[image: image5.wmf]

ETSI Standard
TD <>
Draft ETSI ES 2XX XXX V<0.4.1> (2010-11)
Methods for Testing and Specification (MTS);

Model-Based Testing (MBT);

Concepts for Model Specification
<
Reference

DES/MTS-00128 MBTmodConc
Keywords

TESTING, TTCN
ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification

Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2010.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM, TIPHONTM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.
LTE™ is a Trade Mark of ETSI currently being registered
for the benefit of its Members and of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.
Contents

3Contents

4Intellectual Property Rights

4Foreword

4Introduction

61
Scope

62
Informative References

63
Definitions and abbreviations

63.1
Definitions

83.2
Abbreviations

84
Model-Based test development process

95
General modelling requirements

95.1
Modularization

105.2
Algorithms

105.3
Documentation

116
Modelling the system interface

116.1
Actions

116.2
Operations

126.3
Ports

127
Modelling the system behaviour

127.1
Conceptual foundation: model graphs

127.1.1
Example of a model graph

137.1.2
Testing from a model graph

147.1.3
Timing constraints

147.2
Modelling states

157.3
Modelling transitions

167.4
Modelling non-determinism

168
Instrumenting the model for test selection

168.1
Coverage

178.2
Slicing

18Annex A
Examples of modelling notations

18A.1
Rule-Based Notation

18A.2
Statechart Notation

19A.3
Process-oriented notation

19History

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

Introduction

Based on the recent success and deployment of model-based automated test design in industry, TC MTS investigated work on model-based testing specifically in the context of standardized test specification development [i.1]. Contrary to other methods and approaches, which focus mainly on test execution automation, model-based testing targets to automate the test design phase.
Model-based testing facilitates a more thorough and earlier validation of standards as well as the efficient automatic generation of test specification artefacts, e.g., MSC based test descriptions or TTCN-3 test suites, which perform black-box functional testing of the external behaviour of a system. Due to its independence of the output format and its higher level of abstraction, model-based testing enables a more direct review of the requirements imposed by a standard compared to test specification artefacts. In addition, automation of test design allows ETSI as well as other organizations to more efficiently create test suites, coping with the ever-growing demand for interoperability and conformance testing in standardization.

The motivations for the development of this standard were:

· to help users of model-based testing technology such as product vendors, tool makers, test service providers, test engineers, government agencies, procurement personnel, students and researchers to understand necessary basics of modelling for testing
· to establish a common, consistent, and agreed terminology as well as concepts for modelling
· to enable the specification of models for derivation of standardized conformance and interoperability tests
· to facilitate the use of model-based testing for product certification
· to create a basis for an open, competitive model-based testing market for tools which process such models
· to further increase tool maker credibility as well as to enable consumer accountability (including also for legal issues)
To ensure its success and quality, this standard has been developed by a group of experts from all types of stakeholders involved in test specification development, i.e., researchers, tool makers, industrial users, as well as testing experts of ETSI’s Centre for Testing and Interoperability.
This document lays the foundation for the deployment of model-based testing in standardization since it specifies requirements for model specifications to be suitable for the generation of tests in the context of standardization. Such tests need to adhere to well established concepts defined and used in manual test specification [i.2, i.3., i.4]. In addition, this standard defines the criteria that need to be fulfilled by a model in order to be included in a standardized ETSI test specification, and the relation that models have to the generated tests.

1 Scope

The present document identifies and collects all required concepts of a modelling notation supporting the specification of behavioural models for the specific purpose of testing. These concepts have been developed mainly from the recommendations collected in ETSI TR 102 840 [i.1], as well as the inputs from a number of users and providers of model-based testing tools. Model-based testing tools that use a modelling notation that complies with the requirements stated in this standard, can be used to automatically generate tests suitable for standardization, and are likely to be able to exchange models with other tools, automatically or after some manual adaption.
The concepts described in this standard are specified independent of a specific modelling notation or tool. Mapping of concepts to concrete modelling notations is intentionally not treated in this document and preserved for future standards; however, an informal Annex describes mappings to general classes of modelling notations.
2 Informative References

The following referenced documents are not essential to the use of the present document but they assist the user with regard to a particular subject area. For non-specific references, the latest version of the referenced document (including any amendments) applies.
[i.1]
ETSI TR 102 840: "Methods for Testing and Specifications (MTS); Model driven testing in standardization".

[i.2]
ISO/IEC 9646-1: "Information technology - Open Systems; Interconnection - Conformance testing methodology and framework - Part 1: General concepts".

[i.3]
ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Parts 1: TTCN-3 Core Language" (also published as ITU-T Recommendation series Z.140).
[i.4]
UML reference needed
3 Definitions and abbreviations

3.1 Definitions

For the purposes of the present document, the following terms and definitions apply:
Action: an atomic activity of the system triggered or observed via the system interface, consisting of an action type and a set of data parameters. Actions are partitioned into input and output actions.
Behaviour: the functional behaviour (of model or system), given as a set of action sequences, where each sequence represents a legal scenario, and every sequence not in this set represents an illegal scenario
.

Coverage goal: set of elements of a model that needs to be covered for a group of tests to meet a test selection criterion.
Data value ranges: TBD

Design time test generation: test generation ahead of test execution time (see test generation).

Deterministic behaviour: behaviour (of model or system) in which for each input sequence there exist no more than one possible output
.

Functional behaviour: same as behaviour in this standard.
Input action: an action stimulated by the environment on the system interface, representing a message, operation call, or other kind of communication means. An input action may carry parameters.
Model-based testing: an umbrella of approaches that generate tests from models. Models can be behavioural (functional) models or extra-functional models. This standard addresses model-based testing with behavioural models.
Model graph: conceptual construct used in this standard to describe the semantics of a modelling notation.
Modelling notation: a formal language used for the specification of models.
Model state: a situation in which the model predicts certain inputs to be accepted and/or outputs to be issued by the system.
Non-deterministic behaviour: behaviour (of model or system) where for one input sequence more than one possible output
 exist.
Output action: an action issued by the system on the system interface to the environment as a reaction on inputs, or spontaneously. An output action may carry parameters.
Requirement: a singular documented need of what a system should be or perform. Requirements are usually provided by (future) system users or their representatives.
Rule: missing

Slicing: the process or the result of choosing a portion of a larger or infinite model to generate tests from it.
System: see system-under-test.

System model: computer-readable behavioural model that describes the intended external operational characteristics of a system, i.e. how the system being modelled interacts with its environment, in terms of the system interface. A system model defines behaviour. Depending on the purpose, a system model may only capture aspects of the real system, as determined by the abstraction level chosen by the system interface.
System interface: a model element that defines the input and output actions of the system on the level of abstraction selected for the given modelling and testing problem.
System test interface: same as system interface.

System state: a modality in which the system accepts certain inputs and/or issues certain outputs

System Under Test (SUT): see ISO 9646-1 [i.2]. In this standard, commonly the notion of system will be used to abbreviate the system-under-test.

Test automation: the automated execution of test steps, test cases and test suites.
Test case: an interaction conductible on the system interface usually comprised of several test steps. In design time test generation, a test case is represented by a test description. In runtime test generation, a test case is dynamically constructed dependent on system behaviour.
Test development process: the software engineering process of developing tests.
Test generation: the automatic
derivation of test cases or test descriptions from a model based on test selection criteria.
Test selection: the process or the result of choosing a subset of tests from a larger or infinite set of tests which can be derived from a model, at design time or at runtime.

Test selection criterion: property that must be satisfied by a set of test cases generated from a model to be considered adequate.
Test specification
: a computer-readable specification of a test case, given in a programming language, scripting language, or modelling language.

Test step: a single step of a test case, usually comprised of a single input action provided to the system interface, or a set of output actions expected on the system interface. A test step may be executed using test automation or may be executed by a human.
Test verdict: judgment resulting from running a test case. The most common verdicts are Pass (the system behaved in the way predicted by the test case) and Fail.
Test suite: a set of test cases which together address a set of test selection criteria.

Transition: see state transition.
Transition coverage: test selection criteria where the objective is that each transition of the model is covered in at least one test case.
Runtime test generation: dynamic test generation from a model during test execution.
State transition: a transition of a model (model state transition) or the system (system state transition) from one model (system) state to the next, usually associated with an input or output which causes the transition.
State coverage: test selection criteria where the objective is that each model state is covered in at least one test case.
3.2 Abbreviations

For the purposes of the present document, the following abbreviations apply:

MBT
Model-Based Testing
MSC

Message Sequence Chart
SUT
System Under Test

TTCN-3
Testing and Test Control Notation version 3

4 Model-Based test development process
Model-based testing (MBT) refers to an umbrella of approaches that generates test suites from a variety of different forms of models, addressing different kinds of aspects in testing a system. A modelling notation for testing compliant with this standard shall address the aspect of the functional behaviour of a system, as described in later sections, and shall support a test development process as described in this section.

In model-based test development, an engineer starts from a set of requirements of a system, usually given in natural language. The engineer authors a model using a modelling notation as described in this standard. The model describes one or more aspects of the behaviour of the system and can systematically capture the original requirements. The model is then instrumented for the purpose of test generation by slicing, refinement or combination with other models, adding test selection criteria such as coverage goals, data value ranges, and test purposes. A model-based testing tool shall then automatically generate a test suite that complies with these criteria.
Tests may be generated at design time in one or more different formats including informal documents, MSCs, programming languages such as Java or C#, or scripting languages such as TTCN-3 [i.3] (design time test generation). Tests may also be generated at runtime, i.e. the generated test is immediately executed against the system and the result of test execution is fed back into the test generation algorithm (runtime test generation). Test execution finally results in in a test verdict. The process is illustrated in Figure 1.

[image: image1]
Figure 1: Model-Based Test Development Process

A model-based test development process delivers feedback for the involved artefacts on multiple levels. First, the process of authoring a model which captures the requirements provides feedback for the consistency of the requirements themselves, potentially before any test is executed, or system code implemented. Second, mechanical model analysis
 – like checking for deadlocks and safety conditions – can reveal issues in the requirements of the system. Third, when the tests are finally executed, issues in the system, in the requirements, or in the model can be discovered.
In the remainder of this standard, requirements for a modelling notation which enables the described model-based testing process are captured on a conceptual level. For an informative discussion of commonly used modelling notations fitting these requirements, see Annexes.

5 General modelling requirements
Models are formal (machine-readable) language artefacts which are used in engineering processes much similar to programming languages. They can become large, are authored in teams, evolve in iterations, are reused in different ways, require documentation, and need lifecycle management. Moreover, models often require algorithmic descriptions for some of the aspects they describe. As such, a modelling notation shall support concepts to those common for programming languages in software engineering. These concepts are described in this section.

5.1 Modularization

An overall model may describe numerous complex aspects of a system, which can be best understood and maintained in isolation. A modelling notation should therefore support the software engineering principle of separation of concerns by providing means for modularization, allowing separating and recombining aspects of the system specification, such that they can be independently developed, understood, evolved, and composed into an overall system. Modularization should also support model reuse of individual components in different configurations or versions of one or more systems.

More specifically, the modelling notation should support the following:
a) Provide a way to isolate aspects of the overall model in an independent artefact, like a document or set of documents.

b) Provide a way to specify the dependencies of an isolated artefact from other artefacts

c) Provide a way to distinguish between the functionality that an isolated artefact offers to other artefacts, and the functionality which it internally uses to realize its purpose
d) Have a well-defined semantics of the composition of isolated artefacts
Modularization concept can be achieved in a number of ways, details of which are beyond the scope of this standard. In general, modularization can be achieved in very similar ways as in programming languages by using concepts like components, modules, namespaces, and classes with well-defined interfaces. However, modularization can also be achieved by modelling-specific concepts, like model composition, model transformation, etc.

5.2 Algorithms
Nearly every non-trivial modelling problem requires algorithms which compute input from output data, compute the next model state, check for conditions, define constraints on data values, etc. Even if the modelling language is based on a diagrammatic notation, algorithmic language support is required for describing, for example, enabling conditions of transitions and state updates.

A modelling notation shall therefore provide basic means for algorithmic design and data manipulation, as described below:

a) The notation shall support basic data domains from programming languages like integers and lists/arrays, together with their related operations.

b) The notation should support more advanced data types, like enumerations, floating point numbers, strings, sets, finite maps (associative arrays), and user-defined structures.
c) The notation should come with a standard library of functions to work on the provided data domains.

d) The notation should support unbounded data like lists/arrays, sets, and finite maps of non-fixed size.

e) The notation shall support basic control constructs like state variables, assignment, and case distinction.

f) The notation should support advanced control constructs like loops, quantifiers, etc.

g) The notation should support procedural abstraction, allowing a user to define procedures or functions which abstract the realization of a particular algorithm
.

h) The notation should support recursive procedural abstraction.
While providing those features can be achieved in numerous ways, it is considered to be beneficial that these features are based on established notations instead of being defined from scratch for the particular modelling notation.
5.3 Documentation

While a model provides a precise formalized description of the system, in order to make it comprehensible for reviewers and other third parties, it needs to be accompanied by natural language documentation. Therefore the modelling notation shall support means to augment the formal description with comments and documentation, similar to that of many programming languages.

More specifically:

a) A modelling notation shall support ways to attach informal comments to all relevant model elements, which are, depending on the modelling style, states, transitions, rules, data types, procedures, etc.

b) A modelling notation should support ways to attach formal documentation to relevant model elements, as described above.

Note that the difference between (a) and (b) above is the degree of formalization: an informal comment may appear in the original model artefact but its format is free and it is not accessible to a tool chain, whereas formal documentation has a well-defined format and can be processed by a tool chain; for example, can be validated for consistency, or used as input for model report generators.

6 Modelling the system interface
In order to facilitate testing, a model for model-based testing shall provide ways to precisely define the interface to the system being tested. In this section the requirements on the notation are collected for specifying the system interface.

The system interface defines input and output actions which allow to control and observe the system. The test suite generated from the model uses the input actions to activate functionality on the system, and observes the output actions which represent the system's responses, validating whether they conform to the modelled behaviour. Figure 2 illustrates the relations.

[image: image2]
Figure 2: The role of the system interface
The system interface is often an abstraction of the actual system. Abstraction results from focusing on specific aspects of a system while hiding others, or it may result from simplifying logically redundant details, like for example low-level data representation of messages. For the model and the generated test suite the actual system is not transparent; rather model and tests are defined in terms of the system abstraction. A system abstraction can be seen as yet another system (with the properties derived from the original system via the abstraction process). Therefore, this standard uses the notions of system and system abstraction, as accessible via the system interface, interchangeably.
6.1 Actions
An action is an atomic activity of the system, triggered or observed via the system interface, consisting of an action type a set of parameters, and directionality (input or output). Actions are used to represent messages, events, components of operations, and other kind of communication means.

A modelling notation shall support actions as described below:

a) The modelling notation shall support the declaration of actions together with a name, whether they are input or output actions, and with parameter types.
b) Parameter types shall include the same basic types as described in Section 5.2

 REF _Ref277186078 \r \h
a, and should be the same advanced types as described in Section 5.2

 REF _Ref277186151 \r \h
b.

c) The modelling notation should support overloading of action names, where an action is disambiguated by parameter types.
6.2 Operations

An operation is a set of actions where one action represents an input initiating
the operation (the “call” action, for example), and the other actions represent outputs for different ways of termination of the operation (the “return” or “exception” actions, for example). In a domain where operation-oriented communication is dominant, it is beneficial if this concept is directly supported. For such domains, a modelling notation should support declaring operations as shorthand for declaring the basic constituting actions.

6.3 Ports
A port represents a collection of actions (or operations)
which together constitute a particular viewpoint of the overall system. For example, a port may represent one of several services provided by the system. Clustering actions in ports aids the structural clarity of the model. Ports may also exist in multiple instances, reflecting a dynamically evolving architecture, where for example a similar service is provided to different clients on request.

a) A modelling notation should support ports or a similar concept (interface, contract, class, etc.) as a way of grouping actions and operations.
b) A modelling notation should support multiple instances of ports (or a similar concept) to allow for dynamically evolving architectures. Alternatively to multiple instances, a modelling notation may use dedicated parameters of actions of a port to distinguish the instance of the port on which the action is operating.
7 Modelling the system behaviour
The specification of the functional behaviour of a system is the core modelling activity in model-based testing. Functional behaviour can be modelled in a variety of ways, using, for example, rule-oriented or process-oriented textual notations, or diagrammatic notations like state machines, state charts, message sequence charts, and flow charts.

This standard does not prescribe a particular notational style, but rather captures the requirements for behavioural modelling on a conceptual level. To this end, a common conceptual foundation is provided to which the different formalisms can be mapped. This provides not only a basis for capturing requirements on the notations, but also a first step towards a common exchange format which would allow to translate models used in one tool into models of another tool.
7.1 Conceptual foundation: model graphs
In order to formulate requirements on behaviour modelling notations, a simple semantic framework is introduced, based on the notion of a model graph. A model graph consists of a set of states and directed transitions between states. The transitions are labelled with action types, parameter values, requirements, and timing constraints. Some of the states of the model graph are marked as initial states, while others are marked as final states. A sequence of transitions through the graph starting from an initial state and ending in a final state represents one admissible execution of the modelled system. The set of all such sequences defined by the graph constitutes the expected behaviour of the modelled system.

7.1.1 Example of a model graph

Figure 3 shows an example which illustrates the concepts of a model graph. The chosen example is taken from a model which represents a protocol for a shared file system. States of the graph are labelled with actions like ReadRequest, ReadResponse, etc. As this is a protocol example, the actions represent messages of the protocol. Requests are inputs and responses are outputs, distinguished from the inputs by the event prefix. The transitions are furthermore labelled with requirements being captured if the transition is taken. Timing constraints are not present in this example. The difference between the round and the diamond states will be discussed later.

[image: image3.png]SMB2_R10
'

“s12)
CloseReciest(1,1,1,1) [ReadRequest(T;1,1,1)
Captured | Captured

SMB2_R1[SMB2_R2 | SMB2_R1 |SMB2_R2\

S18 |

dvert CreateResponse(1,1,1) Evem CreateResponse(1,1,1)

evert CloseResponse(1, 1)

Captured Brmtires aptured
SMB2_R3 | SMB2_R3| SMB2_R3 | SMB2_R3|
SMBZ_R10 SMB2_R3| SMB2_R17 SMBZ_R10

| (s20)

|

| CreateRequest(1,1,1,Create,"smh2test’y” CreateRequest(1,1,1,0per"srb2test’)
| Captured Captured

| SMB2_R1|SMB2_R2 SMB2_R1|SMB2_R2

CloseRequest(T,1,1,1)
Caplured
SMB2_R1|SMB2_R:

<530

evert CreateResponse(1,1,1)

Captured
SMB2_R3 | SMB2_R3|
SMBZ_R10

ReadRequest(1,1,1,1)
Captured

. SMB2_R1|SMB2_R2|

Captured

SMB2_R3 | SMBZ_R17

1]

(s31)

(swa:,‘.

event Eoresponse@EAD, 1) WiteRequest(1,1,1,1,[13,88,11,86,75])
\Capturect
| SMB2_R3 | SMB2_R16

Captured
SMB2_R1|SMB2_R2
'

S17>

evert WiteResponse(1, 1)
Captured
SMB2_R3 | SMBZ_R12|
SMBZ_R13
'

T

Jevent ReadResponse(1,1,[13,88;14,85,75])

[Captured
| SMB2_R3| SMB2_R15

evert CloseResponse(1, 1)

| CreateRequest(1,1,1,0pen,"smb2test?) CreateRecuest(1,1,1,Create,'smb2test’)

| Captured

| /SMB2_R1 | SMB2_R2
!

<53

. Captured:

| SMBZ_R1|SMB2_R2

Figure 3: Example of a model graph
Given the graph in Figure 3, one possible action sequence which can be derived is shown in Figure 4.

[image: image4.emf]Environment System

CloseRequest(1,1,1,1)

CloseResponse(1,1)

CreateRequest(1,1,1,Open,"smb2test")

CreateResponse(1,1,1)

Figure 4: Sample action sequence derived from example model graph

A model graph appears similar to a finite state machine; however, it is different in various respects. First, the number of states and transition is not necessarily finite. Second, there is a difference between transitions in the graph which describe inputs and transitions which describe outputs. This is represented in the example graph in Figure 3 by the fact that states from which input transitions stem are depicted by a circle, whereas states from which output transitions stem are drawn as diamonds.

It is important that the model graph is a purely conceptual construction – it is not the model itself. Rather, a model graph can be derived from different styles of behavioural models. The basic requirement on a modelling notation is thus simply that it shall be suitable to derive a model graph from it. The detailed requirements following from that will be discussed subsequently, after the notion of testing from a model graph has been introduced.
7.1.2 Testing from a model graph

The correctness of a system w.r.t. to a model is defined indirectly via the model graph, and established by testing from this graph. Intuitively, testing can be understood as a 'two-player' game, with the graph representing its rules. Transitions labelled with inputs represent moves of the tester, and transitions labelled with outputs, moves of the system being tested. In a given state, the tester's legal moves are determined by the input transitions going out from that state, and the system's legal moves by the output transitions.

The objective of the game from the viewpoint of the tester is to make moves such that the system eventually is forced to make an illegal move, i.e. expose a bug. The objective from the systems viewpoint is to hide any such bugs, i.e. avoid being driven into a state where it can only make an illegal move.
In order to discover a bug, the tester will attempt to systematically execute all of its possible moves. However, some moves can only be done when a particular state is reached, and to reach that state, moves of the system are required which cannot be always controlled by the tester. This situation arises if there is more than one possible output of the system in a given state, i.e. the system or model is non-deterministic. Assuming that the system does not behave fairly w.r.t. to this non-determinism (i.e. does not eventually do all of its allowed moves in every state), a complete coverage of the model graph may not always be achievable.

There is a large variety of strategies how model-based testing tools derive test suites from model graphs using the basic idea of a two-player game, ranging from generation of test scripts or test code, to dynamically testing directly from the model graph. Those strategies are outside the scope of this standard. However, each testing strategy will have particular objectives regarding coverage of the model graph (transition coverage, state coverage, requirement coverage, etc.), which will be described in Section 8.
7.1.3 Timing constraints
Some notations and tools may support timing constraints. In that case a transition is labelled not only with an action and its parameters, but also with a time interval describing the minimal and maximal delay within which the transition should be taken. During testing time, both tester and system must satisfy this minimum and maximum for performing a legal transition; a transition outside of this interval will be considered illegal.

7.2 Modelling states
Modelling the state of a system is a central aspect of behavioural modelling, as it identifies the situations in which certain actions are allowed or not. States of the abstracted system directly correspond to the states of the model graph as introduced in Section 7.1.

a) A modelling notation shall be able to model the states of the model graph as introduced in Section 7.1, by using techniques as described below:
· By defining a set of state variables such that different values assigned to that variables constitute different states of the model graph.

· By defining a program such that the current program counter and program stack constitute a state of the model graph.

· By defining a diagram representing a state machine, where every state in the diagram constitutes one or more states in the model graph.

· By defining a diagram representing a flow chart, where every activity in the flow chart constitutes one or more states
in the model graph.

· By defining a diagram like a sequence chart, where a given point on the live line of an agent represents one or more states in the model graph.

· By combining one or more of the approaches described above; in particular, by combining the first approach, describing state using state variables, with any of the other approaches. In a combination, the states of the model graph result from the product of the states of the combined approaches.
b) In order to deal with realistic systems, a modelling notation should be able to model an unbounded number of states. This is usually achieved by allowing state variables to range over domains which are not bounded at model design time. (Note that bounding the ranges at test selection time is not excluded by this requirement.)

c) A modelling notation shall be able to determine the initial and the final states of the model graph, as those indicate where a test case can start, and where it can end.

7.3 Modelling transitions

The states of a model are connected by modelling state transitions, and labelling them with action types, parameter values, requirements, and time constraints. These transitions directly correspond to the transitions of the model graph as introduced in Section 7.1.

a) A modelling notation shall be able to describe a transition between two states, which can be achieved by using techniques as describe below:

· By defining an operational state transition rule, consisting of an enabling condition (a predicate over the state variables) and an algorithmic update of the state variables.

· By defining a declarative state transition rule, consisting of a pre-condition identifying the source state(s), and a post-condition identifying the target state(s), where both conditions are predicates over the state variables.

· By reading or writing to a communication channel in a program

· By drawing an arc between two states in a state machine diagram

· By drawing an arc between two activities in a flow chart

· By drawing a communication line between two live lines in a sequence chart

· By combining one or more of the approaches above

b) A modelling notation shall be able to associate an action and action parameters with a transition. This can be achieved in ways as described below:
· By associating the action name and parameter symbols with a state transition rule, and relating the parameter symbols with the enabling condition, pre-condition or post-condition of the rule.

· By reading or writing a particular message with parameters on a communication channel in a program, initializing the parameters from the program state.
· By annotating an arc in a diagram with an action type and parameter values.
· By combining one or more of the approaches above.

c) A modelling notation should be able to associate requirements with a transition. This can be achieved as described below:
· By associating a requirement with a rule, such that the requirement will be associated with each transition created from the rule, where the associating can be combined with a condition (predicate over the state variables and the parameter symbols).

· By using a special instruction in the rule update instructions.

· By using a special instruction in a program.

· By annotation an arc of a diagram with the requirement.

d) A modelling notation should be able to associate timing constraints with a transition. This can be achieved as follows:

· By defining lower and upper bound of the admissible delay of the transition at a transition rule.

· By defining lower and upper bound of the admissible delay when reading or writing to a communication channel in a program.

· By annotating an arc in a diagram with lower and upper bounds.

7.4 Modelling non-determinism
Non-determinism is a situation where in a given state the system has different legal output transitions. This can be further partitioned into cases where these different transitions carry the same action label (internal non-determinism) or carry different action labels (external non-determinism). In this standard, only the support of external non-determinism is required.

The concept of non-determinism is particularly important when modelling communicating systems, as those systems have environmental influences which cannot be predicted. However, non-determinism may also result from model abstraction, where the modeller chooses not to commit to a specific behaviour of the system. Which source of non-determinism is present influences the test selection strategy.

a) A modelling notation should be capable of describing external non-determinism, i.e. modelling the availability of multiple output transitions in a given state. This can be achieved as follows:

· By defining multiple state transition rules which are applicable to the same source state.

· By supporting a non-deterministic choice statement in a programming language which writes and reads from communication channels.

· By supporting multiple threads of control in a programming language which writes and reads from communication channels.

· By allowing to draw multiple arcs representing output transitions in a diagram
b) A modelling notation should be capable of distinguishing whether the source of non-determinism is model-abstraction or unpredictable environmental influences in the system. This can be achieved by marking the source of non-determinism accordingly.

8 Instrumenting the model for test selection
A model of system interface and system behaviour provides the basis for model-based testing. In order to control the generation of a test suite from a model, an engineer will need to provide additional information steering the test selection process.

Test selection is necessary since from every non-trivial model, an infinite or huge amount of tests can be derived. For example, every model graph which has cycles describes an infinite number of action sequences, even if the number of states and transitions is finite. Moreover, for many models the model graph is actually infinite or huge in the first place, resulting either from an unbounded number of parameter values for actions, or from an unbounded number of values for state variables.

In this section, general concepts for test selection are defined. While these concepts are not necessarily part of a modelling notation itself, they are tightly connected to it, and in some instances are models themselves which relate to the behavioural model via model composition.

8.1 Coverage

In model-based testing, coverage is defined in terms of the elements of the model. Coverage goals can be used to either prune the generation of the model graph from the model, or to steer the test generation process from the model graph.

There is a variety of coverage criteria available. In this standard, only very basic coverage criteria are mentioned; many tools will provide more than those.

a) Test selection instrumentation shall provide a way to define coverage goals in terms of model requirements capture.
b) Test selection instrumentation shall provide one or more ways to define coverage goals in terms of the structure of the model, i.e. rule coverage, branch coverage, arc coverage, parameter range coverage, etc.
8.2 Slicing

With model-slicing an approach to test selection is meant where a test-engineer explicitly extracts a finite subset from a huge or infinite model graph as derived from a model. Slicing is needed if the model implies an unbounded number of states in the graph, yielding for example from unbounded domains of model-state variables, or if the model implies an unbounded number of transitions, yielding for example from unbounded domains for action parameters, and coverage goals alone are not sufficient to describe the test selection process.
Instrumentation for test selection should therefore support the following:

a) Instrumentation shall support slicing the parameter domains of actions. This can be achieved as follows:

· By restricting domains of action parameters by given values, ranges, or constraints.

· By defining combinatorial relations on parameters, like for example, pairwise combinations.

b) Instrumentation should support slicing the state space of the graph. This can be achieved as follows:

· By restricting domains of state variables by given values, ranges, or constraints.

· By restricting the control flow in the graph using other models which describe scenarios, like for example, use cases.

c) All slicing should be definable as a separate concern from the behavioural model, as slicing belongs to test selection and not to modelling itself. This can be achieved by putting slicing information in a separate artefact, which can be model by itself.

Annex A Examples of modelling notations
This annex contains a short overview of some of the most common modelling notations which satisfy the requirements specified in this standard.

A.1 Rule-Based Notation
Rule-based notations are textual modelling notations where state transition rules describe the behaviour of the system. They are also referred to as extended finite state machines (EFSM), or abstract state machines (ASM).
In a rule-based notation, the system's state is described by a set of state variables. A set of state transition rules is then provided in an operational style. Those transition rules consist of

· An action type with its parameters, which describes how the transition created by the rule is labelled when the rule fires.

· An enabling condition, which is a predicate over the state variables and action parameters, and describes in which state and with which action values the rule fires.

· A state update, which describes how the state variables are changed by the rule if it fires.
· Other information like captured requirements or timing constraints.

Rule-based notations usually have one distinguished initial state, which is given by an assignment to the state variables. The model graph is then constructed by firing all enabled rules in the initial state, constructing transitions into successor states, and continuing the process with those successor states. This way the state space reachable from the initial state is constructed.

Non-determinism in rule-based notations can be easily expressed by enabling rules with different output actions in given states.

Rule-based modelling notations satisfy the requirements in this standard provided the underlying algorithmic support for data domains as is used in state variable and action parameter modelling is sufficiently supported.

In the extended finite state machine variation of rule-based notations, the number of states and transitions is bounded. This is not a contradiction with this standard, as long as providing those bounds is methodologically part of slicing for test selection.

A.2 Statechart Notation
Statecharts are a diagrammatic notation which exists in many variations in system modelling; they are, for example, part of UML [i.4]. Statecharts combine aspects of rule-based notations with graphical structure.

In general, a statechart is a diagram which contains nodes for states and directed arcs for state transitions. Like in rule-based notations, a statechart may be associated with a set of state variables. The arcs of the statechart usually contain the following information, which is similar to rules in rule-based notations:

· An action type with its parameters, which describes how the transition created by the arc is labelled when it is taken.

· An enabling condition, which is a predicate over the state variables and action parameters, and describes in which state the arc can be taken.
· A state update, which describes how the state variables are changed if the arc is taken.
· Other information like captured requirements or timing constraints.

In addition to these basic elements, statecharts also support hierarchical grouping of states, as well as parallel composition of states. There are more constructs in statecharts which go beyond the scope of this standard.
The construction of the model graph from a statechart is very similar as with rule-based notations. In addition to information based on the state variables, the structure of the diagram is taken into account to determine in which state a transition is enabled. Conceptually, the structure of the diagram can be understood as a special implied state variable, making statecharts easily embeddable in rule-based notations.

Statechart based modelling notations satisfy the requirements in this standard provided the underlying algorithmic support for data domains as is used in state variable and action parameter modelling is sufficiently supported.

A.3 Process-oriented notation
In process-oriented modelling, a system of components is specified by describing the activity of each component as an independent sequential process (or thread). The process is usually described using an imperative modelling or programming language. Each process has its independent data state, comprised by a set of state variables. During its lifetime, the process actively listens to inputs from its environment and produces outputs, usually by using the concept of ports or channels.

Process-oriented models map to a model graph by collecting the traces of inputs and outputs visible on the ports. Parallel activity of processes is constructed by interleaving the traces of two sub-systems. Real-time constraints are described by programmatic delays and timeouts.

Process-oriented models satisfy the requirements in this standard provided the underlying algorithmic support is sufficient.

History

	Document history

	0.0.1
	May 2010
	First draft

	0.2.1
	August 2010
	Second draft

	0.3.1
	September 2010
	Third draft

	0.4.1
	November 2010
	Fourth draft

	
	
	

�Why only a set of legal sequences? In my opinion this should be the “expected behaviour”

�According to system status and internal variable values

�See note for Deterministic behaviour

�This doc often refers to a rule, but it is not defined

�Why automatic?

�Already discussed in STF370 and not accepted (as far as I remember)

�I don’t understand the difference with the first feedback typology. It is also not clear the relation with the picture.

�Function parameters not mentioned?

�An input is not always needed. E.g. internal timer time-out

�I guess this is the definition in modelling theory, however it is not so intuitive for me… I’d expect “procedure” for this meaning

�One or more?

[image: image5.wmf][image: image6.png]Model —> Test Suite

Input Actions Output Actions

Model Development
System Interface

System interface development

[image: image7.png]Author

v

Model

Requirements

Feedback H

EEsssssssssssssEsEnEnEnnnnnnnnn s

[«—= Instrumentation

Generate

¥

Test Suite

Control

Test Execution

Observe

—————— System Under Test [«--

Feedback

Feedback

@
a
=
©
<
o
=
o
(o]
—~+

Feedback

_1065009619.doc

