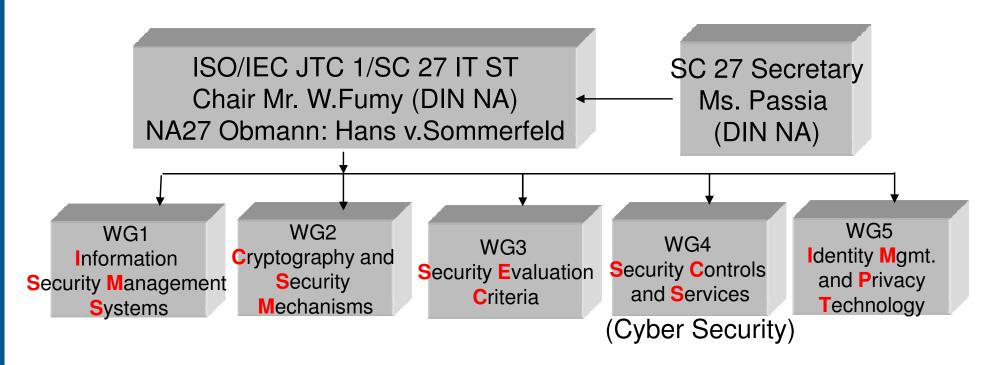


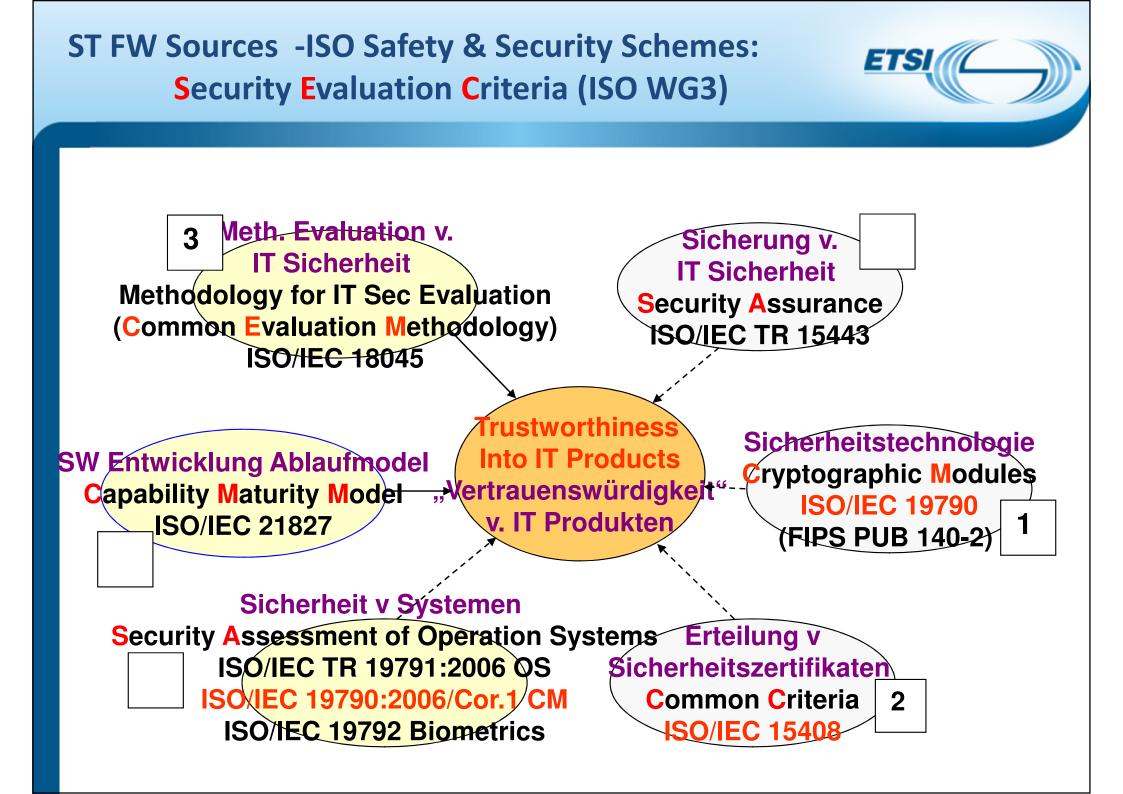
World Class Standards CURITY EVALUATION&TESTING: SET FRAMEWORK

A Contribution to NWI "MTS Security Design Guide Enabling Test and Assurance" @ ETSI MTS#55 Meeting, January 24-25, 2012: Jan deMeer, ssl.eu GmbH Berlin, (based on contributions to ETSI TISPAN of Siv Hilde Houmb, Scott Cadzow)

SET FW Sources -Resilient Networks GN and Services

- Directive 2009/140/EC of European Parliament and Council, chapter IIIa, 'Security and integrity of networks and services', article 13a
 - '... undertakings providing public communications networks or publicly available electronic communications services ... [observing] a breach of security or loss of integrity that has had a significant impact on the operation of networks or services' [have to be notified to National Regulatory Authorities]
 - ENISA Measurement Frameworks and Metrics
 - Information Security Metrics
 - Incident Vulnerability Patch Application Configuration
 - ISO27001/2/4:2009 ISMS
 - Security Requirements & Security Control Objectives


SET FW - IT Security Technics DIN NIA27 - ISO/IEC JTC1/SC 27



ISO/IEC JTC1/SC 27 includes

- Identification of Generic Requirements for IT System Security Services
- Specification of Security Guidelines and Security Management Standards
- Specification of Criteria for IT Security Evaluation and Certification
- Development of IT Security Techniques and Mechansims, e.g. Cryptography

DIN NA 043-01 27 AA Normenausschuß: www.ni.din.de

SET FW Sources -

ETSI TISPAN TS 187 001 – NGN Security Requirements^{*)}

- stakeholder model with 7 actors
- 5 Use Cases with respect to Resilience
- NGN Subsystems
- (Note: Stage 1 model using use-cases as a tool to illustrate the relationship of stakeholders to the NGN)

• ETS TISPAN TS 187 003 – Security Architecture

- NGN Security Services
- NGN Security Domains
- NGN Security Policies

SET FW Sources: Resilience Principle?

System Resilience according to ISO/IEC 27001/2/4

- Information Security Management Systems
- -> CIA Resilience Requirements!
 - Confidentiality to ensure data, services, assets
 - Accessible only by Authorized users
 - Integrity, i.e. Accuracy, that brings "Completeness" into information Processing
 - Availability to provide access to users being authorized to request assets

ETSI

Safeguarding according to ISO/IEC 27001/2/4

- to counteract security risks, i.e. By inventing Security Control Techniques
- -> PDC Resilience^{*}) Controls
 - Preventive Controls before threats become possible
 - to exclude users from servicing that are not authorized,
 - i.e. To allow only "properly" authorized users to be able to invoke services
 - Detective Controls during a threat that happens
 - e.g. to detect the reasons of threatening in real time
 - Corrective Controls after a threat has happened
 - e.g. to minimize loss and destruction and to reset system to safe and secure operation state
 - (Note: Prevent-Detect-Correct does not apply only to resilience and in fact the ENISA report does not consider this approach as critical)

SET FW – Stakeholder Model (acc.to ETSI TISPAN 07 TS 187 001)

NGN Stakeholders (= UML Actors) Security Objectives depend from Stakeholder Roles^{*)} (Note :TS 187 001 does not use this terminology but presents the roles and capabilities per stakeholder in a tabular and graphical form only) TVRA Stakeholder Specification =

[ActorName: NGNRoles, (ListOfHasRelationships)]:

ETS

[EndUser: Srvc-Receiver(push)/Srvc-Initiator(pull), (CP,SP,RA,MF)] [ContentOwner: Content-ProviderForDistribution, (CP,RA)]

[ContentProvider: Content-Distributor-OnD/BrCst/MuCst, (CO,EU,SP)] [RegulatoryAuthoritory: Privacy/DtPro/SafetyProvider, (SP, EU, CP)]

[LawEnforcementAuthority: LawfulInterception / DataRetention - DataRecipient, (SP)]

[ManuFacturer: SW/HW-Provider, (RA,SP,EU)]

[TrustedThirdParty: PKI-Services, (SP, EU, CP)]

ETSI TISPAN 07 TS 187 001 – NGN Subsystems

NGN Subsystems NGN consists of subsystems having relations with each other:

[NGNSubsystem ListOf(DirectRelationship) (ListOfStakeholderInteraction)]

[NetworkAccessSubSystem (RACS) (EndUser)]

[RessourceAdmissionControlSubSystem (IMS, RACS) (-)]

[InternetMultimediaSystem (RACS, IMS) (ServiceProvider, EndUser / IMS PublicUser / IMS PI)]

Integrated Assets - Stakeholder Model NGN Resilience Dependencies(3)

All Systems are matters of internal failures and external threats that both interfere with system operation:

Example: Electromagnetic Fields interfere with CPU Operation;

Failures or Threats yield effects on system behaviour dependent from location and component of failure;

The input signal e is interferred with jamming signal n that both effect applied system resources (assets) G:

 $\begin{array}{l} e_1 = G_1 e_1;\\ y' = G_2(e_1 + n) \approx G_2 n, \ e_1 = 0, \ for \ H = 0;\\ y = G_2(e_1 + n) = G_2(eG_1 + n) = eG_1G_2 + nG_2, \ for \ H \neq 0;\\ y = nG_2 \ / \ (1 + G_1G_2H) \end{array}$

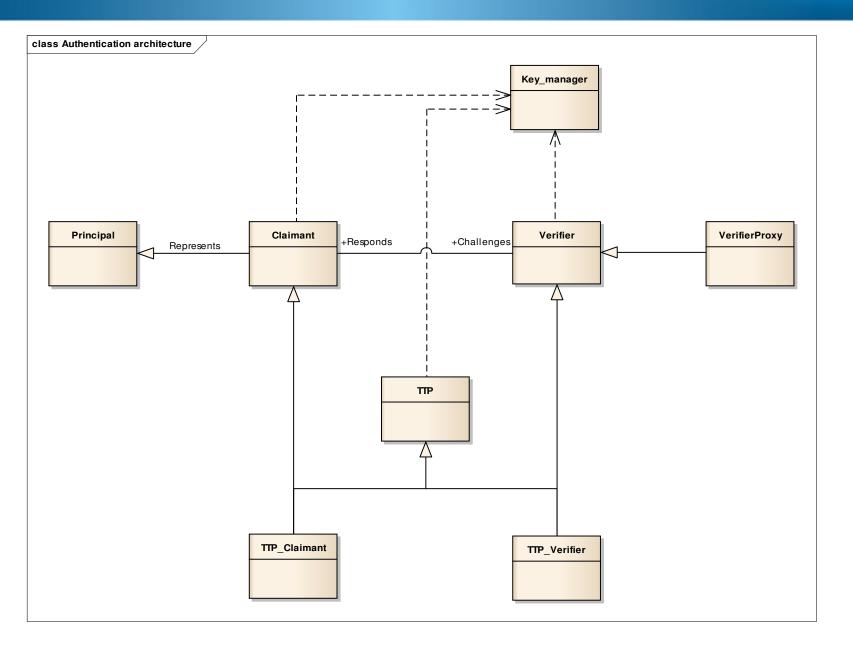
Effects of unwanted Threats or Failures can be controlled by the extended resilience gradient divisor $(1 + G_1G_2H)$ provided gradient is >1 and system can be stabilized.

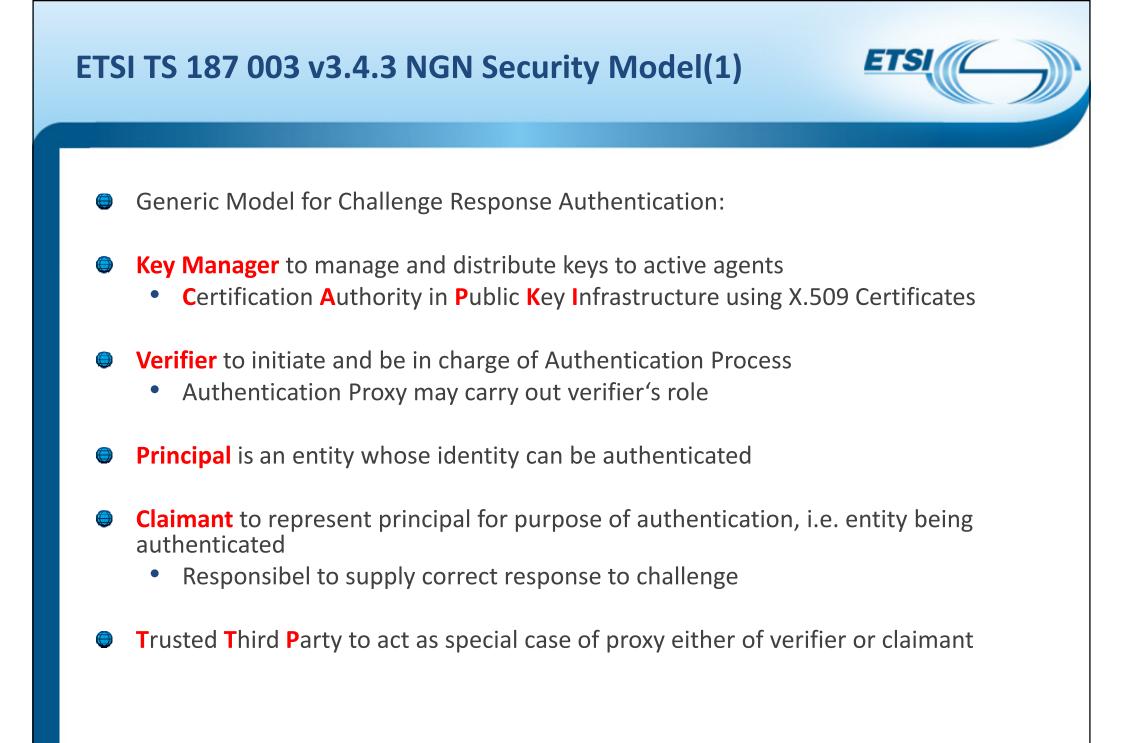
SET FW - Integrated Assets-Actors Model NGN Resilience Dependencies(4)

Basically in order to eliminate **Effects of failures** Issued by

diverging results wrongly computed from test/control commands: u->y

Diverging inputs wrongly derived from reference commands r of the model


To achieve **System Stability** by providing Activity Control

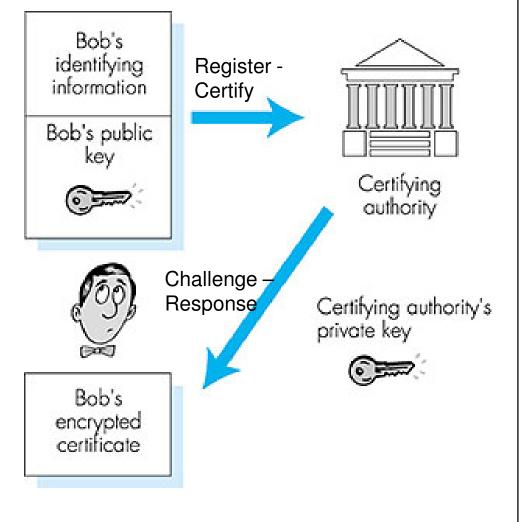

To achieve **System Reliability** by providing Asset/Resource Control

To achieve System Robustness/Resilience by providing Interference/ Jamming Control

To achieve **System Safety/Availability** by providing Sensitivity Control to internal function performances

SET FW – Authentication Actor Model acc. to ETSI TS 187 003 v3.4.3 (2)

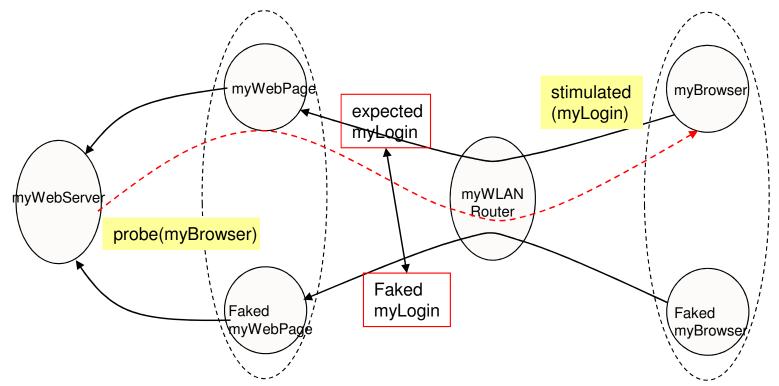
ETSI TS 187 003 v3.4.3 NGN Challenge-Response Authentication Model(2)

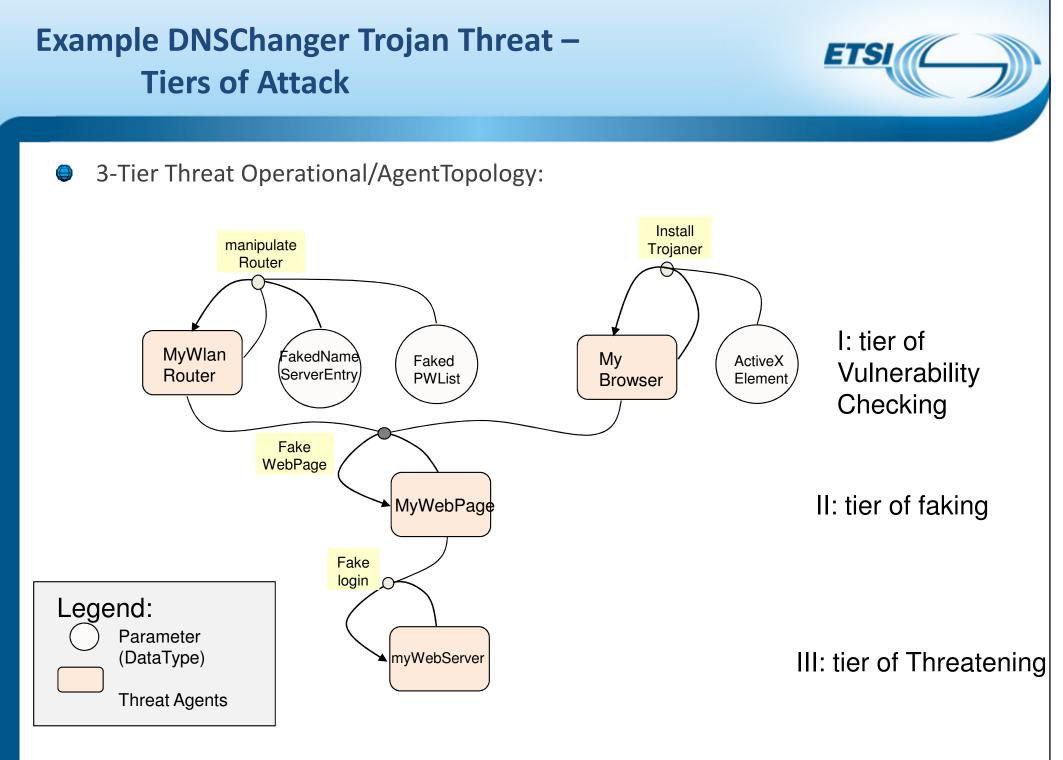

Challenge-Response Authentication Roles

- Authentication Association:
 - Claimant by Responds
 - Verifier by Challenges
- Authentication Role Relationships:
 - Claimant represents Principal
 - Verifier is_assisted_by VerifierProxy
 - (TTP_Claimant TTP_Verifier) act_as TTP
 - TTP_Claimant is_proxy_for Claimant
 - TTP_Verifier is_proxy_for Verifier
- Authentication Activity Relationships:
 - Claimant is_authenticated_at KeyManager
 - Verifier initiates_authentication_at KeyManager
 - TTP interact_as_proxy_with KeyManager

ETSI TS 187 003 v3.4.3 NGN Challenge-Response Authentication Model(3)

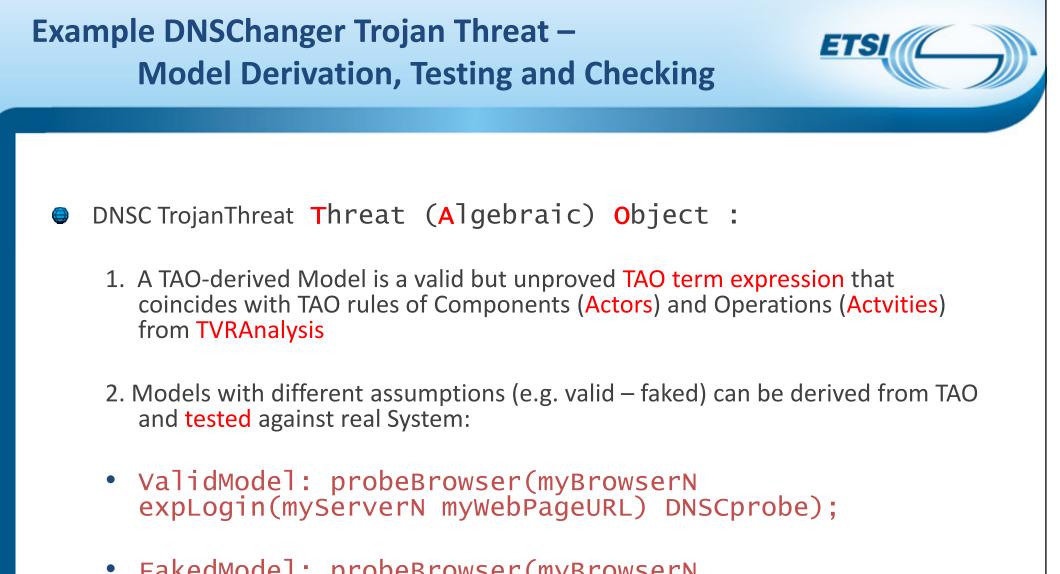
Challenge-Response Authentication Assets:


- **C**ertification Authority == Key Manager
- **B**ob == Principal
- Alice == Verifier, Claimant
- Principal: [Id, e]_B
- register: IdInfo_B PuK_B -> IdProof_B
- KeyMgr: $[d_c(IdProof_B)]_c$
- Certify: IdProof_B PrK_C -> Cert_B
- Verifier: [e_c(Cert_B)]_A
- Challenge: Cert_B PuK_C -> IdProof_B
- Claimant: [IdProofB]_A
- Response: IdProof_B -> PuK_B IdInfo_B



Example DNSChanger Trojan Threat – Problem Statement

- Attack By Faking myBrowser and myWebPage:
 - myBrowser and myWebPage do not longer operating in an authentic manner
 - Question is how to test/check non-authentic operation of components?
 - E.g. Server probes myBrowser with a mylogin request!
 - If **stimulated mylogin** request gets not redirected, the browser operates authentically!



Jan deMeer, 25.01.2012

Example DNSChanger Trojan Threat – TVRAnalysis

- TVRA-based Threat Analysis usingThreat Specification Rule:
- (Threat_Id: name, description, threat_agents, automated_threat_actions, Threat_family_Id, Asset_Id)
 - *(Threat_Family_Id*: name, description, category)
 - (Asset_Id: name, description, category, dependencies, containment)
- (Threat_Id: DNSChanger, "fakes Browser and WLAN Router of a User",
 (threat_agents: fakedBrowser, fakedWLanRouter, fakedWebPage),
 (threat_actions: installTrojan, manipulateRouter, fakeWebPage, fakeLogin), Threat_family_Id, Asset_Id)
 - (*Threat_Family_Id*: Trojan, "inserts ActiveXElement into Browser", category: repairable)
 - (Asset_Id: ServerAssets, "purchased private Assets", category:private, dependencies:invoked by business cases, containment: faked Business/Use Cases)

Example DNSChanger Trojan Threat – Asset Identification	ETSI
DNSC Trojan Threat Algebraic Object Specification includes A	Actors and Activities:
 Components (Actors): WlanRouter: [PWL, NSE] Browser: [skript] WebPage: [skript] Server[uid, upw] TestAgent [uid, upw, probesList] 	NSE: Name Server Entry PWL: PasswordList UPW: User PW UID: User Id
 Operations (Activities): manipulateRouter: myWlanRouter fakedNation fakedStandardLogins -> myWlanRouter; installTrojan: myBrowser activeXEleme 	
 fakewebPage: myWebPage myWlanRouter my 	yBrowser -> myWebPage;
 fakeLogin: myServer fakedWebPage -> mySe expLogin: myServer myWebPage -> mySe 	
 probeBrowser: myBrowser myServer prob 	es -> myBrowser;

- FakedModel: probeBrowser(myBrowserN fakeLogin(fakedServerN fakedWebPageURL) DNSCprobe);
- 3. vice versa a (TTCN-3) test trace derived from Real-Time System can be transformed into a model and checked for validity against TAO

SET FW - ETSI TISPAN07/MTS – NGN TVR-Analysis Guidelines (1)

A Security Environment

- a.1 Assumptions on the ToE
- a.2 Assumptions on the ToE environment
- a.3 Assets
- a.4 Threat agents
- a.5 Threats
- a.6 Security policies (OPTIONAL)

B Security Objectives

- b.1 Security objectives for the ToE
- b.2 Security objectives for the ToE environment

C IT Security Requirements

- c.1 asset security requirements
- c.1.1 asset security functional requirements (ISO 15408)
- c.1.2 asset security assurance requirements
- c.2 Environment security requirements (OPTIONAL)
- **D** Application notes (OPTIONAL)
- E Rationale, that refers to the goal and purpose of TVRA as defined in TVRA step 1 and recorded in the eTVRA ToE Description table.

ETS

Security Evaluation&Testing Framework: Goal Definition

- Security Evaluation Goal Definition:
 - Countermeasures must be evaluated to be sufficiently and correctly implemented
 - Evaluation is an effort to measure degree of which countermeasure requirements are implemented by ST, PP, ToE!
 - **Sufficiency** is defined in terms of EAL1 to EAL7
 - Correctness means that a certain countermeasure does semantically "closing the door" to a certain threat or vulnerability
 - Measurement is done by means of tool platform used to get heuristic/tested measures of providing confidence to compliance between requirements (model) and implementation (system).

Security Evaluation&Testing Framework: SET FW Roadmap

- identify the components of the Security Evaluation System-Model, for NGN-based Systems/Applications: (Security Architecture, Smart Metering), i.e. ToE Environment (TR1870002v3.0.5, fig.G.2, pp105)
- 2. identify a Security Evaluation Methodology,

in terms of Security-related components, i.e. iST, PP, ToE: (TVRA Risk Metrics, TVRA Methodology, stencil for ToE, Authorization Model)

3. identify an appropriate Security Evaluation Semantics,

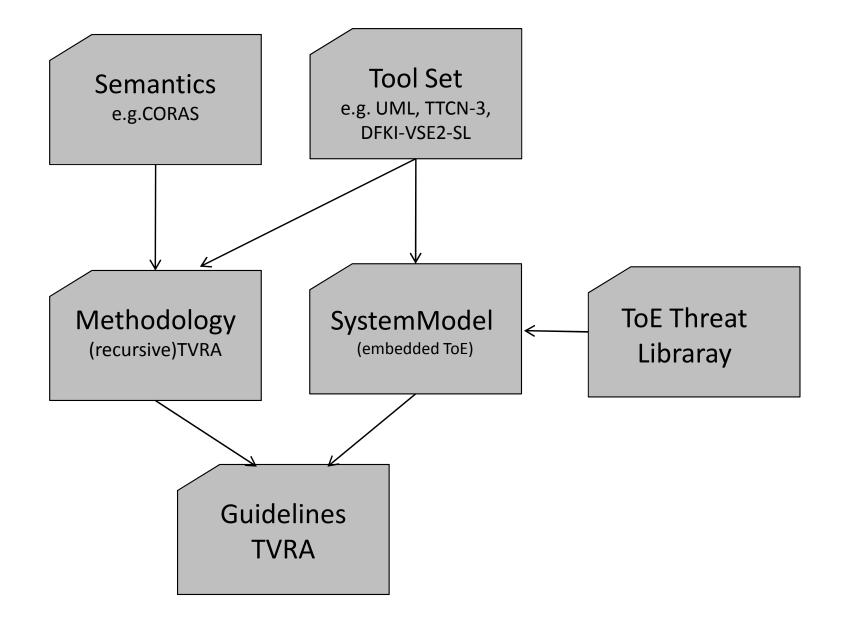
e.g. CORAS, to make decisions on measurements

e.g. TAO, to reason about Safety&Security Properties

4. identify a Security Evaluation Tool Box (Platform),

e.g. MTS-TTCN-3, TVRA, UML, Security Logics, DFKI-VSE/SL etc. compliant with the Security Evaluation Semantics (TVRA Updating)

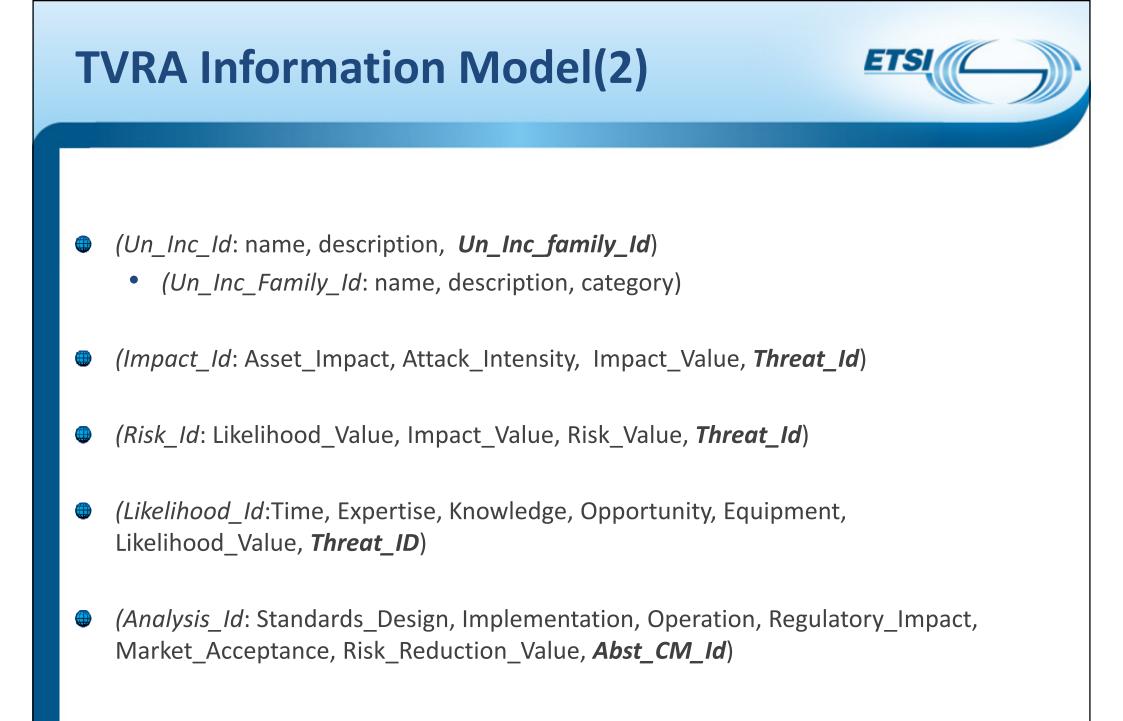
5. identify Security Evaluation Guidelines,


on how to achieve Sufficiency or Correctness with respect to the Semantics

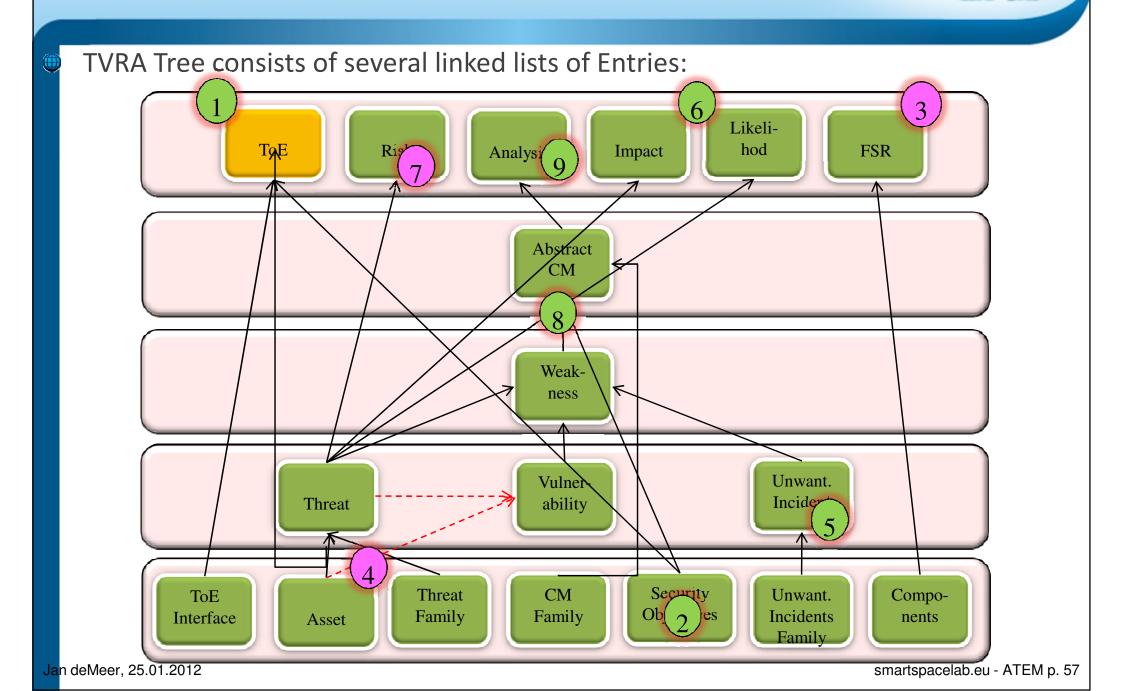
Jan deMeer, 25.01.2012

and by means of tool-box application (Remote Access Use Case) smartspacelab.eu - ATEM p. 48

Security design guide enabling test and assurance (V&V)


SET FW – TVRA Toolbox

ETS


	TVRA Information Model (1)
٢	(<i>ToE_Id:</i> name, description, purpose, goal, ToE_assumption, ToE_environment, assump_ on_TeE-Env, ToE_details, <i>ToE-Interf_Id, Asset_Id, Sec_Obj_Id</i>)
	 (ToE_Interf_Id: name, description) (Asset Id: name, description)
	 (Asset_Id: name, description, category, dependencies, containment)
	 (Sec_Obj_Id: category, name, description)
۲	(FSR_Id: name, description, FSR_class, Sec_Obj_Id, Component_Ids)
	(Abst_CM_Id: name, description, Risk_Reduction_Value, Sec_Obj_Id, CM_family_Id, Weakness_Id)
	 (CM_Family_Id: name, description, category)
	 (Weakness_Id: name, description, <i>Vuln_Id, Threat_Id, Un_Incident_Id</i>)
	(weakiess_id. name, description, van_id, ninede_id, on_inedecnt_id)
٢	(Vuln_Id: name, description, Asset_Id, Threat_Id)
۲	 (Threat_Id: name, description, threat_agents, automated_threat, Threat_family_Id, Asset_Id) (Threat_Family_Id: name, description, category)

Jan deMeer, 25.01.2012

an deMeer, 25.01.2012

Visualization of TVRA Information Model (3)

ETSI

SET FW – TVRA Process Modell - Toolbox Entries

TVRA Toolbox comprises

• 5 generic tools

- to specify goal requirements,
- to compare goal requirements with current Trustworthyness QoS of ToE,
- to make decisions on countermeasure adaptations by analysing identified risks and Vulnerabilities of ToE
- To disturb a countermeasure's effect on ToE (to simulate real attack)
- To measure current behaviour of ToE and to translate measurements into QoS levels of Trustworthiness
- the ToE which keeps the assets being safeguarded against any effort of attack
- Recursive approach to minimize risks of attacks and vulnerabilities of the ToE

SET FW - Toolbox Entries: MB Testing vc. MB (TVR)Analysis?

MB Testing = Interative Approach :=

- 1. to model (Initial) System Design Requirements and Objectives;
- 2. To derive test cases (probes & effects) from Model;
- 3. To execute probes and observe their effects;
- 4. To decide on Validity (pass, fail, inconclusive) of observed probe effects;
- 5. goto step 2: (to Derive next test case);

MB Analysis = **Recursive** Approach :=

- 1. To model (Final) System Application Goals, i.e. Business Objectives: (r);
- To compare preceding (measured) System State with current (derived) Model State: (r~y');
- Due to (r~y') comparision decide on next test case (probes & effects) and feed them into system: (u);
- 4. To measure current System State y, as an effect of current probes;
- 5. To feed-back measured system state to System Model in order to perform next test case computation

Contact: ETSI TISPAN07 STF415 Expert

