Draft ETSI TR 1XX XXX V<0.0.4> (2011-04-01)
2

[bookmark: page1][bookmark: pages12]
TD <>
[bookmark: docdraft][bookmark: docversion][bookmark: docdate]Draft ETSI TR 1XX XXX V<0.0.4> (2011-04-01)
Technical Report
[bookmark: doctitle]Methods for Testing and Specifications (MTS);
Performance Testing Distributed Systems

Concepts and Terminology
S-02 – 2011-04-04-C
[bookmark: page2]Reference
DTR/MTS-????
Keywords
PERFORMANCE TESTING TERMINOLOGY

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
[bookmark: mailto]If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: doccopyright][bookmark: copyrightaddon]© European Telecommunications Standards Institute 2008.
[bookmark: tbcopyright]All rights reserved.

DECTTM, PLUGTESTSTM and UMTSTM are Trade Marks of ETSI registered for the benefit of its Members.
TIPHONTM and the TIPHON logo are Trade Marks currently being registered by ETSI for the benefit of its Members. 3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

[bookmark: _Toc289668355]
Contents
Contents	3
Intellectual Property Rights	5
Foreword	5
1	References	6
1.1	Definitions	6
1.2	Abbreviations	6
2	Introduction	6
2.1	Background	6
2.2	The purpose of this technical report	6
2.3	A disclaimer	6
2.4	The organization of this document	6
3	General concepts	7
3.1	Performance test concepts	7
3.1.1	Function tests vs. Performance measurements	7
3.2	Performance test phases	8
3.2.1	Pre-deployment performance testing	8
3.2.2	Post-deployment performance testing	8
3.3	Performance test objectives	9
3.4	Performance objectives and performance requirements	10
3.5	Performance measurement conditions	10
3.6	Performance targets	10
3.7	Performance measurements standards	10
3.8	Terminology reference summary	10
4	Performance test environment	11
4.1	Test environment concepts	11
4.2	System Under Test concepts	12
4.2.1	System Under Test components	12
4.2.2	Borders of a System Under Test	12
4.2.3	System Under Test replacements	13
4.3	Test tool concepts	13
4.3.1	Service handling tools	13
4.3.2	Service Simulation Tools	14
4.3.3	Performance data recording tools	14
4.3.4	Performance test monitoring tools	15
4.3.5	Performance data processing tools	15
4.3.6	Performance evaluation tools	15
4.3.7	Performance presentation tools	15
4.4	Terminology reference summary	15
5	Performance test specifications	16
5.1	Elements of performance test specifications	16
5.2	Test ojectives	16
5.3	Test conditions	16
5.3.1	Test specification prerequisites	16
5.3.2	Test Execution Pre conditions	17
5.3.3	Test Measurement conditions	17
5.3.4	Test Execution Post-conditions	17
5.4	Test configurations	17
5.4.1	Workload specifications	18
5.4.2	Test bed specifications	19
5.4.3	Data collection specifications	19
5.5	Test Data Specifications	20
5.5.1	Test Data for service requests	20
5.5.2	Test Data for SUT operability	20
5.5.3	Test Data for performance evaluation	20
5.6	Test evaluation specifications	20
5.7	Terminology reference summary	20
6	Measured objects	21
6.1	Measured services	21
6.2	Measured components	21
6.3	Service concepts	21
6.3.1	Service and component performance	22
6.3.2	Service topology and topology performance	22
6.4	Service characteristics	22
6.4.1	Service initiation characteristics	23
6.4.2	Service duration characteristics	23
6.4.3	Service resource and load profile	23
6.4.4	Service design characteristics	24
6.4.5	Service flow characteristics	25
6.5	Service Interfaces	26
6.5.1	Application Programming Interfaces (API)	26
6.5.2	Communication Protocol Interfaces	26
6.6	Terminology reference summary	26
7	Measurement requirements and attributes	27
7.1	Requirements on performance measurements	27
7.2	Requirements on performance measurement data	27
7.3	Measurement data attributes	28
7.3.1	Identification attributes	28
7.3.2	Conditional attributes	29
7.3.3	Processing attributes	29
7.4	Terminology reference summary	29
8	Performance categories	30
8.1	Classifying performance attributes into categories	30
8.2	Powerfulness	30
8.2.1	Capacity	30
8.2.2	Responsiveness	31
8.2.3	Scalability	34
8.3	Reliability	35
8.3.1	Quality-of-Service	35
8.3.2	Stability	35
8.3.3	Availability	36
8.3.4	Robustness	37
8.3.5	Recovery	37
8.3.6	Correctness	37
8.4	Efficiency	38
8.4.1	Resource usage	38
8.4.2	Resource utilization	38
8.4.3	Resource balance	38
8.4.4	Load balance	38
8.4.5	Service resource linearity	38
8.4.6	System resource scalability	39
8.5	Terminology reference summary	39
9	Performance metrics and characteristics	40
9.1	Performance metrics definitions and examples	40
9.2	Metrics attributes and sources	41
9.3	Classifying performance metrics into categories	41
9.4	Powerfulness	41
9.4.1	Capacity	42
9.4.2	Responsiveness	42
9.4.3	Scalability	42
9.5	Reliability	42
9.5.1	Quality-of-Service	42
9.5.2	Stability	43
9.5.3	Availability	43
9.5.4	Robustness	43
9.5.5	Recovery	44
9.5.6	Correctness	44
9.6	Efficiency	44
9.6.1	Resource usage	44
9.6.2	Resource utilization	44
9.6.3	Resource balance	45
9.6.4	Load balance	45
9.6.5	Service resource linearity	45
9.6.6	System resource scalability	45
9.7	Terminology reference summary	45
10	Performance data processing	46
10.1	Steps in performance data processing	46
10.2	Collection and storage of raw performance data	46
10.3	Condensation and normalization of raw performance data	46
10.4	Performance data computations	47
10.5	Evaluation of performance data	47
10.6	Presentation of performance data	47
10.7	Terminology reference summary	47
11	History	48

[bookmark: _Toc289668356]Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
[bookmark: _Toc289668357]Foreword
[bookmark: For_tbname]This Technical Report (TR) has been produced by ETSI MTS.

[bookmark: _Toc288997309][bookmark: _Toc288997334][bookmark: _Toc288997337][bookmark: _Toc288997345][bookmark: _Toc288997365][bookmark: _Toc288997368][bookmark: _Toc288997277][bookmark: _Toc288997288][bookmark: _Toc288997205][bookmark: _Toc288997213][bookmark: _Toc288997225][bookmark: _Toc288997244][bookmark: _Toc288997261][bookmark: _Toc289668358]References
For the purposes of this Technical Report (TR), the following references apply:

[bookmark: _Toc288997206][bookmark: _Toc289668359]Definitions
For the purposes of the present document, the terms and definitions apply:

[bookmark: _Toc288997207][bookmark: _Toc289668360]Abbreviations
For the purposes of the present document, the following abbreviations apply:

[bookmark: _Toc288997208][bookmark: _Toc289668361]Introduction
[bookmark: _Toc288997209][bookmark: _Toc289668362]Background
Performance testing in quality assurance has long suffered from common definitions ranging from what should be regarded as performance of a system to how performance should be measured and interpreted.
[bookmark: _Toc288997210][bookmark: _Toc289668363]The purpose of this technical report
A common terminology and a common interpretation of the terminology used in performance testing has been regarded as the starting point for communication of performance testing generally.
This report describes the performance testing terminology for distributed systems and is intended to serve as a common interpretation of the terminology used in performance testing.
[bookmark: _Toc288997211][bookmark: _Toc289668364]A disclaimer
Performance testing is a quality assurance task in constant change. Requirements on providing better and more accurate performance information in shorter time, with less efforts and at less costs drive the technology and methodology of performance testing. New architectures and methods for implementing software also put new requirements on performance testing. The report makes no claims on being a complete document on the subject. The report must consequently be maintained as a living document, subject to new editions in the future.
[bookmark: _Toc288997212][bookmark: _Toc289668365]The organization of this document
The document is in current version organized into eight sections (3 – 10).
Section 3	presents general concepts regarding performance testing.
Section 4, 5	presents concepts regarding the performance test environment and performance specifications
Section 6, 7	presents concepts regarding what is measured on a tested system and requirements on measurements and attributes of measurements.
Section 8, 9	presents concepts regarding what is performance from performance categories to performance metrics and characteristics
Section 10	presents the processing steps of performance data from performance data collection to performance data presentations

[bookmark: _Toc289668366]General concepts
[bookmark: _Toc289668367]Performance test concepts
Performance tests collect of performance data showing how a tested system behaves under specified conditions in a controlled performance test environment. The goal of a performance test can be to find capacity limits of a system, or testing a system’s ability to deliver services regardless of time, or anything else.
The conditions for captured performance data are caused by performance test tools generating artificial load on the tested system in terms of realistic service requests from simulated users.
Performance tests are done from the very design of a system throughout real production of services. Performance measurement figures may cover an almost endless number of performance aspects of a system, but are for practical reasons performance tests are limited to carefully selected set of performance characteristics in most cases.
[image:]
Figure 3-01: A general view of performance test
[bookmark: _Toc288997215][bookmark: _Toc289668368]Function tests vs. Performance measurements
Differences
Some differences between function tests and performance tests:
1. Performance tests focus on the most frequently used services of an application (the 80 – 20 rule).
Function tests must cover all services provided by an application in depth.
2. Performance tests are blocking, i.e. no other activities can be performed on a SUT during a performance test. Function tests are non-blocking. Multiple test cases may execute concurrently on a SUT normally without interfearing each other.
3. Performance tests are usually hardware intensive and consequently expensive to set up.
Function tets are less demanding on hardware resources and consequently less expensive to set up.
4. Depending on type of Performance test execution time varies from 30 minutes up to weeks for a single test.
Execution time for automated Function tests varies from fractions of a second up to a few minutes.
5. An automated Function test contains one test case only and answers one question only.
A Performance test contains multiple test cases and answers many performance issues.
6. Function tests even of a small system requires hundreds or even thousands of test cases.
Performance tests of a system require only a small number of test cases.
7. A Fuction test can only deliver one of two possible answers: passed or not passed.
A Performance test can measurement results are rarely binary (passed / not passed). On the contrary performance measurement results are complicated to understand and require experienced and careful handling to give an understandable and useful verdict
8. A performance test collects lots of performance data that will answer many performance issues.
A function test on the contrary collects very little information. The evaluation of a function test is usually a set of value checks before and after the function is tested.
Similarities
Some similarities between function tests and performance tests:
1. Any Performance test is based on function tests of system services (service requests). In Performance tests these service requests are repeated by a large number of simulated users, a large number of .
2. A Performance test reports failed and passed tests, i.e. passed and failed service requests (together with all other performance data)
[bookmark: _Toc288997216][bookmark: _Toc289668369]Performance test phases
Performance testing applies to all life cycle phases of a system. Performance testing is done during:
1. Pre-deployment
2. Post-deployment
[bookmark: _Toc288997217][bookmark: _Toc289668370]Pre-deployment performance testing
Performance can’t be added to a system after it is designed and implemented. A system has to be designed and built for good performance to achieve stated performance goals. A general principle is therefore to start work on performance issues as early as possible during system design and development.
Pre-deployment performance testing takes place during system design and development and includes tests of:
1. Intended performance goals
2. System design
3. System implementation
4. System integration
Testing intended performance goals
Performance tests of intended performance goals are done to set realistic performance goals, i.e. to test if intended performance goals are possible to reach and if not how they should be changed. The purpose is to transform intended performance goals to stated performance goals.
Testing performance of system design
Performance tests of system design are done to verify or modify stated performance objectives. The test results are also input to performance goals for implementation of individual elements of the system.
Testing performance of system implementation
Performance tests of system implementations are done to maintain control over stated performance objectives in developed code. The focus of performance tests of system implementation is powerfulness and efficiency of developed code.
Performance tests of reliability attributes are of little value during this phase since the developed code is not stable.
Testing performance of system integration
Performance tests of system integration are done to verify that measured performance of a system is maintained, when the system gets integrated with other related systems. Performance test objectives during system integration cover all specified performance characteristics of the system.
[bookmark: _Toc288997218][bookmark: _Toc289668371]Post-deployment performance testing
Post-deployment performance tests are measurements of a deliverable or a delivered systems. Post-deployment performance tests include:
1. Benchmarking or system evaluation
2. Performance tests of system delivery
3. Performance tests of service production
Benchmarking or system evaluation
Benchmarking are performance tests of a system, where the test is based on a performance test standard.
The main purpose of a benchmark is to produce metric values on performance characteristics that are comparable with the metric values produced by other systems using the same benchmark.
Performance tests of system delivery
Performance tests of system delivery are done to verify that stated performance requirements for a delivered system are at hand, when the system is integrated with other systems on the installation site. Performance test objectives in system delivery cover all specified performance characteristics of the system.
Performance tests of service production (performance monitoring)
Performance tests of service production (also referred to as performance monitoring) are done to verify that produced services are in accordance with stated quality requirements (Quality of Services).
Performance monitoring of service production can be reactive or proactive.
Reactive performance monitoring
Reactive performance monitoring aims at detecting and acting on situations after they have happened. Actions are based on situations identified from analysis of log files of different kinds from the system and service production.
Proactive performance monitoring
Proactive performance monitoring aims at detecting and acting on identified situations or trends that might evolve into severe disturbances or a disaster in service production before the situations get critical.
[bookmark: _Toc288997219][bookmark: _Toc289668372]Performance test objectives
Performance test objectives describe the reasons for doing performance tests. Performance test objectives can be confirmative or explorative. A performance test execution can be both confirmative and explorative.
Objectives of confirmative performance tests
Confirmative performance tests are done to verify stated performance objectives.
An examples of confirmative performance tests could be verification of performance requirements for throughput capacity for a specific service or mix of services. Other cases of confirmative performance tests are regression testing.
Objectives of explorative performance tests
Explorative performance tests are done to get an understanding of the behavior of a system under specified conditions, or to find the performance limitations.
An example of explorative performance tests could be to find the maximum throughput capacity for a specific service or mix of services under specified conditions such as maximum CPU load.
Typical objectives of performance tests
Here follows a sample of performance test objectives:
· Has the tested system processing capacity for the specified load?
· Does the system respond fast enough under specified load conditions?
· Can the system’s processing capacity be expanded with more hardware?
· Does the system handle requested services continuously?
· Is the system’s responsiveness continuously predictable?
· Has the system processing bottlenecks limiting the capacity?
· Is the system configured to fully utilize the hardware platform?
· Has the system processing limitations due lack of certain resources?
· Can the system manage various production critical situations such as DOS attacks?
· How long time does it take to recover from a partial or a full restart?
· Does the system deliver correct results under heavy load?
[bookmark: _Toc288997220][bookmark: _Toc289668373]Performance objectives and performance requirements
Performance objectives is a term for desired performance goals that a system should meet. Performance objectives should at least cover stated performance requirements, if specified. Performance objectives can be defined as absolute performance figures or as performance figures relative to stated performance requirements or the measured performance of other systems. Relative performance fihures are usually percentage values, such as 30% higher capacity than brand “XYZ” or 20% reduction of response time for service “ABC”.
Performance requirements is a term for performance figures a system must meet to be approved.
Performance objectives and performance requirements can be stated for a range of objects from a whole system, or a subsystem down to individual services.
[bookmark: _Toc288997221][bookmark: _Toc289668374]Performance measurement conditions
Performance measurement conditions are the specified circumstances under which requested performance data can be recorded in a performance test. Performance conditions can be external or internal.
External test conditions
External test conditions describe what a tested system (SUT) should be exposed to during a performance test. External conditions include types of service requests, volumes of service requests (traffic rates), duration of service request volumes, and volumes of simulated entities or users requesting services.
Internal test conditions
Internal test conditions describe expected situations inside a tested system during a performance test, such as resource usage levels of CPU, memory etc..
Example
If, for example, an explorative performance test case is to find the maximum system throughput of a specific service at 80% CPU load there are two test conditions – one internal and one external:
1. External test condition: System load from service requests of the specified type
2. Internal test condition: A measured CPU load of 80%
[bookmark: _Toc288997222][bookmark: _Toc289668375]Performance targets
Performance targets describe different goals for performance testing such as:
· What kind of system services shall be measured
· What kind of performance goals shall be achieved
· What kind of performance characteristics shall be measured
[bookmark: _Toc288997223][bookmark: _Toc289668376]Performance measurements standards
Performance measurement standards are generally accepted specifications for how to measure, and evaluate some kind of performance on a standardized system or an architectural standard for a system.
[bookmark: _Toc289668377]Terminology reference summary

Terms	Locations
Artificial load	 See 3.1
Benchmarking or system evaluation	 See 3.2.2
Confirmative performance	 See 3.3
Explorative performance tests	 See 3.3
Intended performance goals	 See 3.2.1
Performance characteristics	 See 3.1
Performance measurement conditions	 See 3.5
Performance measurement standards	 See 3.7
Performance targets	 See 3.6
Performance test objectives	 See 3.3
Performance tests of service production	 See 3.2.2
Performance tests of system delivery	 See 3.2.2
Performance tests	 See 3.1
Performance test phases	 See 3.2
Post-deployment	 See 3.2, 3.2.2
Pre-deployment	 See 3.2, 3.2.1
Proactive performance monitoring	 See 3.2.2
Reactive performance monitoring	 See 3.2.2
Realistic service requests	 See 3.1
Simulated users	 See 3.1
System design	 See 3.2.1
System implementation	 See 3.2.1
System integration	 See 3.2.1
[bookmark: _Toc289668378]Performance test environment
[bookmark: _Toc288997226][bookmark: _Toc289668379]Test environment concepts
The Performance Test Environment contains hardware and software components required to run performance tests.
When operational for performance tests the Performance Test Environment is called a Test Bed or a Test Site.
[image:]
Figure 4-01: A Test Site with twoTest Beds (for SUT 1 and SUT 2)
Test Bed concepts
A Test Bed contains hardware and software components that:
1. Constitute the Performance Test Tools
2. Connects the Performance Test Tools to the System Under Test.
3. Enable the System Under Test to execute
The System Under Test and the Performance Test Tools are usually installed on physically separated equipment.
A Test Bed contains the physical interface between the Performance Test Tools and the System Under Test, i.e. network components such as switches, routers and other components. A Test Bed must also support the Logical Interface between the Performance Test Tools and the System Under Test.
The Logical Interface can be an Application Programming Interface (API) or a Communication Protocol Interface. Both interfaces are in most cases IP based communication services, but other interfaces such as SS7 can be requested.
[bookmark: _Toc288963561]Test Site concepts
A performance test requires exclusive access to the System Under Test. Consequently concurrent performance tests must be done on separate SUTs. Large development projects usually need several performance Test Beds to enable all required performance tests to be done within given time limits of the performance test project.
A Test Site is a test location with equipment that:
1. Enables two or more Test Beds to be configured and work concurrently
2. Allows equipments to be reassigned between the supported Test Beds, i.e. each test bed can be equipped differently from performance test to performance test.
[bookmark: _Toc288997229][bookmark: _Toc289668380]System Under Test concepts
[bookmark: _Toc288997230][bookmark: _Toc289668381]System Under Test components
A System Under Test or SUT is the set of hardware and software components constituting the tested system in a performance measurement. A System Under Test is composed of two parts -
1. The Tested Components (TC)
2. The Supporting Components (SC)
The reason for the decomposition is that a System Under Test will report different performance figures depending on the set of Supporting Components it is tested on. This applies to all systems not dedicated for a specific platform
[image:]
Figure 4-02: Components of a SUT
The Tested Components of a SUT
The Tested Components are, in the context of a distributed system, the services requested from a System Under Test.
The Supporting Components of a SUT
The Supporting Components are all hardware and software components requrired to enable performance tests of the Tested Components. Typical Supporting Components are:
1. Middleware software, such as database software or application platform software etc.
2. Operating system software
3. Hardware, such as servers, disk systems, load balancing equipment etc.
The Supporting Components are regarded as Tested Components when the System Under Test is able to run on one specific set of Supporting Components only. In those cases there is only one set of measured performance results.
[bookmark: _Toc288997231]The Supporting Components are regarded as a test condition, when the System Under Test is able to run on multiple sets of Supporting Components. In such cases measured performance results must refer to the used set of Supporting Components.
[bookmark: _Toc289668382]Borders of a System Under Test
A System Under Test has two types of borders interfacing the Performance Test tool components:
1. Front-end borders
2. Back-end borders
Front-end borders
The Front-end borders of are the intersections between the System Under Test and Service Requesting Tools.
The Front-end borders contain the ports for incoming service requests.
Back-end borders
An SUT may provide services where requests are passed on to a service terminating devices. Service terminating devices are usually simulated by Service Responding Tools some times also called Service Terminating Tools.
The interfacing points between the SUT and Service Responding Tools are called the Back-end borders of the SUT.
[image:]
Figure 4-03: Example of a SUT with front-end border SIP/Gm to the left, and back-end border SIP/Mw to the right
[bookmark: _Toc288997232][bookmark: _Toc289668383]System Under Test replacements
In a distributed system services are usually available in a client-server relation. The party requesting a service is called a client and the party providing the requested service is called a server. A server can in turn act as a client requesting services. These services can be shared SUT internal services or external services shared with other application systems.
Such internal or external services can in some cases be replaced by Service Simulation Tools providing identical services to the tested system (See also 4.3.2 Service Simulation Tools below).
[bookmark: _Toc288997233][bookmark: _Toc289668384]Test tool concepts
Performance Test Tools
A complete Performance Test Tool is a set of hardware and software components that can perform the following tasks:
1. Expose the SUT to a set of (load) conditions, under which performance measurement data are captured.
2. Transform captured performance measurement data into desired performance metrics about the SUT
3. Evaluate performance test results
4. Present evaluated performance test results
The first task is handled by Service Handling Tools, Service Simulation Tools, and Performance Data Recording Tools.
The second task is handled by Performance Data Processing Tools.
The third task is handled by Performance Evaluation Tools.
The fourth task is handled by Performance Presentation Tools.
A Performance Test Tool usually contains Performance Test Monitoring Tools.
[bookmark: _Toc288997234][bookmark: _Toc289668385]Service handling tools
Service handling tools are the interfaces to the SUT for system services specified in the performance test cases.
Service handling tools interact with the SUT in two ways:
1. As service requesting tools
2. As service responding tools
[image:]
Figure 4-04: Example of a Test Bed with Service requesting and Service Responding Tools
Service Requesting Tools
Service requesting tools, usually called load generators, initiate service request to the SUT according to the test specifications. When the SUT has an API interface the service requesting tool simulates an application requesting services over the Application Programming Interface. When the SUT has a protocol interface the service requesting tool simulates device or a system requesting services over the protocol. Regardless of the SUT interface the service requests are in performance tests referred to as Client requests for services from the SUT.
Service Responding Tools
There are system services that connect a requesting client to one or more counterparts (usually called terminating devices) outside the tested system. Terminating devices are usually simulated by test tools receiving and responding to requetst in the test bed. Such services normally require a peer-to-peer protocol, such as SIP or Diameter, where communicating devices must be able to act as clients initiating server requests and servers responding to service requests concurrently.
A performance test tool interfacing a peer-to-peer protocol must be able to send service requests to the SUT and receive requests from the SUT concurrently.
[bookmark: _Toc288997235][bookmark: _Toc289668386]Service Simulation Tools
Whenever a service is tested, the SUT must contain all components required to resolve requested services. However SUT components with well defined services and interfaces can be replaced by Service Simulation Tools.
There are several purposes with Service Simulation Tools such as:
· Reduction of costs for a Test Bed. Service Simulation Tools are usually much cheaper than replaced units.
· Shorten the time to build a Test Bed. Service Simulation Tools are usually less complex and easier to install.
· Reducing the complexity to build a Test Bed. Service Simulation Tools are usually less complex to use.
Example: Registration of an IMS user is handled by two components in the IMS architecture, the S-CSCF and the HSS. When testing the capacity of an S-CSCF to handle registration requests a real HSS can be replaced by a Service Simulation Tool acting as an HSS when accessed by the S-CSCF.
[image:] [image:]
Figure 4-05: Example of a SUT, with (a) a real HSS and (b) a simulated HSS
Service Simulation Tools also enable new possibilities to measure performance. By replacing an HSS by a test tool simulating the HSS services we can measure the time spent on processing a registration request in an S-CSCF, since the time spent processing a registration request in an HSS is controlled by the test tool.
[bookmark: _Toc288997236][bookmark: _Toc289668387]Performance data recording tools
A main function of performance test tools is to capture and save performance data. Performance data can be captured externally and internally with respect to the SUT.
External performance recording tools
External performance data are measurements of how the SUT responds to requests from Service Requesting Tools.
External performance data are captured by the Service Requesting Tools and the Service Responding Tools (if any) and recorded by Measurement Recording Tools.
Internal performance recording tools
Internal performance data are measurements of how the SUT handles service requests from the Service Requesting Tools internally. Internal performance data are captured by probes running inside the SUT and recorded by Measurement Recording Tools.. The probes are managed by the Performance Test Tools.

[image:]
Figure 4-06: External and internal Performance Recording Tools
[bookmark: _Toc288997237][bookmark: _Toc289668388]Performance test monitoring tools
Performance Test Monitoring tools enable captured measurement data to be viewed in real time or semi-real time during execution of a performance test. The purpose of a Performance Test Monitoring tool is to provide information for manual control of an executing performance test. For example if a performance test of stability and availability is running one week but fails for some reason after three hours it is a waste of time to let the test continue the remaining 165 hours. Monitoring tools can usually be set to trigger on specified conditions. Monitoring tools can in many cases send SMS message based alerts to .
[bookmark: _Toc288997238][bookmark: _Toc289668389]Performance data processing tools
Performance Data Processing tools transform captured measurement data, also called raw performance data, into metric values describing requested performance characteristics of a system.
[bookmark: _Toc288997239][bookmark: _Toc289668390]Performance evaluation tools
Performance Evaluation Tools rate processed metric values for powerfulness according to a set of rules. The purpose is to automatically produce a verdict about measured performance of the SUT. For reliability metrics Performance Evaluation Tools will process captured performance data to identify trends or irregular behavior that could endanger the service production. For efficiency metrics both trend spotting and rule based checks applies.
[bookmark: _Toc288997240][bookmark: _Toc289668391]Performance presentation tools
Performance Presentation Tools transform measured performance, into graphs and other presentation formats.
The purpose is to improve and enhance interpretation of measured performance.
[bookmark: _Toc288997243][bookmark: _Toc289668392]Terminology reference summary
Terms	Locations
Application Programming Interface	 See 4.1
Back-end borders	 See 4.2.2
Communication Protocol Interface	 See 4.1
External performance data	 See 4.3.3
Front-end borders	 See 4.2.2
Internal performance data	 See 4.3.3
Logical Interface	 See 4.1
Measurement Recording Tools	 See 4.3.3
Performance Data Processing Tools	 See 4.3
Performance Data Recording Tools	 See 4.3
Performance Evaluation Tools	 See 4.3
Performance Presentation Tools	 See 4.3
Performance Test Environment	 See 4.1
Performance Test Monitoring Tools	 See 4.3
Performance Test Tools	 See 4.1
Physical interface	 See 4.1
Service Handling Tools	 See 4.3
Service Simulation Tools	 See 4.2.3, 4.3
Supporting Components	 See 4.2.1
System Under Test	 See 4.1
Test Bed	 See 4.1
Test Site	 See 4.1
Tested Components (on SUT)	 See 4.2.1
[bookmark: _Toc289668393]Performance test specifications
[bookmark: _Toc288997245][bookmark: _Toc289668394]Elements of performance test specifications
Specifications of a performance test should include the following elements:
1. Test objectives
2. Test conditions
3. Test configurations
4. Test data specifications
5. Test evaluation specifications
Performance test specifications must be translated into performance test configurations, i.e. Test Bed and Test Tool configurations to enable collection of performance data.
[image:]
Figure 5-01: Elements of performance test specifications
[bookmark: _Toc288997255][bookmark: _Toc289668395]Test ojectives
The Test objectives of a performance test state the purposes of the test, i.e. what will bi achieved by running the test.
[bookmark: _Toc289668396]Test conditions
The Test conditions of a performance test include:
1. Test specification prerequisites
2. Test execution pre-condition
3. Test measurement conditions
4. Test execution post-conditions
[bookmark: _Toc288997256][bookmark: _Toc289668397]Test specification prerequisites
With Test Specification Prerequisites we mean output from other Performance tests that is required as input to a Performance test specification. The consequence is that these Performance tests have to be executed before specifying the intended performance test.
An example of Test Specification Prerequisites:
An availability test runs usually for days or even weeks at 80% of the system’s measured maximum throughput level. A prerequisite to specify such a test is information about what is 80% of the system’s measured throughput level. This information is obtained in a Capacity test that has to preceed the the availability test specification.
[bookmark: _Toc289668398]Test Execution Pre conditions
A set of Test Bed and the SUT conditions must be met in order to start Performance Test execution. These conditions are referred to as Test Pre-conditions. The Pre-conditions also apply after the initial test steps (the warm-up phase when simulated users get activated and the system is prepared to receive service requests) have completed. Pre-conditions are usually stated for the performance test bed as well as the tested application.
Test bed pre-conditions
Examples of test bed pre-conditions are:
1. Exclusive access to the performance test bed
2. Enough physical resources for execution of a performance test case, such as disk space.
3. Correct configuration of the test bed components, such as test tool equipment connected to all open SUT interfaces.
Application pre-conditions
Examples of application pre-conditions are:
1. Ensure that all simulated entities are in correct state to run the test,such as all simulated enitities are successfully registered and accepted by the system. (Not always required)
2. Ensure that common application resources, such as databases, contain expected data. (Not always required)
3. Ensure that required load is applied on the SUT.
4. Ensure that the SUT can process requested application services.
[bookmark: _Toc288997257][bookmark: _Toc289668399]Test Measurement conditions
Measurement conditions state the requirements on performance data capture during an on-going performance test.
Measurement conditions may also state under what circumstances a performance test shall be stopped.
There are two types of Measurement conditions:
· Requested measurement conditions
· Actual measurement conditions
Requested measurement conditions
Requested measurement conditions are stated requirements on SUT and Test Bed (Test Tool) conditions for capturing performance data. Requested measurement conditions are a part of the performance test specification.
Actual measurement conditions
Actual measurement conditions are recordings of the conditions that applied when performance data were captured. The purpose of Actual measurement conditions is to validate recorded performance data.
Actual measurement conditions include metrics such as load deviations - the differences between intended load and actual load during a performance test.
[bookmark: _Toc288997258][bookmark: _Toc289668400]Test Execution Post-conditions
A set of Post-conditions must be fullfilled after execution of the performance test has completed and before the performance test is regarded as completed. Examples of post-conditions actitities are:
1. All system resources reserved during test execution are released. such as all sessions, subscriptions, or other resources related to pending services are returned.
2. Central resources on the test bed are reset, such as used databases.
[bookmark: _Toc288997246]The purpose of post-conditions is to bring the test environment to a well defined initial state for the next test.
[bookmark: _Toc289668401]Test configurations
Performance test specifications must be translated into performance test configurations, i.e. configurations of Test Bed and SUT to enable execution of the performance test. Performance test configuration include:
· Workload specifications
· Test bed specifications
· Data collection specifications
A performance test configuration covers in most cases more than one performance test cases.
[bookmark: _Toc288997247][bookmark: _Toc289668402]Workload specifications
Workload is a term for what a System Under Test is expected to handle during a performance test.
A Workload has three components:
1. Workload content, i.e. what are the scenarios of service requests from simulated users during a user session
2. Workload volume, i.e. what are the requested quantities of work or services to be handled by the SUT
3. Workload time distribution, i.e. how are the requested quantities of work or services distributed over time
Workload set or Traffic set
A performance test may contain several workload specifications, where each workload specifies a group of simulated users exposing the SUT to a specific set of service requests with a specified intensity. A set of Workload configurations is also called a Traffic Set
Workload content
The Workload content describes what a simulated entity will request from the SUT and in which order during a performance test. The Workload content contains two parts:
1. Test Scenarios
2. Test Session

[bookmark: _Toc288997253]Test scenarios
The Test Scenarios are specifications of individual service requests to be performed include topics such as:
Building a service request with requested content and formatted with user specific information
· How the requests are sent to the SUT
· How response messages from the SUT are validated
· How errors reported from the test bed, such as timeout or disconnects, are handled
· How the outcome of a service request is reported back to the Test session
[bookmark: _Toc288997254]Test session
A Test Session is a specification of in which order different services are requested by a simulated user.
A Test Session is, in a load test, a map with a straight path regardless of the outcom of a service request.
A Test Session is, in a simulation test, a map with alternative paths depending on the outcome of a service request.
A Test Session usually has some exits for emergency situations too.
Workload volume and time distribution (Load specification)
The Workload volume and Workload time distribution describes the actual load on the SUT generated by a test tools.
Workload volume and workload time distribution are also referred to as Load characteristics for a performance test.
Load concepts
Depending on the design of a test tool there are two concepts for load:
1. User session based load
2. Traffic rate based load
User session based load
User session based load is based on the traffic generated by a number of simulated users, where rate of service requests from a user are controlled by think-time delays between two consecutive service requests. The total load on the system is in this case determined by the number of concurrently active user sessions. In order to increase the system load more simulated user sessions have to start. The number of concurrently active user sessions during a performance test is controlled in a load script. In some cases load can be manually controlled during a test.
Traffic rate based load
Traffic rate based load is based on the traffic controlled by a central load control function in the test tool keeping track of when a user session shall be instructed to send a request. The load control function executes a load script telling what traffic rate should be applied in every moment. The traffic rate specification is independent of the number of simulated entities. Each specified traffic rate in the load script has a duration time. The total performance test duration is set by the sum of all specified duration times. Transition time between two Traffic rates can be set to zero.
Load patterns
The load on the SUT can follow several types of patterns such as:
· Constant load, which is commonly used for reliability testing such as availability and/or stability tests
· Stepwise increased load, which is commonly used for static capacity testing. Also called staged load.
· Statistical load (Poisson or F distribution or Erlang), which is commonly used for simulations
· Peak load, is a load pattern with heavy load spikes intermixed with low or medium load. Peak load is commonly used for dynamic capacity testing
· Saw tooth load, is a load pattern similar to peak load with the same purpose.
Load profiles
A Load profile is the set of load conditions defined in a load script.
[bookmark: _Toc288997248][bookmark: _Toc289668403]Test bed specifications
The Test bed specifications describe the test bed configuration of equipment for different services in a performance test.
The Test bed specifications for interfaces between the test tools and the SUT describe:
· IP addresses and listening ports of the SUT for different services
· Used network layer protocols such as IPv4 and/or IPv6
· Used tranport layer protocols such as TCP, UDP, SCTP etc.
· Used application layer protocols such as HTTP, SOAP, SIP, Radius, Diameter, DHCP etc.
· Securitysettings such as IPsec or HTTPS
· Timeout settings for service requests
Other Test bed specifications describe:
· The hardware configurations of servers in the SUT
· The number of servers and load balancing equipment in the SUT
· The Test bed equipment interconnecting SUT and Test tools.
· Requested versions of all software involved in a performance test
The purpose of the Test bed specifications is to document the test environment such that a performance test can be repeated identically at any point in time.
[bookmark: _Toc288997249][bookmark: _Toc289668404]Data collection specifications
Data collection specifications contain specifications of performance data that should be captured.
Data collection specifications include:
· The internal performance attributes specifications
· The external performance attributes specifications
· The performance recording specifications that will apply
Internal performance attribute specifications
The internal performance attribute specifications include:
· Specifications of selected performance variables, such as CPU usage, memory usage, or queues
· Recording location of selected performance variables, such as per server or for a specified process group
· The frequency of recording internal performance data inside the SUT
External performance attribute specifications
The external performance attribute specifications include:
· Specifications of selected performance variables for requested services and related responses
· Specifications of selected performance variables for actual measurement conditions
The performance recording specifications
The performance recording specifications include configuration parameters such as:
· The resolution of recorded performance data, such as seconds, milliseconds, or microseconds for response time
· The frequency of saving captured performance data on disk, i.e. sample time for recording performance data.
[bookmark: _Toc288997259][bookmark: _Toc289668405]Test Data Specifications
Performance test specifications contain specifications of Test Data for the following purposes:
· Test data for service requests
· Test data for SUT operability
· Test data for performance evaluation
[bookmark: _Toc289668406]Test Data for service requests
Test data for service requests is a set of parameters with individual values for every simulated user. Test data for service requests are used to provide every service request with unique information for every simulated user.
[bookmark: _Toc289668407]Test Data for SUT operability
Test data for SUT operability contains information about simulated user’s unique parameter values for items, such as identities, phone numbers, accout numbers etc. that will be stored in the SUT’s databases.
All Test data for service requests must have a counterpart in Test Data for SUT operability, i.e. parameter values for a specific user requesting a service must correspond to the parameter values stored for that user in databases centrally on the SUT. The Test Data for SUT operability is required to enable validated and accepted service requests from simulated users during performance tests, i.e. a prerequisite for SUT operability
[bookmark: _Toc289668408]Test Data for performance evaluation
Test data for evaluation of performance measurement results containjs both evaluation rules and expected measurement values. Test Data for performance evaluation of regression tests contain the performance measurement results from some previous execution of the performance test together with the evaluation criteria.
[bookmark: _Toc289668409]Test evaluation specifications
Test evaluation specifications contain rules and settings for evaluation (judgment) of performance test results.
Test evaluation specifications will for instance specify ranges for performance measurement result when an appropriate verdict such as Excellent, Good, Acceptable, Poor, Bad etc. should be applied.
[bookmark: _Toc289668410]Terminology reference summary
Terms	Locations
Actual measurement conditions	 See 5.3.3
Application pre-conditions	 See 5.3.2
Constant load	 See 5.4.1
Data collection specifications	 See 5. 4
Load conditions 	 See 5.4.1
Peak load	 See 5.4.1
Requested measurement conditions	 See 5.3.3
Saw tooth load	 See 5.4.1
Statistical load	 See 5.4.1
Stepwise increased load	 See 5.4.1
Test bed pre-conditions	 See 5.3.2
Test bed specifications	 See 5. 4
Test configurations	 See 5.1, 5. 4
Test data specifications	 See 5.1, 5. 5
Test data for service requests	 See 5. 5. 1
Test data for SUT operability	 See 5. 5. 1
Test data for performance evaluation	 See 5. 5. 1
Test evaluation specifications	 See 5.1, 5. 6
Test execution post-conditions	 See 5.3, 5.3.4
Test execution pre-condition	 See 5.3, 5.3.2
Test measurement conditions	 See 5.3, 5.3.3
Test conditions	 See 5.1, 5.3
Test objectives	 See 5.1
Test Scenarios	 See 5.4.1
Test Session	 See 5.4.1
Test specification prerequisites	 See 5.3, 5.3.1
Traffic rate based load	 See 5.4.1
User session based load	 See 5.4.1
Workload content	 See 5.4.1
Workload specifications	 See 5. 4, 5.4.1
Workload time distribution	 See 5.4.1
Workload volume	 See 5.4.1
[bookmark: _Toc289668411]Measured objects
[bookmark: _Toc288997262][bookmark: _Toc289668412]Measured services
When requesting information about the performance of a car we are provided with figures for top speed, acceleration, maximum load, mileage, service intervals etc.
The performance figures apply to the tested car as a whole, i.e. on system level or top level of the tested system. However the measured performance of a car is a result of the car design and the performance of the various components of the car involved in producing its services. Examples of the components of a car contributing to measured powerfulness values are the performance of the engine, the transmission system, the electrical system, etc. To design the performance of the car we need to measure and evaluate the performance of its components and how the components interact.
A similar approach can be applied on a computer system. At the system (application) level we measure the performance of system service delivery, such as transaction processing capacity, or response time of various services etc.
[bookmark: _Toc288997263][bookmark: _Toc289668413]Measured components
Similar to a car the measured performance of a computer system service is not atomic, but the end result of the performance of many levels of processing services or components. The performance of application services depend on the performance of requested middleware services. The performance of middleware services depend on requested operating system services. The performance of operating system services depend on the performance of requested hardware components services etc.
We don’t need to know the performance of each component involved in delivering an application service to measure the performance of an application service. However, performance is built from inside out, i.e. to design an application that shall meet defined performance requirements, we need to measure and control the performance of all components.
[bookmark: _Toc288997264][bookmark: _Toc289668414]Service concepts
A distributed system provides its services to users over a published interface. If a service is general enough it can be used as a shared service by multiple applications. Access to a service in a distributed system is open to any client that has the authority to use the service and is authenticated as a valid user. The rational of this concept is reuse of software as an on-line service.
[bookmark: _Toc288997265][bookmark: _Toc289668415]Service and component performance
An application service is normally resolved by a set of internal services.
The measured performance of a system service is the aggregated result of all components (hardware and software) involved in and contributing to the results.
The performance of an application service depends on the performance of requested middleware services. The performance of the middleware services depend on requested operating system services. The performance of operating system services depend on the performance of requested hardware components services etc. The track can basically be followed down to execution of CPU instructions.
[bookmark: _Toc289668416]Service topology and topology performance
The service topology describes how an application service is dependent on other application services to resolve its task.
Performance tests of service topology focus on the responsiveness of distributed services processing components. Performance tests of service topology cover such as:
· Tests of latency in accessing distributed services.
· Tests of capacity in accessing distributed services.
A Distributed system is not only built on several layers of services, but each layer of services may also be distributed across a large number of system components (servers).
The system topology describes how the system components are interconnected and the requirements to traverse the system between any two components.
For example registration of an IMS user is initiated by the UE sending a REGISTER request on the IMS Gm interface (SIP) to the user’s servicing CSCF. The receiving S-CSCF must in turn request services from the operators HSS to indentify and authenticate the user and set up secured IPsec channels to the UE. This done by
sending a request on the IMS Cx interface (Diameter) to the HSS.
[image:]
Figure 6-01: Example of service topology from IMS
[bookmark: _Toc288997267][bookmark: _Toc289668417]Service characteristics
Service characteristics are service attributes that determine how performance tests of a service should be designed.
· Service initiation characteristics
· Service duration characteristics
· Service resource and load profile
· Service design characteristics
· Service flow characteristics
The purpose of specifying the characteristics of each services is to design correct performance test cases. A well written specification of the characteristics of a tested service improves the understanding of what shall be measured and how.
[bookmark: _Toc288997272][bookmark: _Toc288997270][bookmark: _Toc288997268][bookmark: _Toc289668418]Service initiation characteristics
Service initiation characteristics describe how a services is invoked. There are two types of services in this context:
· Pulled services
· Pushed services
Pulled services
Pulled services are services initiated by a requests from a Client and responded to by a Server.
Pushed services
Pushed services are initiated by a Server sometimes also called a Publisher. The service is distributed to any Client with a pending subscription to the service. Pushed services are usually event driven, i.e. they are initiated by an event to the server and sent to a Client that subscribes to the service.
An example of a pushed service is the following: A user with an active publication sends a PUBLISH of a status change to the publication server. The publication server updates the publication and sends NOTIFY messages to all active subscribers of the publication.
[bookmark: _Toc289668419]Service duration characteristics
Service duration characteristics describe the combination of stateless or stateful services and the service duration.
· Services with short duration
· Services with variable duration
· Services with long duration
System services with short duration
For System services with short duration a short response time is essential. Services are usually stateless. A service request of this kind usually has a timer at application protocol level that terminates the request if no response message can be returned within a standard response time limit. Examples of services with short duration are any type of simple request–response service, such as web browsing or a Google search.
System services with variable duration
For System services with variable duration the requested service has no time constraints and consequently changes from case to case. Services with variable duration are stateful. An example of a service with variable duration is a call, where ring time and/or hold time (the actual duration of the conversation) varies from call to call.
System services with long duration
For System services with long duration the requested service is usually a prerequisite for other subsequent services during a user session and lasts consequently until the list of subsequent services is finished. Services are stateful. A service with long duration usually has a timer, for security reasons, that expires when no activities are registered during a specified time. An example of a service with long duration is a user session or a subscription to presence status.
[image:]
Figure 6-02: Examples of different service durations
[bookmark: _Toc288997269][bookmark: _Toc289668420]Service resource and load profile
The resource profile of a service describe the mix of requirements on the following hardware resources:
· Processing (CPU) requirements
· Storage (memory) requirements
· Transmission (bandwidth) requirements
The load profile describes the type of system load caused by the resource profile and the duration of a service.
The load profile has two values: services causing active load and services causing passive load.
Services causing active load
A service with short or variable duration, such as a web transaction or streaming multimedia in a call typically causes an active load on system resources. A service causing active load on a system is characterized by:
· High requirements on processing resources (CPU) or transmission resources.
· Variable requirements on Memory space.
The processing capacity for services causing active load is limited by processing and transmission resources.
Services causing passive load
A service with long duration, such as a user session or a user subscription. typically causes a passive load on system resources. A service causing passive load on a system is characterized by:
· Low requirements on processing resources (CPU) or transmission resources.
· Memory space, usually related to the context of the service, is occupied throughout the duration of the service, which can be long.
The processing capacity for services causing passive load is limited by available memory for service. Even small amounts of memory per service request can end up in large demands on memory. The registration service in an IMS system where each pending user registration occupies 25 K bytes will need 25 Giga byte of memory for one million concurrently registered users.
[bookmark: _Toc289668421]Service design characteristics
Service design characteristics describe the complexity of a service. There are many types of service constructions. In this context we will look at the following types.
· Single step services
· Multi step services
· Composite services

Single step services
A single step service contains a single request with related responses on a specified interface.
Multi step services
A multi step service contains several requests with related responses.
A complex service with multiple interfaces contains requests on several interfaces, where each interface has a set of one or more requests with related responses.
Composite services
A composite service contains several logically separate subservices, where each subservice has a defined interface with a set of one or more requests and their related responses.
[image:]
Figure 6-03: Examples of different service designs
[bookmark: _Toc288997273][bookmark: _Toc289668422]Service flow characteristics
Service flow characteristics describe how a service is communicated. We will here discuss two types of service flows:
· Transaction services
· Streamed services
[image:]
Figure 6-04: Examples of different service flows
Transaction services
A transaction services is communicated in a relatively limited number of interactions between client and server. Transaction services are often tied to some kind of processing of centralized services or databases.
Streamed services
A streamed services is communicated in a continuous flow of interactions between client and server that can last from a few seconds up to several hours and more. A streamed services can be bidirectional such as a multimedia call between two persons or unidirectional such as an IPTV media transfer. Performance requirements and performance attributes of a streamed service are quite different from a transaction service.
[bookmark: _Toc289668423]Service Interfaces
The services of a system are accessible on one or more system interfaces, where different services might use different interfaces. An interface between the system under test and the performance test tools can be an Application Programming Interface (an API) or a Communications Protocol Interface.
[bookmark: _Toc288997274][bookmark: _Toc289668424]Application Programming Interfaces (API)
An Application Programming Interface provides a function library for a call based dialogue between the tested system and the test tools. An Application Programming Interface hides the actual network between the client and the server. The actual network between the client and the server is in most cases a Communications Protocol Interface.
[bookmark: _Toc288997275][bookmark: _Toc289668425]Communication Protocol Interfaces
A Communications Protocol Interface is a protocol stack with protocols from the following three of the OSI layers:
1. Application layer protocols (OSI layer 7)
2. Transport layer protocols (OSI layer 4)
3. Network layer protocols(OSI layer 3)
Examples of application layer protocols are HTTP, SOAP, SIP, Radius, Diameter, DHCP etc., or subsets thereof.
Examples of transport layer protocols are TCP, UDP, SCTP etc.
Examples of network layer protocols in are IP (IPv4 and/or IPv6), IPsec etc.
The client requests a service from the server by sending a message formatted according to the application leyer protocol used by the Communication Protocol Interface. A Communications Protocol Interface usually defines a subset of the used application layer protocol.
[image:] [image:]
Figure 6-05: Test Tools where the SUT interface is an API (left), or a Communication Protocol Interface (right)
[bookmark: _Toc289668426]Terminology reference summary
Terms	Locations
Application Programming Interface	 See 6.5, 6.5.1
Application layer protocols	 See 6.5.2
Communications Protocol Interface	 See 6.5, 6.5.2
Composite service	 See 6.4.4
Load profile	 See 6.4.3
Multi step service	 See 6.4.4
Network layer protocols	 See 6.5.2
Processing (CPU) requirements	 See 6.4.3
Pulled services	 See 6.4.1
Pushed services	 See 6.4.1
Resource profile	 See 6.4.3
Service characteristics	 See 6.4
Service design characteristics	 See 6.4, 6.4.4
Service duration characteristics	 See 6.4, 6.4.2
Service flow characteristics	 See 6.4, 6.4.5
Service initiation characteristics	 See 6.4, 6.4.1
Service interfaces	 See 6.5
Service resource and load profile	 See 6.4, 6.4.3
Services causing active load	 See 6.4.3
Services causing passive load	 See 6.4.3
Services with long duration	 See 6.4.2
Services with short duration	 See 6.4.2
Services with variable duration	 See 6.4.2
Single step services	 See 6.4.4
Storage (memory) requirements	 See 6.4.3
Streamed services	 See 6.4.5
Transaction services	 See 6.4.5
Transmission (bandwidth) requirements	 See 6.4.3
Transport layer protocols	 See 6.5.2
[bookmark: _Toc289668427]Measurement requirements and attributes
Measurement requirements apply to Performance measurements (operational requirements) and Performance measurement data (data quality requirements). Measurement attributes only apply to Performance measurement data.
[bookmark: _Toc288997286][bookmark: _Toc289668428]Requirements on performance measurements
Requirements on performance measurements are operational requirements on collection of measurement data and state conditions that must apply when measurement data are captured. Measurement recording conditions can be external or internal.
External test conditions
External test conditions describe what a tested system (SUT) should be exposed to during a performance test. External conditions include types of service requests, volumes of service requests (traffic rates), duration of service request volumes, and volumes of simulated entities or users requesting services.
Internal test conditions
Internal test conditions describe expected situations inside a tested system during a performance test, such as resource usage levels of CPU, memory etc..
[bookmark: _Toc289668429]Requirements on performance measurement data
All measurement values, collected performance data and processed metrics, must meet the following requirements:
· Uniquely identified
· Understandable
· Comparable
· Repeatable
· Accurate
· Computable
Uniuely identified
Performance measurements must contain information that uniquely identifies what they represent.
Understandable
A performance test must have objectives and specifications that explain the purpose of the measurements.
Comparable
The collected measurements must be possible to compare with similar metrics from other performance measurements
Repeatable
The performance test must be specified such that the measurement recordings can be repeated
Accurate
The collected measurements must meet requirements on measurement precision.
Computable
It must be possible to use measurement data as input to performance computations
[bookmark: _Toc288997281][bookmark: _Toc289668430]Measurement data attributes
Measurement data must have three sets of attributes to meet the requirements on quality:
· Identification attributes
· Conditional attributes
· Processing attributes
[bookmark: _Toc289668431]Identification attributes
Identification attributes are references that make collected performance measurement data. unique
There are three types of identification attributes:
· Measurement points, i.e. where they were captured.
· Measurement recording time, i.e. when they were captured.
· , i.e. what they represent.
[bookmark: _Toc288997282]Measurement points
Measurement points describe where performance data are captured. There are two types of measurement points:
1. External
2. Internal
[image:]
Figure 7-01: External and Internal Measurement Points
External measurement points
External measurement points are data collection locations outside the SUT, usually at the test tools.
At an External measurement point performance data are collected about the flow of requested services types and related service responses. An external measurement point can be a requested services or all types of responses to requested services including failures such as timeout or closed connections.
In this context, i.e. identification of performance measurement data External measurement points are also processes producing composite performance metrics based on multiple sources of recorded performance data.
Internal measurement points
Internal measurement points are data collection locations inside the SUT. Data collection at Internal Measurement Points are is usually done by probes managed by the test tools.
At an Internal measurement point performance data are collected about how resources are managed under different load conditions inside the SUT. Internal measurement points can be global for a server, or local for a process group.
Internal measurement points can also be located inside a process group capturing data about resource management in application code, such as queues, object instances etc.
Measurement recording time
Measurement recording time is usually a timestamp with high resolution telling the point in time when a performance measurement value was recorded. The point in time can be relative or absolute. In some situations, such as when a test project is distributed on separate locations and time zones, it is convenient to store the local time zone of the test site.
Relative time
Relative time shows elapsed time since execution of a performance test started (time zero). There are several reasons for applying relative time I performance tests:
· Relative time enables a simple way of comparing different test runs of the same performance test. For instance it is easy to see if a certain behavior appears after a certain period of time in all performance tests.
· Relative time makes it easy to calculate elapse time bwteen different events in a performance test
Absolute time
Absolute time shows calendar time for a measurement recording. There are several reasons for applying relative time I performance tests. Absolute time is preferred when there is no need for comparing different test runs or other kinds of analysis of product beahvior, such as monitoring service production. In monitoring service production it is important to see at what time different situations happen when they reappear, such as a repeated situation during the night at 2:30 every working day.
Performance type
Performance type describes the performance attribute type of collected measurement data.
[bookmark: _Toc289668432]Conditional attributes
Conditional attributes are references to conditions that applied on collected performance measurement data.
There are two types of conditional attributes:
· Requested conditions
· Actual conditions
Requested conditions
Requested condition attributes are links to requested measurement conditions, i.e. stated requirements on SUT and Test Bed (Test Tool) conditions for capturing performance data.
External conditions
External conditions describe what the SUT should be exposed to during a performance test, i.e. the workload specifications.
Internal conditions
Internal conditions describe expected situations the SUT during a performance test, such as maximum CPU load, memory usage etc..
Actual conditions
Actual conditions are links to collected measurement data about actual measurement conditions during a performance test. Actual measurement conditions include metrics such as load deviations - the differences between intended load and actual load during a performance test.
[bookmark: _Toc289668433]Processing attributes
Processing attributes are references to format specifications of collected performance measurement data. The Processing attributes values are required for correct processing performance measurement data.
Referenced format specifications contain information about measurement data such as:
· Metrics Units
· Metrics format
· Accumulated or instantaneous values
[bookmark: _Toc289668434]Terminology reference summary

Terms	Locations
Conditional attributes	 See 7.3.2
Conditional attributes, Requested conditions	 See 7.3.2
Conditional attributes, Actual conditions	 See 7.3.2
External test conditions	 See 7.1
Identification attributes, Measurement points	 See 7.3.1
Identification attributes, Measurement recording time	 See 7.3.1
Identification attributes, Performance type	 See 7.3.1
Internal test conditions	 See 7.1
Measurement data attributes	 See 7.3
Measurement data, Conditional attributes	 See 7.3, 7.3.2
Measurement data, Identification attributes	 See 7.3, 7.3.1
Measurement data, Processing attributes	 See 7.3, 7.3.3
Measurement data requirements	 See 7.2
Measurement points, External	 See 7.3.1
Measurement points, Internal	 See 7.3.1
Measurement recording time, Absolute time	 See 7.3.1
Measurement recording time, Relative time	 See 7.3.1
Measurement requirements	 See 7
Performance measurements	 See 7.1
Processing attributes	 See 7.3.3
Requested conditions, External conditions	 See 7.3.2
Requested conditions, Internal conditions	 See 7.3.2
[bookmark: _Toc289668435]Performance categories
[bookmark: _Toc288997289][bookmark: _Toc289668436]Classifying performance attributes into categories
An almost infinite number of performance attributes can be applied on any computer system. However measuring a complete set of performance attributes of a system (if possible) is not only impractical, costly, and time consuming, it
can also be argued if it will improve or confuse the understanding of the tested systems performance.
Performance measurements are focused on obtaining figures about selected set of performance attributes of a system.
To simplify the selection of performance attributes for a system it is convenient to group performance attributes showing similar or related aspects of performance into performance categories and select some performance attributes in each category. Examples of such categories can be powerfulness, reliability, or efficiency of a system. These performance categories can be exemplified by a car where:
· A powerfulness attribute is: Top speed
· A reliability attribute is: Maintenance intervals
· An efficiency attribute is: Mileage or fuel consumption per 100 km
[bookmark: _Toc288997290][bookmark: _Toc289668437]Powerfulness
The performance category for powerfulness contains indicators of volume and speed of service production from system or application level down to low level services of different components. The performance category has subcategories for Capacity, Responsiveness, and Scalability.
[bookmark: _Toc288997291][bookmark: _Toc289668438]Capacity
Capacity atributes describe different kinds of service request volumes handled by a system including:
1. Arrival capacity
2. Throughput capacity
3. Concurrency capacity
4. Peak capacity
5. Streaming capacity
Arrival capacity
Arrival capacity describe a system’s ability to accept incoming service requests per time unit on a given hardware configuration. Arrival capacity can be measured for individual services or mixes of services.
Throughput capacity
Throughput capacity describe a system’s ability to deliver completed service requests per time unit continuously on a given hardware configuration. Throughput capacity can be measured for individual services or mixes of services.
Concurrency capacity
Concurrency capacity describe a system’s ability to handle multiple services requests concurrently on a given hardware configuration. Concurrency capacity can be measured for individual services or mixes of services.
Concurrent active load capacity is a performance attribute for the maximum number of concurrent services requests causing active load.Services causing active load require fast delivery and demand processing resources (CPU). Services can be that stateless or stateful.
Concurrent passive load capacity -- is a performance attribute for the maximum number of concurrent services requests causing passive load. Services causing passive load have long duration and require no or little processing resources (CPU). Services are stateful. A typical passive load service is a pending user session. A pending user session is a prerequisite for other service requests and occupies some resources such as memory and timer functions.
Peak capacities
Peak capacity describe a system’s ability to handle an overload of service requests during a short period of time on a given hardware configuration. Peak capacity can be measured for individual services or mixes of services.

Streaming capacity
Streaming capacity describe a system’s ability to handle multiple flows of data streams concurrently. The data streams might be multimedia streams where any variation in arrival rate of frames is critical. Data streams
Examples of Capacity attributes
Sustained arrival capacity	 Performance attributes for the maximum number of service requests that can be accepted per time unit continuously
Sustained throughput capacity	 Performance attributes for the maximum number of service requests that can be accepted per time unit continuously
Concurrent active load capacity	 Performance attributes for the maximum number of concurrent services requests causing active load.
Concurrent passive load capacity	 Performance attributes for the maximum number of concurrent services requests causing passive load.
Peak arrival capacity	 Performance attributes for the maximum arrival rate of service requests during a specified period of time.
[bookmark: _Toc288997292][bookmark: _Toc289668439]Responsiveness
Time definitions
The time to handle a service request can be split into a large number of steps, where each step causes a time delay.
The responsivenes of a service request is the sum of all these time delays, i.e. the total time it takes to handle it.
Any time delay falls into one of three time delay categories:
1. Transportation time
2. Queuing time
3. Processing time
Transportation time
Transportation time are delays caused by transferring data related to the processing of a service request.
Transportation time can be measured on multiple levels from sending a service request to the SUT down to transportation of data between CPU and memory.
Queueing time
Queuing time are delays caused by waiting for a service of some kind related to the processing of a service request. Queuing time can, like Transportation time, also be measured on multiple levels from a system service request queuing to be handled by an application server down to a process queuing to get CPU time.
Any type of Queuing time is caused by a mismatch between available resources and requested resources.
Processing time
Processing time are delays caused by processing a service request. Processing time can be measured on multiple levels from sending a service request to the SUT down to application code execution time in CPU.
Responsiveness definitions
A Responsiveness value is the sum of a large number of time elements classified as Transportation time, Queuing time, or Processing time. From performance measurement perspective these collections of time elements are don’t describe the nature of measured system responsiveness. Therefore other collections of measured time elements are used to better describe the SUT responsiveness to service requests.
Responsiveness attributes describe different kinds of service processing time delivered by a system include:
1. Response time
2. Roundtrip time
3. Latency time
4. Timeliness
[image:]
Figure 8-01: Examples of responsiveness time
Response time
Response time is the time to respond to a service request. It is usually measured from the moment the last byte of a service request is sent until the moment when the first byte of the response arrives. Response time is measured for individual types of responses to a requested service type. This applies also to performance tests with mix mixes of service requests.
Roundtrip time
The transfer time of data between the Service Requesting Tool and the System Under Test is an important component of the response time of a service request. Roundtrip time is used to separate transfer time from time spent in the SUT processing a request. Roundtrip time is the time to send a data packet to a an Internet nod and get an acknowledge back, i.e. the signaling time between two nodes. Roundtrip time is usually referred to as time to ping a node.
Latency time attributes
Latency time is a general term for “invisible” delays in service delivery, i.e. time spent waiting for some reaction to a service request. Latency measurements can be applied on many levels in performance tests from service request processing down to “reaction time” of individual hardware components such as a disk. In responsiveness context any kind of latency has a negative impact on the responsiveness of a service.
Here follows some examples of latency time:
Service latency is the time to process a service request in a system. Service latency is very close to Response time but does not include transportation time between requestor and server.
[image:]
Figure 8-02: Service latency
Load level latency is the time to adjust a system to a rapid increase of incoming service requests. This can be compared to the delay from pushing the accelerator in a car to the bottom, until the car starts responding with engine working at its maximum accelerating the car.
[image:]
Figure 8-03: Load level latency
Latency of coupled services applies to situations where execution of a service results in execution of another “coupled” sevice. An example of this is the presence service in the SIP protocol. In this context Latency of coupled services is the time from update of a publication’s status of a with a PUBLISH request, until the the publication server starts sending NOTIFY messages to every active subscriber of the publication.l
[image:]
Figure 8-04: Latency of coupled service
Timeliness or accuracy
Timeliness are measurements of delay time between received frames in a data stream service. The purpose is to measure if a data frame arrives in time to avoid noticeable disturbances in a media stream or not.
Timeliness as presented here can also be regarded as a Reliability attribute of Accuracy in delivery time.
Examples of Responsiveness attributes
Response-Time-Distribution	 Performance attributes measured response time ranges.
Response-Time-Percentiles	 Performance attributes for response time percentiles. A response time percentile of 90% shows maximum response time for 90% of service request.
Distribution-latency	 Performance attributes for the delay from receiving a request until passing the request to the next processing instance.
Notification-latency	 Performance attributes for the delay in notifying a subscriber of a change in the subscribed object.
Disk-access-latency	 Performance attributes for the time to position the head on the right cylinder, track, and sector of a disk, i.e. the positioning delay.
[bookmark: _Toc288997293][bookmark: _Toc289668440]Scalability
Scalability attributes describe the expandability of service processing for a SUT.
Scalability can be applied in three dimensions:
1. Capacity scaling
2. Distribution scaling
3. Functionality scaling
Capacity scaling
Capacity scaling are indicators of the relation between hardware resource increases and related service capacity increases, i.e. the SUT’s ability to increase the service capacity by addition of more hardware resources to the current configuration. Capacity scaling are also indicators of a system’s increases in capacity by elimination of bottlenecks. Bottlenecks are discussed below.
Distribution scaling
Distribution scaling are indicators of the relation between increases in service processing locations and related changes in service capacity and/or services responsiveness.
Functionality scaling
Functionality scaling are indicators of how service capacity and service responsiveness are affected adding or changing the functionality.
Capacity bottlenecks
The service processing capacity of any system has an upper limit. If the limit is reached due to a single cause it is usually referred to as a bottleneck. The implication of a bottleneck is that available resources can’t be used efficiently to produce services. The service processing capacity will, consequently, increase significantly if an identified bottleneck is eliminated. Most systems have many bottlenecks and the most limiting bottleneck hides all the other. Therefore the elimination of one bottleneck will only increase the service processing capacity up the limit set by the second worse bottleneck and so on.
There are four types of bottlenecks:
1. Configuration bottlenecks
2. Processing bottlenecks
3. Design bottlenecks
4. Architectural bottlenecks
Configuration bottlenecks
Configuration bottlenecks are capacity limitations due to wrong software configurations or other similar reasons such as poor balance between hardware resources. Examples can be too few threads in a database server, or mismatch or a server that can’t use all CPU power due to lack of memory. Configuration bottleneck are usually the easiest to correct.
Processing bottlenecks
Processing bottlenecks, also called Hot spots, are capacity limitations due to processing intensive spots in the code, i.e. pieces of code that are frequently executed.
Design bottlenecks
Design bottlenecks are capacity limitations due to system design limitations (a weak design). Design bottlenecks require major efforts in redesign and implementation to get resolved, if possible.
Architectural bottlenecks
Architecture bottlenecks, also called ultimate bottlenecks, are capacity limitations due to severely underestimated capacity requirements leading to a wrong archticture for the system. Architecture bottlenecks can rarely be fixed. It is usually both cheaper and faster to replace a system with an Architecture bottleneck. A typical example of Architecture bottlenecks is an old single-threaded application that when moved to a modern multi CPU, multi core hardware system can’t utilize the additional processing resources.
Examples of Scalability attributes
Service-capacity-per-additional-PU	 Performance attributes for the increase of service capacity of a kind by adding a Processing Unit, such as a server, or a CPU, or more cores per CPU. This scalability attribute applies to services with active load.
Service-capacity-per-additional-MU	 Performance attributes for the increase of service capacity of a kind by adding a Memory Unit, such as a DIMM. This scalability attribute applies to services with passive load.
[bookmark: _Toc288997294][bookmark: _Toc289668441]Reliability
The performance category reliability contains indicators of how predictable a system’s service production is.
The performance category has subcategories for Quality-of-Service, Stability, Availability, Robustness, Recovery, and Correctness.
[bookmark: _Toc288997295][bookmark: _Toc289668442]Quality-of-Service
Quality-of-Service are stated requirement service delivery performance. The requirements are usually stated as statistical values for a long period of time or a large number of service requests. Quality-of-Service attributes are therefore regarded as indicators of reliability in this context. Quality-of-Service attributes are also covered by other indicators of reliability in this section such as:
· Stability figures for acceptable/unacceptable performance
· Correctness figures for correctly processed services such as transferred media CODEC.
Examples of Quality-of-Service attributes
Service-rejection-frequency	 Performance attributes for frequencies of denied services
Service-out-of-bound-frequency	 Performance attributes for frequencies of service xxx of QoS limits
[bookmark: _Toc288997296][bookmark: _Toc289668443]Stability
Stability attributes are indicators of a system’s ability to maintain measured performance figures for powerfulness and efficiency in services delivery regardless of time. Stability attributes are related to measured results of powerfulness and efficiency. Stability attributes can also be evaluations of measured performance figures vs. stated figures for acceptable performance, i.e. stability as frequencies of services with acceptable/unacceptable performance. Stability figures for acceptable/unacceptable performance can also serve as performance measurements of Quality-of-Service.
Stability attributes can also be indicators of performance trends, i.e. problems resulting in gradually deteriorating performance figures.
[image:]
Figure 8-05: Examples of performance trends
Examples of Stability attributes
Service-response-time-variations	 Performance attributes for the response time range
Service-response-time-percentile	 Performance attributes for a response time percentiles. A response time percentile of 90% tells the maximum response time for 90% of the service requests under measured conditions
Service-response-time-trends	 Performance attributes for the probability of a response time trend
Service- response-time-failures	 Performance attributes for frequencies of unacceptable response time
[bookmark: _Toc288997297][bookmark: _Toc289668444]Availability
Availability attributes are indicators of a system’s ability to delivery services over time. Different availability attributes are applied on hardware (physical availability) and on software (logical availability).
Planned and unplanned downtime
Availability attributes cover unplanned downtime of services only. Planned downtime of services are not regarded as unavailability, however, consequencies of planned downtime are usually measured in other reliability attributes, such as recovery attributes for time to start/restart services.
Logical availability attributes
Logical availability attributes are external measurements of frequencies of error responses to service requests due to application software problems (not bad or inadequate requests). Logical availability attributes are usually expressed as probability figures for service delivery, but can also be expressed as uptime or frequencies for service delivery.
Physical availability attributes
Physical availability are statistical indicators of operational time between failures for hardware equipment. Physical availability attributes are usually expressed as uptime figures. Physical availability attributes are usually excluded in performance measurements because they are extremely costly (broken equipment) and and require testing time that is far beyond the scope of a performance test project.
Examples of Availability attributes
Service-Rejection-Rates	 Performance attributes for frequencies of rejected service requests
Service-Acceptance-Rates	 Performance attributes for frequencies of accepted service requests.
Service-Rejection-Probability	 Performance attributes for the probability a rejected service request
Service-Acceptance-Probability	 Performance attributes for the probability an accepted service request
Mean Time Between Failures	 Performance attributes for the operational time of a device statistically
[bookmark: _Toc288997298][bookmark: _Toc289668445]Robustness
Robustness attributes are indicators of a system’s services levels, i.e. services capacity and/or service responsiveness under extreme conditions. Extreme conditions can be caused internally by hardware failure or software malfunctioning, or externally by extreme peak load conditions, or by denial-of-service attacks or other malice attempts.
Service capacity reduction
One consequence of extreme conditions is how the system’s service capacity is affected. An ideal system is not affected at all by extreme conditions, i.e. the reduction of service level is 0 %. Most likely is the service capacity reduced to some extent, i.e. a reduction of service level in the range 1 - 99 %.. The worst consequence is a total stop in service production, i.e. a reduction of service level by 100 %.
Service responsiveness deterioration
Another consequence of extreme conditions is how the system’s responsiveness deteriorates. An ideal system is not affected at all by extreme conditions, i.e. the response time is unchanged. Most likely is the service responsiveness gets worse to some extent, i.e. the response time increases. The worst consequence is a total stop in service production, i.e. the response time is endless, or the service request gets a timeout.
Examples of robustness attributes
Capacity-Reduction-for-Service	 Performance attributes for capacity reduction of a service due to some conditions.
Response-Time-Increases-for-Service	 Performance attributes for response time increases of a service due to some conditions.
[bookmark: _Toc288997299][bookmark: _Toc289668446]Recovery
Recovery attributes are indicators of production disturbances from hardware or software malfunctioning. Recovery covers a large number of different operations. In this context we look at system recovery and service recovery.
System recovery attributes
System recovery attributes are usually different measurements of time to bring a system into a fully operational state after a major production disturbance. Service recovery includes all operations from replace failing hardware to recovery of application supporting components such as data bases etc.
Service restart attributes
Service restart attributes are usually different measurements of time to resume full service availability after system recovery procedures are complete. A more extreme version of service restart is resuming services on a backup system or a virtual server.
Examples of Recovery attributes
Time-to-detect-a-situation	 Performance attributes for time to identify a production disturbance.
Partial system-restart-time	 Performance attributes for restart of a system services after a partial outage
Total system-restart-time	 Performance attributes for restart of a system after an outage that requires
Application-restart-time	 Performance attributes for restart of a system after system software updates.
Service-take-over-time	 Performance attributes for restart of software services on a backup system.
[bookmark: _Toc288997300][bookmark: _Toc289668447]Correctness
Correctness attributes are indicators of a system’s ability to deliver correctly processed service requests under high or odd load conditions. Correctness can in this context also include correctly transferred media CODECs, i.e. Quality-of-Service attributes for speech or multimedia transfers.
Examples of Correctness attributes
Service-error-rate	 Performance attributes for frequencies of wrongly processed service requests
Service-correctness-rate	 Performance attributes for frequencies of correctly processed service requests
Service-error-probability	 Performance attributes for probabilities of wrongly processed service requests
Service-correctness-probability	 Performance attributes for probabilities of correctly processed service requests
[bookmark: _Toc288997301][bookmark: _Toc289668448]Efficiency
The performance category efficiency contains different types of indicators of service production dependencies on resources. The performance category has subcategories for Resource usage, Resource utilization, Resource balance, Load balance, Service resource linearity, and System resource scalability.
[bookmark: _Toc288997302][bookmark: _Toc289668449]Resource usage
The Resource usage attributes are indicators of the amount of resources required for processing a service or a mix of services. The level of Resource usage is a measure of the efficiency of the tested service or mix of services.
Resource usage attributes are calculated per processed service request or batches thereof such as 1000 service requests. Measured resources can be hardware resources or software services.
Examples of Resource usage attributes
CPU-time-per-service-request	 Performance attributes for CPU resources per processed service request of some kind.
[bookmark: _Toc288997303][bookmark: _Toc289668450]Resource utilization
The Resource utilization attributes are indicators of to what level available system resources can be utilized for production of a service or a mix of services. Resource utilization can be applied on an individual resource or a mix of resources. The Resource utilization can be measured for an individual service or a mix of services.
The highest value for Resource utilization is of course 100% of all resources concurrently. In reality as one hardware resource is used to its maximum there are still other types of resources unused. The difference between the least and the most utilized resource is an indicator of a configuration bottleneck. The bigger the difference the worse is the bottleneck.
Resource utilization is measured on a system with a fixed amount of resources. The System resource scalability attributes are indicators of Resource utilization for additional resources
Examples of Resource utilization attributes
CPU-to-Memory-usage-ratio	 Performance attributes for resource utilization for a service or a service mix.
[bookmark: _Toc288997304][bookmark: _Toc289668451]Resource balance
A badly balanced system runs out of one type of resources while there is still plenty of other resources.
The Resource balance attributes indicate relations between resource usage of different kinds under different conditions, such as relation between memory and CPU usage for a service at different service request rates.
The ideal relation is 1-to-1, i.e. the resource usage is evenly distributed between two resource types. The bigger deviation from 1-to-1 the worse is the balance of configured resources. Resource balance figures are measured for different services at different service request rates.
Examples of Resource balance attributes
CPU-Memory-balance	 Performance attributes for relation between CPU usage and memory usage.
[bookmark: _Toc288997305][bookmark: _Toc289668452]Load balance
The Load balance attributes are indicators of a system’s ability to evenly distribute load across available processing units, such as servers. Other cases of Load balance attributes are indicators of a system’s ability to distribute load and redistribute load at various levels of system outages. Load balance is measured at different service request rates and for different services or mixes of services.
Examples of Load balance attributes
Load distribution evenness	 Performance attributes for variations in load per processing unit at different service request rates
Load redistribution speed	 Performance attributes for speed of redistributing load after some kind of system outage.
[bookmark: _Toc288997306][bookmark: _Toc289668453]Service resource linearity
The Service resource linearity attributes are indicators of a system’s ability to use a constant amount of resources for the production of a service regardless of the actual load level on the system. Service resource linearity is measured at different service request rates and for different services or mixes of services.
Examples of Service resource linearity attributes
CPU-variations-per-load-level	 Performance attributes for variations in CPU usage per service request of some kind at different load levels
Memory-variations-per-load-level	 Performance attributes for variations in memory usage per service request of some kind at different load levels
[bookmark: _Toc288997307][bookmark: _Toc289668454]System resource scalability
The System resource scalability attributes are indicators of to what level additional system resources can be utilized for production of a service or a mix of services, i.e. Resource utilization applied on additional resources. The System resource scalability can be measured for an individual service or a mix of services.
The highest possible value for System resource scalability is of course 100% of additional resources. However there are some limitations to what is possible to reach set by the Resource utilization measured before addition of resources. Few systems have a System resource scalability with no limitations.
Examples of System resource scalability attributes
Resource Utilization-per-added-PU	 Performance attributes for the possible utilization of an added Processing Unit, such as a server, or a CPU, or more cores per CPU. This scalability attribute applies to services with active load.
Resource Utilization-per-added -MU	 Performance attributes for the possible utilization of an added Memory Unit, such as a DIMM. This scalability attribute applies to services with passive load.
[bookmark: _Toc289668455]Terminology reference summary

Terms	Locations
Architectural bottlenecks	 See 8.2.3
Arrival capacity 	 See 8.2.1
Availability	 See 8.3, 8.3.3
Bottleneck	 See 8.2.3
Capacity	 See 8.2.1
Capacity scaling	 See 8.2.3
Concurrency capacity	 See 8.2.1
Concurrent active load capacity	 See 8.2.1
Concurrent passive load capacity	 See 8.2.1
Configuration bottlenecks	 See 8.2.3
Correctness	 See 8.3, 8.3.6
Design bottlenecks	 See 8.2.3
Distribution scaling	 See 8.2.3
Efficiency	 See 8.1, 8.4
Functionality scaling	 See 8.2.3
Latency time	 See 8.2.2
Latency, service time	 See 8.2.2
Latency, load level	 See 8.2.2
Latency, coupled services	 See 8.2.2
Load balance	 See 8.4, 8.4.4
Logical availability	 See 8.3, 8.3.3
Peak capacity	 See 8.2.1
Performance categories	 See 8.1
Physical availability	 See 8.3, 8.3.3
Planned downtime	 See 8.3, 8.3.3
Powerfulness	 See 8.1, 8.2
Processing bottlenecks	 See 8.2.3
Processing time	 See 8.2.2
Quality-of-Service	 See 8.3, 8.3.1
Queuing time	 See 8.2.2
Recovery	 See 8.3, 8.3.5
Reliability	 See 8.1, 8.3
Resource usage	 See 8.4, 8.4.1
Resource utilization	 See 8.4, 8.4.2
Resource balance	 See 8.4, 8.4.3
Response time	 See 8.2.2
Response-Time-Distribution	 See 8.2.2
Response-Time-Percentiles	 See 8.2.2
Responsiveness	 See 8.2.2
Robustness	 See 8.3, 8.3.4
Roundtrip time	 See 8.2.2
Scalability	 See 8.2.3
Service capacity reduction	 See 8.3, 8.3.4
Service recovery	 See 8.3, 8.3.5
Service resource linearity	 See 8.4, 8.4.5
Service restart	 See 8.3, 8.3.5
Stability	 See 8.3, 8.3.2
Streaming capacity	 See 8.2.1
Sustained arrival capacity	 See 8.2.1
Sustained throughput capacity	 See 8.2.1
System recovery	 See 8.3, 8.3.5
System resource scalability	 See 8.4, 8.4.6
Throughput capacity	 See 8.2.1
Timeliness	 See 8.2.2
Transportation time	 See 8.2.2
Unplanned downtime	 See 8.3, 8.3.3
[bookmark: _Toc289668456]Performance metrics and characteristics
[bookmark: _Toc288997310][bookmark: _Toc289668457]Performance metrics definitions and examples
Performance metrics are quantified measurement values of performance attributes.
Some examples of performance attributes, related metrics, and measurement units for cars that we are all used to:
Performance attribute	Performance metrics	Measurement unit
Speed	Driving distance per time unit	km-per-hour or miles-per-hour
Acceleration	Time from standing to still a specified speed 	seconds for 0-100 km/h
Fuel efficiency	Fuel consumption per driving distance	Litres per 100 km
Driving distance per fuel unit	Miles per US gallon of fuel
Some examples of External performance attributes, related metrics, and measurement units
Performance attribute	Performance metrics	Measurement unit
Sustained arrival capacity	Manageable-arrival-rate-of-service-request	service-requests-per-second
		Erlang
Throughput	Maximum-completion-rate-of-service-request	service-responses-per-second
Service rejects	Service reject rate	rejects-per-Mega-requests
Concurrent active load capacity	Service-requests-in-progress-capacity	number-of-service-requests
Some examples of Internal performance attributes, related metrics, and measurement units
Performance attribute	Performance metrics	Measurement unit
Sustained arrival capacity	Manageable-arrival-rate-of-service-request	service-requests-per-second
Throughput	Maximum-completion-rate-of-service-request	service-responses-per-second
Service rejects	Service reject rate	rejects-per-Mega-requests
Concurrent active load capacity	Service-requests-in-progress-capacity	number-of-service-requests
[bookmark: _Toc289668458]Metrics attributes and sources
Metrics attributes and measurement units
Performance Metrics can have several attributes telling different aspects of what is measured such as:
· Unit of measured value such as elapsed time, timestamps, counters, percentages, or other units
· If measured resource usage values are accumulated or instantaneous
· Scaling such as time in days, hours, seconds, or milliseconds
· Precision such as accuracy (correct +/- %), or resolution
Metrics based on raw performance data
Raw performance metrics are performance data collected during a performance test and recorded in native form, i.e. data are not yet processed or formatted in any way, such as collected response time measurement values for a specific type of transaction..
Metrics based on transformed performance data
Transformed performance metrics are raw performance data processed into logically related performance metrics, such as response time data transformed into average responsetime metrics or standard deviation of response time values.
Metrics based on normalized performance data
Normalized performance metrics are performance data transformed to a common norm, for example transactions per second or rejected requests per million service requests etc.
In graphs performance metrics are usually displayed with metrical values on the Y-axis and recording time on the X-axis. We call this type of presentation of metrics time based, for example variations in response time during a test.
Presentation of metrics can also be based on other figures than time, i.e. show other variables on the X-axis.
Presentaion of metrics are value based when the metrical values are displayed on the X-axis and frequencies of metrical values are displayed on the Y-axis, for example response time distribution is shown as a histogram with response time interval values on the X-axis and the frequency or percentage of each response time interval on the Y-axis.
Metrics based on multiple performance data sources
Composite performance metrics are performance metrics based on processing of multiple performance data sources. Input to composite performance metrics can be any kind of performance data
Example of composite performance metrics is resource usage per processed request of a service.
[bookmark: _Toc289668459]Classifying performance metrics into categories
Performance metrics are formal representations of performance attributes and, in this context, classified into three categories for: Powerfulness, Reliability, and Efficiency
[bookmark: _Toc288997314][bookmark: _Toc289668460]Powerfulness
Powerfulness metrics express measurements of volume and speed of service production.
Powerfulness concepts and attributes are described in section 8.2 including examples of performance attributes.
Powerfulness metrics have subcategories for Capacity, Responsiveness, and Scalability.
Metrics for powerfulness attributes contains indicators of volume and speed of service production. The performance category has subcategories for capacity, responsiveness, and scalability.
Section 8.1 describes powerfulness attributes.
[bookmark: _Toc288997315][bookmark: _Toc289668461]Capacity
[bookmark: _Toc288997316]The Capacity concepts and attributes are described in section 8.2.1.
Capacity metrics express different kinds of maximum service request volumes handled by a system
The measurement units for Capacity metrics are service request capacity per time unit, where time unit is per second.
Some examples of Capacity attributes, related metrics, and measurement units
Performance attribute	Performance metrics	Measurement unit
Sustained arrival capacity	Service-response-time-variance	Service-requests-per second
Sustained throughput capacity	Probability-of-maximum-response-time	Service-requests-per second
Concurrent active load capacity	INVITE-pass-on-latency	Service-requests-per second
Concurrent passive load capacity	IMS-PUBLISH-to-NOTIFY-latency	Service-requests-per second
Peak arrival capacity	Disk-positioning-latency	Service-requests-per second
[bookmark: _Toc289668462]Responsiveness
[bookmark: _Toc288997317]The Responsiveness concepts and attributes are described in section 8.2.2.
Responsiveness metrics express some kind of time delay for a measured service
The measurement units for Responsiveness metrics are mean time in milliseconds, percentage values for maximum response time, or variance of mean-time.
Some examples of Scalability attributes, related metrics, and measurement units
Performance attribute	Performance metrics	Measurement unit
Response-Time-Distribution	Service-response-time-variance	Statistical-variance-of-mean-time
Response-Time-Percentiles	Probability-of-maximum-response-time	Percentage values
Distribution-latency	INVITE-pass-on-latency	Mean-time-in-milliseconds
Notification-latency	IMS-PUBLISH-to-NOTIFY-latency	Mean-time-in-milliseconds
Disk-access-latency	Disk-positioning-latency	Mean-time-in-milliseconds
[bookmark: _Toc289668463]Scalability
[bookmark: _Toc288997318]The Scalability concepts and attributes are described in section 8.2.3.
Scalability metrics express the relation between hardware resource increases and related service capacity increases.
Scalability metrics can be measured for a single type of hardware resources or a balanced mix of hardware resources.
The measurement units for Scalability metrics are service capacity increases in absolute numbers. The measurement units for capacity increases can also be percentage values, however, any percentage value depends on the current service capacity level if you add a fixed quantity of resources.
Some examples of Scalability attributes, related metrics, and measurement units
Performance attribute	Performance metrics	Measurement unit
Service-capacity-per-additional-PU	Absolute-service-capacity-per-PU	Number-of-service-requests
Service-capacity-per-additional-MU	Absolute-service-capacity-per-MU	Number-of-service-requests
Service-capacity-per-additional-HW-mix	Absolute-service-capacity-per-HW-mix	Number-of-service-requests
[bookmark: _Toc289668464]Reliability
Reliability metrics express measurements of how predictable a system’s service production is.
Reliability concepts and attributes are described in section 8.3 including examples of performance attributes.
Reliability metrics have subcategories for Quality-of-Service, Stability, Availability, Robustness, Recovery, and Correctness.
[bookmark: _Toc289668465]Quality-of-Service
The Quality-of-Service concepts and attributes are described in section 8.3.1.
Quality-of-Service metrics are closely related to stability and availability metrics for service production.
The measurement units for Quality-of-Service metrics are events per number of service requests (such as 1,000,000), or events per production time unit (usually one year)
Some examples of Recovery attributes, related metrics, and measurement units
Performance attribute	Performance metrics	Measurement unit
Service-failed-frequency	Service-failures-per-Mega-requests	Events-per-Mega-service-requests
Annual-service-failure-rates	Events-per-calendar-year
[bookmark: _Toc288997319][bookmark: _Toc289668466]Stability
The Stability concepts and attributes are described in section 8.3.2.
Stability metrics express changes in measured performance figures for powerfulness and efficiency in services over long periods of time. Changes can be identified in many ways, such as response time trends, response time variations, frequencies of unacceptable response time, changes in response time percentile values. The measurement units for response time trends are the probability of an identified trend as percentage values. The measurement units for response time variations are statistical variance units. The measurement units for frequencies of unacceptable response time are counters for number of events per 1000 service requests, or number of events per 1,000,000 service requests.
The measurement units for changes in response time percentile values are changes in percentile values for a specified maximum response time.
Some examples of Stability attributes, related metrics, and measurement units
Performance attribute	Performance metrics	Measurement unit
Service-response-time-variations	Service-response-time-variance	Statistical-variance-of-mean-time
Service-response-time-percentile	Probability-of-maximum-response-time	Percentage values
Service-response-time-trends	Probability-of-identified-trend	Percentage values
Service-response-time-failures	Frequency-of-unacceptable-response-time	Events-per-Mega-service-requests
[bookmark: _Toc288997320][bookmark: _Toc289668467]Availability
The Availability concepts and attributes are described in section 8.3.3.
Availability metrics for software services express frequency rates of service request errors, frequency rates of correctly processed service request, or probabilities of service request errors or correctly processed service request. The measurement units for frequency rates are Number of events per Kilo-service-requests, or Number of events per Mega-service-requests. The measurement units for probabilities are percentage values.
Availability metrics for hardware express estimated operational time for a device. The measurement units for hardware operability is hours.
Some examples of Availability attributes, related metrics, and measurement units
Performance attribute	Performance metrics	Measurement unit
Service-Rejection-Rates	Service-rejection-rate	Events-per-Mega-service-requests
Service-Acceptance-Rates	Service-acceptance-rate	Events-per-Mega-service-requests
Service-Rejection-Probability	Service-rejection-probability	Percentage values
Service-Acceptance-Probability	Service-acceptance-probability	Percentage values
Mean Time Between Failures	Estimated-operational-time	Time value in hours
[bookmark: _Toc288997321][bookmark: _Toc289668468]Robustness
[bookmark: _Toc288997322]The Robustness concepts and attributes are described in section 8.3.4.
Robustness metrics express the level of reduction in service production capacity or service responsiveness.
The measurement unit for Robustness metrics is percentage values. For service production capacity or service responsiveness 0% means no measurable changes. For service production capacity 100% means no service production capacity left. For service responsiveness 100% means no double response time. There is no upper limit to the percentage value for service responsiveness.
Some examples of Robustness attributes, related metrics, and measurement units
Performance attribute	Performance metrics	Measurement unit
Capacity Reduction for Service	Service-capacity-reduction	Percentage values
Response Time Increases for Service	Time-to-warm-start	Percentage values
[bookmark: _Toc289668469]Recovery
The Recovery concepts and attributes are described in section 8.3.5.
Recovery metrics express the time to detect a situation, or various types of restart time. The measurement unit for Recovery metrics is time in seconds or fractions thereof.
Some examples of Recovery attributes, related metrics, and measurement units
Performance attribute	Performance metrics	Measurement unit
Time to detect a situation 	Time-to-detect	Time in seconds
Partial system restart time	Time-to-warm-start	Time in seconds
Total system restart time	Time-to-cold-start	Time in seconds
Application restart time	Application-restart-time	Time in seconds
[bookmark: _Toc288997323][bookmark: _Toc289668470]Correctness
Correctness concepts and attributes are described in section 8.3.6.
Correctness metrics express frequency rates of service request errors, frequency rates of correctly processed service request, or probabilities of service request errors or correctly processed service request. The measurement units for frequency rates are Number of events per Kilo-service-requests, or Number of events per Mega-service-requests. The measurement units for probabilities are percentage values.
Some examples of Correctness attributes, related metrics, and measurement units
Performance attribute	Performance metrics	Measurement unit
Service-error-rate	Service-error-rate	Events-per-Mega-service-requests
Service-correctness-rate	Service-correctness-rate	Events-per-Mega-service-requests
Service-error-probability	Probability of-failed-service-request	Percentage-value
Service-correctness-probability	Probability of-passed-service-request	Percentage-value
[bookmark: _Toc288997324][bookmark: _Toc289668471]Efficiency
The performance category efficiency contains different types of indicators of service production dependencies on resources. The concepts and examples of attributes are described in section 8.4
Efficiency metrics express what is measured and related measurement units to quantify a performance attribute.
[bookmark: _Toc288997326][bookmark: _Toc289668472]Resource usage
The Resource usage concepts and attributes are described in section 8.4.1.
Resource usage metrics express resource usage per processed service request or fixed amount of service requests of a kind. The measurement unit is in absolute figures or as a percentage value of available resources.
Some examples of Resource usage attributes, related metrics, and measurement units
Performance attribute	Performance metrics	Measurement unit
CPU-usage-per-service-request	CUP-busy-time-per-service-request	CPU-time-in-milliseconds
[bookmark: _Toc288997327][bookmark: _Toc289668473]Resource utilization
The Resource utilization concepts and attributes are described in section 8.4.2.
Resource utilization metrics express the relations between used resources such as CPU and Memory. The measurement unit is a fraction, such as ½ indicating the amount of used resources of one kind is twice the usage of the other kind. Resource utilization is ideal when measured as 1/1.
Some examples of Resource utilization attributes, related metrics, and measurement units
Performance attribute	Performance metrics	Measurement unit
CPU-to-Memory-usage-ratio	CUP-busy-to-Used-Memory	CPU-Memory-usage-fraction
Memory -to CPU-usage-ratio	CUP-busy-at-Memory-full	Memory-CPU-usage- fraction
[bookmark: _Toc288997329][bookmark: _Toc289668474]Resource balance
[bookmark: _Toc288997330]The Resource balance concepts and attributes are described in section 8.4.3.
Resource balance metrics express the quantity of unused CPU processing capacity when memory is fully used or the quantity of unused memory when CPU is 100% busy. The measurement unit for unused resources (CPU or memory) is percentage of total capacity.
Examples of Resource balance attributes, related metrics, and measurement units
Performance attribute	Performance metrics	Measurement unit
CPU-Memory-balance	CUP-idle-when-Memory-full	CPU-idle-percentage
Memory-free-when-CPU-100-percent-busy	Memory-free-percentage
[bookmark: _Toc289668475]Load balance
[bookmark: _Toc288997331]The Load balance concepts and attributes are described in section 8.4.4.
Load balance metrics express difference in load between the least and the most loaded entity and the speed of redistribute load when system resources disappear or reappear.The measurement unit for the load evenness is a percentage value. The measurement unit for the load redistribution is a time in milliseconds.
Some examples of Load balance attributes, related metrics, and measurement units
Performance attribute	Performance metrics	Measurement unit
Load distribution evenness	Load-distribution-unevenness	Percentage values
Load redistribution speed	Rebalance-load-time	Time-in-milliseconds
[bookmark: _Toc289668476]Service resource linearity
[bookmark: _Toc288997332]The Service resource linearity concepts and attributes are described in section 8.4.5.
Service resource linearity metrics express the probability of a measured positive trend in resource usage.
The measurement unit for the trend is a probability value for the correctness of the trend, where 0% means no identifiable trend and 100% means a guaranteed or reliable trend.
Examples of Load balance attributes, related metrics, and measurement units
Performance attribute	Performance metrics	Measurement unit
CPU-usage-trend	Probability-of-identified-trend	Percentage values
Memory-usage-trend	Probability-of-identified-trend	Percentage values
[bookmark: _Toc289668477]System resource scalability
The System resource scalability concepts and attributes are described in section 8.4.6.
System resource scalability metrics express the possible resource utilization for additional equipment
The measurement unit for possible resource utilization is a percentage value.
Examples of Load balance attributes, related metrics, and measurement units
Performance attribute	Performance metrics	Measurement unit
Resource Utilization-per-added-PU	Additional-Processing-Unit-usage	Percentage values
Resource Utilization-per-added-MU	Additional-Memory-Unit-usage	Percentage values
[bookmark: _Toc289668478]Terminology reference summary

Terms	Locations
Availability,	 See 9.5, 9.5.3
Capacity metrics	 See 9.4, 9.4.1
Composite performance metrics	 See 9.2
Correctness	 See 9.5, 9.5.1
Normalized performance metrics	 See 9.2
Performance metrics	 See 9.3
Powerfulness metrics	 See 9.3, 9.4
Quality-of-Service	 See 9.5, 9.5.1
Raw performance metrics	 See 9.2
Recovery	 See 9.5, 9.5.5
Reliability metrics	 See 9.5
Response time trends	 See 9.5.2
Response time variations	 See 9.5.2
Responsiveness metrics	 See 9.4, 9.4.2
Robustness	 See 9.5, 9.5.4
Scalability metrics	 See 9.4, 9.4.3
Stability	 See 9.5, 9.5.2
Transformed performance	 See 9.2
[bookmark: _Toc289668479]Performance data processing
[bookmark: _Toc289668480]Steps in performance data processing
A major part of performance testing is the processing of all performance data collected during the performance test.
Performance data is processed in the following sequence of steps:
· Collection and storage of raw performance data
· Condensation and normalization of raw performance data
· Performance data computations
· Evaluation of performance data
· Presentation of performance data
[bookmark: _Toc289668481]Collection and storage of raw performance data
Collection and storage of raw performance data is the first processing step. It is performed during execution of the performance test.
Raw performance data means the performance data is still in its native form as it was collected and has not been processed in any form yet. In reality this means that there are responsetime measurements recorded for every response to a service request. Therefore raw performance data occupies lots of space and needs to get condensed.
Additionally Raw performance data observations are hard to visualize in a graph. A plotting of millions of responsetime recordings usually looks like someone has spilled ink an a pice of paper. This is another reason for the processing of performance data in the following steps.
[bookmark: _Toc289668482]Condensation and normalization of raw performance data
Condensation and normalization of raw performance data is the second processing step. It can be performed during execution of the performance test or after the performance test has completed. This processing step is mandatory during the performance test execution, if a performance test monitoring tool is used.
Condensation of performance data usually reduce the amount of data to a small fraction of the raw performance data.
Normalization of performance data is transformation to a common norm for example transactions per second or rejected requests per million service requests etc.
[bookmark: _Toc289668483]Performance data computations
Performance data computations is the third processing step. All requested performance metrics requesting som kind of computations are processed in this step. The following shows three areas of performance data computations:
· Trend analysis
· Comparisons of regressions tests
· Computations of composite performance metrics
Trend analysis
Trend analysis of performance data are usually done for stability and availability tests. The purpose is to find traces of undesired behavior that will cause severe disturbances in production if not handled at an early stage.

Comparisons of regression tests
Comparisons of regression tests are usually done to verify improvements in performance of a service.
Computations of composite performance metrics
Computations of composite performance metrics is processing of performance metrics based on multiple sources of recorded performance data. One example of composite performance metrics is resource usage per processed request of a service.
[bookmark: _Toc289668484]Evaluation of performance data
Evaluation of performance data is the fourth processing step. In this step measured performance metrics are rated according to a set of rules expressing stated or desired performance goals. Evaluation of performance data can also be performed on the output from comparison of regression tests.
An evaluation of performance data results in some kind of verdict of the tested system’s performance.
[bookmark: _Toc289668485]Presentation of performance data
Presentation of performance data is the fifth processing step. Presentation of performance data will convert processed and evaluated performance data into easy to understand presentations, such as diagrams, tabular format, or something else.
[bookmark: _Toc289668486]Terminology reference summary

Terms	Locations
Comparisons of regression tests	 See 10.4
Computations of composite performance metrics	 See 10.4
Condensation of performance data	 See 10.3
Evaluation of performance data	 See 10.5
Normalization of performance data	 See 10.3
Performance data computations	 See 10.4
Performance test monitoring tool	 See 10.3
Presentation of performance data	 See 10.6
Raw performance data	 See 10.3
Trend analysis	 See 10.4

[bookmark: _Toc289668487]History
	Document history

	Version
	Date
	Description

	0.0.1
	14 DEC 10
	First Draft with some sections remaining

	
	
	

	
	
	

	
	
	

ETSI
image2.emf
Post processing

& Evaluation

Execution

Preparations

Performance test specifications

Test results

Performance data processing and evaluation

Test data input

Test configurations

Collected performance data

Test Environment

Test Tools

System Under Test

image3.emf
Test bed 2

Test bed 1

Test Site Server

Test Site Server

Test Site Server

Test Site Server

Test Site Server

Test Site Server

Test Tools

Test Site Server

Test Site Server

Test Site Server

Test Site Server

Test Site Server

Test Site Server

SUT 1

Test Site Server

Test Site Server

Test Site Server

Test Site Server

Test Site Server

Test Site Server

Test Site Server

Test Site Server

Test Site Server

Test Site Server

Test Site Server

Test Site Server

Test Tools

SUT 2

Test Site Infrastructure

image4.emf
SUT

Application

Middleware

Operating system

Hardware

image5.emf
IMS /

P-CSCF

SIP /

Gm

SIP /

Mw

SUT

image6.emf
SUT

Service

Responding

Tool

Service

Requesting

Tool

image7.emf
a.

SUT

IMS / HSS

IMS /

S-CSCF

IMS /

P-CSCF

Simulated

UEs

Diameter/ Cx

SIP

Mw

SIP

Gm

image8.emf
b.

SUT

IMS /

S-CSCF

IMS /

P-CSCF

Simulated

UEs

Simulated

IMS / HSS

Diameter/ Cx

SIP

Mw

SIP

Gm

image9.emf
Test site

SUT

External Performance Data

Internal Performance Data

Server

Test Tool

Client

Test Tool

Probes

image10.emf
Performance test specification elements

Test objectives

Test conditions

Test configurations

Test data specifications

Test evaluation specifications

image11.emf
P-CSCF

SIP-AS

OSA-SCS

IM-SSF

BGCF

MGCF

MRF-C

SGW

MGW

MRF-P

UE

The IMS media plane

RTP

The IMS signaling plane

Mj

Gm

HSS

SLF

Cx

Dx

ISC

Ut

Mw

I-CSCF

Mw

S-CSCF

Mw

P-CSCF UE

Sh

Mn

Mg

Mi

Mp

Application services

AAA services

Control services

IP

Mr

Gm

image12.emf
time

VARIABLE

REGISTRATION

SUBSCRIPTION

NOTIFICATION

CALL

LONG

LONG

SHORT

image13.emf
SINGLE STEP SERVICE

time

UE

P-CSCF

1

200

SUB

time

UE

P-CSCF

1

401

REG unauth

2

200

REG auth

3

200

SUB

time

UE

P-CSCF

1

183

INV

2

200

PRA

3

200

UPD

180

200

4

ACK

MRFP

codec

codec

codec

codec

5

200

BYE

MULTI STEP SERVICE

COMPOSITE SERVICE

image14.emf
Transaction

services

Streamed

services

Transaction

services

time

1

183

INV

2

200

PRA

3

200

UPD

180

200

4

ACK

MRFP

codec

codec

codec

codec

5

200

BYE

COMPOSITE SERVICE

UE P-CSCF

image15.emf
SUT

Test Tool

API

Communication

Protocol

image16.emf
SUT

Test Tool

Communication

Protocol

image17.emf
Test site

SUT

External Performance Data

Internal Performance Data

Server

Test Tool

Client

Test Tool

Probes

image18.emf
Rsp

Response time

CLIENT SERVER

1

Req

Roundtrip time in

Roundtrip time out

Transportation time

Queuing time

Processing time

image19.emf
200

1

PUB

Latency time

of services

UE IMS

image20.emf
Load level latency

image21.emf
1

200

PUB

1

200

NOT

UE sub 3

200

NOT

3

200

NOT

2

time

time

time

time time

Latency time of

coupled services

Publish to Notify

Distribution time

for Notify

UE IMS

UE sub 1

UE sub 2

image22.emf
Transaction rate tx/sec

Response time (msec)

image1.wmf

oleObject1.bin

