[image: image11.jpg]

DTR/MTS001411xx xxx V<0.0.1> (<yyyy-mm>)

MTS MBT case studies

[Part element for endorsement]
<
TECHNICAL REPORT
Reference

DTR/MTS-00141 MBT_CaseStudies
Keywords

<keywords>

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute yyyy.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.
Logos on the front page

If a logo is to be included, it should appear on the right hand side of the front page.

Copyrights on page 2

This paragraph should be used for deliverables processed before WG/TB approval and used in meetings. It will replace the 1st paragraph within the copyright section.
Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.
If an additional copyright is necessary, it should appear on page 2, after the ETSI Copyright Notification.

EXAMPLE:

© European Broadcasting Union yyyy.

Contents

3Logos on the front page

Copyrights on page 2
3
Intellectual Property Rights
5
Foreword
5
Multi-part documents
5
Introduction
5
1
Scope
6
2
References
6
2.1
Normative references
6
2.2
Informative references
6
3
Definitions, symbols and abbreviations
7
3.1
Definitions
7
3.2
Symbols
7
3.3
Abbreviations
7
4
User defined clause(s) from here onwards
8
4.1
User defined subdivisions of clause(s) from here onwards
8
Proforma copyright release text block
8
Annexes

8
Abstract Test Suite (ATS) text block
9
<x1>
The TTCN Graphical form (TTCN.GR)
9
<x2>
The TTCN Machine Processable form (TTCN.MP)
9
Annex <y>:
Bibliography
10
History
10
A few examples:
10

Intellectual Property Rights

This clause is always the first unnumbered clause.

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Report (TR) has been produced by {ETSI Technical Committee|ETSI Project|<other>} <long techbody> (<short techbody>).

Multi-part documents

The following block is required in the case of multi-part deliverables.

· the <common element of the title> is the same for all parts;

· the <part element of the title> differs from part to part; and if appropriate;

· the <sub-part element of the title> differs from sub-part to sub-part.

The paragraph identifying the current part (and sub-part, if appropriate) shall be set in bold.

See an example in the Foreword of EN 300 392-3-5 standard regrouping the different cases we may have of multi-part deliverables containing different deliverable types (e.g. TSs and ENs), parts and sub-parts and a less complex one with TS 101 376-3-22.

For more details see clause 9 of the ETSI Drafting Rules (EDRs).
The best solution for maintaining the structure of series is to have a detailed list of all parts and subparts mentioned in one of the parts (usually it is part 1).

If you choose this solution, the following text has to be mentioned in all of the other parts and sub-parts:

The present document is part <i> of a multi-part deliverable. Full details of the entire series can be found in part [x] [Bookmark_Reference].

See an example in the Foreword of the EN 302 217-2-1.
Introduction

This clause is optional. If it exists, it is always the third unnumbered clause.

Clause numbering starts hereafter.
Check http://portal.etsi.org/edithelp/Files/other/EDRs_navigator.chm clauses 5.2.3 and A.4 for help.

<PAGE BREAK>

1
Scope

The TR (ETSI Technical Report) is the default deliverable when the document contains only informative elements.

The scope shall always be clause 1 of each ETSI deliverable and shall start on a new page (more details can be found in clause 11 of the EDRs).

No text block identified. Forms of expression such as the following should be used:

The present document …
EXAMPLE:
The present document provides the necessary adaptions to the endorsed document.

The Scope shall not contain requirements.

2
References

The following text block applies. More details can be found in clause 12 of the EDRs.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE:
While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.
2.1
Normative references

As the ETSI Technical Report (TR) is entirely informative it shall not list normative references.
The following referenced documents are necessary for the application of the present document.
Not applicable.

2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
· Use the EX style, add the letter "i" (for informative) before the number (which shall be in square brackets) and separate this from the title with a tab (you may use sequence fields for automatically numbering references, see clause A.4: "Sequence numbering") (see example).

EXAMPLE:

[i.1]
ETSI TR 102 473: "<Title>".

[i.2]
ETSI TR 102 469: "<Title>".

3
Definitions, symbols and abbreviations

Delete from the above heading the word(s) which is/are not applicable, (see clauses 13 and 14 of EDRs).

Definitions and abbreviations extracted from ETSI deliverables can be useful when drafting documents and can be consulted via the Terms and Definitions Interactive Database (TEDDI) (http://webapp.etsi.org/Teddi/).
3.1
Definitions

Clause numbering depends on applicability.

· A definition shall not take the form of, or contain, a requirement.

· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).

· The terms and definitions shall be presented in alphabetical order.
For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply:

Definition format

<defined term>: <definition>

example 1: text used to clarify abstract rules by applying them literally

NOTE:
This may contain additional information.

3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Abbreviation format

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

4
Introduction and overall view
<Text>

5
Tooling

This clause includes an overview of the tools under investigation.

5.1
Microsoft SpecExplorer
<Text>

5.2
Conformiq Designer

<Text>

5.3
sepp.med MBTsuite

<Text>

5.4
Fraunhofer FOKUS MD Tester

<Text>

6
Case study 1: ATM toy example

<Text>

6.1
General description of case study 1
<Text>

6.1.1
Overview of case study 1
Modeled features, reasons for choosing subset

<Text>

6.1.2
Abstract model of case study 1
Description of an abstract model (if possible) that has been refined to be fed into the different tools.
<Text>

6.1.2
ETSI test cases for case study 1
ETSI test case descriptions (TPs, TCs, TTCN-3) for the case study.
<Text>

6.2
Applying Microsoft SpecExplorer to case study 1

This section describes modeling ATM toy example and test generation for it with Microsoft SpecExplorer.

6.2.1
Modeling case study 1 with SpecExplorer

SpecExplorer model of ATM is based on the following interface of the SUT.

· A card is identified by an id, an unsigned 32-bit integer number. Every card has an associated pin code, an unsigned 32-bit integer, and balance, also an unsigned 32-bit integer.

· ATM has the following operations:

· void InsertCard(uint cardId) — inserting a card with and id cardId into the ATM. This operation is allowed only in the Idle state of the ATM. The card can be hold by the ATM if it is valid, and is returned if it is invalid. If the card is invalid, the message “Invalid card” is shown by the ATM (the message can be get with the help of GetMessage() operation, see below) and the ATM stays in the Idle state, otherwise the message is empty, and the ATM moves to Authentication state.

· void CheckPin(uint pin) — providing a pin code for the card inserted. Allowed only in Authentication state of the ATM. If the pin code provided is correct for the inserted card, the ATM moves to ReadyForMoneyRequest state and the empty message is shown, otherwise, the ATM returns to the Idle state, the card is returned and the message “Incorrect PIN” is shown.

· uint RequestAmount(uint amount) — requesting an amount of money, equal to the argument (here it is unsigned 32-bit integer). Allowed only in ReadyForMoneyRequest state of the ATM. If the amount requested doesn’t exceed the card balance, this amount is provided (modelled by the result returned), the ATM moves to the Idle state, and the card is returned, else the message “Invalid amount” is shown, 0 is returned, and The ATM stays in the ReadyForMoneyRequest state.

· string GetMessage() — additional operation returning the current message on the ATM.

Valid cards are modeled by a predefined set of cards, all cards outside of this set are considered as invalid.

6.2.2
SpecExplorer model of case study 1

This section contains description of SpecExplorer model for ATM example.

The complete model code is provided in Annex A.

SpecExplorer model of ATM example is written in C# with attributes specific for SpecExplorer. It includes ATMModelProgram.cs file containing model class ATMModelProgram, auxiliary enum ATMState and auxiliary class Card representing cards.

· Card class has three fields, corresponding to card id, pin code, and current balance, all having uint type.
In addition Card class stores static set of valid cards, which are initialized with {(id=1, pin=3456, balance=12), (id=3, pin=1374, balance=0), (id=4, pin=9024, balance=20)}.
There is no valid card with id=2, so this value of card id is considered as invalid.

· ATMState enum represets possible ATM control states and has values Idle, Authentication, and ReadyForMoneyRequest.

· ATMModelProgram is the main model class.
Since there is no need in several instances of ATM, all data and operations are static.
The state of the ATM is modelled by three fields:

· currentState has type ATMState and represents the ATM control state;

· currentCard has Type Card and represents the card inserted, if no card is inserted, its value is null.

· currentMessage has string type and represents the message shown by the ATM.

ATMModelProgram has auxiliary method Card FindCard(uint cardId), which looks for the card with the id specified in the set of valid cards. If it finds such a card, this card is returned, otherwise, teh method returns null.

For each interface operation ATMModelProgram class has a method marked with Rule attribute. Such a method may provide precondition of the corresponding operation and computes the correct values of model fields, which help to check correctness of operation work by calls to other operations further.

· void InsertCardRule(uint cardId) corresponds to InsertCard() operation and provides constraint on its call (that it can be called in the Idle state only) and correct new values of model fields;

· void CheckPinRule(uint pin) corresponds to CheckPin() operation.

· uint RequestAmountRule(uint amount) corresponds to RequestAmount() operation.

· String GetMessageRule() corresponds to GetMessage() operation.

6.2.3
Generating test cases with SpecExplorer for case study 1

Test generation options and parameters for ATM example are described in Config.coord file written in Cord scripting language and containing configuration of state machines and description of test data used for test generation. It includes the following configurations.

· Main configuration defines actions used in state machines and several parameters of state machine exploration (bounds on number of separate states found and steps performed, etc.) and test generation (path and namespace of tests to be generated).

· ParameterCombination configurations defines values of parameters used in operation calls in state machine exploration and test generation.
Values {1,2,3,4} are provided for parameter of InsertCard() (2 is invalid card id).
Values {1222, 3456, 1374, 9024} are provided for parameter of CheckPin() (1222 is incorrect PIN for all valid cards).
Values {0, 10, 20, 25} are provided for parameter of RequestAmount() (0 value is valid for all cards, 25 is too large for all cards, other values allow to make at least 2 consequtive requests).

· ATMModelProgram configuration defines state machine based on ATMModelProgram class, test data, and parameters specified above.

· ATMTestSuite configuration defines test generation strategy for ATMModelProgram. It uses “LongTests” strategy.

The tests generated are located in ATNTestSuite.cs file and are written in a form suitable for execution with the help of VisualStudio UnitTesting framework. They include 14 separate tests.

Trial to use “ShortTests” strategy provides strange result — single test generated consisting of the single step.

6.2.4
Evaluation

Criteria need to be specified. How easy was it, how good are the test cases compared to the ETSI test cases.

The following table provides information on situations covered by the generated tests.

	A situation (test purpose)
	Covered or not

	Insertion of a valid card with check that empty message is shown
	Yes

	Insertion of an invalid card with check that “Invalid card” is shown
	Yes

	Providing correct PIN for a valid card with check that empty message is shown
	Yes

	Providing incorrect PIN for a valid card with check that “Incorrect PIN” is shown
	Yes

	Request of correct amount of money with check that empty message is shown
	Yes

	Request of incorrect amount of money with check that “Invalid amount” is shown
	Yes

	Request of correct amount of money after incorrect one with check that “Invalid amount” message dissappears
	Yes

	Consequtive several requests of money (correct and incorrect) from one card to check that balance diminishes correctly (e.g [start balance: 20] -> 10 -> [10] -> 20 (incorrect) -> [10] -> 10 -> [0] -> 10 (incorrect) -> [0] -> 0 -> [0]))
	No

6.3
Applying Conformiq Designer to case study 1

The goal of the case study is to create a QML model for the ATM toy example.
6.3.1
Modeling case study 1 with Conformiq Designer

In order to create the QML model based on the abstract model of the ATM example the following steps were executed:

· Identifying of input/output data on the interface of the ATM and constructing the corresponding type definitions.
· Transforming the abstract ATM FSM into a QML FSM.
Since the example was simple and the abstract FSM was very similar to the FSMs that can be expressed in QML the procedure was easy.
6.3.2
Conformiq Designer model of case study 1

The first step of the modeling was to identify the input/output data on the interface of the ATM. The ATM can receive the following items:

· Card
An ATM Card which can be valid or invalid.

· Pin
PIN Code for the ATM Card, which can be valid or invalid.

· MoneyReq
The requested amount.
The ATM can answer with the following items:

· ErrorMessage
In case some problem arised this is a textual error message that will appear on the display of the ATM and will inform the user about the reason of the problem.

· MoneyResp
The amount of cash that the user receives after a successful transaction.

For each “item” above a record was defined. In case the modelled entity had some parameters that was implemented with a field variable. For example the Pin record has an integer field called code, which models the PIN code. An invalid PIN code is modelled with the code field set to -1.

After the model of the interface was ready, the behaviour of the ATM was implemented as a state machine. The QML representation of the ATM can be seen in Figure 1.

[image: image1.png]o

in:Card
[msg==getlnvalidCard()]/
sendErrorMessage("Invalid Card!");

Idle

in:Card
[msg==getValidCard()}/

- in:Pin
Authentication [msg==getInvalidPin()]/
sendErrorMessage('Tnvalid PINI);
in:MoneyReq
[msg.amount <= actAcoount balancel/
actAccount balance = actAccount.balance - msg.amount;
MoneyResp mr;
xamn't;); msg.amount; RequestAmount.
send(r —

in:MoneyReq
[msg.amount > actAccount.balance)/
sendErrorMessage("Requested amount s greater than balance!”);

Figure 1 ATM FSM in Conformiq Modeler

The state space of the ATM was extended with some internal variables in order to keep track of the account that is used in the actual transaction. For the account three main properties were stored: the valid card number, the valid pin code and the actual balance was stored.

Some helper functions were also defined to generate the data that is received and sent on the interfaces:

· getValidCard(), getInvalidCard()
These functions are generating the representation of a valid and an invalid Card respectively.

· getValidPin(), getInvalidPin()
These functions are generating the representation of a valid and an invalid PIN code respectively.

· sendErrorMessage()
This function creates an ErrorMessage instance that will appear on the display of the ATM.
6.3.3
Generating test cases with Conformiq Designer for case study 1

After experimenting with the parameters the following settings were successfully used for test generation:

· Project -> Properties -> Conformiq Options

· Lookahead Depth: Set to the third position

· Only finalized runs: Enabled

· Coverage Editor

· State Chart (100%)

· States: Target (5 out of 5: 100%)

· Transitions: Target (7 out of 7: 100%)

· 2-Transitions: Don’t Care

· Implicit Consumption: Block

· Conditional Branching

· Conditional Branches: Target (6 out of 6: 100%)

· Boundary Value Analysis: Don’t Care

· Control Flow (100%)

· Methods: Target (8 out of 8: 100%)

The data in parenthesis are showing the percentages of the test goals that are covered by the generated test in that given coverage area.
6.3.4
Evaluation

· Using the model described in 6.3.2 and setting the parameters of the test generator according to 6.3.3 a test suite is produced by the conformiq Designer tool that consists of 4 testcases:TC1 Move from ATM.RequestAmount to ATM.final-state-1
· TC2 Move from ATM.RequestAmount to ATM.RequestAmount
· TC3 Move from ATM.Idle to ATM.Idle
· TC4 Move from ATM.Authentication to ATM.Idle
The state and transition coverage for each testcase can be observed in Figure 2.

[image: image2.emf]TC1 TC2

TC3 TC4

Figure 2 State and Transition Coverage of the testcases generated for the ATM Example using conformiq Designer
6.5
Applying sepp.med MBTsuite to case study 1

<Text>

6.5.1
Modeling case study 1 with sepp.med MBTsuite

For this particular case study, it was chosen to try out both modelling approaches supported by the toolchain with the goal of evaluating the features and functionalities thereof and as a preparation for the following case studies that were expected to be more complex.
6.5.2
sepp.med MBTsuite model of case study 1

As described in section 5.3 the SeppMed MBTSuite supports both UML activity diagrams and state diagrams to model the system behaviour for testcase generation. Enterprise Architect was used in this case study to create the UML models. Figure ??? and ??? below depict each of those diagrams respectively. The test models represent a directed graph that is enriched with instructions/annotations that will be evaluated by the MBTSuite tool during testcase generation for exploring the graph. Those annotations can be added to edges as well as vertices of the directed graph, with the main part of test logic being associated to the edges.
To support the annotation of the UML diagrams MBTSuite provides a set of UML extensions in form of a UML profile that can be imported to the UML modelling tool (In this case Entreprise Architect). The following categories of annotations are supported:
· Transition-specific annotations

· Guard conditions

· Guard conditions are a native UML construct representing the condition under which a transition is applicable or not.

· Specific tagged values

· EXP: EXP tagged values are plain text descriptions representing the behaviour expected from the SUT and are mainly aimed for manually executable test procedures. Potentially they could be used for generating TP-Like test scenarios, but this requires further investigations that will be part of this case study’s evaluation.
· Code: Code tagged values represent test automation code that will be generated everytime the transition is used while exploring the diagram
· Script: Script tagged values are python code instructions that can be used to define and manipulate variables associated to the model (e.g. variables representing the state of the SUT at a given point in the directed graph). Script tagged values are evaluated by MBTSuite during test generation and are used to explore valid paths in that process.

· Vertices-specific annotations

· Description

Beside annotations the MBTSuite defines a series of UML-stereotypes in its associated UML-Profile and uses those for test generation. The following stereotypes were used in the case studies described in this report:

· Teststep

· VP (i.e. Verification Point)

Strengths and limitations of the approach

Architecture-Awareness: Does the take into account architectural constraints set by the SUT/Test model?

Data-Awareness: Does the approach/tool take into account data structures, values defined in the model?

The complete model shall go into an annex.

[image: image3.png]Liscaravaia==raise]

isPivaiig

LisPiivatia-
Lrequiredamount > Troel
oatance]

Lrequiredamount <=
oatance]

Figure 1 UML Activity Diagram for ATM Case Study
[image: image4.png]stm ATM StateMachine

<Preconditions

AT ststz machine,

The varisties are
iniislizes here.

Avort
TestStzpn

—ressteps caa

Posconditions
Final

Card inserted and valic
JnsenCard)
i —

Eiinvalia
“Teststepn

Teststepn
invalia Finyalia
Valid amount finsertCard() Tesisteps
requsstAmount)
e
Requestamount

«TestStaps Invalic
requstamount)

Figure 1 UML State Diagram for ATM Case Study
6.5.3
Generating test cases with sepp.med MBTsuite for case study 1

Once the UML test models have been imported into the MBTSuite tool, a test generation strategy can be executed on those to generate a set of testcases. In that process the various paths of directed graph represented by the input diagrams are explored, taking into account the instructions provided as annotations to the UML model.
<Text>

6.5.4
Evaluation

Criteria need to be specified. How easy was it, how good are the test cases compared to the ETSI test cases.

<Text>

6.6
Applying FOKUS MD Tester to case study 1

<Text>

6.6.1
Modeling case study 1 with FOKUS MD Tester

Steps for the adaptation of Abstract model, other specifics

<Text>

6.6.2
FOKUS MD Tester model of case study 1

Description of FOKUS MD Tester model. The complete model shall go into an annex.

[image: image5.png]UTML Test Behaviour Activity Diagram : ATMTestProject:TestBehaviourModel1:ATM Testcase / ATM Testcase

This testactivity diaaram covers the
lwhole behaviour ofthe ATM from the
testing perspective. Retherthan
<<Send Data Action> > | decomposing the behaviourto target
userlnterface,send (CardDataType:CardDataType_OUT) |single requirements. this approach
|could also be applied

TRUE
if sknownCardType)

<<Receive Data Event>> <<Send Data Action> >
userlnterface receive (ATMMessage_UNKNOWN_CARD_KIND) userlnterface.send (PINType:PINType_OUT)

|

FALSE TRUE

<<Receive Data Event> > <<Send Data Action>>
userlnterface receive (ATMMessage INVALID_PIN) userTnterface.send (MoneyRequestType:MoneyRequestType_OUT)|

FALSE
if (séllowedAmount)

<<Receive Data Event> >

userlnterface receive (AT Message TOO_HIGH_AMOUNT) userlnterface receive (MoneyResponseType IN)

<<Rece|ue Data Event>> ‘ ‘

Figure 1 Test activity diagram for ATM Case Study
6.6.3
Generating test cases with FOKUS MD Tester for case study 1

Describing the test generation, options, problems, etc.

<Text>

6.6.4
Evaluation

Criteria need to be specified. How easy was it, how good are the test cases compared to the ETSI test cases.

<Text>

6.7
Résumé for case study 1

<Text>

7
Case study 2: ITS location services

<Text>

7.1
General description of case study 2

<Text>

7.1.1
Overview of case study 2

Modeled features, reasons for choosing subset

<Text>

7.1.2
Abstract model of case study 2

Description of an abstract model (if possible) that has been refined to be fed into the different tools.

<Text>

7.1.2
ETSI test cases for case study 2

ETSI test case descriptions (TPs, TCs, TTCN-3) for the case study.

<Text>

7.2
Applying Microsoft SpecExplorer to case study 2

<Text>

7.2.1
Modeling case study 2 with SpecExplorer

Steps for the adaptation of Abstract model, other specifics

<Text>

7.2.2
SpecExplorer model of case study 2

Description of SpecExplorer model.

The complete model shall go into an annex.

<Text>

7.2.3
Generating test cases with SpecExplorer for case study 2

Describing the test generation, options, problems, etc.

<Text>

7.2.4
Evaluation

Criteria need to be specified. How easy was it, how good are the test cases compared to the ETSI test cases.

<Text>

7.3
Applying Conformiq Designer to case study 2

The goal of the case study is to produce a QML model of the Location Serivce functionality of the GeoNetworking protocol which can be used to generate a test suite with the Conformiq Designer tool. This test suite should be comparable to the test purposes defined in the Test Specification for the Location Service of the GeoNetworking protocol.
7.3.1
Modeling case study 2 with Conformiq Designer

The starting point of the modeling work was the ETSI standard of the GeoNetworking protocol. The GeoNetworking protocol is a network layer protocol that provides packet routing in an ad hoc network. It supports the communication among individual ITS stations as well as the distribution of packets in geographical areas. A GeoAdhoc router shall maintain a local data structure, referred to as location table (LocT), where each entry holds information about other ITS stations that execute the GeonNetworking protocol. Each entry contains several variables and packet buffers. The protocol behaviour is described by maintaining this table and the actions are mostly depending on the actual state of the table. This means, that when the standard is followed it is easier to describe the system as a data table and the corresponding functions, and it is not straightforward to describe the system using states and transitions of an FSM. The problem is, that the location table contains a lot of variables and it grows with each new station which leads to early state space explosion. Though a lot of testcases could be generated this way, it is hard to tell which makes sense and which is just a variation of an already generated testcase.

To provide some boundaries which can make job of both the modeller and the test generation tool easier the same test configurations were introduced that were used in the Test Specification. The use of the internal variables was reduced and instead some new states and transitions were inserted into the FSM model which made the model more readable and more friendly for the test generation algorithm.

The test purposes were also reverse engineered to identify those events and transitions that are worth testing. Though reverse engineering of the test purposes could make the whole model based testing approach questionable, I have to emphasize that the test purposes were only used as guidance to extend the test model since I was inexperienced with the GeoNetworking protocol. This model extension would have been easy for ITS experts who were able to design the test purposes, because of the graphical overview the model provides.
7.3.2
Conformiq Designer model of case study 2

This section describes the QML model. The model is composed of three core parts: data definitions including the data structures that are modeling the PDUs, the representation of the Location Table and finally the protocol behaviour which is described with an FSM and some functions. To model the PDUs records were defined for each important packet types. These definitions are located in the SystemBlock.cqa file. It is important to mention that only those fields were modelled for a packet that were used in the behaviour model and even those are on an high abstraction level. For example the GN_ADDR and the position vector fields are simply modelled with a field of type String. The following records were defined for the packet types:
· Upper Port

· GN_MGMT_Req

· GN_MGMT_Resp

· GN_DATA_Req

· GN_DATA_Ind

· Lower Port

· GN_Unicast_PDU

· GN_Beacon_PDU

· GN_LS_Request_PDU

· GN_LS_Reply_PDU

The model of the Location Table can be found in the LocTE.cqa file. A Location Table Entry is described with the LocTE class. This class has the same fields as a Location Table Entry and with the instances of this class a Location Table can be built dynamically. It also have some packet buffers and the corresponding buffer management operations are implemented with functions.

The behavioral model is grasped with an FSM (see Figure 3) and it is tailored for the CF01 scenario. It consists of two main areas: in the upper part there are the states and transitions for initialization, while in the lower part of the picture the protocol behavior is described.

[image: image6.emf]Protocol Behavior

Initialization

Figure 3 Location Serivce FSM in Conformiq Modeler

The Idle state is the base state after the initialization is done. This state serves as the starting point for the different protocol functionalities which are triggered by various incoming PDUs from the lower layer or ASPs from the upper layer. The handling of the incoming messages are done in separate functions that are following the standard as closely as it was possible while keeping the abstraction level high. The FSM gets into the LS_Init_0 state when a Location Service was initiated for the first element in the Location Table. This is an example for the simplification of the model since it binds that the Location Service can be initiated only for this first peer. This state has some internal states to model retransmissions and manage the lifetime of the buffered packets.

The following packet handler functions were implemented:

· Handle_LS_Init (according to 9.2.4.2.2)

· Handle_LS_Retransmission (according to 9.2.4.2.3)

· Handle_LS_Reply_Destination (according to 9.2.4.2.4)

· Handle_LS_Request_Destination (according to 9.2.4.4)

· Handle_LS_Request_Forwarding (according to 9.2.4.3)

· Handle_LS_Reply_Forwarding (according to 9.2.4.3)

· Handle_Unicast_Destination (according to 9.3.4.4)

In Conformiq Designer the user has the option to use requirement traceability links to establish new test goals driven by functional requirements. The requirement links are marked in the model by the “requirement” statement. These marks are used as coverage criteria that can be enabled and disabled independently in the tool’s user interface. Every selected requirement becomes a test goal that guides Conformiq Designer to look for behaviors that cover the particular requirement. During modeling the following requirements were inserted:

· RQ01 9.2.1.3.1 Initial Address Configuration

· RQ02 9.2.4.2.2 LS_NOT_PENDING

· RQ03 9.2.4.2.2 LS_PENDING

· RQ04 9.2.4.2.3 LS Retransmission

· RQ05 9.2.4.2.3 LS Retransmission Counter

· RQ06 9.2.4.2.4 LS Reply duplicate detected

· RQ07 9.2.4.2.4 LS Reply_Neighbor

· RQ08 9.2.4.2.4 LS Reply Not Neighbor

· RQ09 9.2.4.2.4 LS Reply SO LS_Pending:false

· RQ10 9.2.4.2.4 LS Reply SO LS Pending:true

· RQ11 9.2.4.2.4 LS Request Neighbor

· RQ12 9.2.4.3 LS Request Forwarding

· RQ13 9.2.4.3 LS Reply forwarding

· RQ14 9.2.4.4 LS Request Not Neighbor

· RQ15 9.2.4.4 LS Request is the same from another node

· RQ16 Lifetime expired
· RQ17 Unicast Destination
· RQ18 Unicast Destination: flush LS packet buffer

7.3.3
Generating test cases with Conformiq Designer for case study 2
The goal during the test generation was to produce a test suite that can be compared to the test purposes defined in the Conformance Test Specification. After experimenting with the parameters I used the following settings successfully:
· Project -> Properties -> Conformiq Options

· Lookahead Depth: Set to the third position

· Only finalized runs: Enabled

· Coverage Editor

· Requirements: Target (17 out of 18: 94%)

· State Chart (100%)

· States: Target (10 out of 10: 100%)

· Transitions: Target (16 out of 16: 100%)

· 2-Transitions: Don’t Care

· Implicit Consumption: Block

· Conditional Branching

· Conditional Branches: Target (35 out of 38: 92%)

· Boundary Value Analysis: Don’t Care

· Control Flow (100%)

· Methods: Target (34 out of 34: 100%)

Setting the Lookahead Depth to the 3rd position gave 94% requirement coverage within a reasonable time (7 minutes on an Intel® Core(TM) i5 CPU with 4 cores and 4GB memory running Windows Vista). To find the optimal setting for this parameter one has to experiment with the model and the settings for a while.

The data in parenthesis are showing the percentages of the test goals that are covered by the generated test in that given coverage area.

The only problems that appeared during test generation were the huge generation times when the Lookahead Depth was set to a high value. With high settings the generation sometimes was running for more than an hour and the end was still far, therefore it was cancelled. However, after the cancellation the merging of the already generated testcases into the test was not always succesfull.
7.3.4
Evaluation

Using the model described in 6.3.2 and setting the parameters of the test generator according to 6.3.3 a test suite is produced by the conformiq Designer tool. In this section I compare this test suite to the test purposes defined in the Conformance Test Specification.The test purposes (TP):

· TP/GEONW/PON/LOS/BV/01 Test of first LS invocation for unknown Destination mode

· TP/GEONW/PON/LOS/BV/02 Test of no LS invocation for unknown Destination nodes when LS procedure is already active

· TP/GEONW/PON/LOS/BV/03 Test of packet buffering into LS buffer

· TP/GEONW/PON/LOS/BV/04 Test of LS buffer characteristics: FIFO

· TP/GEONW/PON/LOS/BV/05 Test of LS buffer characteristics: discarding upon LT expiration

· TP/GEONW/PON/LOS/BV/06 Test of LS Request retransmission if no answer is received

· TP/GEONW/PON/LOS/BV/07 Test of LS request retransmission if no answer is received

· TP/GEONW/PON/LOS/BV/08 Test of LS Reply generation by destination node

· TP/GEONW/PON/LOS/BV/09 Test of no LS Reply generation for already answered LS Request packets

· TP/GEONW/PON/LOS/BV/10 Test of LS Request forwarding

· TP/GEONW/PON/LOS/BV/11 Test of LS Reply forwarding

· TP/GEONW/PON/LOS/BV/12 Test flushing of the LS buffer, initiated by the processing of a common header from the target destination

· TP/GEONW/PON/LOS/BV/13 Test of LS buffer characterstics: FIFO type

The generated testcases:

· TC 01 Move from GeoNetworking.Idle to GeoNetworking.final-state-1
· TC 02 9.2.4.3 LS Request Forwarding
· TC 03 9.2.4.3 LS Reply Forwarding
· TC 04 9.2.4.2.4 LS Request Neighbor
· TC 05 9.2.4.4 LS Request Not Neighbor
· TC 06 Unicast Destination
· TC 07 9.2.4.2.4 LS Reply Neighbor
· TC 08 9.2.4.2.4 LS Reply Not Neighbor
· TC 09 Lifetime expired
· TC 10 Move from GeoNetworking.LS_Init_0 to GeoNetworking.LS_Init_0
· TC 11 9.2.4.2.2 LS_PENDING
· TC 12 Conditional branch then branch of if in LocTE.cqa:62-65
· TC 13 9.2.4.2.3 LS Retransmission avoiding Lifetime expired
The following table gives a short overview about which generated testcase covers which defined Test Purpose:

Table 1 Test Purpose Coverage

	
	TC01
	TC02
	TC03
	TC04
	TC05
	TC06
	TC07
	TC08
	TC09
	TC10
	TC11
	TC12
	TC13

	TP01
	
	
	
	
	
	
	X
	
	
	
	
	
	

	TP02
	
	
	
	
	
	
	
	
	
	X
	
	
	

	TP03
	
	
	
	
	
	
	X
	X
	
	
	
	
	X

	TP04
	
	
	
	
	
	
	
	
	
	X
	
	
	

	TP05
	
	
	
	
	
	
	
	
	X
	
	
	
	X

	TP06
	
	
	
	
	
	
	
	
	X
	
	
	
	X

	TP07
	
	
	
	
	
	
	
	
	X
	
	
	
	X

	TP08
	
	
	
	X
	X
	
	
	
	
	
	
	
	

	TP09
	
	
	
	
	X
	
	
	
	
	
	
	
	

	TP10
	
	X
	
	
	
	
	
	
	
	
	
	
	

	TP11
	
	
	X
	
	
	
	
	
	
	
	
	
	

	TP12
	
	
	
	
	
	X
	
	
	
	
	
	
	

	TP13
	
	
	
	
	
	
	
	
	
	X
	
	
	

All thirteen test purposes were covered by the generated testcases. The granularity of the generated test data is at least on the same level as the description in the test purposes.

There are some testcases that are differing from each other, but they are excercising the same test purpose. The reason for this is that the handler functions were implemented based on the standard and there were some branches that were marked with different “requirements”. This lead to several testcases that are going a little bit deeper into the protocol behavior than the Test Purposes.

Using the Traceability Matrix of the tool it is possible to observe that which requirements are covered by which generated testcases:

Table 2 Requirement Coverage

	
	TC01
	TC02
	TC03
	TC04
	TC05
	TC06
	TC07
	TC08
	TC09
	TC10
	TC11
	TC12
	TC13

	RQ01
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X

	RQ02
	
	
	
	
	
	X
	X
	X
	X
	X
	X
	X
	X

	RQ03
	
	
	
	
	
	
	
	
	
	
	X
	X
	X

	RQ04
	
	
	
	
	
	
	
	
	X
	
	X
	X
	X

	RQ05
	
	
	
	
	
	
	
	
	X
	
	
	X
	X

	RQ06
	
	
	
	
	
	
	
	
	
	
	X
	X
	X

	RQ07
	
	
	
	
	
	
	X
	
	
	
	
	
	

	RQ08
	
	
	
	
	
	
	
	X
	X
	X
	X
	X
	X

	RQ09
	
	
	
	
	
	
	
	X
	X
	X
	X
	X
	X

	RQ10
	
	
	
	
	
	
	
	
	
	
	
	
	

	RQ11
	
	
	
	X
	
	
	
	
	
	
	
	
	

	RQ12
	
	
	X
	
	
	
	
	
	
	
	
	
	

	RQ13
	
	X
	
	
	
	
	
	
	
	
	
	
	

	RQ14
	
	
	
	
	X
	
	
	
	
	
	
	
	

	RQ15
	
	
	
	
	X
	
	
	
	
	
	
	
	

	RQ16
	
	
	
	
	
	
	
	
	X
	
	
	X
	

	RQ17
	
	
	
	
	
	X
	
	
	
	
	
	
	

	RQ18
	
	
	
	
	
	X
	
	
	
	
	
	
	

7.5
Applying sepp.med MBTsuite to case study 2
<Text>

7.5.1
Modeling case study 2 with sepp.med MBTsuite

The approach chosen for creating the test model for the ITS case study consists in creating a separate state diagram for each feature of the protocol, based on the system specification and according to its structure. While the state diagram should try to cover all aspects of that feature, interferences with other features should be avoided as much as possible to ensure that the complexity of the model can still be managed with a reasonable amount of efforts. For example in this particular case study targeting the location service functionality of the ITS Geonetworking protocol (Section 9.2.4), it was chosen to distinguish between source operations (Section 9.2.4.2), i.e. situations in which the SUT acts as the source for a location service request, and forwarder operations(Section 9.2.4.3), i.e. situations whereby the SUT is requested to forward incoming requests to their addressed parties and therefore acts as both a sender and a receiver. Therefore two separate state machines were created, with one for source operations and the other one for forwarder operations. Obviously, if for some particular reasons, there is a wish to have a single state machine rather that a set thereof as used here, the individual state machines could then combined into a single one using branching to distinguish between the different modes.
Given that MBTSuite does not take data structures and architectural structure into account, the only realistic output expected to be generated automatically is a collection of test purposes and the associated procedures for assessing those test purposes.

7.5.2
sepp.med MBTsuite model of case study 2
Figure ??? below depicts the UML state diagram for the ITS GN6 location service functionality in source operation mode.
[image: image7.png]stm SO_Initial_LS_Request

itions
nifst

TestSieps

Expecting_SH_PDU

in:SN_PDU > inSN_PDU
I_isPending = FALSE"

eTimer=00, TestSteps
Tric=o

wee
Received_SN_PDU

_lsPending = “TRUE;
TestSteps Timer

«TestSteps Degrement tsTimer | - eTimerStatus = INTIALIZED"
JlocT_contsins_locTE = “TRUE:

Request

Resens Ls reques TG <
ITS_GN_LOCATION_SERVICE_MAX_RETRANS] TestSteps Teststeps Discerd LS Reply
_tisTimer. . inLS_Reply > LS_Reply_Ctr>1
TS G Locamion seavice mereasuir_wgs; | leTimesis s memed gy, | Lo
isTimestata = UG Csap, L= =001 sep

e

inLS_Reply > _inLS_Reply [ATC <

_ITS_GN_LOCATION_SERVICE_MAX_RETRANS]
T_locT_contains_locTE = FALSE"

TestSteps

LS Pending is FALSE [_lsPending == FALSE]

ITS_GN_LOCATION_SERVICE_RETRANSMIT_TIVER;

ResandLs

Processing_LS_Reply

‘SN PDU Discarded LRTC >= " ITS_GN_LOCATION_SERVICE _MAX_RETRANS] TestSteps

|
Tessiers Lispending
Acoept LS Reply TRUE
LLS_Reply_Ctr==1]
/ReplyPacietDuplicste
“TRUE":
vy

LS_Reply_Accepted

Testsiees

<Postoonditions.
Final

Figure 1 State diagram for Source Mode of ITS Case Study
7.5.3
Generating test cases with sepp.med MBTsuite for case study 2
The number of testcases generated by MBTSuite seems to depend on two main factors:

· The maximum path length: This appears to be the maximum length which the test generator will explore for a single test case. The default value (50) is perfectly suitable for our model, given that its size is rather small, with the maximum path length being hardly reaching 10 transitions.

· The maximum loop runs: This appears to represent the maximal number of times loops contained in the model will be explored, potentially to reach areas in the model guarded by rules depending on values affected by successive runs. In this particular case study, the maximum loop runs needed to be adapted to the value assigned to the maximal number of LS-Request retransmissions (_ITS_GN_LOCATION_SERVICE_MAX_RETRANS) for full path coverage.

From the state diagram for source mode operation the MBTSuite generated a total of 18 test cases, with the _ITS_GN_LOCATION_SERVICE_MAX_RETRANS and the maximum loop runs parameters both set to 5.
7.5.4
Evaluation

The key benefit of the approach is that it allows a systematic derivation of test purposes based on the system specification. However it does not facilitate the process from those test purposes towards TTCN-3 test scripts yet. The reason being that, eventhough they can be modelled with UML, data and architectural structures are not yet taken into account during testcase generation. However, by using the Code tagged value, TTCN-3 code snippets could be associated to the test model and a skeleton generated automatically, but this would break an important requirement of model-driven engineering, namely to keep the model independent from a particular implementation technology.
TODO: Comparison of generated testcases to TSS TPs defined manually
Table 1 Test Purpose Coverage

	
	TC01
	TC02
	TC03
	TC04
	TC05
	TC06
	TC07
	TC08
	TC09
	TC10
	TC11
	TC12
	TC13
	TC14

	TP01
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TP02
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TP03
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TP04
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TP05
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TP06
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TP07
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TP08
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TP09
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TP10
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TP11
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TP12
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TP13
	
	
	
	
	
	
	
	
	
	
	
	
	
	

7.6
Applying FOKUS MD Tester to case study 2
<Text>

7.6.1
Modeling case study 2 with FOKUS MD Tester

The key difference between the MDTester tools and others presented in this document is that it is based on the specification of a test model from the tester’s perspective and less from the system developer’s. Therefore, the directed graph provided here already takes into account not only the stimuli required to trigger certain expected behaviours (responses) from the SUT, but also the entry points through which those stimuli can be transmitted to the SUT and its responses be observed for assessing its correct/incorrect behaviour.
7.6.2
FOKUS MD Tester model of case study 2
Description of FOKUS MD Tester model.

The complete model shall go into an annex.

[image: image8.png]GeoNet TestProject:TestBehaviourhModell:LocationServiceTestcases::SourceOperations::SO_Initiall sRequest / SO _Tnitiall sRequest

O

<<Send Data Action>>
fn_Portsend (6N_DATA RequestindType:m_gn_Date Request (p_gnAddress = GN_ADDR ITS_NODE B))

<<Recaive Dafa Event>>
gn_Portreceive (LSRequestType(T_deadlock(10.0 ms)] > v_inlsRequest

[<<Repest Test Action > » [TS_GN_LOC_SERV_MAX RTX timed

until irmer T_LS, Retransmit expires

<<Send Data Action>>
gn_Part.send (LSReplyTypeim_Ls_Reply (p_Ls_Request = v_inLsRequest))

5/ ‘ <<Receive Data Event>> ‘

‘ <<Wait Actian>> ‘

in_Portreceive (i_gn_Data Ind (p_gnéddress = GN_ADDR ITS_NODE B))

gn_Portreceive (LSRequestType(T_deadlock(10.0 ms)] > v_inlsRequest
‘ <<Recaive Dafa Event>> ‘

<Al Actian>>
until irmer T_LS, Retransmit expires

R/2

<<Send Discard Action>>
gn_Part.send (LSReplyTypeim_Ls_Reply (p_Ls_Request = v_inLsRequest))

Figure 1 Test activity diagram for Source Mode of ITS Case Study
7.6.3
Generating test cases with FOKUS MD Tester for case study 2
The test generation process in MDTester consists of a path exploration of the provided activity diagram, always starting from the initial activity to the final one. The result is a series of activity diagrams, each of which represents a testcase.

[image: image9.jpg]Q

<<Send Data Actian>>
fin_Portsend (6N_DATA RequestindTypeim_gn_Data Request (p_gnAddress = GN_ADDR ITS_NODE B))|

<<Recaive Data Events>
gn._Portreceive (LSRequestType)(T_deadlock(10.0 ms)] > v inlsRequest

<<Send Data Actian>>
gn_Partsend (LSReplyTypeim_Ls_Reply (p_Ls_Request = v inLsRequest))

iy

<<Receive Data Event> >
in_Portreceive (m_gn_Data_Ind (p_gnAddress = GN_ADDR_ITS_NODE_B))

 [image: image10.jpg]o

<<Send Data Actian>>
fin_Portsend (6N_DATA RequestindType:m_gn_Date Request (p_gnAddress = GN_ADDR ITS_NODE B))|

<<Recaive Data Event>>
gn._Portreceive (LSRequestType(T_deadlock(10.0 ms)] - v inlsRequest

gn_Part.send (LSReplyTypeim_Ls_Reply (p_Ls_Request = v_insRequest))

<<Send Data Action>> ‘

y

<<Receive Data Event >
in_Portreceive (m_gn_Data_Ind (p_gnAddress = GN_ADDR_ITS_NODE_B))

<<Send Discard Actian>>
gn_Part.send (LSReplyTypeim_Ls_Reply (p_Ls_ Request = v inLsRequest))

Figure 1 Examples of generated testcases for Source Mode of ITS Case Study
Following that approach, a total of 6 testcases were generated using the system’s specification as sole input. While, this may appear to be low, compared with the number of testpurposes designed manually for this feature (13) a more detailed evaluation of the coverage is required for higher accuracy.

Generation of TTCN-3 Source code

Given that the generated testcase activity diagrams take data and architecture structures defined in the model into account, they can be transformed automatically into TTCN-3 code skeletons and used as a base for proceeding with the standardization process.

Example of generated TTCN-3 code in the Annex

7.6.4
Evaluation

The evaluation approach for this case study will be similar to the one used for the MBTSuite tool chain.
<Text>

7.7
Résumé for case study 2
<Text>

8
Case study 3: Diameter

<Text>

8.1
General description of case study 3

<Text>

8.1.1
Overview of case study 3

Modeled features, reasons for choosing subset

<Text>

8.1.2
Abstract model of case study 3

Description of an abstract model (if possible) that has been refined to be fed into the different tools.

<Text>

8.1.2
ETSI test cases for case study 3

ETSI test case descriptions (TPs, TCs, TTCN-3) for the case study.

<Text>

8.2
Applying Microsoft SpecExplorer to case study 3

<Text>

8.2.1
Modeling case study 3 with SpecExplorer

Steps for the adaptation of Abstract model, other specifics

<Text>

8.2.2
SpecExplorer model of case study 3

Description of SpecExplorer model.

The complete model shall go into an annex.

<Text>

8.2.3
Generating test cases with SpecExplorer for case study 8

Describing the test generation, options, problems, etc.

<Text>

8.2.4
Evaluation

Criteria need to be specified. How easy was it, how good are the test cases compared to the ETSI test cases.

<Text>

8.3
Applying Conformiq Designer to case study 3

<Text>

8.3.1
Modeling case study 3 with Conformiq Designer

Steps for the adaptation of Abstract model, other specifics

<Text>

8.3.2
Conformiq Designer model of case study 3

Description of Conformiq Designer model.

The complete model shall go into an annex.

<Text>

8.3.3
Generating test cases with Conformiq Designer for case study 3

Describing the test generation, options, problems, etc.

<Text>

8.3.4
Evaluation

Criteria need to be specified. How easy was it, how good are the test cases compared to the ETSI test cases.

<Text>

8.4
Applying Conformiq Designer to case study 3

<Text>

8.4.1
Modeling case study 3 with Conformiq Designer

Steps for the adaptation of Abstract model, other specifics

<Text>

8.4.2
Conformiq Designer model of case study 3

Description of Conformiq Designer model.

The complete model shall go into an annex.

<Text>

8.4.3
Generating test cases with Conformiq Designer for case study 3

Describing the test generation, options, problems, etc.

<Text>

8.4.4
Evaluation

Criteria need to be specified. How easy was it, how good are the test cases compared to the ETSI test cases.

<Text>

8.5
Applying sepp.med MBTsuite to case study 3

<Text>

8.5.1
Modeling case study 3 with sepp.med MBTsuite

Steps for the adaptation of Abstract model, other specifics

<Text>

8.5.2
sepp.med MBTsuite model of case study 3

Description of sepp.med MBTsuite model.

The complete model shall go into an annex.

<Text>

8.5.3
Generating test cases with sepp.med MBTsuite for case study 3

Describing the test generation, options, problems, etc.

<Text>

8.5.4
Evaluation

Criteria need to be specified. How easy was it, how good are the test cases compared to the ETSI test cases.

<Text>

8.6
Applying FOKUS MD Tester to case study 3

<Text>

8.6.1
Modeling case study 3 with FOKUS MD Tester

Steps for the adaptation of Abstract model, other specifics

<Text>

8.6.2
FOKUS MD Tester model of case study 3

Description of FOKUS MD Tester model.

The complete model shall go into an annex.

<Text>

8.6.3
Generating test cases with FOKUS MD Tester for case study 3

Describing the test generation, options, problems, etc.

<Text>

8.6.4
Evaluation

Criteria need to be specified. How easy was it, how good are the test cases compared to the ETSI test cases.

<Text>

8.7
Résumé for case study 3

<Text>

8
Evaluation of all case studies

This section has to be refined.

<Text>

The following text is to be used when appropriate:

Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, ETSI grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex <A>:
Title of annex (style H9)
<Text>

<PAGE BREAK>

Annex :
Title of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
The following text is to be used when appropriate:

Abstract Test Suite (ATS) text block

This text should be used for ATSs using TTCN-2 or TTCN-3. The subdivision is recommended.

Use one of the three following choices: Either:

For test suite specified in TTCN version 2 (TTCN-2): Provide both Graphical Rendition (GR) and Machine Processable (MP) files.

The following text should be used for ATSs using TTCN-2. The subdivision is recommended.

This ATS has been produced using the Tree and Tabular Combined Notation (TTCN) according to ISO/IEC 9646-3 [<x>].

The ATS was developed on a separate TTCN software tool and, therefore, the TTCN tables are not completely referenced in the table of contents. The ATS itself contains a test suite overview part which provides additional information and references.

For test suite specified in TTCN version 3 (TTCN-3) Tabular Format: Provide both Graphical Rendition (GR) and Machine Processable (MP) files.

The following text should be used for ATSs using TTCN-3 Tabular Format. The subdivision is recommended.

This ATS has been produced using the Testing and Test Control Notation (TTCN) according to ES 201 873-2 [<x>].

The ATS was developed on a separate TTCN software tool and therefore the TTCN tables are not completely referenced in the table of contents. The ATS itself contains a test suite overview part which provides additional information and references.

For test suites specified in TTCN version 3 (TTNC-3) Core Language: Provide only the machine processable (MP) file.

The following text should be used for ATSs using TTCN-3 Core Language. The subdivision is recommended.

This ATS has been produced using the Testing and Test Control Notation (TTCN) according to ES 201 873-2 [<x>].

<x1>
The TTCN Graphical form (TTCN.GR)

The TTCN.GR representation of this ATS is contained in an Adobe Portable Document Format™ file (<any_name>.PDF contained in archive <Shortfilename>.ZIP) which accompanies the present document.

<x2>
The TTCN Machine Processable form (TTCN.MP)

The TTCN.MP representation corresponding to this ATS is contained in an ASCII file (<any_name>.MP contained in archive <Shortfilename>.ZIP) which accompanies the present document.

Where an ETSI Abstract Test Suite (in TTCN) is published in both .GR and .MP format these two forms shall be considered equivalent. In the event that there appears to be syntactical or semantic differences between the two then the problem shall be resolved and the erroneous format (whichever it is) shall be corrected.

<PAGE BREAK>

Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself (see clause 12.2 of the EDRs http://portal.etsi.org/edithelp/Files/other/EDRs_navigator.chm).

It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Document history

	<Version>
	<Date>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

A few examples:

	Document history

	V1.1.1
	April 2001
	Publication

	V1.3.1
	June 2011
	Pre-processed by the ETSI Secretariat editHelp! e-mail: mailto:edithelp@etsi.org

	
	
	

	
	
	

	
	
	

2012-03-22

