[image: image1.png]|

a\Q/ = E E E B
(2} c
52l & 5 5 5 5
.2 3 o o o o
Q Q))
ol I 10 A - |
() O O O O

. probably not available
on any SUT

\
\

LI .

Config Reader's *, N
(Upper Tester) *.s,

@-@ :

Implementations

.

.

.

.

.

.

.
. AREY
.
1
.
0
.
.
.

Iy
.

Protocol

Man,agement

PICC

Protocol
Vendor-
Impleme

no case known may be done via
in which this exists Antenna protocol

[image: image2.png]ore

orLT
Bac
exc
Bac
enc
Los

<eTC lg2>

[image: image3.png]<<org.atsi.epassport ElementFilesiO>> < <ord.etsi.epassport ElementFilesiO>>

<<uses>> [IElementFiesimpiFactory IElementilesimpl

createinstance()

1

LoadPassportConfiguraton()

ReadElementFie
UnloagPassporConfiguratn)

<o sispaml EamenFios <cagot g oo
BomentlosmoFacory it

croatanstance
R— LoadPassperConfouraton()

ReadElementFie
UnloadPassporConfiguraion()

[image: image4.png]<org.

assportreaderimpi>>

<<on.atl apasaport readerimpb >

e e

IReadermplFactory

sA
1

1

createlnstance(vendors)

T

WendorlmplFaciory

e

VendorlmplFactory

createlnstance()

createlnstancel()

<orgolsicpassportroadsrimpl>>

<corg tsispassport readerimpl>>

<corg s spassport vendorimpt>>

ReaderimplFactory
createlnstance(vendors)

TReaderimpl

Vendorlmp!

[image: image5.wmf]

[image: image6.png]Protocol

!
|

specific
entation:

I

Vendo
Implem

|\ N

Config Reader
(Upper Tester)

Vendorl-speciﬁcl
Implementations

Management-/
S, Reaer
PICC Radio
SUT

Contents

3Contents

List of Figures
4
Code Snippets Index
4
Intellectual Property Rights
5
Foreword
5
1
Scope
6
2
References
6
2.1
Normative references
6
2.1
Informative references
6
3
Definitions, symbols and abbreviations
7
3.1
Definitions
7
3.2
Abbreviations
7
4
General architecture of the ePassport reader test bed
8
4.1 Global architecture
8
4.2 Software architecture
9
4.3 The system adapter
9
4.3.1 Architecture of the system adapter
9
4.3.2 Plugin concept
10
4.3.3 Vendor implementations
11
4.3.3.1 Comprion implementation
12
4.3.3.2 Raisonance implementation
12
4.4 The Codec
12
4.5 The ePassport Profiles package
12
4.5.1 Specific disk organization
13
4.5.2 Memory cache mechanism
14
4.5.3 Method descriptions
14
4.6 The Cryptography package
15
4.6.1 Message encryption/decryption
15
4.6.2 Verify certificate
16
4.6.3 Digital signatures
16
4.6.4 Message digest
16
4.6.5 Random number generation
17
4.6.6 Random number generation
17
4.6.7 Specific settings
17
4.7 Vendor specific implementation
17
A.1
Codec
18
A.2
Adaptation Layer
18
A.3
Security Functions
18
A.4
Security Profiles
18
History
19

List of Figures
8Figure 1: General architecture of Test Component for ePassport Testing

11Figure 2: Plugin Concept

13Figure 3: Specific disk organization of EFs

14Figure 4: Element Files package

17Figure 5: Principles of vendor specific implementation

Code Snippets Index

14Snippet 1: Instantiate Element Files package

18Snippet 2: Instantiate a vendor specific package

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://webapp.etsi.org/IPR/home.asp).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Technical Report (TR) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).

1
Scope

The present document provides the description of the Software developed within the project for the prototype of Test System for ePassport Reader Conformance Testing, in compliance with the relevant requirements and in accordance with the relevant guidance given in ISO/IEC 9646‑7 [10].

The ISO standard for the methodology of conformance testing (ISO/IEC 9646‑1 [1] and ISO/IEC 9646‑2 [1]) as well as the ETSI rules for conformance testing (ETS 300 406 [11]) are used as a basis for the test methodology.

2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE:
While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.
2.1 Normative references

The following referenced documents are necessary for the application of the present document.
[1]
ISO/IEC 7816-4: “Identification cards - Integrated circuit cards: Organization, security and commands for interchange”

[2]
BSI Technical Guideline TR-03110 1.11: “Advanced Security Mechanisms for Machine Readable Travel Documents - Extended Access Control (EAC)”

[3]
BSI TR-03105-5 1.1: “ePassport Conformity Testing - Test plan for ICAO compliant inspection systems with EAC”

[4]
ICAO, Document 9303, Edition 6 Part 1, Part 2 and Part 3
2.1
Informative references

The following referenced documents are not essential to the use of the present document but they assist the user with regard to a particular subject area. For non-specific references, the latest version of the referenced document (including any amendments) applies.

[i.1]
BSI TR-03105 Part 5.1 Test plan for ICAO compliant Inspection Systems with EAC Version 1.2 11.09.2009

[i.2]
PKI for Machine Readable Travel Documents offering ICC Read-Only Access Version – 1.1 Date - October 01, 2004

[i.3]
ETSI ES 201 873-5 V4.1.1 'Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3;Part 5: TTCN-3 Runtime Interface (TRI)'

3
Definitions, symbols and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:

-
Terms given in ISO/IEC 7816-4 [1]
-
Terms given in BSI Technical Guideline TR-03110 1.1 [2]
-
Terms given in BSI TR-03105-5 1.1 [3]
-
Terms given in ICAO 9303 Part 1 Vol 2 [4]
3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

AA
Active Authentication

APDU
Application Protocol Data Unit

ATS

Abstract Test Suite

BAC

Basic Access Control

C-APDU
Command Application Protocol Data Unit

EAC

Extended Access Control

EF

Elementary File

HAL

Hardware Abstract Layer

PA

Platform Adapter

PICC
Proximity integrated circuit card

KI

Public Key Infrastructure

R-APDU
Response Application Protocol Data Unit

SA

System Adapter

SUT

System Under Test

TA

Test Adapter

TE

Test Executable

4
General architecture of the ePassport reader test bed

4.1 Global architecture

The figure below depicts the global architecture of the ePassport reader test bed.

The components involved in this architecture are:

1. The TTCN-3 Execution. Its role is to execute the test suite.

2. The System Adapter (SA). Its role is to provide some ways to communicate with vendor equipments. It defines three kinds of ports:

a) One for the protocol messages (Lower Tester). Its role is to send and receive C-APDU messages between the ATS and the ePassport reader.

b) One for the SUT automatic management over the Air (Upper Tester).

c) One for the SUT not automatic management through IP or any other support (Upper Tester).

3. The Codec. Its role is to encode/decode data between the ATS and the ePassport reader.

4. The Vendor specific implementation. Its role is to provide the vendor specific implementation of communication ways between the TE and the ePassport reader equipment.

4.2 Software architecture

The main software components are:

1. The system adapter

2. The Codec

3. The ePassport Profiles package

4. The Cryptography package

5. The Vendor specific implementation

The chapters below describes each software components

4.3 The system adapter

The test adapter performs the adaptation of the compiled TTCN-3 code to the target test device. It deals with any aspects that cannot be concluded from information being present in the original TTCN-3 module alone, it covers a test system user interface, test execution control, test event logging, as well as communication with the system under test (SUT), and timer implementation.

4.3.1 Architecture of the system adapter

The system adapter is based on Strategy pattern as defined in standard Object oriented methodologies. This pattern provides two interfaces:

1. An interface named IReaderImpl which provides the set of methods each vendor shall implement: this is the vendor reader implementation These methods include basic functionalities as initializations, send and receive in synchronous or asynchronous mode or hardware/platform state and status
2. An interface named IVendorImplFactory which provides some factory methods the vendor shall implement to instantiate its reader implementation
The tables below describe the method to be implemented by the vendor for each interface.

	Methods
	Role

	Initialize()
	Initialize the ePassport Reader equipment

	Start()
	Start the ePassport Reader equipment (i.e. start radio...)

	Stop()
	Stop the ePassport Reader equipment (i.e. stop radio...)

	SetLogLevel()
	Activate/de-activate traces

	SendAPDU(final byte[] bytes)
	Send a C-APDU message to ePassport Reader equipment

	ReceiveAPDUAsync
	Retrieve a R-APDU message from ePassport Reader equipment. This is an asynchronous call, if no data is available, this function returns null

	ReceiveAPDU()
	Retrieve a R-APDU message from ePassport Reader equipment. This is a synchronous call

	ReceiveAPDUMngmt()
	Retrieve a management R-APDU message from ePassport Reader equipment. A management PDU has bits <b1,b0> of CLASS byte set to 01. This is a synchronous call

	DeInitialize()
	De-initialize the ePassport Reader equipment

	Methods
	Role

	getSingletonInstance()
	Provide a static instance of the specified Vendor implementation of an ePassport Reader

	createInstance()
	Create a new instance of the vendor specific package

	createInstance()
	Create a new instance of the vendor specific package

4.3.2 Plugin concept

The system adapter represents the technological interface between the test logic and the system to be tested (i. e. typically the device used to read passports). The TTworkbench facilitates a generic Plugin-Test-Adapter which can be fitted with various plugins performing the desired tasks (see the diagram on page 12). The plugins then provide the concrete adaptation (including the codecs) used in the project.

The concept of this project contains a plugin for external functions, an SUT-Action-Plugin, a codec plugin (which is described in the next section) and several port plugins, implementing the protocols in use.

· The external function plugin.
The functions provided by the first plugin are used for things which cannot be implemented in TTCN-3 itself because this either is too costly (e. g. cryptography) or needs access to facilities like libraries.

· The SUT-Action-Plugin.
Provides means to interact with the user running the tests.
In at least some test cases the user is meant to do some things manually; this is then done via this plugin by means of information dialogues or similar.

· The port plug-in:

1. PICC Data.
Used to transmit and receive payload information via the ePassport simulator (“PICC”).
This is used to receive a query (e. g. “What's the name?”) via the PICC and then send the answer (e. g. “Erika Mustermann”).
2. PICC Configuration.
Used to configure the PICC.
This is used e. g. to reset the simulator device in the beginning of test cases. In practice, this is not implemented as the device in use provides no such features.
3. Reader Configuration.
Used to configure the reader device (SUT).
In practice, this is not implemented because the reader device in use in the project is configured by the channel “PICC Data” by the means of special PDUs which are transmitted to the SUT via the PICC and thus are done via the first port plugin.
4. Reader Data.
Used to get data from the reader device (SUT).
In practice, this is not implemented because no known SUT provides a means to query the information it displays to the user via another channel for automatic testing. An implementation using a camera and OCR software to extract the displayed information is conceivable but not planned.
The practical implications mentioned in the paragraphs above lead to a concrete implementation which resembles a slightly altered version of the diagram1:

Each port plug-in is designed to communicate with vendor-specific driver implementations through a specified interface to ease exchanging the hardware. The drivers must be provided by the vendors of the hardware.

The port plug-in only provide support for exactly one port at a time and needed to be extended in case more ports needed to be supported (which is not the case in the current scenario).

4.3.3 Vendor implementations

This clause describes all system implementation for each supported vendors.

4.3.3.1 Comprion implementation

‘CLT One’ is a comprehensive and flexible testing device for simulating contactless cards (Type A and B) and contactless terminals (card readers) according to ISO/IEC 14443. ‘CLT One’ also traces, translates and analyses communication between all kinds of contactless chips, readers or mobile phones.

Implementation

The two interfaces previously listed are implemented: IReaderImpl and IVendorImplFactory, based on ‘CLT One’ Java API.
Note that, based on standard Comprion API Setup, the additional tasks shall be done manually:

1. Register the shared libraries ‘com4j.dll’ and ‘CLTSim.dll’ using Windows tool ‘regsvr32’
2. Copy both jar and dll files into standard /Windows/System32 directory
3. Copy RBF file (this is the firmware) into standard /Windows/System32 directory

4.3.3.2 Raisonance implementation

ProxiCARD is the proximity smart card (PICC) emulator created by RAISONANCE SAS. Its hardware emulates a PICC (i.e. any ISO14443 compliant smart card), while software applications developed by users deal with the applicative level as a contactless passport.
Implementation
The two interfaces previously listed are implemented: IReaderImpl and IVendorImplFactory, based on ‘ProxyCard’ API version 1.6, January 2009. In addition, an external application shall be used to simulate the passport: this is the ‘ClientPassport’ application. This application is also provided by Raisonance.
4.4 The Codec

The codec plug-in provides a translation between the abstract data structures used in the TTCN-3 code and the concrete octet representations to be exchanged on the hardware.

The codec in this project is generated from descriptive elements (“with”-clauses) within the type system as implemented in TTCN-3. The codec generator is a closed-source software product created and used by Testing Technologies. Only the generated codec itself is provided; the codec generator itself is not provided.

4.5 The ePassport Profiles package

The specification [i.1] clause 4 defines configuration sets named Profiles in this document. The objectives of this package are to provide mechanisms to access to these configuration elements also named Elementary File (EF). These mechanisms are based on:

· A specific disk organization of the configuration elements (see figure below) based on the [i.1] clause 4 definitions
· A memory cache mechanism, in order to optimize data time access
4.5.1 Specific disk organization

The figure below depicts the disk organization proposed to store EFs. Each directory should contains on or more EF as EF.COM/EF.SOD, DG<n>. The physical naming convention for EFs is described below:

1. EF_COM.bin: Common Data Elements

2. EF_SOD.bin: LDS Security Data

3. EF_DG01.bin: MRZ information

4. EF_DG02.bin: Encoded face Image

5. EF_<hh>.bin

Example: Consider the test case ISO7816_A_01, the profile to use is “CFG.DFLT.PLAIN”. This profile is described by the [i.1] clause 4.1. So, in the directory CFG/DFLT/PLAIN shall contain the element files EF.COM, EF.SOD, EF.DG1 and EF.DG2. In addition, this directory shall contain a file MRZ.txt which contains the ASCII string “P<D<<MUSTERMANN<<ERIKA<<<<<<<<<<<<<<<<<<<<<<C11T002JM4D<<9608122F1310317<<<<<<<<<<<<<<<6”

4.5.2 Memory cache mechanism

This mechanism loads in memory all the EFs contained by the specified Profile.

The figure below depicts this package:

1. The method LoadPassportConfiguration() loads in memory cache the specified passport file system

2. The method ReadElementFileRead() the specified amount of bytes from the specified offset

3. The method UnloadPassportConfiguration() unload current file system

The code snippet below demonstrates how to instantiate this package and how to initialize it.

IElementFilesImpl _inst = ElementFilesImplFactory.getInstance().createInstance();

_inst.LoadPassportConfiguration(".", "CFG.DFLT.PLAIN");

Snippet 1: Instantiate Element Files package

4.5.3 Method descriptions

The method LoadPassportConfiguration() loads in memory cache the specified passport file system. This method SHALL be call before any call to ReadElementFile method. The available returned codes are:

1. ExecutionError if the provided parameter are not correct

2. FileControlInformationNotFormattedProperly if the disk organization of the EFs is not correct or if one of the four mandatory files files are missing (EF_COM.bin, EF_SOD.bin, EF_DG1.bin and EF_DG2.bin)

3. ReferenceDataOrReferenceDataNotFound if the EFs memory cache mechanism fails

4. Success otherwise

The method ReadElementFileRead() the specified amount of bytes from the specified offset. The available returned codes are:

5. FileOrApplicationNotFound if the provided parameter are not correct (bad EF name…)

6. IndexOutOfBoundException if the offset or the number of bytes to read are not correct

7. EndOfFileOrRecordReachedBeforeReadingNeByte if the number of bytes to read is too big

8. Success otherwise

4.6 The Cryptography package

The specification [i.2] defines several protection mechanisms:

· Passive authentication (PA) (required):

· Safeguard integrity of data
· EF.SOD stores hashes of EF.DG[1-15] and a public key, hashes are signed with a private key
· Basic Access Authentication (BAC) (optional):

· Safeguard confidentiality of data
· Authentication is required before reading files
· KEY = DOCUMENT NUMBER + DATE OF BIRTH + DATE OF EXPIRY
· After authentication data is encrypted (3DES) and messages contain MACs (MAC8)
· Active Authentication (AA) (optional):

· Prevent cloning and copying
· EF.DG15 contains a public key. The private key of this key pair is in inaccessible chip memory. Authenticity of the chip can be checked by letting the chip sign a reader’s challenge and verifying the result with the public key
This package provides all the functionalities needed to implement protection mechanisms described above:

1. Encrypt a message

2. Decrypt a message

3. Verify a certificate

4. Sign a message (digital signature)

5. Message digest

6. Message random generation

7. Random number generator mechanism

The cryptography package is based on both JAVA 1.6 Cryptography package and 'Bouncy castle' framework.

This component should be used by both Codec and ATS through the TTCN-3 external functions.

4.6.1 Message encryption/decryption

This is a set of methods to encrypt or decrypt a message. The supported algorithms for cyphering are:
· Rsa: RSA/None/NoPadding format with PKCS#8 private key format

· DESede: Triple DES Encryption (also known as DES-EDE, 3DES, or Triple-DES). Data is encrypted using the DES algorithm three separate times. It is first encrypted using the first subkey, then decrypted with the second subkey, and encrypted with the third subkey
· DH: Diffie-Hellman key agreement algorithm suite for Chip Authentication

· EcDH: Elliptic Curve Diffie-Hellman as defined in ANSI X9.63 and as described in RFC 3278: "Use of Elliptic Curve Cryptography (ECC) Algorithms in Cryptographic Message Syntax (CMS)."
4.6.2 Verify certificate

This is a set of methods to verify if a candidate certificate is trusted by a root CA.
4.6.3 Digital signatures

These methods provide digital signatures based on DSA or RSA cryptographic algorithms:
· MD2withRSA: MD2 with RSA encryption signature algorithm which uses the MD2 digest algorithm and RSA to create and verify RSA signatures as defined in PKCS;
· MD5withRSA: MD5 with RSA encryption signature algorithm which uses the MD5 digest algorithm and RSA to create and verify RSA signatures as defined in PKCS;
· SHA1withRSA: The signature algorithm with SH-1 and the RSA encryption algorithm as defined in OSI Interoperability Workshop, using padding convention described in PKCS#1;
· SHA224withRSA: The signature algorithm with SH-224 and the RSA encryption algorithm as defined in OSI Interoperability Workshop, using padding convention described in PKCS#1;
· SHA256withRSA: The signature algorithm with SH-256 and the RSA encryption algorithm as defined in OSI Interoperability Workshop, using padding convention described in PKCS#1;
· SHA384withRSA: The signature algorithm with SH-284 and the RSA encryption algorithm as defined in OSI Interoperability Workshop, using padding convention described in PKCS#1;
· SHA512withRSA: The signature algorithm with SH-512 and the RSA encryption algorithm as defined in OSI Interoperability Workshop, using padding convention described in PKCS#1;
· SHA1withDSA: The DSA with SH-1 signature algorithm which uses the SH-1 digest algorithm and DSA to create and verify DSA signature as defined in FIPS PUB 186;
· SHA1withECDSA: ECDSA is support with the SHA-1 family of digest algorithms;
· SHA224withECDSA: ECDSA is support with the both SHA-1 and SH-2 family of digest algorithms;
· SHA256withECDSA: ECDSA is support with the SHA-256 family of digest algorithms;
· SHA384withECDSA: ECDSA is support with the SHA-384 family of digest algorithms;
· SHA512withECDSA: ECDSA is support with the SHA-512 family of digest algorithms.
4.6.4 Message digest

This function is used to check a byte message digest. Supported algorithms are:

· MD2 (See RFC1319);
· MD5 (See RFC1321);
· SHA_1 (See Secure Hash Standard NIST FIPS 180-1);
· SHA_256 (See Secure Hash Standard NIST FIPS 180-2)
· SHA_384 (See Secure Hash Standard NIST FIPS 180-2);
· SHA_512 (See Secure Hash Standard NIST FIPS 180-2).
4.6.5 Random number generation

This method providess a pseudo-random number using implementation described by RFC 2246.
4.6.6 Random number generation

The SetLogLevel() method activates/de-activates the traces, including hexadecimal dumps .
4.6.7 Specific settings
The security modules provide two methods to configure it:
· set_IncludeStatusBytes():Used for cryptographic checksum calculation
· set_IncrementSsc(): Used to set the value of the Ssc vector used for cryptographic checksum calculation
4.7 Vendor specific implementation

The main idea is isolate the System Adapter from the vendor implementation. To achieve it, three main ideas are proposed:

9. An interface provide to the System Adapter a single way to communication with equipments

10. Each vendor shall provide a package implemented specific interfaces

11. A single way to instantiate a vendor package is also provided

The figure below illustrates these principles:

Each vendor provides a package which implements the two following interfaces:

1. IReaderImpl interface: provide the single communication way between the System Adapter and the equipment

2. IVendorImplFactory interface: provide a single way to create an instance of the vendor package

The class ReaderImplFactory implements the interface IReaderImplFactory providing a run-time loading mechanism to load and instantiate the right vendor package. The SA specifies the vendor to use using the following code (this code is just an example):

IVendorImplFactory fact = ReaderImplFactory.getInstance().createInstance(ePassportReaderVendors.Raisonance);

IReaderImpl _inst = fact.createInstance();

Snippet 2: Instantiate a vendor specific package

A.1
Codec

The Codec source code corresponding is contained in the archive codec_source.zip which accompanies the present document.

A.2
Adaptation Layer

The Adaptation layer source code is contained in the archive Adaptation_source.zip which accompanies the present document. This archive includes:

8. ePassportImpl: This is the generic interfaces provided by ETSI to implement vendor specific reader functionalities;

9. ComprionImpl: This is the Comprion implementation of ePassportImpl interfaces;

10. RaisonanceImpl: This is the Raisonance implementation of ePassportImpl interfaces

A.3
Security Functions

The Security Functions source code is contained in the archive Security_sources.zip which accompanies the present document.

Note that this archive does not include ‘bouncycastle’ framework which could be downloaded from http://www.bouncycastle.org/
A.4
Security Profiles

The Security Profiles are contained in the archive Security_profiles.zip which accompanies the present document.

History

	Document history

	V0.0.0
	Mar 2010
	Creation

	V0.0.1
	Mar 2010
	Document formatting

	V0.0.2
	Dec 2010
	Clauses ‘System Adapter’, ‘Codec’ and ‘Cryptography package’ completed

	V0.0.3
	Jan 2011
	Upgrade SA and security clauses

	V0.0.4
	March 2011
	Editorial changes

	V0.0.5
	June 2011
	Editorial changes

Methods for Testing and Specification (MTS);

ePassport Readers Interoperability Support;

Prototype Platform for Conformance Testing; �Test System Software Description

TD <>

Draft DMI/MTS-00127 V<0.0.5> (2011-06)

Technical Report

Reference

DMI/MTS-00127

Keywords

Interoperability, testing, methodology, ePassport

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:��HYPERLINK "http://www.etsi.org/"�http://www.etsi.org�

The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at �HYPERLINK "http://portal.etsi.org/tb/status/status.asp"�http://portal.etsi.org/tb/status/status.asp�

If you find errors in the present document, please send your comment to one of the following services:��HYPERLINK "http://portal.etsi.org/chaircor/ETSI_support.asp"�http://portal.etsi.org/chaircor/ETSI_support.asp�

Copyright Notification

No part may be reproduced except as authorized by written permission.�The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2009.

All rights reserved.�

DECTTM, PLUGTESTSTM, UMTSTM, TIPHONTM, the TIPHON logo and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.�3GPPTM is a Trade Mark of ETSI registered for the benefit of its Members and of the 3GPP Organizational Partners.

��Figure � SEQ Figure * ARABIC �1�: General architecture of Test Component for ePassport Testing

Figure � SEQ Figure * ARABIC �2�: Plugin Concept

�

Figure � SEQ Figure * ARABIC �3�: Specific disk organization of EFs

�

Figure � SEQ Figure * ARABIC �4�: Element Files package

�

Figure � SEQ Figure * ARABIC �5�: Principles of vendor specific implementation

_1362818179.doc

