) Independent presentation formats: Graphical as well as textual representation formats should be supported from HLTDs in order to give the test developer the freedom to select the presentation format best suited for him.

3) Well-defined format: The format of test descriptions specified at a high level of abstraction should be well-defined in order to reduce ambiguity and to facilitate computerized processing, for example syntax checking, semi-automatic transformation towards test cases and interchange between tools.

Test Architecture Requirements
4) Test configuration: Usually, test cases consist of a part specifying the test behaviour and another defining the test architecture which has to be used for the test execution. Test languages, such as TTCN-3, make use of the communication port concept to support dynamic or static bindings between test components and different parts or interfaces of the SUT. In order to facilitate the specification of test configurations within HLTDs, it has to be considered whether or not similar features are required.

Test Behaviour Requirements
5) High Level Test Descriptions (HLTD) should provide a well-defined specification of the test actions
 required to reach a pass verdict. On the basis of the following objectives, the requirements for HLTDs are analysed and specified in chapter 6 of this report.
6) Support of concurrency: Usually, reactive communication systems can be composed of different kinds of components which normally operate concurrently. Furthermore, such kind of systems can also provide several interfaces. Hence, test cases for those systems shall support concurrent test behaviour and logical links to multiple interfaces . Therefore, it has to be discussed if HLTDs should also provide such a feature.
7) Minimal set of predefined actions: Generally, test languages provide a wide variety of different test actions. They are used by test cases in order to stimulate or to observe the behaviour of the SUT. In the context of HLTDs it is assumed that only a small set of test actions should be supported. Furthermore, the support of user-definable test actions should also be considered.

Test Data Requirements
8)
9)
10)
11) Test data: Generally, it has to be analysed whether or not HLTDs should make use of test data specification.

12)
13)
4.8 (Tool) specific requirements

[Presentation related requirements]

and optionally a message flow for the test showing involvement of all equipment listed (level of detail depends on desired strength of assessment - one extreme is to assess message field settings as specified in the standard)

14) Validation
15) HLTDs should be syntactically and semantically valid. Syntactical validity refers to the fact that the HLTD complies to the syntactical rules of the notation used for specifying it. Syntax check should be performed automatically by the HLTD tool online (i.e. while the HLTD is being specified) or on-demand (i.e. upon explicit request from the tool user). Another aspect of syntactical validity aims at ensuring that the HLTD’s structure matches the template defined by this document. For example, if an element of the HLTDs has been defined to be mandatory by the template, then the tool should check the presence of that element and provide a hint or an error indication, if the element is missing. Semantic validity refers to the fact that the elements of an HLTD are logically self-consistent and that they do not contradict each other.
16) Transformation (Import/Export)

17) TBD
5 Concepts for High Level Test Descriptions
5.1 Structural concepts
In section 4.2 it is required that common parts of already existing test descriptions specification shall become a part of HLTDs. Therefore, requirements concerning general aspects which may be contained in test descriptions are postulated subsequently. Since these information are normally specified in a textual manner rather than using a formal style, also within HLTDs only a textual specification should be preferred.
Name and identifier

A HLTD test description shall have a name which briefly describes the related purpose of the test description. Furthermore, a HLTD shall own a unique ID which can be used in order to reference the associated test description in other specifications or documents.
Purpose

A HLTD shall contain a reference to a specification or document which describes the test purpose of the test description. When such an document does not exists, a brief textual description of the test purpose shall be contained in a HLTD.
References
An optional reference section shall be part of HLTDs in order to reference a textual document, i.e. a standard, where the functionality to be tested is specified.
Applicability
In HLTDs a section shall be included which specifies the applicability of a test description. The applicability section shall specify if the associated test description is recommended, optional or conditional.
Mechanisms for structuring test descriptions

In the workflow for the design and specification of test cases, test descriptions are the next step after test purposes (see Fig. 1) and structuring mechanisms may already be supported by test purpose notations, for instance TPLan [2]. Furthermore, also test languages provide functionalities for the grouping of test cases. Since HLTDs are intermediated between test purposes and test cases, structuring mechanisms should also be supported by them. Hence, it is required that suites as well as groups of test descriptions can be formed.

5.2 Architectural concepts
5.2.1 Test architecture for concurrent test activities

As stated in objective 2), High Level Test Descriptions (HLTD) should support the specification of concurrent test behaviour. That is because communicating systems often provide not only one but also many interfaces which have to be tested at the same time. Hence, for the specification of black box-tests most of the existing testing concepts make use of test components for the definition of concurrent test behaviour (e.g. TTCN-3, UTP). Usually, each test component has its own thread of control which executes the dedicated test behaviour. The components can interact among each other which also includes a SUT connected to the test system. In the ISO CTMF [7] standard such configurations are also known as Multi-Party Testing.

In the context of HLTDs it has to be discussed which features are essentially required in order to specify test configurations for concurrent test activities.

Test architecture for concurrent test activities
As mentioned before, existing test concepts make use of test components for the specification respectively execution of concurrent test behaviour. Since each component executes its dedicated test sequence, no synchronization between the different components is possible without additionally functionalities. But in certain situations synchronization is required. Therefore, a synchronization mechanism has to be provided by the test system. For this purpose, the CMTF standard [4] specifies so called Test Coordination Procedures (TCP). A common approach is the usage of communication ports making it possible to establish logical connections (channels) between test components in order to realize synchronization mechanisms. An example of a test architecture for the test of concurrent aspects is depicted in Fig. 2.
[image: image3.emf]Port

Channel

Abstract Test Architecture

Test

Component 1

Test

Component 3

Test

Component 2

System Under Test (SUT)

Fig. 2: Abstract test architecture
Variants of an abstract testing architectures
In general, TTCN-3 and UTP use different concepts for the specification of an abstract test architecture. TTCN-3 allows a dynamic reconfiguration of the test architecture during the execution of a test case. That is because, test components can be created and terminated at run time. Additional flexibility is provided by a dynamical assignment of communication relations between test components resp. the SUT. Furthermore, each TTCN-3 test case owns a particular test architecture. In contrast, test architectures of the UTP rest on a static test configuration for an entire test suite. Therefore, all test cases of a test suite have to use the same test architecture.

Considerations

According to the objectives 1) and 2), HLTDs should support concurrent test behaviour by using a lightweight concept for the specification of a Test Configuration which can provide less functionalities in comparison to test architectures of testing languages. In consequence, not all features of existing testing concepts have to be supported by HLTDs. A first simplification for the specification of Test Configurations is accomplishable by using only one type of Test Entity for representing parts of the test system as well as those of the SUT. But in order to make a distinct between both purposes, Test Entities which are dedicated to the SUT shall be marked by a special attribute. This approach is comparable with that of UTP. Here, a component representing the SUT is represented by an special UML stereotype.
The next issue concerns the kind of Test Configuration to be supported by HLTDs. When regarding existing specifications of test description [8] – [11], it can be determined that Test Entities of defined Test Configurations can be connected among each other. This applies for Test Entities of the test system, as well for those of the SUT. However, no test configuration of the mentioned examples is reconfigured within the same test description. This indicates that each test configuration only defines static links between participating Test Entities. According to the previous statements, Test Configurations of HLTDs have not to be dynamically reconfigurable. Only static links between Test Entities shall be supported.
In context of HLTDs not only an appropriated concept for the representation of concurrent Test Configurations have to be considered, but also the issue of synchronization should be discussed. As mentioned in the section before, in certain situations it is required that test components of a concurrent test case have to be synchronized. Also for test descriptions this can be of interest in order to indicate a synchronization between Test Entities joining the same Test Configuration. Taking into account that the abstraction level of HLTDs is higher than that of test cases (see Fig. 1), only the point in time when a synchronisation shall occur is of interest. The implementation of the concrete synchronization mechanism is a matter for the utilized test language rather than for a test description. Instead of using dedicated synchronization messages for the exchange of synchronization information among Test Entities, also an appropriated Test Action can be provided by HLTDs.
5.2.2 Specification of SUT interfaces
Apart from the aspect of an appropriated Test Configuration for concurrent Test Activities and their synchronization, also the logical links of Test Entities which represent concurrent test behavior and those representing the SUT have to be regarded for HLTDs. That is because objective 1) requires that only a simplified Test Configuration should be supported by HLTDs. Therefore, in this section the requirements for the logical links between Test Entities of a test description are figured out.
Different kinds of SUT interfaces

Since communication systems can be implemented by using asynchronous communicating processes as well as object-oriented middleware, different kinds of Test Actions have to be regarded. Usually, a set of Test Actions for testing message-based communication, i.e. sending and receiving messages, and another set for testing procedure-based communication, i.e. operation invocation, is provided by a test system or testing language.
Connection between the test system and the SUT

Most of the existing test concepts use a similar method to define communication associations between a test system and its connected SUT. Connections between test components and a SUT, or one of its parts, usually can be defined in a similar manner as in the case of connections between test components (see section 5.1.1).
Within a TTCN-3 test case, the SUT is represented by means of a particular test component, which is the so called Test System Interface (TSI). The TSI is an abstraction of the SUT and provides a mapping between ports of the test components and ports of the SUT. Only one TSI can reside in a TTCN-3 test case.

[image: image4]
Fig. 3: Simplified TTCN‑3 test configuration example

NOTE: The example given in Fig. 3 depicts only a simplified TTCN-3 test architecture. Unnecessary details are extracted away.

In contrast to that, within a UTP test context (the equivalent of a test architecture), the SUT is not represented by a particular component respectively interface. Instead of that, different parts of the SUT are specified as dedicated instances. Communication associations between test components and parts of the SUT are also realized by the usage of ports. Additionally to this kind of connections, also internal connection among parts of the SUT can be defined. By comparing the concepts of TTCN-3 and UTP, it can be concluded that UTP provides mechanisms to represent communication associations within a SUT, whereas TTCN-3 does not.
Considerations

Regarding objective 1), Test Configurations of HLTDs should be as simple as possible, but the ability to specify test descriptions for message-based as well as procedure-based communication should be regarded. The first variant rests on the exchange of different messages, whereas the second one facilitates the invocation of different methods respectively functions provided by a SUT. For the Test Configuration of HLTDs, it is assumed that the distinction between both communication kinds is not mandatory but could be useful.
Another issue concerns the support of communication ports used for establishing logical connections between Test Entities. In generally, testing languages utilize the communication port concept in order to ensure a proper processing of incoming events. Therefore, communication ports are assumed to be FIFO queues which stores incoming events in the order of their occurrence. That is because events can arrive in a permuted order. Furthermore, often not only one but also multiple communication connections can be terminated at one port. Since HLTDs per definition shall not be executable, it can be deduced that it is not required to support the communication port concept. However, for Test Entities of HLTDs it should be possible to establish not only one communication association to other entities. For the sake of clarity, it is assumed that a Test Entity provides exactly one dedicated interface which has to be used in order to establish at least one logical connection to other Test Entities.
Apart from the representation of logical connections between different Test Entities, further requirements concern the representation of a SUT within HLTDs. Due to the scope of test descriptions resting upon the black-box test of communication systems, it could be assumed that only communication relations between test components and a SUT are of interest, but not its internal connections. Nevertheless, regarding existing specifications [8] – [11] for test descriptions, it is possible that in certain situations not only one SUT is present in a test description. In consequence, Test Configurations of HLTDs shall support multiple Test Entities which are used to represent different SUTs resp. internal parts of a SUT within one configuration. Hence, for Test Configurations of HLTDs also scenarios where logical connections between SUT dedicated Test Entities have to be represented are conceivable.
5.2.3 Location of Test Configurations
As required in section 4.2, HLTDs shall provide mechanisms to structure test descriptions to groups or suites. Directly associated with this issue, it has to be clarified on which structure level of HLTDs the specification of Test Configurations shall be located. One out of three possible approaches can be chosen therefore. In general, test architectures could be specified for each test description. Furthermore, also a specification on the level of groups or suites of test descriptions is conceivable. In order to keep the complexity of test descriptions as simple as possible, a specification on test description level is assumed to be not a good choice. Therefore, for HLTDs it should only be possible to define Test Configurations either on group or suite level. This approach implicates that all test descriptions of a suite or group have to share the same Test Configuration.
5.2.4 Summary of requirements
	Requirement
	Objective

	Test Entities shall be used in order to represent concurrent test behaviour.
	5.2.1

	Test Entities which are dedicated to the SUT shall be marked by a special attribute.
	5.2.1

	Test Entities shall be connected among each other only by using static communication links.
	5.2.1

	Synchronization between Test Entities shall be supported by an dedicated Test Action.
	5.2.1

	The Test Configuration should support the differentiation between message-based and procedure-based communication.
	5.2.2

	Each Test Entitiy shall provide exactly one interface which is used to establish logical communication links to other Test Entities.
	5.2.2

	A Test Entity shall support multiple connections to other Test Entities.
	5.2.2

	It shall be supported to form suites as well as groups of test descriptions.
	5.2.3

	The definition of Test Configurations shall only be possible either on group or suite level.
	5.2.3

Table 1: Requirements concerning structural aspects
5.3 Behavioural concepts
5.3.1 Test Actions
Subsequently, the different aspects of Test Actions required for test descriptions are considered. It is presumed that the test behaviour of test cases and test descriptions has to be specified in a similar manner. Hence, also the sets of Test Actions required for the behaviour specification of test cases and test descriptions should be congruent. Due to this assumption, in a first step the Test Actions of different test languages are compared. Resting on the results of this analysis, a minimum set of test actions which should be supported by HLTDs is identified.
Comparison of Test Actions

In general, a distinction has to be made between Test Actions required to test message based communication and those ones for procedure-based communication. For the following analysis TTCN-3 and the XML-based test description language of the AGEDIS project [9] are regarded. The last one was chosen, because a large set of Test Actions is provided. The authors of [9] stated that the TTCN-3 standard, which was still a draft at the time of writing, inspired them for their work on the AGEDIS test description language. Therefore, similarities between both languages can be recognized.
NOTE: In contrast to TTCN-3, the test description language used for the AGEDIS project is not an executable test language, because test cases are specified on an abstract level. Those test descriptions can not be compiled to executable test cases, instead they have to be interpreted by an special execution environment, called SPIDER.

The following table compares the Test Action provided by TTCN-3 and those ones of the AGEDIS test description language. Furthermore, additional information concerning the type of each Test Action is indicated in the table.
	Action kind
	TTCN-3
	AGEDIS
	Stimulus /

Observation

(S / O)
	Description

	message-based
	Send
	Send
	S
	Sending a message to the SUT

	
	receive
	receive
	O
	Receiving a message from the SUT

	send_receive
	S, O
	Combined sending and receiving of a message

	
	trigger

	O
	Rejecting all messages from the SUT, except the message which is defined by the trigger operation

	procedure-based
	call
	Call
	S
	Invocation of a function or method of the SUT, initiated by a test component

	
	getreply
	Return
	O
	Test component waits for the result of a previous method or function invocation

	call_return
	S, O
	Invocation of a method or function at the SUT. Then waiting until the SUT will return the result.

	
	getcall
	--- (1)
	O
	Test component waits for a ‘call’ initiated by another test component or the SUT.

	
	reply
	--- (1)
	S
	Test component returns the result of a 'getcall' to the SUT or another component.

	
	raise
	--- (1,6)
	S
	Used by a test component to raise an exception to the SUT or another component.

	
	catch
	--- (1,6)
	O
	Catches an exception, thrown by the SUT or another component.

	change (3,2)
	S
	Possibility to change an attribute of the SUT.

	waitFor (3,2)
	O
	Waiting until the addressed attribute of an object within the SUT changes to the specified value.

	create (4)
	S
	Creation of an object within the SUT.

	destroy (4)
	S
	Termination of an object within the SUT.

	check (3,2)
	O
	Checking the addressed attribute of an object within the SUT for the specified value.

	check (5)

	O
	Checking if a test component has received the specified message or procedure.

[image: image5]
Table 2: Test Action comparison
As depicted in Table 2, the number of procedure-based Test Actions of AGEDIS and TTCN-3 is greater than those ones used for message-based communication. Furthermore, the test description language of AGEDIS provides a greater number of Test Actions for the test of procedure-based communication. That is because the scope of the research project was dedicated to the black-box test of object-oriented reactive systems.
User-defined Test Actions

Since HLTDs shall only provide essential Test Actions, in certain situations it may be required to use additional Test Actions which are not natively supported by HLTDs. Therefore, it should be possible to specify user-defined Test Actions. This kind of Test Actions should be usable in the same manner as the build-in actions of HLTD. In order to meet objective 6), it should be possible to process user-defined Test Actions automatically, but this feature will depend on the capabilities of available tools.
Considerations
The number of Test Actions provided by a test language can vary depending on the domain for which that language is dedicated. In particular this concerns the group of Test Actions used for the test of procedure-based communication. But some actions can be substituted by one or two other actions of the same category. For instance, the Test Action for creating objects (create) can be replaced by a call of the respective object constructor, so that no special action for that purpose is required. Also Test Actions combining two other actions to only one, in example send_receive, are not required essentially. The set of Test Actions which should be useable in the context of test descriptions could be kept small by providing only the simple ones, i.e. send.
Due to the before-mentioned facts, for HLTDs it can be deduced that only simple Test Actions, i.e. send or call, should be regarded, because the more complex actions can be replaced or assembled by one or two simple actions. In the case of procedure-based communication of TTCN-3 there is a distinction between the Test Actions depending on the initiator of the action. That is because when the SUT initiates an operation invocation, another set of Test Actions (call, getreply) have to be used as in the case of a test component is the initiator (getcall, reply). Contrary to TTCN-3, the AGEDIS test language uses the same Test Actions (call, return) for both cases. This approach can be applied, because each Test Action is tagged with information about the initiator and the receiver. For raising and catching exceptions, the situation differs, because AGEDIS does not provide particular Test Actions for those purposes, whereas TTCN-3 supports such actions. For test descriptions it is expected that explicit Test Actions for the test of exceptions have to be provided.
According to the considerations made above and in order to meet objective 3), HLTDs should support only a small set of simple Test Actions for the specification of test behaviour. In the case of message-based communication, the Test Actions send and receive should be usable. For procedure-based communication the Test Actions call, return, catch and raise should be provided. Furthermore, each Test Action of HLTDs should be tagged with information about the initiator and receiver. Furthermore, it should also be possible to specify user-definable Test Actions.
5.3.2 Timer functionality
Apart from Test Actions, test languages commonly also provide support for timers, which are an essential concept used in the context of test behavior specifications. Therefore, a set of operations which is applicable on specified timers is useable within test cases. In particular, such operations are utilized to verify, whether an expected response, i.e. a message or a result of an operation invocation, of the SUT is received by a test component within a specific time slot. Furthermore, timers can be utilized in order to prevent potentially deadlocks of test cases, when an expected response of the SUT will not received by a test component.
Comparison of timer operations

Since the temporal behavior of a SUT often has to be verified, it is assumed that functionalities for timers are also required for the specification of test descriptions. Test related standards, i.e. TTCN-3 and U2TP, provide special operations for timer functionalities. For test descriptions, the usage of similar timer operations seems reasonable, because as already pointed out in section 6.3.1, it is presumed that behaviour specifications of test cases and test descriptions should be congruent. In Table 3, a comparison between timer related operations provided by TTCN-3 and those ones of UTP is given.
	TTCN-3
	UTP
	Description

	Start
	StartTimerAction
	Operation for starting a timer.

	Stop
	StopTimerAction
	Operation for topping a timer.

	Read
	ReadTimerAction
	Operation for reading the actual value of an already running timer.

	running
	TimerRunningAction
	Operation for determining whether a timer is actually running or not.

	timeout
	TimeOutAction
	Operation (or event) for determining (or indicating) when a timer is expired.

	SetTimeZone (1)
	Operation returns actual the TimeZone of an test component.

	GetTimeZone (1)
	Operation for setting the TimeZone of a test component.

Table 3: Comparison of timer operations
As figured out in Table 3, TTCN-3 and UTP share a common set of timer related operations. Aside from starting timers explicitly, TTCN-3 and UTP also provides a mechanism for starting timers implicitly in the context of Test Actions for procedure-based communication. This kind of timer can only be used in the scope of the Test Actions which has started that timer. Usually, implicit timers are anonymous in terms of that they are unnamed. Therefore, timer operations can not be applied on that kind of timers. Within a test behavior specification it is only possible to receive an timeout event when such an timer expires.
Apart from these kind of operations, the UTP also provides special operations (1) used in the context of time zone. This is a grouping mechanism of the UTP in order to group test components with the same time zone together. Test components within the same time zone have the same time base, whereas components in different time zones are not time synchronized.

Considerations

According to the comparison made above, for HLTDs it seems to be mandatory to provide operations for starting, stopping and reading explicitly specified timers. Also the implicit start of timers in the context of Test Actions for procedure-based communication should be possible. Furthermore, it is also mandatory to specify conditions for the expiration of explicitly as well as implicitly started timers. Therefore, an operation which regards the expiration of an timer should be supported. Additionally, an operation for reading the actual value of an running timer seems to be useful. Apart from that, it is assumed that the support of different time zones within HLTDs is not essentially required.
5.3.3 Test verdicts
In order to determine the overall result of a test case, it is essential that a particular Test Actions for observing the behaviour of a SUT, i.e. receive and return, has the ability to set the test result, depending on a correct or incorrect observed behaviour. In terms of the ISO CMTF [6] the test result of a test case is referred as test verdict. Since Mechanisms for handling test verdicts are provided by nearly all known test languages, it is presumed that test verdicts should also be supported by test descriptions.
Different kind of test verdicts
Usually, test verdicts can be subdivided into different kinds of verdicts. In order to determine those verdicts required for test descriptions, a comparison of the concepts used by UTP, TTCN-3 and AGEDIS is given in Table 4. By comparing the different test verdicts, it is obviously that the types pass, inconclusive, fail and error are used by all regarded test languages respectively concepts. Additionally, TTCN-3 provides a test verdict kind of none. A special case is the test verdict type fail, because this kind of verdict can only be set by runtime environments used for the execution of test cases.
	UTP
	TTCN-3
	AGEDIS
	Descriptions

	Pass
	Pass
	Pass
	Positive testing verdict

	Inconclusive
	Inconclusive
	Inconclusive
	Stage between pass and fail. Used for unexpected events.

	Fail
	Fail
	Fail
	Verdict for a failed test.

	Error
	Error
	Error
	Error in the runtime environment.

	None

	No value for the Verdict has been set.

Table 4: Comparison of test verdicts

Considerations

It is presumed, that test verdicts of HLTDs should be provided in the context of Test Actions which are required for behaviour observations of a SUT, i.e. receive and return. Therefore it is required, that an operation to set explicitly the actual value of a test verdict is supported. Instead of this, it could be considered to set the verdict of an test case implicitly by concatenating it with Test Action specifications. Furthermore, for HLTDs only the verdict types pass, inconclusive and fail should be supported, because the types error and none are considered to be not relevant.
5.3.4 Specification of test pre-conditions

[This topic has to be discussed, because I am not sure, whether pre-conditions shall be specified in a textual manner or in the form of MSCs.]
5.3.5 Summary of concepts
	Requirement
	Section

	For message-based communication, the Test Actions send and receive shall be provided.
	5.3.1

	For procedure-based communication the Test Actions call, return, catch and raise should be provided.
	5.3.1

	It shall be possible to specify user-definable Test Actions.
	5.3.1

	Each Test Action of HLTDs shall be tagged with information about the initiator and receiver.
	5.3.1

	HLTDs shall support explicit as well as implicit specified timers.
	5.3.2

	It is mandatory to provide operations for starting, stopping and reading explicitly specified timers.
	5.3.2

	An implicit start of timers in the context of test actions for procedure-based communication shall be possible.
	5.3.2

	HLTDs shall provide an operation which regards the expiration of explicitly and implicitly started timers.
	5.3.2

	An operation for reading the actual value of an running timer shall be supported.
	5.3.2

	Test verdicts shall be provided in the context of the Test Actions receive and return.
	5.3.3

	The value of a test verdict shall either be set explicitly by an dedicated operation or implicitly by concatenating the particular test verdict with Test Action Specifications.
	5.3.3

	The test verdict types pass, inconclusive and fail shall be supported by HLTDs.
	5.3.3

Table 5: Requirements concerning behavioural aspects
5.4 Test data concepts
Usually, test cases are composed of multiple Test Actions, which stimulate or observe the behavior of the SUT. As a matter of principle, nearly each atomic test action also requires associated test data. Procedure-based test actions, like method or operation calls, requires test data to specify parameters of the call and to verify the returned result of the invocation. Furthermore, test data are also used for asynchronous sending and receiving of messages. Different approaches can be utilized for the design of test descriptions. Within this section, requirements concerning the specification of test data for HLTDs are analyzed.

5.4.1 Specification of data types
Note: At the last Rapporteur meeting we have discussed that a strong-typed data type system shall not be used for HLTDs. But optionally it should be possible to specify data types. A corresponding text has to be added …
5.4.2 Specification of concrete values for data types
Depending on the question if the specification of test data is a matter of HLTDs, it has to be clarified in which manner concrete values of test data have to be specified.

Generally, values of test data used by test actions can be defined explicitly, as absolute values, or implicitly, using variables. In order to provide as much flexibility as possible, the test descriptions should provide the definition of concrete values and variables.

Note: At the last Rapporteur meeting we made the decision that it should be possible to specify concrete values only for those parts of a message which are of interest. A corresponding test has to be added.
5.4.3 Summary of concepts
5.5

Annex A (Informative):
Possible Notations
Annex A.1: Textual Notations
Annex A.2: Graphical Notations
Each annex shall start on a new page (insert a page break between annex A and B, annex B and C, ...).

Use the Heading 9 style for the title and the Normal style for the text.

History
	Document history

	Version
	Date
	Description

	0.0.1
	26.04.2009
	Initial draft version

	
	
	

	
	
	

	
	
	

Test�Component

TTCN-3 provides two different kinds of procedure-based Test Actions. A distinction depending on the initiator (SUT or test component) of the action is made. The test language of AGEDIS always explicitly specifies the initiator of a Test Action. Therefore, in AGEDIS, only two interactionactions utilized, call and return.

A special feature of AGEDIS concerning the manipulation and observation of object attributes, because AGEDIS was developed for testing object-oriented systems.

Test Action is only used for manually written test cases.

A special feature of AGEDIS for creating and destroying objects within the SUT.

The TTCN-3 check action differs entirely from its pendant of AGEDIS, because it can be used for message and procedure-based communication as well.

For raising and catching of exceptions no explicit Test Action is provided by AGEDIS. Since exceptions are handled as particular values, only catching is possible.

Test�Component

Test�Component

Real Test System Interface

Test System Interface (TSI)

SUT

�TODO: Check the status of this

�Before addressing the notations used at each of the various steps of the process, a short description of each steps should be provided.

�Here I am not quite sure, whether or not I have defined both terms correctly!

�Here I am not quite sure, whether or not I have defined both terms correctly!

TODO: �Format this to align with the other requirements in the document

�TODO: Provide a definition of "test action" first.

�TODO: Provide a definition of "test action" first.

�TODO: Ask Alex what was meant here

�This items have to be clarified with Stephan.

�I see a conflict of objectives between this session and the rest document. Here, instead of capturing requirents on HLTDs, the means for expressing architectural aspects in HLTDs are described. Maybe this should be a separate documents? Alternatively we should extend the scope of the document to cover "concepts for HLTDs". Unless this is what was meant with "requirements" in the first place? Anyway, this needs to be clarified.

�This items have to be clarified with Stephan.

[image: image6.wmf]_1065009619.doc

