[image: image32.png]v

LS pending
for addr

9.2.4.2.2/1.a

®

9.2.4.2.2/2

Send as TSB
Has '

9.3.5.2 neighbours i
v Y i
9.3.5.2/5 9.3.5.2/2 |

DTR/MTS001411xx xxx V<m.t.e> (<yyyy-mm>)
MTS MBT case studies
[Part element for endorsement]
<
TECHNICAL REPORT
Reference

<Workitem>

Keywords

<keywords>

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute yyyy.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.
Logos on the front page

If a logo is to be included, it should appear on the right hand side of the front page.

Copyrights on page 2

This paragraph should be used for deliverables processed before WG/TB approval and used in meetings. It will replace the 1st paragraph within the copyright section.
Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.
If an additional copyright is necessary, it should appear on page 2, after the ETSI Copyright Notification.

EXAMPLE:

© European Broadcasting Union yyyy.

Contents

3Logos on the front page

Copyrights on page 2
3
Intellectual Property Rights
5
Foreword
5
Multi-part documents
5
Introduction
5
1
Scope
6
2
References
6
2.1
Normative references
6
2.2
Informative references
6
3
Definitions, symbols and abbreviations
7
3.1
Definitions
7
3.2
Symbols
7
3.3
Abbreviations
7
4
User defined clause(s) from here onwards
8
4.1
User defined subdivisions of clause(s) from here onwards
8
Proforma copyright release text block
8
Annexes

8
Abstract Test Suite (ATS) text block
9
<x1>
The TTCN Graphical form (TTCN.GR)
9
<x2>
The TTCN Machine Processable form (TTCN.MP)
9
Annex <y>:
Bibliography
10
History
10
A few examples:
10

Intellectual Property Rights

This clause is always the first unnumbered clause.

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This Technical Report (TR) has been produced by the ETSI Technical Committee (TC) Methods for Testing and Specification (MTS).

Question Jens: Can and shall we thank the tool vendors providing the MBT tools?

Introduction

This document presents a case study report on Model Based Testing (MBT). Four state of the art MBT tools have been applied to one small academic example and parts of two case studies provided by two ETSI technical commitees. The document describes case studies, their modelling with the differen tools and presents the results of the test generation experiments. For the two case studies, the generated test suites are compared with the manually developed ETSI test suites. The evaluation results may give some indication of how good current state of the art MBT tools can support the test suite development process at ETSI.
The aim of this document is not to evaluate the four MBT tools applied in this case study report. The tools have been developed for different application areas and are tailored to these application areas. None of the tools has been developed to specifically suppor t the ETSI standards development process. As a consequence, the application of MBT tools in the ETSI test suite development process may require some compromises and subsequent tool specific adaptations.

<PAGE BREAK>

1
Scope

This ETSI technical report is a case study report on applying MBT state of the art tools to the ETSI test suite development process. It can be seen as an informal supplement of the following documents:

· DEG/MTS-00142: MBT methodology Model-Based Testing (MBT); Methodology for standardized test specification development.
· ETSI ES 202 951 V1.1.1 (2011-07): Methods for Testing and Specification (MTS); Model-Based Testing (MBT); Requirements for Modelling Notations
2
References

The following text block applies. More details can be found in clause 12 of the EDRs.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE:
While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.
2.1
Normative references

As the ETSI Technical Report (TR) is entirely informative it shall not list normative references.
Not applicable.

2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
· Use the EX style, add the letter "i" (for informative) before the number (which shall be in square brackets) and separate this from the title with a tab (you may use sequence fields for automatically numbering references, see clause A.4: "Sequence numbering") (see example).

EXAMPLE:

[i.1]
ETSI TS 102 636-4-1: "Intelligent Transport Systems (ITS); Vehicular communications; GeoNetworking; Part 4: Geographical addressing and forwarding for point-to-point and point-to-multipoint communications; Sub-part 1: Media-Independent Functionality " V1.1.1 (2011-06).

[i.2]
ETSI TS 102 871-2: "Intelligent Transport Systems (ITS); Testing; Conformance test specifications for GeoNetworking ITS-G5; Part 2: Test Suite Structure and Test Purposes (TSS&TP)" V1.1.1 (2011-06).

[i.3k]
ETSI TS 129 214: "Universal Mobile Telecommunications System (UMTS); LTE; Policy and charging control over Rx reference point" (3GPP TS 29.214) V10.6.0 (2012-03).

[i.4k]
ETSI TS 101 580-2: "IMS Network Testing (INT); Diameter Conformance testing for Rx interface; Part 2: Test Suite Structure (TSS) and Test Purposes (TP)" V1.1.1 (2012-04).

[i.5k]
IETF RFC 4005: "Diameter Network Access Server Application" (2005).

 [i.3]
Conformiq Inc.: Company Webside, http://www.conformiq.com/ [last visited 27.08.2012].

[i.4]
Microsoft Corporation: Company Webside, http://www.microsoft.com/ [last visited 27.08.2012].
[i.5]
Microsoft Corporation: Microsoft Developer Network Web pages for Spec Explorer, http://msdn.microsoft.com/en-us/library/ee620411 [last visited 29.08.2012].
[i.6]
Conformiq Inc.: Conformiq Inc. products Web page for Conformiq Designer, http://www.conformiq.com/products/conformiq-designer [last visited 29.08.2012].

[i.7]
sepp.med GmbH: Company Webside, http://www.seppmed.de/ [last visited 29.08.2012].

[i.8]
sepp.med GmbH: sepp.med products Web page for MBTsuite, http://www.seppmed.de/produkte/mbtsuite.html [last visited 29.08.2012].

[i.9]
Fraunhofer FOKUS competence center MOTION: MOTION Web page, http://www.fokus.fraunhofer.de/en/motion/index.html [last visited 30.08.2012].

3
Definitions, symbols and abbreviations

Delete from the above heading the word(s) which is/are not applicable, (see clauses 13 and 14 of EDRs).

Definitions and abbreviations extracted from ETSI deliverables can be useful when drafting documents and can be consulted via the Terms and Definitions Interactive Database (TEDDI) (http://webapp.etsi.org/Teddi/).
3.1
Definitions

Clause numbering depends on applicability.

· A definition shall not take the form of, or contain, a requirement.

· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).

· The terms and definitions shall be presented in alphabetical order.
For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply:

Definition format

<defined term>: <definition>

example 1: text used to clarify abstract rules by applying them literally

NOTE:
This may contain additional information.

3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

Abbreviations should be ordered alphabetically.

Clause numbering depends on applicability.

For the purposes of the present document, the following abbreviations apply:

ITS
Intelligent Transport Systems

MBT
Model-Based Testing

SUT
System Under Test

UTP
UML Testing Profile

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

4
Overall view
<Text>

5
Tooling

This clause includes an overview of the tools used for modelling and test generation.
5.1
Microsoft Spec Explorer
Spec Explorer is an MBT tool from Microsoft Coorporation [i.4]. Spec Explorer uses state-oriented model programs that are coded in C#. A Spec Explorer model consists of a set of rules expressed in a model program combined with behavioral descriptions coded in the scripting language Cord. The model program and the Cord script work together to make a testable model of a system under test (SUT). The Cord script may be thought of as using the model program to achieve a testable model.
For test generation the system model, i.e., model program and Cord script, are executed and the traces are recorded. The traces may be transformed as test cases and are generated while exploring the state space of the system model. The main technique for dealing with state space explosion provided by Spec Explorer is scenario-based slicing. A scenario limits the potential control flow of the state graph of a model, while preserving the test oracle and other semantic constraints from the system model. When the slicing scenario is combined with the model program the resulting behaviour will be a finite subset of the model program’s full, potentially infinite behavior.

In contrast to the other tools presented in this section, Spec Explorer supports modelling on the level of developer by using a general purpose programming language and with Visual Studio a corresponding development environment. The advantage is that a developer does not need to learn and use a sophisticated modelling language and the corresponding tools. The disadvantage is that a developer is not supported in finding the right level of abstraction for modelling. A modelling language supports abstraction by providing appropriate language constructs, like, e.g., the notion of states, relations or abstract ports.
Further details on Microsoft Spec Explorer can be found at [i.5]
5.2
Conformiq Designer

Conformiq Designer is the MBT tool of Conformiq Inc. [i3]. Conformiq Designer supports the generation of test cases from system models. System models may be provided in form of UML class diagrams, UML state charts and a Java-based object-oriented action language. For modelling, Conformiq Designer is shipped with the Conformiq Modeler tool, but models from other tools like, e.g., IBM Rational, IBM Rhapsody, or Sparx Systems Enterprise Architect, can be imported. Conformiq Designer provides interfaces to requirements and test management tools like, e.g., HP Quality Center, IBM Requisite Pro, or DOORS, for tracking the generation of test cases covering all system requirements. Executable test cases can be provided an various script languages like, e.g., Java, Visual Bsic, TCL, Perl, Python, C/C++, and also TTCN-3.

For test generation, the system model is executed and the execution traces are transformed into test cases. The execution is driven by several built-in test generation heuristics. The heuristics realize various well-known test generation strategies, like, e.g., requirements coverage, transition coverage, branch coverage, atomic condition coverage or boundary value analysis.
In order to minimize the manual postprocessing of the generated test cases, Conformiq Designer provides functions for the automatic naming of test cases, the automatic identification of pre- and postambles, an automatic test case dependency analysis, and the generation of traceability information.
Further details on Conformiq Designer can be found at [i.6].

5.3
sepp.med MBTsuite

MBTsuite is the MBT framework from sepp.med GmbH [i.7]. The concepts of MBTsuite are comparable to the concepts of Conformiq Designer (cf. Clause 5.2). The tools sepp.med MBTsuite and Conformiq Designer have been developed for different communities and are tailored for these communities. Wheras Conformiq has a background in telecommunications, sepp.med has its roots in medical engineering. As consequence, the tools use different terminology and support different aspects of MBT on different levels of detail. For the case studies presented in this report, these differences were not of importance.
For applying MBTsuite, a UML model hast to be provided. This model is then executed and the execution traces are transformed into test cases. MBTsuite can import UML models form standard tools like, e.g., Artisan Studio, MID Innovator, or Sparx Systems Enterprise Architect. In addition, sepp.med offers the ArgoUML-based modelling tool .modeller. Interfaces to tools like, e.g., HP Quality Center, IBM Rational TestManager or DOORS, support an effective test management and requirements tracking. Test generation can be driven by several built-in heuristics like, e.g., path coverage, node coverage, edge coverage, random generation, or guided generation. Generated test cases can be exported in various script languages like, e.g., Borland SilkTest, C/C++, C#, Java, Perl, or Python. Support for TTCN-3 is under development.

Further details on MBTsuite can be found at [i.8].
5.4
Fraunhofer FOKUS MDTester

MDTester is an academic tool developed by the Fraunhofer FOKUS competence center MOTION [i.9]. MDTester is part of Fokus!MBT, a flexible and extensible test modeling environment based on the UML Testing Profile (UTP), which facilitates the development of model-based testing scenarios for heterogeneous application domains.
MDTester is a modeling tool that guides the development of UTP models. UTP models are test models and not system models, i.e., they include tester knowledge like, e.g., setting of test verdicts, knowledge about test components, or default behavior.
For modeling, MDTester provides the following diagrams types: test requirements diagram (based on class diagram), test architecture diagram (based on class diagram), test data diagram (based on class diagram), test configuration diagram (based on composite structure diagram), test case diagram (based on sequence diagram) and test basis diagram (depends on integrated test generation engine).
For test generation, MDTester provides an interface to Microsoft Spec Explorer (cf. Clause 5.1). MDTester generates TTCN-3 as test code.

6
Case study 1: ATM academic example

6.1
General description of case study 1
The aim of this case study is to get familiar with the MBT tools before applying them to two ETSI protocols (cf. Clause 7 and Clause 8). As most persons are familiar with Automated Teller Machines (ATM), this clause may also help to
6.1.1
Overview of case study 1
Modeled features, reasons for choosing subset

<Text>

6.1.2
Abstract model of case study 1
Description of an abstract model (if possible) that has been refined to be fed into the different tools.
<Text>

6.1.2
ETSI test cases for case study 1
ETSI test case descriptions (TPs, TCs, TTCN-3) for the case study.
<Text>

6.2
Applying Microsoft SpecExplorer to case study 1

This section describes modeling ATM toy example and test generation for it with Microsoft SpecExplorer.

6.2.1
Modeling case study 1 with SpecExplorer

SpecExplorer model of ATM is based on the following interface of the SUT.

· A card is identified by an id, an unsigned 32-bit integer number. Every card has an associated pin code, an unsigned 32-bit integer, and balance, also an unsigned 32-bit integer.

· ATM has the following operations:

· void InsertCard(uint cardId) — inserting a card with and id cardId into the ATM. This operation is allowed only in the Idle state of the ATM. The card can be hold by the ATM if it is valid, and is returned if it is invalid. If the card is invalid, the message “Invalid card” is shown by the ATM (the message can be get with the help of GetMessage() operation, see below) and the ATM stays in the Idle state, otherwise the message is empty, and the ATM moves to Authentication state.

· void CheckPin(uint pin) — providing a pin code for the card inserted. Allowed only in Authentication state of the ATM. If the pin code provided is correct for the inserted card, the ATM moves to ReadyForMoneyRequest state and the empty message is shown, otherwise, the ATM returns to the Idle state, the card is returned and the message “Incorrect PIN” is shown.

· uint RequestAmount(uint amount) — requesting an amount of money, equal to the argument (here it is unsigned 32-bit integer). Allowed only in ReadyForMoneyRequest state of the ATM. If the amount requested doesn’t exceed the card balance, this amount is provided (modelled by the result returned), the ATM moves to the Idle state, and the card is returned, else the message “Invalid amount” is shown, 0 is returned, and The ATM stays in the ReadyForMoneyRequest state.

· string GetMessage() — additional operation returning the current message on the ATM.

Valid cards are modeled by a predefined set of cards, all cards outside of this set are considered as invalid.

6.2.2
SpecExplorer model of case study 1

This section contains description of SpecExplorer model for ATM example.

The complete model code is provided in Annex A.

SpecExplorer model of ATM example is written in C# with attributes specific for SpecExplorer. It includes ATMModelProgram.cs file containing model class ATMModelProgram, auxiliary enum ATMState and auxiliary class Card representing cards.

· Card class has three fields, corresponding to card id, pin code, and current balance, all having uint type.
In addition Card class stores static set of valid cards, which are initialized with {(id=1, pin=3456, balance=12), (id=3, pin=1374, balance=0), (id=4, pin=9024, balance=20)}.
There is no valid card with id=2, so this value of card id is considered as invalid.

· ATMState enum represets possible ATM control states and has values Idle, Authentication, and ReadyForMoneyRequest.

· ATMModelProgram is the main model class.
Since there is no need in several instances of ATM, all data and operations are static.
The state of the ATM is modelled by three fields:

· currentState has type ATMState and represents the ATM control state;

· currentCard has Type Card and represents the card inserted, if no card is inserted, its value is null.

· currentMessage has string type and represents the message shown by the ATM.

ATMModelProgram has auxiliary method Card FindCard(uint cardId), which looks for the card with the id specified in the set of valid cards. If it finds such a card, this card is returned, otherwise, teh method returns null.

For each interface operation ATMModelProgram class has a method marked with Rule attribute. Such a method may provide precondition of the corresponding operation and computes the correct values of model fields, which help to check correctness of operation work by calls to other operations further.

· void InsertCardRule(uint cardId) corresponds to InsertCard() operation and provides constraint on its call (that it can be called in the Idle state only) and correct new values of model fields;

· void CheckPinRule(uint pin) corresponds to CheckPin() operation.

· uint RequestAmountRule(uint amount) corresponds to RequestAmount() operation.

· String GetMessageRule() corresponds to GetMessage() operation.

6.2.3
Generating test cases with SpecExplorer for case study 1

Test generation options and parameters for ATM example are described in Config.coord file written in Cord scripting language and containing configuration of state machines and description of test data used for test generation. It includes the following configurations.

· Main configuration defines actions used in state machines and several parameters of state machine exploration (bounds on number of separate states found and steps performed, etc.) and test generation (path and namespace of tests to be generated).

· ParameterCombination configurations defines values of parameters used in operation calls in state machine exploration and test generation.
Values {1,2,3,4} are provided for parameter of InsertCard() (2 is invalid card id).
Values {1222, 3456, 1374, 9024} are provided for parameter of CheckPin() (1222 is incorrect PIN for all valid cards).
Values {0, 10, 20, 25} are provided for parameter of RequestAmount() (0 value is valid for all cards, 25 is too large for all cards, other values allow to make at least 2 consequtive requests).

· ATMModelProgram configuration defines state machine based on ATMModelProgram class, test data, and parameters specified above.

· ATMTestSuite configuration defines test generation strategy for ATMModelProgram. It uses “LongTests” strategy.

The tests generated are located in ATNTestSuite.cs file and are written in a form suitable for execution with the help of VisualStudio UnitTesting framework. They include 14 separate tests.

Trial to use “ShortTests” strategy provides strange result — single test generated consisting of the single step.

6.2.4
Evaluation

Criteria need to be specified. How easy was it, how good are the test cases compared to the ETSI test cases.

The evaluation criteria for generated test suites should include test adequacy criteria independent of the tools used. In the ATM example good candidates for such criteria are coverage criteria based on ATM statechart or on a set of test purposes formulated on its base, without dependence on test generation policies used in tools.

The following table provides definition of a set of test purposes to evaluated the generated tests.

	N
	ID
	Test purpose description

	1
	TP01
	Insertion of a valid card with check that empty message is shown

	2
	TP02
	Insertion of an invalid card with check that “Invalid card” is shown

	3
	TP03
	Providing correct PIN for a valid card with check that empty message is shown

	4
	TP04
	Providing incorrect PIN for a valid card with check that “Incorrect PIN” is shown

	5
	TP05
	Request of correct amount of money with check that empty message is shown

	6
	TP06
	Request of incorrect amount of money with check that “Invalid amount” is shown

	7
	TP07
	Request of correct amount of money after incorrect one with check that “Invalid amount” message dissappears

	8
	TP08
	Consequtive several requests of money (correct and incorrect) from one card to check that balance diminishes correctly (e.g [start balance: 20] -> 10 -> [10] -> 20 (incorrect) -> [10] -> 10 -> [0] -> 10 (incorrect) -> [0] -> 0 -> [0]))

The next table provides information on coverage of test purposes defined by geberated tests.

	
	TC01
	TC02
	TC03
	TC04
	TC05
	TC06
	TC07
	TC08
	TC09
	TC10
	TC11
	TC12
	TC13
	TC14

	TP01
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	
	X
	X
	X

	TP02
	
	
	
	
	
	
	
	
	
	
	X
	
	
	

	TP03
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	
	X
	X
	X

	TP04
	
	
	
	X
	X
	
	
	
	
	
	
	
	
	X

	TP05
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	
	X
	X
	X

	TP06
	X
	
	
	X
	
	
	X
	
	X
	X
	
	
	
	X

	TP07
	X
	
	
	X
	
	
	X
	
	X
	X
	
	
	
	X

	TP08
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	Total number of situations
	8

	Number of covered situations
	7

	Percentage of situations covered
	87.5%

The next table provides identifiers of transitions in the ATM statechart for further use.

	N
	ID
	Transition

	1
	A
	Idle->Idle, invalid card

	2
	B
	Idle->Authentication, valid card

	3
	C
	Authentication ->Idle, incorrect pin

	4
	D
	Auth-> ReadyForMoneyRequest, correct pin

	5
	E
	ReadyForMoneyRequest -> ReadyForMoneyRequest, invalid amount

	6
	F
	ReadyForMoneyRequest ->Idle, valid amount

The next table shows how transitions are covered by the generated test suite.

	
	TC01
	TC02
	TC03
	TC04
	TC05
	TC06
	TC07
	TC08
	TC09
	TC10
	TC11
	TC12
	TC13
	TC14

	A
	
	
	
	
	
	
	
	
	
	
	X
	
	
	

	B
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	
	X
	X
	X

	C
	
	
	
	X
	X
	
	
	
	
	
	
	
	
	X

	D
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	
	X
	X
	X

	E
	X
	
	
	X
	
	
	X
	
	X
	X
	
	
	
	X

	F
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	
	X
	X
	X

	Total number of situations
	6

	Number of covered situations
	6

	Percentage of situations covered
	100.0%

The next table shows coverage of pairs of consequtive transitions in the ATM statehart by the generated test suite.

	
	TC01
	TC02
	TC03
	TC04
	TC05
	TC06
	TC07
	TC08
	TC09
	TC10
	TC11
	TC12
	TC13
	TC14

	AA
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	AB
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	BC
	
	
	
	X
	X
	
	
	
	
	
	
	
	
	X

	BD
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	
	X
	X
	X

	CA
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	CB
	
	
	
	X
	X
	
	
	
	
	
	
	
	
	X

	DE
	X
	
	
	X
	
	
	X
	
	X
	X
	
	
	
	X

	DF
	
	X
	X
	
	X
	X
	
	X
	X
	X
	
	X
	X
	

	EE
	
	
	
	
	
	
	X
	
	
	
	
	
	
	X

	EF
	X
	
	
	X
	
	
	X
	
	X
	X
	
	
	
	X

	FA
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	FB
	X
	X
	X
	X
	X
	X
	X
	X
	X
	X
	
	X
	X
	X

	Total number of situations
	12

	Number of covered situations
	8

	Percentage of situations covered
	66.7%

The next table shows coverage of basic paths in the ATM statechart by the generated test suite. A basic path is a path on a graph, which may contain only one repeating state and cannot be extended by adding transitions to its end with keeping this property. Basic paths starting in non-initial state should not be extensible by adding transitions to their beginning.

	
	TC01
	TC02
	TC03
	TC04
	TC05
	TC06
	TC07
	TC08
	TC09
	TC10
	TC11
	TC12
	TC13
	TC14

	A
	
	
	
	
	
	
	
	
	
	
	X
	
	
	

	BC
	
	
	
	X
	X
	
	
	
	
	
	
	
	
	X

	BDE
	X
	
	
	X
	
	
	X
	
	X
	X
	
	
	
	X

	BDF
	
	X
	X
	
	X
	X
	
	X
	X
	X
	
	X
	X
	

	CA
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	CB
	
	
	
	X
	X
	
	
	
	
	
	
	
	
	X

	DFA
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	DFB
	
	X
	X
	
	X
	X
	
	X
	X
	
	
	X
	X
	

	FBC
	
	
	
	
	X
	
	
	
	
	
	
	
	
	

	FBD
	X
	X
	X
	
	
	X
	X
	X
	X
	X
	
	X
	X
	

	Total number of situations
	10

	Number of covered situations
	8

	Percentage of situations covered
	80.0%

The number of tests generated, and so their coverage, can be controlled in SpecExplorer only indirectly, by the parameters of state machine exploration — bounds on the number of separate states found, on the number of steps performed, on the number of additional steps made to determine state equivalence (based on the possible behaviour in them).

6.3
Applying Conformiq Designer to case study 1

The goal of the case study is to create a QML model for the ATM toy example.
6.3.1
Modeling case study 1 with Conformiq Designer

In order to create the QML model based on the abstract model of the ATM example the following steps were executed:

· Identifying of input/output data on the interface of the ATM and constructing the corresponding type definitions.
· Transforming the abstract ATM FSM into a QML FSM.
Since the example was simple and the abstract FSM was very similar to the FSMs that can be expressed in QML the procedure was easy.
6.3.2
Conformiq Designer model of case study 1

The first step of the modeling was to identify the input/output data on the interface of the ATM. The ATM can receive the following items:

· Card
An ATM Card which can be valid or invalid.

· Pin
PIN Code for the ATM Card, which can be valid or invalid.

· MoneyReq
The requested amount.
The ATM can answer with the following items:

· ErrorMessage
In case some problem arised this is a textual error message that will appear on the display of the ATM and will inform the user about the reason of the problem.

· MoneyResp
The amount of cash that the user receives after a successful transaction.

For each “item” above a record was defined. In case the modelled entity had some parameters that was implemented with a field variable. For example the Pin record has an integer field called code, which models the PIN code. An invalid PIN code is modelled with the code field set to -1.

After the model of the interface was ready, the behaviour of the ATM was implemented as a state machine. The QML representation of the ATM can be seen in Figure 1.

[image: image1.png]o

in:Card
[msg==getlnvalidCard()]/
sendErrorMessage("Invalid Card!");

Idle

in:Card
[msg==getValidCard()}/

- in:Pin
Authentication [msg==getInvalidPin()]/
sendErrorMessage('Tnvalid PINI);
in:MoneyReq
[msg.amount <= actAcoount balancel/
actAccount balance = actAccount.balance - msg.amount;
MoneyResp mr;
xamn't;); msg.amount; RequestAmount.
send(r —

in:MoneyReq
[msg.amount > actAccount.balance)/
sendErrorMessage("Requested amount s greater than balance!”);

Figure 1 ATM FSM in Conformiq Modeler

The state space of the ATM was extended with some internal variables in order to keep track of the account that is used in the actual transaction. For the account three main properties were stored: the valid card number, the valid pin code and the actual balance was stored.

Some helper functions were also defined to generate the data that is received and sent on the interfaces:

· getValidCard(), getInvalidCard()
These functions are generating the representation of a valid and an invalid Card respectively.

· getValidPin(), getInvalidPin()
These functions are generating the representation of a valid and an invalid PIN code respectively.

· sendErrorMessage()
This function creates an ErrorMessage instance that will appear on the display of the ATM.
6.3.3
Generating test cases with Conformiq Designer for case study 1

After experimenting with the parameters the following settings were successfully used for test generation:

· Project -> Properties -> Conformiq Options

· Lookahead Depth: Set to the third position

· Only finalized runs: Enabled

· Coverage Editor

· State Chart (100%)

· States: Target (5 out of 5: 100%)

· Transitions: Target (7 out of 7: 100%)

· 2-Transitions: Don’t Care

· Implicit Consumption: Block

· Conditional Branching

· Conditional Branches: Target (6 out of 6: 100%)

· Boundary Value Analysis: Don’t Care

· Control Flow (100%)

· Methods: Target (8 out of 8: 100%)

The data in parenthesis are showing the percentages of the test goals that are covered by the generated test in that given coverage area.
6.3.4
Evaluation

· Using the model described in 6.3.2 and setting the parameters of the test generator according to 6.3.3 a test suite is produced by the conformiq Designer tool that consists of 4 testcases:TC1 Move from ATM.RequestAmount to ATM.final-state-1
· TC2 Move from ATM.RequestAmount to ATM.RequestAmount
· TC3 Move from ATM.Idle to ATM.Idle
· TC4 Move from ATM.Authentication to ATM.Idle
The state and transition coverage for each testcase can be observed in Figure 2.

[image: image2.emf]TC1 TC2

TC3 TC4

Figure 2 State and Transition Coverage of the testcases generated for the ATM Example using conformiq Designer
6.5
Applying sepp.med MBTsuite to case study 1

<Text>

6.5.1
Modeling case study 1 with sepp.med MBTsuite

For this particular case study, it was chosen to try out both modelling approaches supported by the toolchain with the goal of evaluating the features and functionalities thereof and as a preparation for the following case studies that were expected to be more complex.

6.5.2
sepp.med MBTsuite model of case study 1

As described in section 5.3 the SeppMed MBTSuite supports both UML activity diagrams and state diagrams to model the system behaviour for testcase generation. Enterprise Architect was used in this case study to create the UML models. Figure ??? and ??? below depict each of those diagrams respectively. The test models represent a directed graph that is enriched with instructions/annotations that will be evaluated by the MBTSuite tool during testcase generation for exploring the graph. Those annotations can be added to edges as well as vertices of the directed graph, with the main part of test logic being associated to the edges.

The complete model shall go into an annex.

[image: image3.png]Liscaravaia==raise]

isPivaiig

LisPiivatia-
Lrequiredamount > Troel
oatance]

Lrequiredamount <=
oatance]

Figure 3 UML Activity Diagram for ATM Case Study
[image: image4.png]stm ATM StateMachine

<Preconditions

AT ststz machine,

The varisties are
iniislizes here.

Avort
TestStzpn

—ressteps caa

Posconditions
Final

Card inserted and valic
JnsenCard)
i —

Eiinvalia
“Teststepn

Teststepn
invalia Finyalia
Valid amount finsertCard() Tesisteps
requsstAmount)
e
Requestamount

«TestStaps Invalic
requstamount)

Figure 4 UML State Diagram for ATM Case Study
6.5.3
Generating test cases with sepp.med MBTsuite for case study 1

Once the UML test models have been imported into the MBTSuite tool, a test generation strategy can be executed on those to generate a set of testcases. In that process the various paths of directed graph represented by the input diagrams are explored, taking into account the instructions provided as annotations to the UML model.

<Text>

6.5.4
Evaluation

Criteria need to be specified. How easy was it, how good are the test cases compared to the ETSI test cases.

<Text>

6.6
Applying FOKUS MDTester to case study 1

This section describes how the FOKUS MDTester tool was used to create a model for the ATM case study.

6.6.1
Modeling case study 1 with FOKUS MD Tester

The first step in creating the model for the ATM case study consisted in identifying the situations that needed to be tested, each of which would correspond to a test purpose.

This was achieved through analysis of the problem and discussions between the experts during STF sessions. For the manually design state machine representing system behaviour, a total of 7 test purposes were identified and are listed below:

	TP_ATM_001

	ID :
	TP_ATM_001

	Summary :
	Valid card and valid PIN code

	Description :
	Check that if the user inserts a valid card, then enters a valid PIN code the ATM displays the page requesting the user to select the amount he/she wishes to withdraw

	TP_ATM_002

	ID :
	TP_ATM_002

	Summary :
	Reject invalid card

	Description :
	Check that if the user inserts a card of a type not known to the ATM, then the ATM displays an error message and rejects the card

	TP_ATM_003

	ID :
	TP_ATM_003

	Summary :
	Valid card and invalid PIN code

	Description :
	Check that if the user inserts a valid card, then enters an invalid PIN code the ATM displays an error message indicating that the PIN code is invalid and requests the user to re-enter a valid PIN code

	TP_ATM_004

	ID :
	TP_ATM_004

	Summary :
	Valid card and invalid PIN code repetition

	Description :
	Check that if the user enters an invalid PIN code 3 times the ATM displays stops the procedure and gets back to initial state

	TP_ATM_005

	ID :
	TP_ATM_005

	Summary :
	Accept valid card

	Description :
	Check that if the user inserts a valid card, the ATM displays the page requesting the user to enter a valid PIN code

	TP_ATM_006

	ID :
	TP_ATM_006

	Summary :
	Valid amount request

	Description :
	Check that if the user requests an amount within her allowed range, the ATM delivers the requested amount to the user

	TP_ATM_007

	ID :
	TP_ATM_007

	Summary :
	Invalid amount request

	Description :
	Check that if the user requests an amount exceeding her allowed range, the ATM displays an error message indicating that the requested amount is outside the allowed range

6.6.2
FOKUS MD Tester model of case study 1

The model consists of 4 main submodels, each one addressing a specific aspect of the test project:

The TPs were modelled in the test objectives model to facilitate traceability and evaluation of the case study afterwards. Figure 5 displays a view on the test objectives model created in MDTester, out of which the tables presented in Section 6.6.1 <TBD: Put reference instead!> were automatically generated for this document.

[image: image5.png]UTML Test Objectives Diagram : ATMTestProject:TestObjectiveshodell / TestObjectivesModell

<<TestObjective>> <<TestObjective>>
TP_ATM 001 TP_ATM 002

I 10 TP_ATM_00L] I 1D TP_ATM_00Z]
[L_surnrmary: Valid card and valid PIN code | [Summary: Reject invalid card]
|_Description: Check that if the user inserts... || [Description: Check that if the user inserts...]

<<TestObjective>>
TP_ATM 003 <<TestObjective>>
1D: TP_ATM 003 TP_ATM. 004
Summary: Vaild ard and invalld PIN cod...] [_oreamon]
[Description: Chedk that If the user inserts..] [summary: Valid card and invalid PIN cod..]
[Description: Check that if the user enters ..
<<TestObjective>
TP_ATM 005 <<TestObjective>>
C omwamows TP_ATM 006
[Summary: Accept valld Gird | I 0. TP ATM 006]
[Description: Check that if the user inserts.. | [Summary: Valid amount request |
<<TestObjective>>
TP_ATM 007

Figure 5 Excerpt of test objectives model for the ATM case study

Based on these identified TPs, a test data model was created to represent the data types exchanged with the SUT and instances thereof for stimulating the SUT or for defining constraints on on its expected responses. Figure 6 displays some examples of such data instances used by the ATM to communicate with the external world.

[image: image6.png]UTML Test Data Diagram : ATMTestProject::TestDataModelLiTestDatalnstancesuATh Messages / ATM Messages

<<MessageTestDatalnstance>> <<MessageTestDatalnstance>>
ATMMessage INVALID_PIN |ATMMessa ge UNKNOWN_CARD_.
<<MessageTestDatalnstance>>
ATM_Message TOO_HIGH_AMOUNT

<<MessageTestDatalnstance>> <<MessageTestDatalnstance>>
ATMMessage ENTER PIN ATMMessage SELECT AMOUNT

<<MessageTestDatalnstance>>

ATMMessage INSERT_CARD

Figure 6 Test data model elements for ATM Case Study
Also based on the TPs, a test architecture model was created to guide the behaviour modelling process by constraining it to behaviour, that would be consistent with the architecture. An excerpt from that test architecture model is displayed on Figure 7
[image: image7.png]UTML Test Architecture Disgram : ATMTestProject: TestArchitectureModel LidefaultTestArchitecturesGroup: TA ATMTestArchitecture / P2,

userlnferface

<<Componentinstance>> P e |
Componentl

Figure 7 Test architecture for ATM Case Study
Finally the test behaviour could be modelled using the concept of test scenario represented as a test activity diagram. A test scenario represents the behaviour of the system from a tester’s point of view in a black-box testing approach. Based on such a test scenario, a set of testcases can be generated, as detailed in Section . As depicted in Figure 7 the test activity diagram distinguishes between stimuli to the system (e.g. SendDataAction) and responses expected . To represent the test behaviour for the ATM machine case study, a test activity diagram was created, comprising a total of 12 nodes and 14 edges. It should be noted that the test activity diagram includes a loop between the activity of the ATM requesting the user to enter a valid PIN and the activity of the user entering the PIN, for the case an invalid PIN was entered. Therefore, the maximal number of loops to take into account while exploring the directed graph will have to be chosen carefully to reach maximal coverage with a minimal number of testcases.

[image: image8.png]UTML Test Behaviour Activity Diagram : ATMTestProject:TestBehaviourhodel1:ATM Scenario 4/ ATM Scenario 4

9

More complex ATM scenario <<Receive Data Event>>

-Loops supported usernterface receive (ATMMesssge INSERT_CARD)
|- ATM responses included

<<Send Data Action>>
uselnterfacesend (CardindType)

AnUnkhownCard

serlnterface receive (ATMMessage UNKNOWN_CARD_KIND){deadlockTimer(5.0 ms)] userInterface.receive (ATMMessage ENTER PIN)

> <<Receive Data Event>> <<Receive Data Event>>

<<Send Data Action>>

vretriesCounter_4 < MAX.P} userlnteracesend (PINTypePINType_OUT)

| RETRIES]

<<Receive Data Event>>
userlnterface receive (ATMMessage_SELECT_AMOUNT)

<<Receive Data Event>>
userlnterface receive (ATMMessage INVALID_PIN){deadlockTimer(5.0 ms)]

<<Send Data Action>>
userlnterface send (MoneyRequestType:MoneyRequestType_OUT)

MoneyRequestType ALLOWED

MoneyRequestType DISALLOWED

<<Receive Data Event>>
userlnterace receive (MoneyResponseType IN)[deadlockTimer(50 ms)]

<<Receive Data Event>>
userlnterface receive (ATM_ Message_TOO_HIGH_AMOUNT){deadlockTimer(5.0 ms)]

v fetriesCounter_4[> - MAX_PIN_RETRIES]

Figure 8 Test activity diagram for ATM Case Study
6.6.3
Generating test cases with FOKUS MD Tester for case study 1

The generation of test cases with FOKUS MD Tester was based on the test activity diagram displayed in Figure 7. The test generation algorithm also used the data model available for this case study to generate variants of the testcases generated through exploration of the directed graph. Therefore, given that 4 different types of bank cards were defined as supported by the ATM as illustrated in the data model of the CardKindType displayed in XXX.

Thus additionally to the generic testcase obtained through path exploration, 4 more testcases are generated, each using a particular card type as input.

[image: image9.png]<<MessageTesiDataType>>
CardKindType
[—

Figure 9 Graphical representation of model element used for modelling card type

This lead to a total of 31 testcases to reach full coverage of the defined test purposes. This was obtained by setting the Nl option to a value of 3.
6.6.4
Evaluation

The evaluation of the case study is based upon coverage of test purposes defined before creating the test model. As displayed on tables A total of 31 testcases were generated to optimally cover the 7 predefined test purposes. Table 1 displays the list of test purposes and indicates whether they were covered by the generated testcases or not. As visible on that table, a coverage rate of 100% could be achieved.

	Test Objective
	Covered

	TP_ATM_001
	X

	TP_ATM_002
	X

	TP_ATM_003
	X

	TP_ATM_004
	X

	TP_ATM_005
	X

	TP_ATM_006
	X

	TP_ATM_007
	X

Table 1 Overview of TP coverage from the ATM case study

To support an evaluation of the test generation process or to estimate progress of manual test design, the MDTester tool also automatically generates a traceability matrix indicating whether and how each of the individual test purposes is covered by the test cases present in the test model. The traceability matrix for this case study generated for this case study can be viewed on Table 2.

	Testcase
	TP_ATM_001
	TP_ATM_002
	TP_ATM_003
	TP_ATM_004
	TP_ATM_005
	TP_ATM_006
	TP_ATM_007

	ATM_Scenario_4_Testcase_1
	
	X
	
	
	
	
	

	ATM_Scenario_4_Testcase_2
	
	
	X
	
	X
	
	

	ATM_Scenario_4_Testcase_2_1
	
	
	X
	
	X
	
	

	ATM_Scenario_4_Testcase_2_2
	
	
	X
	
	X
	
	

	ATM_Scenario_4_Testcase_2_3
	
	
	X
	
	X
	
	

	ATM_Scenario_4_Testcase_2_4
	
	
	X
	
	X
	
	

	ATM_Scenario_4_Testcase_3
	
	
	X
	X
	X
	
	

	ATM_Scenario_4_Testcase_3_1
	
	
	X
	X
	X
	
	

	ATM_Scenario_4_Testcase_3_2
	
	
	X
	X
	X
	
	

	ATM_Scenario_4_Testcase_3_3
	
	
	X
	X
	X
	
	

	ATM_Scenario_4_Testcase_3_4
	
	
	X
	X
	X
	
	

	ATM_Scenario_4_Testcase_5
	X
	
	X
	X
	X
	
	X

	ATM_Scenario_4_Testcase_5_1
	X
	
	X
	X
	X
	
	X

	ATM_Scenario_4_Testcase_5_2
	X
	
	X
	X
	X
	
	X

	ATM_Scenario_4_Testcase_5_3
	X
	
	X
	X
	X
	
	X

	ATM_Scenario_4_Testcase_5_4
	X
	
	X
	X
	X
	
	X

	ATM_Scenario_4_Testcase_6
	X
	
	X
	X
	X
	X
	

	ATM_Scenario_4_Testcase_6_1
	X
	
	X
	X
	X
	X
	

	ATM_Scenario_4_Testcase_6_2
	X
	
	X
	X
	X
	X
	

	ATM_Scenario_4_Testcase_6_3
	X
	
	X
	X
	X
	X
	

	ATM_Scenario_4_Testcase_6_4
	X
	
	X
	X
	X
	X
	

	ATM_Scenario_4_Testcase_7
	X
	
	
	
	X
	
	X

	ATM_Scenario_4_Testcase_7_1
	X
	
	
	
	X
	
	X

	ATM_Scenario_4_Testcase_7_2
	X
	
	
	
	X
	
	X

	ATM_Scenario_4_Testcase_7_3
	X
	
	
	
	X
	
	X

	ATM_Scenario_4_Testcase_7_4
	X
	
	
	
	X
	
	X

	ATM_Scenario_4_Testcase_8
	X
	
	
	
	X
	X
	

	ATM_Scenario_4_Testcase_8_1
	X
	
	
	
	X
	X
	

	ATM_Scenario_4_Testcase_8_2
	X
	
	
	
	X
	X
	

	ATM_Scenario_4_Testcase_8_3
	X
	
	
	
	X
	X
	

	ATM_Scenario_4_Testcase_8_4
	X
	
	
	
	X
	X
	

Table 2 Traceability matrix of TPs from the ATM Use Case

6.7
Résumé for case study 1

<Text>

7
Case study 2: ITS location services

<Text>

7.1
General description of case study 2

<Text>

7.1.1
Overview of case study 2

Modeled features, reasons for choosing subset

<Text>

7.1.2
Abstract model of case study 2

Description of an abstract model (if possible) that has been refined to be fed into the different tools.

<Text>

7.1.2
ETSI test cases for case study 2

ETSI test case descriptions (TPs, TCs, TTCN-3) for the case study.

<Text>

7.2
Applying Microsoft SpecExplorer to case study 2

This section describes modelling of Location Service functionality of GeoNetworking protocol and further test generation for this function with the help of Microsoft SpecExplorer.

7.2.1
Modeling case study 2 with SpecExplorer

Location Service functionality of GeoNetworking protocol supports search for protocol unit with the address specified. Location Service is executed when a protocol unit receives from an upper layer a request to send some data to the specified address, for which this unit has no location data [i.1, 9.2.4].

Location data of other protocol units are stored in internal location table, which corresponds an address with location data (longitude, latitude, altitude, speed, heading, etc.) of the unit having this address. Location table is maintained by processing of all the incoming packets — if the unit notes newer location data for some address in an incoming packet, it updates the corresponding record in the location table [i.1, 7.1].

Location Service is started when the unit doesn’t find the location data for an address specified in GeoUnicast request. In this case the unit stores the data to be send to the address sought into internal Location Service buffer (specific to the address) and sends to all its neighbors a special Location Service request packet [i.1, 9.2.4.2.2]. After receiving a response — in a special Location Service response packet — it stores the location data for the address, turns data stored in Location Service buffer into the corresponding GeoUnicast packets, and sends them to some neighbour unit(s) according to GeoUnicast sending algorithm [i.1, 9.2.4.2.4].

Along with sending a Location Service request the unit sets a timer, and if it expires before any response comes, the same Location Service request packet is send once more. This is repeated until the number of request send to find the certain address exceeds the specified maximum. In this case the unit cleans up the Location Service buffer for this address and stops the corresponding timer [i.1, 9.2.4.2.3].

When a unit receives a Location Service request for its own address, it generates Location Service responce packet and sends it as a GeoUnicast packet [i.1, 9.2.4.4].

When a unit receives a Location Service reply packet destined for another unit, it processes the packet header and forwards it as a GeoUnicast packet. When a unit receives a Location Service request packet destined for another unit, it processes the packet header and forwards it as Topologically Scoped Broadcast (TSB) packet [i.1, 9.2.4.3].

The modelling process used is based on the following decisions.

· The source of information for modelling is twofold — the requirements of the GeoNetworking standard, Media-Independent functionality [i.1], and communication with the authors of this standard in cases where the text of the standard in unclear, incomplete, or inconsistent.

· The functionality of GeoNetworking Location Service is modelled completely, including all procedures and algorithms from referenced other parts of the standard (with two exceptions: contention-based forwarding algorithm for sending UniCast packets — only greedy algorithm is modelled [i.1, Annex C], — and distance calculation procedure — it is simplified to a procedure taking into account only altitude and longitide) and all internal data structures it relies on.

· The model developed is a generic executable model of the specified part of protocol functionality, it doesn’t include only a subset of possible protocol operation scenarios, but describes its complete behaviour.

· The other functionality was modelled only in parts having direct relation to Location Service. For example, the only interface with upper layer that has relation with Location Service is possibility to send a GeoUnicast packet. The contents of this packet and other data that can be specified in the request, like packet lifetime or repetition interval [i.1, Annex H.2] have no direct relation to Location Service operation, and so are not taken into consideration during modelling.
However, packet structure [i.1, 8] was modelled completely, although not all the fields of GeoNetworking packets have relation to Location Service operation. This is done because packets as model data types were described at the beginning of modelling when the importance of their various parts for the target functionality was not clear.
This patterns is used in all cases where it was not clear whether the part of data structure or behaviour has the relation to Location Service — such parts of the protocol was modelled to make possible further analysis of their influence and to escape preliminary and unargumented removal of important details from the model.

· Since Location Service bears on a significant part of protocol functionality and internal data structures, the complexity of the developed model is rather high. Like any piece of software of significant complexity, the model developed has very high chances to contain errors, which should be removed before test generation. Two techniques are used to detect the errors: model reviews and model simulation on a set of simple scenarios (that can be called model unit testing). Both approaches help to find a lot of errors, and while the first technique is less expensive, it couldn’t provide the same results being used alone.

The following decisions are made concerning the general structure of the model.

· The model is synchronous, that is it operates by processing external events and providing outputs on them without parallel processing of several events. Each event is processed separately, and output generated may include several packets sent in two different ways — packets sent directly to specific lower layer protocol unit or packets broadcasted on the lower layer.
Synchronous modelling is possible due to the structure of GeoNetworking protocol itself — its operation can be represented in synchronous way, although implementations can work asynchronously.

· The model interface includes all the external events that have relation with Location Service.

· GeoUnicast request having payload and target address as parameters. Other parameters specified in the protocol standard are skipped as irrelevant.

· Income of Location Service request packet from the lower layer.

· Income of Location Service reply packet from the lower layer.

· Expiration of Location Service request retransmit timer for a certain sought address.

· Expiration of lifetime of a packet stored in Location Service buffer for a certain address. This event has as paramaters the sought address and the position of expired packet in the buffer.

· Expiration of lifetime of a record in Location Table for a certain address.

The last three events are related with timer expirations. Their representation as external events independent from protocol unit operation has great advantages — possibility to omit modelling of timings, which is raher hard, and possibility to simulate easily very specific and rare situations — but also has a drawback — the complexity of adaptation of tests created on the base of the model. Such an adaptation requires very accurate arrangement of test sequence events and data of some operations or complete control over the clock of the implementation of protocol unit.

· The modular structure of the model is implemented as much as possible similar to the structure of the standard requirements — where the standard text refers to some other part of it, the corresponding procedure is implemented in the model and called. So, where several places refer to the same single part of text, the corresponding model parts call the correposponding single procedure.
However, in some cases behaviour described in different parts of the standard is implemented in one place in the model. These cases are processing of incoming Location Service requests and replies, which are described in the standard separately for forwarding unit and for destination unit, but appear to be almost the same, except for final two or three steps of processing [i.1, 9.2.4.2.4, 9.2.4.3, 9.2.4.4].

· From the other side, the model is developed as a single unit processing all kinds of external events, although there is a possibility to model the same behaviour by several communicating units, each processing only specifc subset of external events. This approach is taken because the functionality of GeoNetworking protocol was unfamiliar to modeller at the neggining of modelling, so the second way seemed to be more error-prone. With good understanding of protocol behaviour and detailed functionality the second approach may be more attractive, as it results in more simple model units with less functions clearly separated from aech other.

· Another decision concerns modelling of communications between different protocol units. The tool makes possible two approaches: to model behaviour of a single unit and to model its communication with other units as external events, or to model several protocol units and to model their communication as generation of an event by one of them and its consumtion by another one.
The first way is chosen in this case study, because the second one doesn’t make the modelling simpler (each protocol unit is an instance of the model class, which is the same as in the first case), but makes more complex the dynamic system state (a combination of states of all units involved), which may be an obstacle for effective test generation.

7.2.2
SpecExplorer model of case study 2

The SpecExplorer model of GeoNetworking Location Service functionality consists from the following parts, all written in C#.

· Common types module (the file GNType.cs forming a separate project in the Visual Studio solution), containing definition of all the data types used in external events. These definitions are made separate because they are used both in the model and in the abtract description of implementation interface needed for test generation.
In addition this module contains test data pools for various data used in tests — GeoNetworking packets, addresses, location data, etc.
The complete list of datat types defined in this module is the following.

· Enumerations

· GNStationType enumeration representing possible values of station type bit of the protocol packet common header [i.1, 8.5.2].

· EmbeddedPacketType enumeration representing possible values of Next Header (NH) field of the protocol packet common header [i.1, 8.5.2].

· HeaderType enumeration representing possible values of Header type (HT) and HeaderSubType (HST) fields of the protocol packet common header [i.1, 8.5.2].

· GUCForwardingAlgorithm enumeration representing possible options for forwarding algorithm used in GeoUnicast [i.1, Annex C].

· Protocol packet data structures

· LLAddress representing lower layer address [i.1, 6.3].

· GNAddress representing GeoNetworking address [i.1, 6].

· MinPositionData, AddPositionData, and AreaInfo representing possible structures of location data stored internally or sent in various types of packets [i.1, 8.4.2.2].

· ShortPositionVector reprenting protocol Short Position Vector data structure (contains only address and minimum position data) [i.1, 8.4.3].

· LongPositionVector reprenting protocol Long Position Vector data structure (contains address, minimum position data, and additional position data) [i.1, 8.4.2].

· CommonGNPHeader reprenting protocol packet common header structure [i.1, 8.5].

· GNPacket representing protocol packet structure [i.1, 8.6].
Several possible packet structures are mixed, so that one data type can be used for all types of packets.

· Auxiliary structures for representing model interfaces

· SentPacket representing GeoNetworking packet sent to specific lower layer address.

· FullResult representing two lists of packets sent by a protocol unit through different interfaces — directly to some lower layer address or by lower layer broadcast — in response for some external event.

· Test data pools

· PositionDataPool contains definition and initialization of several position data instances.

· GNAddressPool contains definition and initialization of several GeoNetworking addresses.

· GNPacketPool contains definition and initialization of several packet instances, actually, several Location Service requests and several Location Service replies.

· The main model module (the file GNUnitModel.cs) containing the following items.

· Data structure types for internal protocol unit data

· LocalPositionVector representing unit position data [i.1, 7.2].
Here the same fields are used as in LongPositionVector, except for an address. This is done according to the clarifications made by standard’s authors, not to the standard text, which is not consistent with some other parts.

· LocationTableRecord representing position data stored for an address [i.1, 7.1].
Here the same fields are used as in LongPositionVector, except for an address. This is done according to the clarifications made by standard’s authors, not to the standard text, which is not consistent with some other parts.

· PacketBuffer representing internal storage for deferred packets, the single class for unicast buffer for certain address and for broadcast buffer [i.1, 7.5].

· SDUBuffer representing a buffer for higher layer packets, Location Service buffer for a certain address is an instance of such a buffer [i.1, 7.4].

· Protocol unit behaviour model — GeoNetworkingUnitModel class — modelling the single protocol unit (so all its data fields and methods are static) and having the following elements.

· Data fields

· locationTable representing location data table for known adresses [i.1, 7.1].
Implemented as a map of addresses to location table records.

· localAddress representing an address of this unit.

· localPositionVector representing position data of this unit [i.1, 7.2].

· seqNumber of unsigned short type representing the local sequence number for counting outgoing packets [i.1, 7.3].

· lsBuffer representing Location Service buffer [i.1, 7.4].
Implemented as a map of addresses to SDUBuffers.

· ucBuffer representing unicast packet buffer [i.1, 7.5].
Implemented as a map of addresses to PaketBuffers.

· bcBuffer representing broadcast packet buffer [i.1, 7.5].

· lsTimers representing Location Service retransmit timers [i.1, 9.2.4.2-3].
Implemented as a map of addresses to boolean flags saying whether the corresponding timer is set.

· lsRetCounters representing Location Service retransmit counters [i.1, 9.2.4.2-3].
Implemented as a map of addresses to int values of the corresponding counters.

· lsRequestCash representing storage of already created Location Service requests to be send several times on expiration of retransmit timers.
Implemeted as a map of addresses to GNpackets.

· Auxiliary operations

· Static constructor initializes maximum size of broadcast buffer and local position data.

· ushort GetSequenceNumber() returns the local sequence number and increments it.

· LocationTableRecord InitLocaTableRecord(GNAddress addr) implements initialization of a location table record for the given address.

· bool SendAsTSB(GNPacket packet) implements a procedure described in [i.1, 9.3.5.2] — sending a packet with Topologically Scoped Broadcasting. Returns true if the packet can be actually sent, and false if it cannot be sent, but stored in broadcast buffer instead.

· GNPacket CreateLSRequest(GNAddress addr) implements a procedure of creating a Location Service request packet for the given address [i1, 9.2.4.2.2].

· GNPacket CreateLSReply(LongPositionVector lpv) implements a procedure of creating a Location Service reply packet for the unit with the given position data [i1, 9.2.4.4].

· GNPacket CreateGeoUnicastPacket(string s, GNAddress addr) implements a procedure of) creating a GeoUnicast packet with the given payload for the given address [i1, 9.3.4.2].

· bool ProcessCommonHeader(GNPacket packet) implements a procedure of common header processing [i1, 9.3.3]. Returns true if the packet should be processed further and false if it should be skipped.

· bool NonDuplicatePacket(GNPacket packet) implement a procedure of duplicate packet detection [i1, Annex A]. Returns true if the packet is new and false if it is a duplicate.

· GNPacket UpdateHeader(GNPacket packet) implements a procedure of updating the header fields of the given packet before forwarding it further [i1, 9.3.5.3, 9.3.4.3].

· int Distance(LocalPositionVector x, ShortPositionVector y) implements distance calculation between the units with the given position data.
· LLAddress DetermineLLAddress(ShortPositionVector spv) implements a procedure calculating the lower layer unit to forward a packet, destined to the given position, to according to the greedy algorithm [i1, Annex C.2].
· Model operations corresponding to operations of the interface under test.

· GNPacket GeoUnicast(string payload, GNAddress addr) models processing a GeoUnicast request from the upper layer for the given payload and address. Only the part related with Location Service operation is implemented. If Location Service is not triggered, GeoUnicast packet is returned without any processing required in [i1, 9.3.4.2].

· FullResult LSRequestReceived(GNPacket packet) models processing of a Location Service request.

· FullResult LSReplyReceived(GNPacket packet) models processing of a Location Service reply.

· GNPacket LSTimer(GNAddress addr) models processing of expiration of Location Service retransmit timer for the given address.

· void LSBufferedPacketExpires(int index, GNAddress addr) models processing of lifetime expiration of a packet stored in Location Service buffer. The second parameter specifies an address, for which thу expired packet should be sent, the first one — the position of the expired packet in the buffer.
· void LTRecordExpires(GNAddress addr) models processing of lifetime expiration of location table record for the given address.
· Runner class implementing several operation scenarios for model simulation and testing.

The complete model is presented in the annex.

7.2.3
Generating test cases with SpecExplorer for case study 2

Due to the complexity of the model developed straightforward test generation for it is impossible — the tool generates some set of tests, which are all consist of single transition and can hardly be distinguished from each other.

To provide relevant tests one needs to take some test adequacy or test coverage criterion as a base. SpecExplorer has no coverage criterion as a parameter of test generation, but it supports model slicing — a technique that selects a specific set of behaviour scenarios from the model (with the help of their description in CordScript language, somehow extending regular expressions) and targets test generation to produce tests that correspond to this set of scenarios.

So, one still need some coverag criterion to select a relavant set of scenarios from a model.

The coverage of specific statements of standard requirements is taken as a target test coverage criterion in this case study. To select the relevant set of requirements the standard text [i.1] related with Location Service functionality and processing of the chosen interface events (see 7.2.1) is analysed and the statements presented in the following table are selected. The following shortenings are used in the second column of the table:

· “GU request” means GeoUnicast request.

· “LS request” means income of Location Service request packet.

· “LS reply” means income of Location Service reply packet.

· “LS timer expiration” means expiration of Location Service request retransmit timer.

· “Packet expiration” means expiration of lifetime of a packet stored in Location Service buffer.

· “LT record expiration” means expiration of lifetime of a record in Location Table.

	N
	Related interface event
	Position in the standard text [i.1]
	Requirement statement
	Notes

	1
	GU request
	9.3.4.2, item 1
	Check whether it has a valid position vector for DE in its LocT.
If no valid position vector information is available, the source shall invoke the location service as specified in clause 9.2.4 and omit the execution of further steps.
	Location Service invocation is described in [i.1, 9.2.4.2.2], see rows 2-6.

	2
	GU request
	9.2.4.2.2, item 1
	Check whether a LS for the sought GN_ADDR is in progress, i.e. the flag LS_pending is set TRUE.
if LS_pending is TRUE for the sought GN_ADDR, the packet shall be buffered in the LS packet buffer (clause 7.4) and the execution of the next steps shall be omitted.
	LS buffer is described in [i.1 7.4.2], see rows 33-34.

	3
	GU request
	9.2.4.2.2, item 2
	Issue a LS Request packet with a format as specified in clause 8.6.7 as a TSB packet.
Set the fields of the Common Header to the values specified in table 18;
Set the fields of the LS Request Extended Header to the values specified in table 19.
	Sending TSB packet is described in [i.1, 9.3.5.2], see rows 64-65.

	4
	GU request
	9.2.4.2.2, item 3
	Start a timer TLS, GN_ADDR with a timeout set to the value of the MIB attribute itsGnLocationServiceRetransmitTimer.
	

	5
	GU request
	9.2.4.2.2, item 4
	Initialize the LS retransmit counter for the GeoAdhoc router GN_ADDR RTCLS, GN_ADDR to 0.
	

	6
	GU request
	9.2.4.2.2, item 5
	Add a LocTE for the sought GN_ADDR in its LocT and sets the flag LS_pending to TRUE.
	

	7
	LS timer expiration
	9.2.4.2.3, item 1
	If the timer TLS, GN_ADDR for the GN_ADDR expires, the source shall execute the following operation:
Check the retransmit counter RTCLS, GN_ADDR.
	

	8
	LS timer expiration
	9.2.4.2.3, item 2
	If the retransmit counter is less than the maximum number of LS retransmissions set by the MIB attribute itsGnLocationServiceMaxRetrans, i.e. RTCLS, GN_ADDR < itsGnLocationServiceMaxRetrans the GeoAdhoc router shall:
	

	9
	LS timer expiration
	9.2.4.2.3, item 2.a
	Re- issue a LS Request packet with the format as specified in clause 8.6.7 as a TSB packet.
	Sending TSB packet is described in [i.1, 9.3.5.2], see rows 64-65.

	10
	LS timer expiration
	9.2.4.2.3, item 2.b
	Restart the timer TLS, GN_ADDR with a timeout set to of itsGnLocationServiceRetransmitTimer.
	

	11
	LS timer expiration
	9.2.4.2.3, item 2.c
	Increment the retransmit counter RTCLS, GN_ADDR.
	

	12
	LS timer expiration
	9.2.4.2.3, item 3
	If the retransmit counter is greater equal than the maximum number of LS retransmissions set by the MIB attribute itsGnLocationServiceMaxRetrans, i.e. RTCLS, GN_ADDR ≥ itsGnLocationServiceMaxRetrans the GeoAdhoc router shall
	

	13
	LS timer expiration
	9.2.4.2.3, item 3.a
	Flush the LS packet buffer (clause 7.4) for the sought GN_ADDR and discard the stored packets.
	LS buffer is described in [i.1 7.4.2], see row 37.

	14
	LS timer expiration
	9.2.4.2.3, item 3.b
	Remove the LocTE for the sought GN_ADDR.
	

	15
	LS reply
	9.2.4.2.4, item 1
	If the source receives a LS Reply packet for the sought GN_ADDR, the source shall execute the following operations:
Common Header processing (clause 9.3.3).
	Common Header processing is described in [i.1, 9.3.3], see rows 41-47.

	16
	LS reply
	9.2.4.2.4, item 2
	Execute duplicate packet detection (annex A); if the LS Reply packet is a duplicate, discard the packet and omit the execution of further steps.
	Duplicate packet detection is described in [i.1, Annex A], see row 73.

	17
	LS reply
	9.2.4.2.4, item 3
	Update the SO PVLocT with the SO PV of the received LS Reply Extended Header using the algorithm specified in clause B.2;
	LocT PV update is described in [i.1, Annex B.2], see row 74.

	18
	LS reply
	9.2.4.2.4, item 4
	Set the SO IS_NEIGHBOUR flag to FALSE, if the SO GN_ADDR does not equal the SE GN_ADDR.
	

	19
	LS reply
	9.2.4.2.4, item 5.a
	If SO LS_pending is TRUE:
flush the SO LS packet buffer (clause 7.4);
forward the stored packets;
set SO LS_pending to false.
	LS buffer is described in [i.1 7.4.2], see row 35.

	20
	LS reply
	9.2.4.2.4, item 5.b
	If the UC forwarding packet buffer (clause 7.5) for SO is not empty, flush the UC forwarding buffer and forward the stored packets.
	UC buffer is decribed in [i.1, 7.5.3], see row 40.

	21
	LS reply
	9.2.4.2.4, item 6
	Flush the LS packet buffer (clause 7.4) for the sought GN_ADDR and forward the stored packets.
	LS buffer is described in [i.1 7.4.2], see row 35.

	22
	LS reply
	9.2.4.2.4, item 7
	Set the flag LS_pending for the sought GN_ADDR to false.
	

	23
	LS reply
	9.2.4.2.4, item 8
	Stop the timer TLS, GN_ADDR.
	

	24
	LS reply
	9.2.4.2.4, item 9
	Reset the re-transmit counter RTCLS, GN_ADDR.
	

	25
	LS request
	9.2.4.3, par. 1
	If a GeoAdhoc router receives a LS Request packet and the Request GN_ADDR field in the LS Request header does not match its GN_ADDR, the GeoAdhoc router shall handle the packet according to the packet handling procedure for TSB (clause 9.3.5.3), except step 7 for passing the payload of the GN-PDU to the upper protocol entity.
	Forwarding TSB packets is described in [i.1, 9.3.5.3], see rows 66-72.
Step 7 here is mentioned by mistake, step 5 is meant.

	26
	LS reply
	9.2.4.3, par. 2
	If a GeoAdhoc router receives a LS Reply packet and the GN_ADDR in the DE PV of the LS Reply packet does not match its GN_ADDR, the GeoAdhoc router shall handle the packet according to the packet handling operations for GeoUnicast (clause 9.3.4).
	Forwarding GeoUnicast packets is described in [i.1, 9.3.4.3], see rows 48-63.

	27
	LS request
	9.2.4.4, item 1
	On reception of a LS Request packet, the GeoAdhoc router shall check the Request GN_ADDR field. If this MID field matches the MID field of its GN_ADDR, the GeoAdhoc router shall execute the following operations:
Common Header processing (clause 9.3.3).
	Common Header processing is described in [i.1, 9.3.3], see rows 41-47.

	28
	LS request
	9.2.4.4, item 2
	Execute duplicate packet detection (annex A); if the LS Request packet is a duplicate, discard the packet and omit the execution of further steps.
	Duplicate packet detection is described in [i.1, Annex A], see row 73.

	29
	LS request
	9.2.4.4, item 3
	Update the SO PVLocT with the SO PV fields of the LS Request Extended Header using the algorithm specified in clause B.2.
	LocT PV update is described in [i.1, Annex B.2], see row 74.

	30
	LS request
	9.2.4.4, item 4
	Set the SO IS_NEIGHBOUR flag to FALSE if SO GN_ADDR does not equal the SE GN_ADDR.
	

	31
	LS request
	9.2.4.4, item 5
	Issue a LS Reply packet as a GeoUnicast packet (clause 8.6.2) and forward the packet according to the forwarding procedure for GeoUnicast (clause 9.3.4).
	Forwarding GeoUnicast packets is described in [i.1, 9.3.4.3], see rows 48-63.

	32
	LT record expiration
	7.1.3
	The entries in the location table shall be soft-state, i.e. entries are added with a lifetime T(LocTE) set to the value of the MIB attribute itsGnLifetimeLocTE and shall be removed when the lifetimes expires.
	

	33
	GU request
	7.4.2, item 1
	GeoNetworking packets arriving at the LS packet buffer for a destination (GN_ADDR of a certain ITS station) shall be queued at the tail of the queue.
	

	34
	GU request
	7.4.2, item 2
	When a new GeoNetworking packet arrives at the LS packet buffer and exceeds the buffer capacity (buffer overflow), GeoNetworking packets from the head of the queue are removed and the new GeoNetworking packet queued at the tail (head drop).
	

	35
	LS request, LS reply
	7.4.2, item 3
	When the LS is completed, the LS packet buffer shall be flushed, i.e. all GeoNetworking packets stored in the

buffer shall be sent in a First-In-First-Out (FIFO) manner.
	

	36
	Packet expiration
	7.4.2, item 4
	When the queuing time of the GeoNetworking packet in the LS packet buffer exceeds the packet lifetime carried in the GeoNetworking packet's LT field in the Extended Header, the GeoNetworking packet shall be discarded.
	

	37
	LS timer expiration
	7.4.2, item 6
	When the LS does not complete, all stored GeoNetworking packets shall be discarded triggered by the LS.
	

	38
	GU request, LS timer expiration, LS reply
	7.5.3, item 1
	GeoNetworking packets arriving at the forwarding packet buffer shall be queued at the tail of the queue.
	

	39
	GU request, LS timer expiration, LS reply
	7.5.3, item 2
	When a new GeoNetworking packet arrives at the forwarding packet buffer and exceeds the buffer capacity, GeoNetworking packets from the head of the queue are removed and the new GeoNetworking packet queued at the tail (head drop).
	

	40
	LS request, LS reply
	7.5.3, item 3
	When the forwarding packet buffer is flushed, the GeoNetworking packets stored in the buffer shall be forwarded in a FIFO manner.
	

	41
	LS request, LS reply
	9.3.3, item 1
	When a GeoAdhoc router (forwarder, receiver, destination) processes a Common Header upon reception of a GeoNetworking packet, the GeoAdhoc router shall execute the following operations:
update the PV in the SE LocTE with the SE PV fields of the Common Header (clause B.2).
	LocT PV update is described in [i.1, Annex B.2], see row 74.

	42
	LS request, LS reply
	9.3.3, item 2
	Set the IS_NEIGHBOUR flag of the SE LocTE to TRUE;
	

	43
	LS request, LS reply
	9.3.3, item 3.a
	If SE LS_pending is TRUE:
flush the SE LS packet buffer (clause 7.4);
forward the stored packets;
set SE LS_pending to false.
	LS packet buffer flushing is described in [i.1, 7.4.2], see row 35.

	44
	LS request, LS reply
	9.3.3, item 3.b
	If the UC forwarding packet buffer (clause 7.5) for SE is not empty, flush the UC forwarding buffer and forward the stored packets.
	UC buffer is decribed in [i.1, 7.5.3], see row 40.

	45
	LS request, LS reply
	9.3.3, item 3.c
	If the BC forwarding packet buffer (clause 7.5) is not empty, flush the BC forwarding buffer and forward packets.
	BC buffer is decribed in [i.1, 7.5.3], see row 40.

	46
	LS request, LS reply
	9.3.3, item 4
	Check the NH field of the Common Header: if NH = 0 (ANY) discard the packet and omit the execution of further steps.
	Since LS request and reply packets has NH field equal to 0 [i1, 8.5.3], this item should be skipped when processing them, unless all such packets will be ignored.

	47
	LS request, LS reply
	9.3.3, item 5
	Check the HT field of the Common Header: if HT = 0 (ANY) discard the packet and omit the execution of further steps.
	

	48
	LS request, LS reply
	9.3.4.3, item 1
	On reception of a GeoUnicast packet, the GeoAdhoc router shall check the GN_ADDR field in the DE PV of the GeoUnicast packet header. If this address does not match its GN_ADDR, the GeoAdhoc router shall execute the following operations:
Common Header processing (clause 9.3.3).
	Common Header processing is described in [i.1, 9.3.3], see rows 41-47.

	49
	LS request, LS reply
	9.3.4.3, item 2
	Execute duplicate packet detection (annex A); if the GeoUnicast packet is a duplicate, discard the packet and

omit the execution of further steps.
	Duplicate packet detection is described in [i.1, Annex A], see row 73.

	50
	LS request, LS reply
	9.3.4.3, item 3
	Update the PV(SO) in the LocT with the SO PV fields of the GeoUnicast Extended Header (clause B.2).
	LocT PV update is described in [i.1, Annex B.2], see row 74.

	51
	LS request, LS reply
	9.3.4.3, item 4
	Set the IS_NEIGHBOUR(SO) flag to FALSE if SO GN_ADDR does not equal SE GN_ADDR.
	

	52
	LS request, LS reply
	9.3.4.3, item 5.a
	If LS_pending(SO) is TRUE
flush the SO LS packet buffer (clause 7.4);
forward the stored packets;
set LS_pending(SO) to false;
	LS packet buffer flushing is described in [i.1, 7.4.2], see row 35.

	53
	LS request, LS reply
	9.3.4.3, item 5.b
	If the UC forwarding packet buffer (clause 7.5) for SO is not empty, flush the UC forwarding buffer and forward the stored packets.
	UC buffer is decribed in [i.1, 7.5.3], see row 40.

	54
	LS request, LS reply
	9.3.4.3, item 6
	Update the DE PV(DE) in the LocT with DE PV fields in the GeoUnicast Extended Header (clause B.2).
	LocT PV update is described in [i.1, Annex B.2], see row 74.

	55
	LS request, LS reply
	9.3.4.3, item 7
	Update the fields of the Common Header, i.e.:
 the HL field with the decremented HL value;
 the SE PV fields with the LPV (clause 7.2);
	Here double decrement of HL field is mentioned by mistake.

	56
	LS request, LS reply
	9.3.4.3, item 8
	Update the DE PV fields with the PV(DE) in the LocT (clause B.3).
	Packet PV update is described in [i.1, Annex B.3], see row 75.

	57
	LS request, LS reply
	9.3.4.3, item 9
	Decrement the value of the HL field by one; if HL is decremented to zero, discard the GN-PDU and omit the execution of further steps.
	

	58
	LS request, LS reply
	9.3.4.3, item 10
	Determine the link-layer address LL_ADDR_NH of the next hop (annex C).
	

	59
	LS request, LS reply
	9.3.4.3, item 10.a
	If the MIB attribute itsGnGeoUnicastForwardingAlgorithm is set to 0 (UNSPECIFIED), execute the GF algorithm as specified in clause C.2.
	Greedy forwarding is described in [i.1, Annex C.2], see row 76.

	60
	LS request, LS reply
	9.3.4.3, item 10.b
	If the MIB attribute itsGnGeoUnicastForwardingAlgorithm is set to 1 (GREEDY), execute the GF algorithm as specified in clause C.2.
	Greedy forwarding is described in [i.1, Annex C.2], see row 76.

	61
	LS request, LS reply
	9.3.4.3, item 10.c
	If the MIB attribute itsGnGeoUnicastForwardingAlgorithm is set to 2 (CBF), execute the CBF algorithm as specified in clause C.3.
	Contention-based forwarding is described in [i.1, Annex C.3].

	62
	LS request, LS reply
	9.3.4.3, item 11
	If LL_ADDR_NH = 0, then buffer the GeoUnicast packet in the UC forwarding packet buffer and omit the execution of further steps.
	UC buffer is described in [i.1, 7.5.2], see rows 38-39.

	63
	LS request, LS reply
	9.3.4.3, item 12
	Pass the GN-PDU to the LL protocol entity via the IN interface and set the destination address to the LL address of the next hop LL_ADDR_NH.
	

	64
	GU request, LS timer expiration
	9.3.5.2, item 2
	If no neighbour exists, i.e. the LocT does not contain a LocTE with the IS_NEIGHBOUR flag set to TRUE, then buffer the TSB packet in the BC forwarding packet buffer and omit the execution of further steps.
	BC buffer is described in [i.1, 7.5.2], see rows 38-39.

	65
	GU request, LS timer expiration
	9.3.5.2, item 5
	Pass the GN-PDU to the LL protocol entity via the IN interface and set the destination address to the Broadcast address of the LL entity
	

	66
	LS request
	9.3.5.3, item 1
	On reception of a TSB packet, GeoAdhoc router shall execute the following operations:
Common Header processing (clause 9.3.3).
	Common Header processing is described in [i.1, 9.3.3], see rows 41-47.

	67
	LS request
	9.3.5.3, item 2
	Execute duplicate packet detection (annex A); if the TSB packet is a duplicate, discard the packet and omit the

execution of further steps.
	Duplicate packet detection is described in [i.1, Annex A], see row 73.

	68
	LS request
	9.3.5.3, item 3
	Update the PV(SO) in the LocT with the SO PV fields of the TSB Extended Header (clause B.2).
	LocT PV update is described in [i.1, Annex B.2], see row 74.

	69
	LS request
	9.3.5.3, item 4
	Set the IS_NEIGHBOUR(SO) flag to FALSE if SO GN_ADDR does not equal SE GN_ADDR.
	

	70
	LS request
	9.3.5.3, item 6
	Decrement the value of the HL field by one; if HL is decremented to zero, discard the GN-PDU and omit the execution of following operations.
	

	71
	LS request
	9.3.5.3, item 7
	Update the fields of the Common Header, i.e.:
the HL field with the decremented HL value;
the SE PV fields with the LPV (clause 7.2).
	Here double decrement of HL field is mentioned by mistake.

	72
	LS request
	9.3.5.3, item 8
	Pass the GN-PDU to the LL protocol entity via the IN interface and set the destination address to the Broadcast address of the LL entity.
	

	73
	LS request, LS reply
	Annex A
	P is the received GeoNetworking packet; SN(P) is the sequence number in the received GeoNetworking packet; SNSO,SAV is the last received sequence number from source SO saved by the local GeoAdhoc router; SN_MAX is the maximum sequence number = 2^16-1.

IF (((SN(P) > SNSO,SAV) AND ((SN(P) - SNSO,SAV) <= SN_MAX/2)) OR ((SNSO,SAV > SN(P)) AND ((SNSO,SAV - SN(P)) > SN_MAX/2))) THEN
 SN(P) is greater than SNSO,SAV
 P is not a duplicate packet
 SNSO,SAV ← SN(P)
ELSE
 SN(P) is not greater than SNSO,SAV
 P is a duplicate
ENDIF
	

	74
	LS request, LS reply
	Annex B.2
	RP is the received GeoNetworking packet; PVRP is the position vector in the received GeoNetworking packet; PVLocT is the position vector in the LocT to be updated; TSTPV,RP is the timestamp for the position vector in the received GeoNetworking packet; TSTPV,LocT is the timestamp for the position vector in the location table to be updated; TSMax is the maximum value of the timestamp = 2^32-1; T(LocTE) is the lifetime of the location table entry; itsGnLifetimeLocTE is the value of the MIB attribute itsGnLifetimeLocTE.

IF (((TSTPV,RP > TSTPV,LocT) AND ((TSTPV,RP - TSTPV,LocT) <= TSTMax/2)) OR ((TSTPV,LocT > TSTPV,RP) AND ((TSTPV,LocT - TSTPV,RP) > TSTMax/2))) THEN
 TSTPV,RP is greater than TSTPV,LocT
 PVLocT ← PVRP
 T(LocTE) ← value(itsGnLifetimeLocTE)
ELSE
 TSTPV,RP is not greater than TSTPV,LocT
ENDIF
	

	75
	LS request, LS reply
	Annex B.3
	FP is the GeoNetworking packet to be forwarded; PVFP is the position vector in the GeoNetworking packet to be forwarded; PVLocT is the position vector in the LocT; TSTPV,FP is the timestamp for the position vector in the GeoNetworking packet to be forwarded; TSTPV,LocT is the timestamp for the position vector in the location table; TSMax is the maximum value of the timestamp = 2^32-1

IF (((TSTPV,LocT > TSTPV,FP) AND ((TSTPV,LocT - TSTPV,FP) <= TSTMax/2)) OR ((TSTPV,FP > TSTPV,LocT) AND ((TSTPV,FP - TSTPV,LocT) > TSTMax/2))) THEN
 TSTPV,LocT is greater than TSTPV,FP
 PVFP ← PVLocT
ELSE
 TSTPV,FP is not greater than TSTPV,LocT
ENDIF
	

	76
	LS request, LS reply
	Annex C.2
	P is the GeoUnicast packet to be forwarded; i is the i-th LocTE; NH is the LocTE idenfified as next hop; NH_LL_ADDR is the link layer address of the next hop; LPV is the local position vector; PVP is the destination position vector in the GeoNetworking packet to be forwarded; PVi is the position vector of the i-th LocTE.

MFR = DIST(PVP, LPV)
FOR (i∈LocT)
 IF (i.IS_NEIGHBOUR) THEN
 IF (DIST(PVP, PVi) < MFR) THEN
 NH ← i
 MFR ← DIST(PVP, PVi)
 ENDIF
 ENDIF
ENDFOR
IF (MFR < DIST(PVP, PVLPV)) THEN
 SET NH_LL_ADDR = NH.LL_ADDR
ELSEIF
 LOCAL OPTIMUM
 SET NH_LL_ADDR = 0
ENDIF
	

Only a few of the requirements statements presented in the table are essential for a coverage measuring — for example, each GeoUnicast request with unknown address covers rows 2-5, rows 3-5 cannot be covered without covering row 2. To extract such essential requirement statements, the presented table was analysed and corresponding flowcharts for all the interface events were constructed. These flowcharts capture branching according to requirements and help to select the minimal set of requirement statements, which coverage implies coverage of all other statements presented.

The flowcharts constructed are presented below. On the flowcharts left branch of a branching node corresponds to true value of node condition, right branch of the same node corresponds to false value of the condition.

The next flowchart presents branching in processing of GeoUnicast request from upper protocol layer. The branch marked with “irrelevant” corresponds to processing GeoUnicast request for known address, for which Location Service is already completed, and so, this branch is irrelevant to Location Service functionality.

[image: image10]
The next flowchart represents branching in processing expiration of Location Service request retransmit timer.

[image: image11]
Both processing of expiration of lifetime of a packet stored in Location Service buffer and processing of expiration of lifetime of a record in Location Table have no branching according to the requirements — each time such an event occurs, its processing follows the same scenario.

The next two flowcharts represent branching of processing of Location Service request income. Its complex flowchart is partitioned into two parts. Grey branches of the first flowchart correspond to branches in common header processing procedure, which should never occur for processing of Location Service packets.

[image: image12]

[image: image13]
The next two flowcharts present branching of processing of Location Service reply income. Actually the full flowchart for LS reply processing consists of three parts, but the first one is common header processing — just the same as the first part of LS request processing.

[image: image14]

[image: image15]
The target coverage criterion chosen for test selection is coverage of all requirement boxes on the presented flowcharts and all exits, having no corresponding box. More specifically, i.e, requirements statement 9.3.5.2/5 (sending LS request to existing neighbours) on flowcharts for GeoUnicast and Location Service retransmit timer expiration is considered as two different coverage goals. Right branch from Annex A (duplicate packet detection) on 2-nd flowhcharts for LS request and LS reply processing has no corresponding box (it leads straight to an exit) and also is considered as two different coverage goals.

The SpecExplorer model code is marked with special requirement capture statements, corresponding to the selected requirements. Such a statement is written in a code block corresponding to the specified requirement. These marks can be made visible on the state-transition graphs of model exploration generated by the tool, and so the tool indirectly helps to design a set of scenarios covering all the coverage goals chosen.

The main prerequisite for creating a covering set of scenarios is a need for the corresponding set of test data. In this case study according to the decision made before modelling — that only one protocol unit is modelled and all its communications with others is presented as various incoming packets — one needs to prepare a set of packets sufficient to reach all the coverage goals selected, To solve this problem, the analysis of the coverage goals and their reachinability conditions should be done. In our example as the single significant source of data variety we have LS request and LS reply packets — all other parameters of interface events are quite trivial or can be arbitrary (as an address of the unit to be sought).

To determine a sufficient set of LS request and reply packets, one need to analyse the conditions met in the flowcharts presented above. The following table presents results of such an analysis.

	N
	Restriction on LS request or reply data
	Related coverage goals

	1
	LS reply/request with sender address non-equal to the address sought by Location Service
	9.3.5.2/5 (existing neigbours) for GeoUnicast request and LS retransmit timer expiration.
No pending LS for sender address for LS request/reply in common header processing procedure

	2
	LS reply/request with sender address equal to the address sought by Location Service
	9.3.3/3.a (pending LS for sender address) for LS request/reply in common header processing procedure,

	3
	LS reply with source address equal to the address sought by Location Service
	9.2.4.2.4/5.a-9.3.4.3/5.a (pending LS for source address) for LS reply

	4
	LS reply with source address non-equal to the address sought by Location Service
	No pending LS for source address for LS reply

	5
	LS reply with destination address non-equal to this unit address, for which there is more close neighbour of this unit
	9.3.4.3/13 (closer neighbour found) for LS reply

	6
	LS reply with destination address non-equal to this unit address, but for which this unit is the closest among all its neighbours
	9.3.4.3/11 (absence of closer neighbours) for LS reply

	7
	LS reply/request with sender address equal to the destination address from the restriction 6
	9.3.3/3.b (non-empty UC buffer for sender) for LS reply/request in common header processing procedure

	8
	LS reply with source address equal to the destination address from the restriction 6
	9.2.4.2.4/5.b-9.3.4.3/5.b (non-empty UC buffer for source) for LS reply

	9
	LS request with equal source and sender addresses
	Equal source and sender addresses for LS request

	10
	LS request with different source and sender addresses
	9.2.4.4/4-9.3.5.3/4 (different source and sender addresses) for LS request

	11
	LS reply with equal source and sender addresses
	Equal source and sender addresses for LS reply

	12
	LS reply with different source and sender addresses
	9.2.4.2.4/4-9.3.4.3/4 (different source and sender addresses) for LS reply

	13
	LS request with sought address equal to this unit address
	9.2.4.4/5 (sought address is equal to this unit address) in LS request

	14
	LS request with sought address non-equal to this unit address
	9.2.4.3->9.3.5.3 (sought address differs from this unit address) in LS request

	15
	LS reply packet with destination address equal to this unit address
	9.2.4.2.4/8-9 (destination address is equal to this unit address) in LS reply

	16
	LS reply packet with destination address non-equal to this unit address
	9.2.4.3->9.3.5.3 (destination address differs from this unit address) in LS reply

	17
	LS reply/request with SN field value greater than SN field value of other LS reply/request
	Annex A (non-duplicate packet detection) in LS reply/request

	18
	LS reply/request with SN field less or equal to SN field of other LS reply/request
	Annex A (duplicate packet detection) in LS reply/request

	19
	LS reply with destination LV timestamp greater than in previous packets
	Annex B.2 (update of destination LV in LocT) in LS reply

	20
	LS reply with destination LV timestamp less than in previous packets
	9.3.4.3/8-Annex B.3 (update of destination LV in packet header) in LS reply

	21
	LS reply/request with HL field with value 1
	9,3,5,3/6-9,3,4,3/9 (hop limit equal to 0) in LS reply/request

	22
	LS reply/request with HL field with value greater than 1
	Hop limit greater than 0 in LS reply/request

On the base of the extracted restrictions, the following data objects were constructed to be used as test data.

	N
	Object
	Type
	Fields
	Comment

	1
	a1
	GNAddress
	
	GeoNetworking address of the main protocol unit.

	2
	a2
	GNAddress
	
	GeoNetworking address to be sought by Location Service

	3
	a3
	GNAddress
	
	GeoNetworking address different from a1, a2, a4

	4
	a4
	GNAddress
	
	GeoNetworking address different from a1, a2, a3

	5
	lsReq1
	GNPacket
	
	Location Service request packet

	
	
	
	sender address = a3
	sender != sought address (rest. 1)

	
	
	
	source address = a3
	sender = source (rest. 9)

	
	
	
	sought address = a4
	sought ! = this (rest. 14)

	
	
	
	SN = 1
	

	
	
	
	HL = 2
	HL > 1 (rest. 22)

	6
	lsReq2
	GNPacket
	
	Location Service request packet

	
	
	
	sender address = a3
	sender != sought address (rest. 1)

	
	
	
	source address = a2
	sender != source (rest. 10)

	
	
	
	sought address = a1
	sought = this (rest. 13)

	
	
	
	SN = 2
	

	
	
	
	HL = 3
	HL > 1 (rest. 22)

	7
	lsReq3
	GNPacket
	
	Location Service request packet

	
	
	
	sender address = a2
	sender = sought address (rest. 2)

	
	
	
	source address = a2
	sender = source (rest. 9)

	
	
	
	sought address = a3
	sought ! = this (rest. 14)

	
	
	
	SN = 1
	

	
	
	
	HL = 5
	HL > 1 (rest. 22)

	8
	lsReq4
	GNPacket
	
	Location Service request packet

	
	
	
	sender address = a3
	

	
	
	
	source address = a2
	

	
	
	
	sought address = a4
	

	
	
	
	SN = 3
	

	
	
	
	HL = 1
	HL = 1 (rest. 21)

	9
	lsRep1
	GNPacket
	
	Location Service reply packet

	
	
	
	sender address = a3
	sender != sought address (rest. 1)

	
	
	
	source address = a3
	sender = source (rest. 11)

	
	
	
	destination address = a4
	

	
	
	
	SN = 2
	

	
	
	
	HL = 5
	HL > 1 (rest. 22)

	10
	lsRep2
	GNPacket
	
	Location Service reply packet

	
	
	
	sender address = a3
	

	
	
	
	source address = a2
	

	
	
	
	destination address = a1
	

	
	
	
	SN = 1
	

	
	
	
	HL = 2
	HL > 1 (rest. 22)

	11
	lsRep3
	GNPacket
	
	Location Service reply packet

	
	
	
	sender address = a2
	

	
	
	
	source address = a2
	

	
	
	
	destination address = a3
	

	
	
	
	SN = 1
	

	
	
	
	HL = 2
	HL > 1 (rest. 22)

	12
	lsRep4
	GNPacket
	
	Location Service reply packet

	
	
	
	sender address = a3
	

	
	
	
	source address = a2
	

	
	
	
	destination address = a4
	

	
	
	
	SN = 1
	

	
	
	
	HL = 1
	HL = 1 (rest. 21)

The development of the set of scenarios is partitioned into several parts.

· The first scenario is intended to cover situations, where Location Service is not invoked (GeoUnicast with already known address) and check that Location Table record lifetime expiration actuaaly make previously known address unfamiliar for a protocol unit.
This scenario in Cord Script looks as follows.
LSRequestReceived(lsReq3); GeoUnicast("A", a2); (LTRecordExpires(a2))?; GeoUnicast("B", a2);
· The second scenario is intended to cover all behaviours of Location Service retransmit timer expiration processing, to check consequences of Location Service buffered packet lifetime expiration, and to check FIFO logic during flushing Location Service buffer.
This scenario in Cord Script looks as follows.
(LSRequestReceived(lsReq1))?; GeoUnicast("A",a2); GeoUnicast("B",a2); GeoUnicast("C", a2); LSBufferedPacketExpires(_, a2); LSTimer(a2){11}; LSRequestReceived(lsReq1);

· The third scenario is intended to cover all behaviours of Location Service request processing.
(LSReplyReceived({lsRep1, lsRep2, lsRep3}))?; GeoUnicast("A",a2); LSRequestReceived({lsReq1, lsReq2, lsReq3, lsReq4});
· The fourth scenario is intended to cover all behaviours of Location Service reply processing.
(LSReplyReceived({lsRep1, lsRep2, lsRep3}))?; GeoUnicast("A",.a2); LSReplyReceived({lsRep1, lsRep2, lsRep3, lsRep4});

· The last scenario is intended to check protocol unit behaviour in situation od LS buffer overflow.
GeoUnicast("A",a2){1025}; LSRequestReceived(lsReq3);
Since the tool cannot process a sequence of actions of length ~103 (the size of LS buffer is 1024), this scenario was excluded from actual test generation. When this parameter in model was artifially decreased to 10, the corresponding test was generated successfully.

SpecExplorer generates 40 tests from the model slice determined by the presented set of scenarios (with excluded the last one).

7.2.4
Evaluation

Two criteria are used to evaluate the test suite generated: coverage of requirement statements (essential for branches of events processing, see flowcharts above) and coverage of the test purposes for GeoNetworking protocol, presented in [i.2].

The following table presents test purposes from [i.2], which concerns Location Service functionality.

	ID
	TP Id used in [i.2]
	Test sequence
	Description

	TP01
	TP/GEONW/PON/LOT/BV/02
	GeoUnicast(“”, a)/LS-REQUEST;
->LS-REPLY/GEO-UNICAST;
GeoUnicast(“”, a)/?GEO-UNICAST
	Test of adding new entries into location table from LS Reply data

	TP02
	TP/GEONW/PON/LOT/BV/04
	->BEACON/;
LTRecordExpires/;
GeoUnicast(“”, a)/?LS-REQUEST
	Test of handling entries expiring from location table

	TP03
	TP/GEONW/PON/LOT/BV/05
	->BEACON/;
->GEO_UNICAST(older)/;
GeoUnicast(“”, a)/?GEO-UNICAST (first LPV)
	Test of updating entries in location table with most up-to-date position data extracted from common header processing (including timestamp comparison before updating)

	TP04
	TP/GEONW/PON/LOS/BV/01
	GeoUnicast(“”, a)/?LS-REQUEST
	Test of first LS invocation for unknown Destination nodes

	TP05
	TP/GEONW/PON/LOS/BV/02
	GeoUnicast(“”, a)/LS-REQUEST;
GeoUnicast(“”, a)/?
	Test of no LS invocation for unknown Destination nodes when LS procedure is already active

	TP06
	TP/GEONW/PON/LOS/BV/03
	GeoUnicast(“”, a)/LS-REQUEST;
->LS-REPLY/?GEO-UNICAST
	Test of packet buffering into LS buffer during Location service procedure, including handling of LT fields in the LT packet buffer

	TP07
	TP/GEONW/PON/LOS/BV/04
	GeoUnicast(“X”, a)/LS-REQUEST;
GeoUnicast(“Y”, a)/;
->LS-REPLY/?GEO-UNICAST(X)-GEO_UNICAST(Y)
	Test of LS buffer characteristics: FIFO type

	TP08
	TP/GEONW/PON/LOS/BV/05
	GeoUnicast(“”, a)/LS-REQUEST;
LSBufferedPacketExpires/;
->LS-REPLY/?
	Test of LS buffer characteristics: discarding upon LT expiration

	TP09
	TP/GEONW/PON/LOS/BV/06
	GeoUnicast(“”, a)/LS-REQUEST;
LSTimer/?LS-REQUEST
	Test of LS Request retransmission if no answer is received

	TP10
	TP/GEONW/PON/LOS/BV/07
	GeoUnicast(“”, a)/LS-REQUEST;
LSTimer{>10}/?LS-REQUEST{10}
	Test of LS Request retransmission if no answer is received

	TP11
	TP/GEONW/PON/LOS/BV/08
	->LS-REQUEST(this)/?LS-REPLY
	Test of LS Reply generation by destination node

	TP12
	TP/GEONW/PON/LOS/BV/09
	->LS-REQUEST(this)/LS-REPLY;
->LS-REQUEST(same)/?
	Test of no LS Reply generation for already answered LS Request packets

	TP13
	TP/GEONW/PON/LOS/BV/10
	->BEACON(B)/;
->BEACON(B)/;
->LS-REQUEST(not this)/?LS-REQUEST
	Test of LS Request forwarding

	TP14
	TP/GEONW/PON/LOS/BV/11
	->BEACON(B)/;
->BEACON(C)/;
->LS_REPLY(not this)/?LS-REPLY
	Test of LS Reply forwarding

	TP15
	TP/GEONW/PON/LOS/BV/12
	GeoUnicast(“”, a)/LS-REQUEST;
->GEO-UNICAST(from a)/?GEO-UNICAST
	Test flushing of the LS buffer, initiated by the processing of a common header from the target destination

	TP16
	TP/GEONW/PON/LOS/BV/13
	GeoUnicast(“X”, a)/LS-REQUEST;
GeoUnicast(“Y”, a)/;
LSBufferedPacketExpires(2)/;
->LS-REPLY/?GEO-UNICAST(X)
	Test of LS buffer characteristics: FIFO type

	TP17
	TP/GEONW/CAP/LOS/BV/01
	->BEACON(B)/;
GeoUnicast(“X0”, a)/LS-REQUEST;
GeoUnicast(“Xi”, a){1024}/;
->LS-REPLY/?GEO-UNICAST(Xi>0){1024}
	Test of LS buffer capacity according to itsGnLocationServicePacketBufferSize parameter and the overflow handling procedure

The next table demonstrates coverage of the presented test purposes by the test generated. The sign ‘X’ means that the test purpose is covered with very similar sequence of actions, the sign ‘V’ means that the test purpose is covered with another action sequence (the test suite contains a sequence of actions checking the same properties).
	
	TP01
	TP02
	TP03
	TP04
	TP05
	TP06
	TP07
	TP08
	TP09
	TP10
	TP11
	TP12
	TP13
	TP14
	TP15
	TP16
	TP17

	TC01
	V
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC02
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC03
	V
	
	
	
	
	
	
	
	
	
	
	
	
	V
	
	
	

	TC04
	
	
	
	X
	
	X
	
	
	
	
	
	
	
	
	
	
	

	TC05
	
	
	
	X
	X
	
	
	V
	
	
	
	
	
	
	
	
	

	TC06
	
	
	
	X
	X
	
	
	V
	
	
	
	
	
	
	
	
	

	TC07
	
	
	
	X
	X
	
	
	V
	
	
	
	
	
	
	
	
	

	TC08
	
	
	
	
	
	
	
	
	
	
	
	
	
	V
	
	
	

	TC09
	
	
	
	X
	
	X
	
	
	
	
	
	
	
	
	V
	
	

	TC10
	
	
	
	X
	
	X
	
	
	
	
	
	
	
	
	V
	
	

	TC11
	
	
	V
	
	
	
	
	
	
	
	
	
	
	V
	V
	
	

	TC12
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC13
	
	
	V
	X
	
	
	
	
	
	
	
	
	
	V
	V
	
	

	TC14
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC15
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC16
	
	
	
	V
	
	X
	
	
	
	
	
	
	
	
	
	
	

	TC17
	
	
	
	V
	
	
	
	
	
	
	
	
	V
	
	
	
	

	TC18
	
	
	V
	V
	
	
	
	
	
	
	
	
	V
	
	V
	
	

	TC19
	V
	V
	
	
	
	
	
	
	
	
	X
	
	
	V
	
	
	

	TC20
	V
	
	
	X
	
	
	
	
	
	
	
	
	X
	
	
	
	

	TC21
	
	
	
	X
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC22
	
	
	
	X
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC23
	V
	
	
	X
	
	
	
	
	
	
	
	
	V
	
	
	
	

	TC24
	
	
	
	
	
	
	V
	V
	V
	V
	
	
	
	
	
	V
	

	TC25
	
	
	
	
	
	
	V
	V
	V
	V
	
	
	
	
	
	V
	

	TC26
	
	
	
	
	
	
	V
	V
	V
	V
	
	
	
	
	
	V
	

	TC27
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC28
	
	
	
	
	
	
	
	
	
	
	
	
	V
	
	
	
	

	TC29
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC30
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC31
	V
	
	
	
	
	
	
	
	
	
	
	
	V
	V
	
	
	

	TC32
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC33
	
	
	
	
	
	X
	
	
	
	
	
	
	
	
	
	
	

	TC34
	
	
	
	X
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC35
	V
	
	
	
	
	
	
	
	
	
	
	
	
	X
	
	
	

	TC36
	V
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC37
	V
	
	
	
	
	
	
	
	
	
	
	
	
	V
	
	
	

	TC38
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC39
	V
	
	
	
	
	
	
	
	
	
	
	
	
	X
	
	
	

	TC40
	
	
	V
	
	
	
	
	
	
	
	X
	
	
	
	V
	
	

	Total number of situations
	17

	Number of covered situations
	15

	Percentage of situations covered
	88.24%

Note: TP17 corresponds to LS buffer overflow, test for which cannot be generated with realistic value of buffer capacity (1024), but can be generated for model value (~10).

The table below contains full list of requirement statements essential for branching of external event processing.

	ID
	Identification on flowcahrts
	Description

	R01
	GeoUnicast/9.2.4.2.2/1.a
	Destination address is known; LS pending for destination address; pushing data into LS buffer

	R02
	GeoUnicast/irrelevant
	Destination address is known; LS finished; sending GEO-UNICAST packet

	R03
	GeoUnicast/9.2.4.2.2/2
	Destination address is not known

	R04
	GeoUnicast/9.3.5.2/5
	There are neighbours; broadcasting LS-REQUEST packet

	R05
	GeoUnicast/9.3.5.2/2
	There are no neighbours; pushing LS-REQUEST into BC buffer

	R06
	LSTimer/9.2.4.2.3/3
	Retransmission counter reaches maximum; stopping LS

	R07
	LSTimer/9.2.4.2.3/2
	Retransmission counter less than maximum

	R08
	LSTimer/9.3.5.2/5
	There are neighbours; broadcasting LS-REQUEST packet

	R09
	LSTimer/9.3.5.2/2
	There are no neighbours; pushing LS-REQUEST into BC buffer

	R10
	LSRequest/9.3.3/3.a
	LS is pending for sender of LS-REQUEST

	R11
	LSRequest/9.3.3/3.b
	UC buffer for sender of LS-REQUEST is non-empty

	R12
	LSRequest/9.3.3/3.c
	BC buffer for sender of LS-REQUEST is non-empty

	R13
	LSRequest/Annex A(duplicate)
	LS-REQUEST is duplicate

	R14
	LSRequest/Annex A(non-duplicate)
	LS-REQUEST is not duplicate

	R15
	LSRequest/9.2.4.4,9.3.5.3/4
	Source and sender of LS-REQUEST are different

	R16
	LSRequest/9.2.4.4/5
	LS-REQUEST seeks this unit

	R17
	LSRequest/9.2.4.3->9.3.5.3
	LS-REQUEST seeks another unit

	R18
	LSRequest/9.3.5.3/6,9.3.4.3/9
	Hop limit of LS-REQUEST becomes zero

	R19
	LSReply/9.3.3/3.a
	LS is pending for sender of LS-REPLY

	R20
	LSReply/9.3.3/3.b
	UC buffer for sender of LS-REPLY is non-empty

	R21
	LSReply/9.3.3/3.c
	BC buffer for sender of LS-REPLY is non-empty

	R22
	LSReply/Annex A(duplicate)
	LS-REPLY is duplicate

	R23
	LSReply/Annex A(non-duplicate)
	LS-REPLY is not duplicate

	R24
	LSReply/9.2.4.2.4,9.3.4.3/4
	Source and sender of LS-REPLY are different

	R25
	LSReply/9.2.4.2.4,9.3.4.3/5.a
	LS is pending for source of LS-REPLY

	R26
	LSReply/9.2.4.2.4,9.3.4.3/5.b
	UC buffer for source of LS-REPLY is non-empty

	R27
	LSReply/9.2.4.2.4/8-9
	LS-REPLY is intended for this unit

	R28
	LSReply/9.2.4.3->9.3.5.3
	LS-REPLY is intended for another unit

	R29
	LSReply/9.3.5.3/6,9.3.4.3/9
	Hop limit of LS-REPLY becomes zero

	R30
	LSReply/9.3.4.3/8->B3
	Update of LS-REPLY destination PV is needed

	R31
	LSReply/9.3.4.3/13
	There exists a neibour more close to destination

	R32
	LSReply/9.3.4.3/11
	There are no neighbours more close to destination

The next table shows coverage of the requirements statements prested above by the tests generated.

	
	R01
	R02
	R03
	R04
	R05
	R06
	R07
	R08
	R09
	R10
	R11
	R12
	R13
	R14
	R15
	R16
	R17
	R18
	R19
	R20

	TC01
	
	X
	
	
	
	
	
	
	
	
	
	
	X
	
	
	
	
	
	
	

	TC02
	X
	
	
	
	
	
	
	
	
	
	
	
	
	X
	
	
	X
	
	
	

	TC03
	
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	X

	TC04
	
	
	X
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	X
	

	TC05
	X
	
	X
	X
	
	X
	X
	X
	
	
	
	
	X
	X
	
	
	X
	
	
	

	TC06
	X
	
	X
	X
	
	X
	X
	X
	
	
	
	
	X
	X
	
	
	X
	
	
	

	TC07
	X
	
	X
	X
	
	X
	X
	X
	
	
	
	
	X
	X
	
	
	X
	
	
	

	TC08
	
	
	X
	
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC09
	
	
	X
	
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC10
	
	
	X
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC11
	X
	
	
	
	
	
	
	
	
	
	
	
	
	X
	X
	X
	
	
	
	

	TC12
	X
	
	
	
	
	
	
	
	
	
	
	
	
	X
	X
	
	X
	X
	
	

	TC13
	
	
	X
	X
	
	
	
	
	
	
	
	
	
	X
	X
	X
	
	
	
	

	TC14
	
	X
	
	
	
	
	
	
	
	
	
	
	
	X
	
	
	X
	
	
	

	TC15
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC16
	
	
	X
	
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	X
	

	TC17
	
	
	X
	
	X
	
	
	
	
	X
	
	X
	
	X
	
	
	X
	
	
	

	TC18
	
	X
	
	
	
	
	
	
	
	
	X
	
	
	X
	X
	X
	
	
	
	

	TC19
	
	X
	X
	
	X
	
	
	
	
	
	
	
	
	X
	
	
	X
	
	
	

	TC20
	
	
	X
	X
	
	
	
	
	
	
	
	
	X
	
	
	
	
	
	
	

	TC21
	
	
	X
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC22
	
	
	X
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC23
	
	
	X
	X
	
	
	
	
	
	X
	
	
	
	X
	
	
	X
	
	
	

	TC24
	X
	
	X
	
	X
	X
	X
	
	X
	
	
	X
	
	X
	
	
	X
	
	
	

	TC25
	X
	
	X
	
	X
	X
	X
	
	X
	
	
	X
	
	X
	
	
	X
	
	
	

	TC26
	X
	
	X
	
	X
	X
	X
	
	X
	
	
	X
	
	X
	
	
	X
	
	
	

	TC27
	
	
	X
	
	X
	
	
	
	
	
	
	X
	
	X
	
	
	X
	
	
	

	TC28
	
	
	X
	
	X
	
	
	
	
	
	
	X
	
	X
	X
	
	X
	X
	
	

	TC29
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC30
	
	X
	
	
	
	
	
	
	
	
	X
	
	
	X
	
	
	X
	
	
	

	TC31
	
	
	X
	
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC32
	X
	
	
	
	
	
	
	
	
	X
	
	
	X
	
	
	
	
	
	
	

	TC33
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	X
	

	TC34
	
	
	X
	X
	
	
	
	
	
	
	
	
	
	X
	X
	
	X
	X
	
	

	TC35
	
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC36
	
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC37
	
	X
	
	
	
	
	
	
	
	
	X
	
	
	X
	X
	
	X
	X
	
	

	TC38
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	

	TC39
	
	X
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	
	X

	TC40
	
	
	X
	
	X
	
	
	
	
	
	
	X
	
	X
	X
	X
	
	
	
	

	
	R21
	R22
	R23
	R24
	R25
	R26
	R27
	R28
	R29
	R30
	R31
	R32

	TC01
	
	
	X
	
	
	
	
	X
	
	X
	
	X

	TC02
	
	
	X
	X
	
	
	X
	
	
	
	
	

	TC03
	
	
	X
	
	
	
	
	X
	X
	X
	
	X

	TC04
	
	
	X
	
	
	
	
	X
	
	X
	
	X

	TC05
	
	
	
	
	
	
	
	
	
	
	
	

	TC06
	
	
	
	
	
	
	
	
	
	
	
	

	TC07
	
	
	
	
	
	
	
	
	
	
	
	

	TC08
	X
	
	X
	
	
	
	
	X
	
	X
	
	X

	TC09
	X
	
	X
	X
	X
	
	X
	
	
	
	
	

	TC10
	
	
	X
	X
	X
	
	X
	X
	
	X
	
	X

	TC11
	
	
	X
	X
	
	
	X
	
	
	
	
	

	TC12
	
	
	X
	X
	
	
	X
	
	
	
	
	

	TC13
	
	
	X
	
	
	
	
	X
	
	
	X
	X

	TC14
	
	
	
	
	
	
	
	
	
	
	
	

	TC15
	
	X
	X
	X
	
	
	X
	
	
	
	
	

	TC16
	X
	
	X
	
	
	
	
	X
	
	X
	
	X

	TC17
	
	
	
	
	
	
	
	
	
	
	
	

	TC18
	
	
	X
	
	
	
	
	X
	
	X
	
	X

	TC19
	
	
	
	
	
	
	
	
	
	
	
	

	TC20
	
	
	X
	
	
	
	
	X
	
	X
	
	X

	TC21
	
	X
	X
	
	
	
	
	X
	
	X
	
	X

	TC22
	
	X
	X
	
	
	
	
	X
	
	X
	
	X

	TC23
	
	
	X
	
	
	
	
	X
	
	X
	
	X

	TC24
	
	
	
	
	
	
	
	
	
	
	
	

	TC25
	
	
	
	
	
	
	
	
	
	
	
	

	TC26
	
	
	
	
	
	
	
	
	
	
	
	

	TC27
	
	
	
	
	
	
	
	
	
	
	
	

	TC28
	
	
	
	
	
	
	
	
	
	
	
	

	TC29
	
	
	X
	X
	
	
	X
	X
	X
	
	
	

	TC30
	
	
	X
	
	
	
	
	X
	
	X
	
	X

	TC31
	X
	
	X
	
	
	
	
	X
	X
	
	
	

	TC32
	
	
	X
	X
	
	
	X
	
	
	
	
	

	TC33
	
	X
	X
	X
	
	
	X
	
	
	
	
	

	TC34
	
	
	X
	
	
	
	
	X
	
	X
	
	X

	TC35
	
	
	X
	
	
	
	
	X
	
	X
	
	X

	TC36
	
	X
	X
	
	
	
	
	X
	
	X
	
	X

	TC37
	
	
	X
	
	
	
	
	X
	
	X
	
	X

	TC38
	
	
	X
	X
	
	
	X
	X
	
	X
	
	X

	TC39
	
	X
	X
	
	
	
	
	X
	
	X
	
	X

	TC40
	
	
	
	
	
	
	
	
	
	
	
	

	Total number of situations
	32

	Number of covered situations
	31

	Percentage of situations covered
	96.88%

7.3
Applying Conformiq Designer to case study 2

The goal of the case study is to produce a QML model of the Location Serivce functionality of the GeoNetworking protocol which can be used to generate a test suite with the Conformiq Designer tool. This test suite should be comparable to the test purposes defined in the Test Specification for the Location Service of the GeoNetworking protocol.
7.3.1
Modeling case study 2 with Conformiq Designer

The starting point of the modelling work was the ETSI standard of the GeoNetworking protocol. The GeoNetworking protocol is a network layer protocol that provides packet routing in an ad hoc network. It supports the communication among individual ITS stations as well as the distribution of packets in geographical areas. A GeoAdhoc router shall maintain a local data structure, referred to as location table (LocT), where each entry holds information about other ITS stations that execute the GeonNetworking protocol. Each entry contains several variables and packet buffers. The protocol behaviour is described by maintaining this table and the actions are mostly depending on the actual state of the table. This means, that when the standard is followed it is easier to describe the system as a data table and the corresponding functions, and it is not straightforward to describe the system using states and transitions of an FSM. The problem is, that the location table contains a lot of variables and it grows with each new station which leads to early state space explosion. Though a lot of testcases could be generated this way, it is hard to tell which makes sense and which is just a variation of an already generated testcase.

To provide some boundaries which can make job of both the modeller and the test generation tool easier, the same test configurations were introduced that were used in the Test Specification. The use of the internal variables was reduced and instead some new states and transitions were inserted into the FSM model which made the model more readable and friendlier for the test generation algorithm.

The test purposes were also reverse engineered to identify those events and transitions that are worth testing. Though reverse engineering of the test purposes could make the whole model based testing approach questionable, I have to emphasize that the test purposes were only used as guidance to extend the test model since I was inexperienced with the GeoNetworking protocol. This model extension would have been easy for ITS experts who were able to design the test purposes, because of the graphical overview the model provides.

The modelling process was done in iterations:

· The first step was to describe the Protocol Data Units (PDUs) on the interfaces of the model

· After the data types are ready for the interfaces it is possible to define some use-cases where the main expected scenarios of the model can be described

· The model behaviour is then expressed using the state machines and the action language

· The final part of each iteration is the model validation. This part the modeller uses test generation to get some output from the tool. The generated testcases then analyzed whether they are according to the expected behaviour. The Conformiq tool provides also some feedback if the defined use-cases could be found in the model. In this step it is not necessary to set the test generator to provide some very deep exploration of the model. It is more effective to get only a small number of testcases (e.g. based on the requirements)

The model is refined each iteration until we get to the desired level of detail and we build some confidence that the model is valid.

As the iteration of the modelling are executed the model evolves. During this evolution the model is adapting to the environment. The environment consists of several things: the test goals, the expressiveness of the modelling language, the heuristics of the test generation algorithm and, naturally, the test model developer. This is this adaptation process that will finally result in one model descrition of a part of the specification that could be described in several ways. For example the retransmission of an LSRequest could have been modelled with hierarchical states, but to got better results from the test generator the hierarchical state were expanded which resulted in a more visible model and in shorter test generation times.

7.3.2
Conformiq Designer model of case study 2

This section describes the QML model. The model is composed of three core parts: data definitions including the data structures that are modelling the PDUs, the representation of the Location Table and finally the protocol behaviour which is described with an FSM and some functions. To model the PDUs records were defined for each important packet types. These definitions are located in the SystemBlock.cqa file. It is important to mention that only those fields were modelled for a packet that were used in the behaviour model and even those are on an high abstraction level. For example the GN_ADDR and the position vector fields are simply modelled with a field of type String. The following records were defined for the packet types:
· Upper Port

· GN_MGMT_Req

· GN_MGMT_Resp

· GN_DATA_Req

· GN_DATA_Ind

· Lower Port

· GN_Unicast_PDU

· GN_Beacon_PDU

· GN_LS_Request_PDU

· GN_LS_Reply_PDU

The model of the Location Table can be found in the LocTE.cqa file. A Location Table Entry is described with the LocTE class. This class has the same fields as a Location Table Entry and with the instances of this class a Location Table can be built dynamically. It also has some packet buffers and the corresponding buffer management operations are implemented with functions.

The behavioral model is grasped with an FSM (see Fehler! Verweisquelle konnte nicht gefunden werden.) and it is tailored for the CF01 scenario. It consists of two main areas: in the upper part there are the states and transitions for initialization, while in the lower part of the picture the protocol behavior is described.

[image: image16.emf]Protocol Behavior

Initialization

Figure 6 Location Serivce FSM in Conformiq Modeler

The Idle state is the base state after the initialization is done. This state serves as the starting point for the different protocol functionalities which are triggered by various incoming PDUs from the lower layer or ASPs from the upper layer. The handling of the incoming messages is done in separate functions that are following the standard as closely as it was possible while keeping the abstraction level high. The FSM gets into the LS_Init_0 state when a Location Service was initiated for the first element in the Location Table. This is an example for the simplification of the model since it binds that the Location Service can be initiated only for this first peer.

As the model evolved during the modeling iterations the initialization and protocol behavior separation became harder to notice. Some internal operations that were hidden in the functions were raised up to the state machine level as states and transitions. The reason for these modifications is to help the test generator algorithm to find these paths and also to make these visible for the modeler.

[image: image17.png]

Figure 7 Location Service FSM in Conformiq Modeler: New states and transitions

In summary the model consists of two layers. The top layer is the state machine, which deals with setting up the test configurations and describes the incoming messages and the corresponding transitions for each state that are interesting from a tester’s point of view. This state machine carves out those message combination paths from the infinite number of incoming message combinations that make sense to produce tests for. We can say that the FSM is describing the signalling interaction for the test purposes. The lower layer of the model consists of the classes and the functions. These functions are handling the incoming messages by updating the internal tables and are calculating the fields of response PDUs.
The following packet handler functions were implemented:

· Handle_LS_Init (according to 9.2.4.2.2)

· Handle_LS_Retransmission (according to 9.2.4.2.3)

· Handle_LS_Reply_Destination (according to 9.2.4.2.4)

· Handle_LS_Request_Destination (according to 9.2.4.4)

· Handle_LS_Request_Forwarding (according to 9.2.4.3)

· Handle_LS_Reply_Forwarding (according to 9.2.4.3)

· Handle_Unicast_Destination (according to 9.3.4.4)

In Conformiq Designer the user has the option to use requirement traceability links to establish new test goals driven by functional requirements. The requirement links are marked in the model by the “requirement” statement. These marks are used as coverage criteria that can be enabled and disabled independently in the tool’s user interface. Every selected requirement becomes a test goal that guides Conformiq Designer to look for behaviors that cover the particular requirement. During modeling the following requirements were inserted:

· RQ01 9.2.1.3.1 Initial Address Configuration

· RQ02 9.2.4.2.2 LS_NOT_PENDING

· RQ03 9.2.4.2.2 LS_PENDING

· RQ04 9.2.4.2.3 LS Retransmission

· RQ05 9.2.4.2.3 LS Retransmission Counter

· RQ06 9.2.4.2.4 LS Reply_Neighbor

· RQ07 9.2.4.2.4 LS Reply Not Neighbor

· RQ08 9.2.4.2.4 LS Reply SO LS_Pending:false

· RQ09 9.2.4.2.4 LS Reply SO LS Pending:true

· RQ10 9.2.4.2.4 LS Request Neighbor

· RQ11 9.2.4.3 LS Request Forwarding

· RQ12 9.2.4.3 LS Reply forwarding

· RQ13 9.2.4.4 LS Request Not Neighbor

· RQ14 9.2.4.4 LS Request is the same from another node

Since the Test Purposes were also taken into account during modeling, those parts of the model that clearly belong to a test purpose were also marked with “requirement” statements. The following TP requirements were defined:

· TP01 LS Init

· TP02 No 2nd LS Init

· TP03 Flush LS Buffer after LS Reply

· TP04 LS Buffer FIFO

· TP05 Lifetime Expired

· TP06 LS Request Retransmission

· TP07 LS Retransmission maxRetrans times

· TP08 LS Request Destination

· TP09 LS Request is the same from antoher node

· TP10 LS Request Forwarding

· TP11 LS Reply Forwarding

· TP12 Unicast Destination
7.3.3
Generating test cases with Conformiq Designer for case study 2

The goal during the test generation was to produce a test suite that can be compared to the test purposes defined in the Conformance Test Specification. After experimenting with the parameters I identified two settings that are described in 7.3.3.1 and 7.3.3.2 respectively.

7.3.3.1
Generating testcases for the Test Purposes

I used the first setting set to generate testcases where the goal is to cover all the test purposes with a compact test suite that doesn’t contain too many testcases.

· Project -> Properties -> Conformiq Options

· Lookahead Depth: Set to the third position

· Only finalized runs: Disabled

· OSI Methodology Support: Enabled

· Coverage Editor

· Requirements: TPs are Target (12 out of 12: 100%)

· State Chart (100%)

· States: Target (13 out of 13: 100%)

· Transitions: Target (20 out of 20: 100%)

· 2-Transitions: Don’t case

· Implicit Consumption: Don’t care

· Conditional Branching: Don’t care

· Control Flow (96%)

· Methods: Target (32 out of 33: 96%)

The data in parenthesis are showing the percentages of the test goals that are covered by the generated test in that given coverage area.

When ‘Only Finalized Runs’ is selected, Conformiq Designer will only generate test cases that end the system in a "clean" state. When this setting is activated, only such test cases are accepted to the generated test suite that would cause all threads in the model to terminate. This setting was disabled and instead ‘OSI Methodology Support’ was enabled. Selecting this option activates the "OSI Methodology" feature which provides support for generating test suites conforming to the OSI methodology for organizing test cases as laid out in the ISO 9646-1 standard. All the generated test cases are divided into three sections: Preamble, Body, and Postamble. Every generated test case is automatically named by the name of one of the requirements that is verified in the Body.
Setting the Lookahead Depth to the 3rd position gave 100% Test Purpose coverage in 12 seconds on an Intel® Core(TM) i5 CPU with 4 cores and 4GB memory running Windows Vista and produced 18 testcases.

7.3.3.2
Generating testcases for model details

The second setting takes more details of the model into account during test generation. This time not only the Test Purposes were set as goals, but also the requirements that were identified based on the specification. Furthermore, 2-transitions and boundary value analysis was added to the targets of the test generator:

· Project -> Properties -> Conformiq Options

· Lookahead Depth: Set to the third position

· Only finalized runs: Disabled

· OSI Methodology Support: Enabled

· Coverage Editor

· Requirements: Target (24 out of 26: 92%)

· State Chart (100%)

· States: Target (13 out of 13: 100%)

· Transitions: Target (20 out of 20: 100%)

· 2-Transitions: (41 out of 41: 100%)

· Implicit Consumption: Don’t care

· Conditional Branching

· Conditional Branches: Target (32 out of 38: 84%)

· Boundary Value Analysis: (23 out of 47: 48%)

· Control Flow (100%)

· Methods: Target (32 out of 33: 96%)

The test generator generated 44 testcases still in a reasonable time (1 minute and 8 seconds on an Intel® Core(TM) i5 CPU with 4 cores and 4GB memory running Windows Vista). To find the optimal setting for this parameter one has to experiment with the model and the settings for a while.

7.3.4
Evaluation

In this section I compare the generated test suites to the test purposes defined in the Conformance Test Specification.The test purposes (TP):

· TP/GEONW/PON/LOS/BV/01 Test of first LS invocation for unknown Destination mode

· TP/GEONW/PON/LOS/BV/02 Test of no LS invocation for unknown Destination nodes when LS procedure is already active

· TP/GEONW/PON/LOS/BV/03 Test of packet buffering into LS buffer

· TP/GEONW/PON/LOS/BV/04 Test of LS buffer characteristics: FIFO

· TP/GEONW/PON/LOS/BV/05 Test of LS buffer characteristics: discarding upon LT expiration

· TP/GEONW/PON/LOS/BV/06 Test of LS Request retransmission if no answer is received

· TP/GEONW/PON/LOS/BV/07 Test of LS request retransmission if no answer is received

· TP/GEONW/PON/LOS/BV/08 Test of LS Reply generation by destination node

· TP/GEONW/PON/LOS/BV/09 Test of no LS Reply generation for already answered LS Request packets

· TP/GEONW/PON/LOS/BV/10 Test of LS Request forwarding

· TP/GEONW/PON/LOS/BV/11 Test of LS Reply forwarding

· TP/GEONW/PON/LOS/BV/12 Test flushing of the LS buffer, initiated by the processing of a common header from the target destination

7.3.4.1
Evaluation of the test suite generated to cover the Test Purposes

Using the model described in 7.3.2 and setting the parameters of the test generator according to 7.3.3.1 a test suite consisting of 18 testcases is produced by the conformiq Designer tool.

The tool generates a Traceability Matrix that makes it possible to check if a Test Purpose is covered by a generated testcase:

[image: image18.png]TPOLLSInit
TP02 No 2nd LS Init

TP 03 Flush LS Buffer after LS Reply

TP 04 LS Buffer FIFO.

TP 05 Lifetime expired

TP 06 LS Request Retransmission

TP 07 LS Retransmission maxRetransTimes.

TP 08 LS Request Destination

TP 09 LS Request is the same from an other node
TP 10 LS Request Frowarding

TP 11 LS Reply Forwarding

TP 12 Unicast Destination

>

9

10
x

1n
x

12
x

13
x

14
x

x

15

x
x

16
x

17
x

18
x

> x

Figure 8 Test Purpose Coverage
All 12 test purposes were covered by the generated testcases. The granularity of the generated test data is at least on the same level as the description in the test purposes. The first three testcases are describing signalling to set up the test configuration.

The dependencies between test cases are automatically tracked when the test suite is generated using "OSI Methodology Support" and a Test Dependency Matrix is generated, which shows how the test cases depend on each other.
[image: image19.png]Prerequisite / Dependent
Method main(
Method get_ GN_MGMT_Resp(String,String)
Method GeoNetworking.get_GN_Beacon_PDU(int)
TP 08 LS Request Destination
Move from GeoNetworking, CFO3_Init to GeoNetworking.CFO3
TP 09 LS Request is the same from an other node
TP 10 LS Request Frowarding
TPOLLSInit
TP 11 LS Reply Forwarding
Method get InternalEvent(String)
TP 06 LS Request Retransmission
GeoNetworking.LS Init_0_TimePassed to G-,
GeoNetworking.LS_init_0_Retrans 1 to G-.LS_init 0_Retrans 2
TP 03 Flush LS Buffer after LS Reply
GeoNetworking.LS_Buffer_TimePasses to GeoNetworking.Idie
TP 12 Unicast Destination
TP 04 LS Buffer FFO.
Use Case: TP: maxRetrans

2 3 4 5 6 7 8
R IR I PV DY Y]
P R R I P)
o o
o
°

TP 06 LS Request Retransmission

t ottt

0 1 12

13

14 15 16

P R IR ISPV PV I]
R IR Y RPN

R IR IR IRV PV I]

”

PR

17 18

]
]

ttt ot

Figure 9 Test Case Dependency Matrix

7.3.4.2
Evaluation of the test suite generated to cover model details

Using the model described in 7.3.2 and setting the parameters of the test generator according to 7.3.3.2 a test suite consisting of 44 testcases is produced by the tool.

Again, the Traceability Matrix shows how the Test Purposes are covered by the generated testcases:

[image: image20.png]TP 01 LS Init
TP 02 No 2nd LS Init

TP 03 Flush LS Buffer after LS Reply
TP 04 LS Buffer FIFO.

TP 05 Lifetime expired

TP 06 LS Request Retransrmission

TP 07 LS Retransmission maxRetransT
TP 08 LS Request Destination

TP 09 LS Request s the same from an
TP 10 LS Request Frowarding.

TP 11 LS Reply Forwarding

TP 12 Unicast Destination

>

9

>

0 11 12 13 14 15 16 17 18 19 20 2 2 2B 4 2
X X X X X X X X X X
x

= B

>

7 8
X x
X x

= B
x 8

>

>

> x

= x K

> x

x x ¥

35 3% 37 338 39 40 4
X X X X X X X
X x X x
x
x X x
x
x

> x

43

> x

x

x x

Figure 10 Test Purpose Coverage
There are some testcases that are differing from each other, but they are excercising the same test purpose. The reason for this is that the handler functions were implemented based on the standard and there were some branches that were marked with different “requirements”. This lead to several testcases that are going deeper into the protocol behavior than the Test Purposes. The first 4 testcases do not belong to any test purpose, they are containing the signalling to initialize the test configuration CF01.

[image: image21.png]BS9.2:1.31 Intial Address Configurati
B59.2.4.22 LS NOT_PENDING
B59.2.4.22 LS PENDING

BS9.2.4.23 LS Retransmission
BS9.2.4.23 LS Retransmission Counte
BS9.2.4.2.4 LS Reply Neighbor
BS9.2.4.2.4 LS Reply Not Neighbor
BS9.2.4.24 LS Reply SO LS Pending:fz
BS9.2.4.24 LS Reply SO LS_Pending:tr
BS9.2.4.24 LS Request Neighbor
BS9.2.43 LS Reply Forwarding
BS9.2.43 LS Request Forwarding
BS9.2.4.4 LS Request Not Neighbor
BS0.2.4.4 LS Request is the same from

10
x

1n
x

12
x

13
x

14
x

>

15
x

16
x
x

17
x
x

18
x
x

19

x
x

20
x
x

> x R

x xR

x < B

> x

= x B

= x B

>

> x

>

x = B

>

= x B

>

>

>

>

>

>

x x ¥

>

> x

>

= x &

>

> x

x < 8

>

= x 8

>

xx &

>

> x B

>

>

43

>

>

x

x

x

Figure 11 Requirement Coverage

The Test Dependency Matrix was generated in this case as well.

[image: image22.png]BS9.2:131 Intial Address Configuration
Method get_ GN_MGMT_Resp(String,String)
Method GeoNetuworking.get_GN_Beacon_PL.
Conditional branch guard in GeoNetwrking
BS9.2.43 LS Request Forwarding

Move from GeoNetworking, CFO3 to GeoNit
BS9.2.43 LS Reply Forwarding

Move from GeoNetworking, CFO3 to GeoNit.
Move from GeoNetworking, CFO3 to GeoNit.
TP 08 LS Request Destination

Move from GeoNetworking, CFO3 to GeoNit.
Boundary case 'x > (y + 1)'in GeoNetworkin
Move from GeoNetworking Idle to GeoNetw.
BS9.2.4.4 LS Request s the same from an ot
BS9.2.4.2.4 LS Request Neighbor
TPOLLSInit

Method get InternalEvent(String)

Move from GeoNetworking Idle to GeoNetw.
Conditional branch guard in GeoNetwrking
TP 12 Unicast Destination

Boundary case 'x > (y + 1)'in GeoNetworkin
GeoNetworking.LS Int_0_TimePassed to G~
GeoNetworking.LS Int_0_TimePassed to G~
GeoNetworking.LS Int_0_TimePassed to G~
TP 03 Flush LS Buffer after LS Reply
BS9.2.4.2.4 LS Reply Not Neighbor
Boundary case 'x > (y + 1)'in GeoNetworkin
GeoNetworking.LS Int_0_TimePassed to G~
GeoNetworking.LS Int_0_TimePassed to G~
GeoNetworking.LS Int_0_TimePassed to G~
GeoNetworking.LS_Buffer_TimePasses to Ge.
GeoNetworking.LS_Buffer_TimePasses to G-
GeoNetworking.LS_Buffer_TimePasses to G-
GeoNetworking.LS_Buffer]
TP 04 LS Buffer FFO.
GeoNetworking.LS_Buffer 0 to GeoNetworki
TP 06 LS Request Retransmission
GeoNetworking.LS_Buffer 0 to GeoNetworki
GeoNetworking.LS_Buffer 0 to GeoNetworki
Conditional branch guard in GeoNetwrking
GeoNetworking.LS_init_0_maxRetrans to G~
GeoNetworking.LS_init_0_maxRetrans to G~
GeoNetworking.LS_init_0_maxRetrans to G~
Use Case: TP: maxRetrans

imePasses to G~

1

2 3
]
o

ttt .
Tttt .,
ttttt o

Tttt
ttttt o

tttt o

10

°
”

1n

tttt

12 13 14 15 16 17 18 19

P R IR IR RV NPV I]
P R IR IR IRV IR I I

tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt
tt tt
tt tt
tt tt

20 a2 2 5
PR
PR R)

2%

°
”

5 %
]
]

2

°
”

28 29 30
PR
PR

tt
tt
tt

3

°
”

32
°
”

tt
tt
tt

3

°
”

ES
°
”

tt

tt
tt tt

tty
Tt

tt

tty
Tt

tt tt
tt tt

tt
tt

tt g
tt g
Tt
ttg

PR P I)

tt

PR R I)

PR R)

Figure 12 Test Case Dependency Matrix

7.5
Applying sepp.med MBTsuite to case study 2

<Text>

7.5.1
Modeling case study 2 with sepp.med MBTsuite

The approach chosen for creating the test model for the ITS case study consists in creating a separate state diagram for each feature of the protocol, based on the system specification and according to its structure. While the state diagram should try to cover all aspects of that feature, interferences with other features should be avoided as much as possible to ensure that the complexity of the model can still be managed with a reasonable amount of efforts. For example in this particular case study targeting the location service functionality of the ITS Geonetworking protocol (Section 9.2.4), it was chosen to distinguish between source operations (Section 9.2.4.2), i.e. situations in which the SUT acts as the source for a location service request, and forwarder operations(Section 9.2.4.3), i.e. situations whereby the SUT is requested to forward incoming requests to their addressed parties and therefore acts as both a sender and a receiver. Therefore two separate state machines were created, with one for source operations and the other one for forwarder operations. Obviously, if for some particular reasons, there is a wish to have a single state machine rather that a set thereof as used here, the individual state machines could then combined into a single one using branching to distinguish between the different modes.

Given that MBTSuite does not take data structures and architectural structure into account, the only realistic output expected to be generated automatically is a collection of test purposes and the associated procedures for assessing those test purposes.

7.5.2
sepp.med MBTsuite model of case study 2

Figure 17 depicts the UML state diagram for the ITS GN6 location service functionality in source operation mode.

[image: image23.png]stm SO_Initial_LS_Request

itions
nifst

TestSieps

Expecting_SH_PDU

in:SN_PDU > inSN_PDU
I_isPending = FALSE"

eTimer=00, TestSteps
Tric=o

wee
Received_SN_PDU

_lsPending = “TRUE;
TestSteps Timer

«TestSteps Degrement tsTimer | - eTimerStatus = INTIALIZED"
JlocT_contsins_locTE = “TRUE:

Request

Resens Ls reques TG <
ITS_GN_LOCATION_SERVICE_MAX_RETRANS] TestSteps Teststeps Discerd LS Reply
_tisTimer. . inLS_Reply > LS_Reply_Ctr>1
TS G Locamion seavice mereasuir_wgs; | leTimesis s memed gy, | Lo
isTimestata = UG Csap, L= =001 sep

e

inLS_Reply > _inLS_Reply [ATC <

_ITS_GN_LOCATION_SERVICE_MAX_RETRANS]
T_locT_contains_locTE = FALSE"

TestSteps

LS Pending is FALSE [_lsPending == FALSE]

ITS_GN_LOCATION_SERVICE_RETRANSMIT_TIVER;

ResandLs

Processing_LS_Reply

‘SN PDU Discarded LRTC >= " ITS_GN_LOCATION_SERVICE _MAX_RETRANS] TestSteps

|
Tessiers Lispending
Acoept LS Reply TRUE
LLS_Reply_Ctr==1]
/ReplyPacietDuplicste
“TRUE":
vy

LS_Reply_Accepted

Testsiees

<Postoonditions.
Final

Figure 17 State diagram for Source Mode of ITS Case Study
7.5.3
Generating test cases with sepp.med MBTsuite for case study 2

The number of testcases generated by MBTSuite seems to depend on two main factors:

· The maximum path length: This appears to be the maximum length which the test generator will explore for a single test case. The default value (50) is perfectly suitable for our model, given that its size is rather small, with the maximum path length being hardly reaching 10 transitions.

· The maximum loop runs: This appears to represent the maximal number of times loops contained in the model will be explored, potentially to reach areas in the model guarded by rules depending on values affected by successive runs. In this particular case study, the maximum loop runs needed to be adapted to the value assigned to the maximal number of LS-Request retransmissions (_ITS_GN_LOCATION_SERVICE_MAX_RETRANS) for full path coverage.

From the state diagram for source mode operation the MBTSuite generated a total of 18 test cases, with the _ITS_GN_LOCATION_SERVICE_MAX_RETRANS and the maximum loop runs parameters both set to 5.

7.5.4
Evaluation

The key benefit of the approach is that it allows a systematic derivation of test purposes based on the system specification. However it does not facilitate the process from those test purposes towards TTCN-3 test scripts yet. The reason being that, eventhough they can be modelled with UML, data and architectural structures are not yet taken into account during testcase generation. However, by using the Code tagged value, TTCN-3 code snippets could be associated to the test model and a skeleton generated automatically, but this would break an important requirement of model-driven engineering, namely to keep the model independent from a particular implementation technology.

TODO: Comparison of generated testcases to TSS TPs defined manually

Table 3 Test Purpose Coverage

7.6
Applying FOKUS MD Tester to case study 2

<Text>

7.6.1
Modeling case study 2 with FOKUS MD Tester

To model the ITS case study with FOKUS MD Tester, the same approach already applied for the ATM case study was chosen. The biggest challenges in creating the model consisted in finding the right level of abstraction to keep the balance between the complexity of the model and a maximal coverage of the defined test purposes.

7.6.2
FOKUS MD Tester model of case study 2

Just like for the other case studies, the test model for this case study consists of the usual 4 submodels addressing the key aspects of the system. Obviously, the most important diagram of the model is the one for test behaviour, expressed in the form of the test activity diagram displayed in Figure 18
[image: image24.png]UTML Test Behaviour Activity Diagram : ITS GeoNet TestProject:TestBehaviourhodelliLocationServiceTestcasesuSourceOperationsilTS LocService /ITS LocService.

<<Send Data Action>>
in_Port.send (GN_DATA RequestindTypein_gn Data Request (p_gnAddress = GN_ADDR ITS_NODE)}

<<Receive Data Event>>
gn_Part recelve (LSRequestType [gn_address == GN_ADDR_ITS_NODE_BJ)IT_deadlack(10,0 ms)] -> v_inLsRequest

[v_retransmissions < ITS_GN_LOC_SERY_MAX_RTX]

<<Send Data Action>>
gn_Port.send (LSReplyTypeirn_Ls Reply (p_Ls Request =

inLsRequest))

<<Wait Action>>
until tiner T_LS Retransmit expires

[MULTI GEO_UNIC

<<Receive Data Event>>
in_Port.receive (in_gn_Data_Ind (p_gnAdaress = GN_ADDR ITS_NODE B}

v _retransmissions|>= ITS_GN_LOC_SERV_MAX_RTX]

<<Send Discard Action>>
gn_Port send-discard (LSReplyTypem_Ls Reply (p_Ls Request

/inLsRequest)) <<Send Discard Action>>
in_Port.send-discard (GN_DATA RequestindTypeim_gn_Data_Request (p_gnAddress = GN_ADDR ITS_NODE_B))

Figure 18 Test activity diagram for Source Mode of ITS Case Study
7.6.3
Generating test cases with FOKUS MD Tester for case study 2

As described in Section ??? <TBD: Add ref!> the test generation process in MDTester consists of a path exploration of the provided activity diagram, always starting from the initial activity to the final one. The result is a series of activity diagrams, each of which represents a testcase.

[image: image25.png]UTML Test Behaviour Activity Diagram : ITS GeoNet TestProject:TestBehaviourhodelliLocationServiceTestcasesuSourceOperationsilTS LocService Gen.

O

<<Send Data Action>>
in_Port.send (GN_DATA RequestindTypein_gn Data Request (p_gnAddress = GN_ADDR ITS_NODE)}

<<Receive Data Event>>
gn_Part recelve (LSRequestType [gn_address == GN_ADDR_ITS_NODE_BJ)IT_deadlack(10,0 ms)] -> v_inLsRequest

<<Send Discard Action>>
in_Port.send-discard (GN_DATA RequestindTypeim_gn_Data_Request (p_gnAddress = GN_ADDR ITS_NODE_B))

Figure 19 Example of generated testcases for Source Mode of ITS Case Study
Following that approach, a total of 6 testcases were generated using the system’s specification as sole input. While, this may appear to be low, compared with the number of testpurposes designed manually for this feature (13) a more detailed evaluation of the coverage is required for higher accuracy.

Generation of TTCN-3 Source code

Given that the generated testcase activity diagrams take data and architecture structures defined in the model into account, they can be transformed automatically into TTCN-3 code skeletons and used as a base for proceeding with the standardization process.

Example of generated TTCN-3 code in the Annex

7.6.4
Evaluation

Coverage of Test Purposes

	Test Purpose
	Covered

	TP_GEONW_PON_LOS_BV_01
	X

	TP_GEONW_PON_LOS_BV_02
	X

	TP_GEONW_PON_LOS_BV_03
	X

	TP_GEONW_PON_LOS_BV_04
	X

	TP_GEONW_PON_LOS_BV_05
	X

	TP_GEONW_PON_LOS_BV_06
	X

	TP_GEONW_PON_LOS_BV_07
	X

	TP_GEONW_PON_LOS_BV_08
	

	TP_GEONW_PON_LOS_BV_09
	

	TP_GEONW_PON_LOS_BV_10
	

	TP_GEONW_PON_LOS_BV_11
	

	TP_GEONW_PON_LOS_BV_12
	X

Table 4 Overview of covered TPs for the ITS case study

Summary: 8 out of 12 test purposes are covered by the model and the generated testcases. This can be explained by the fact that, in the case study, only the behaviour of the SUT in a CF01 configuration was considered, while configurations CF02 and CF03 were left out. Therefore, the behaviour corresponding to TPs associated to CF02 and CF03 were not reflected in the model and logically the generated testcases do not cover them. Regarding test case generation, a coverage rate of 100% could be achieved, given that all modelled TPs were covered by the generated testcases.

Table 5 displays a traceability matrix indicating how each of the individual testcases covers TPs.
	Testcase
	TP_GEONW_PON_LOS_BV_01
	TP_GEONW_PON_LOS_BV_02
	TP_GEONW_PON_LOS_BV_03
	TP_GEONW_PON_LOS_BV_04
	TP_GEONW_PON_LOS_BV_05
	TP_GEONW_PON_LOS_BV_06
	TP_GEONW_PON_LOS_BV_07
	TP_GEONW_PON_LOS_BV_08
	TP_GEONW_PON_LOS_BV_09
	TP_GEONW_PON_LOS_BV_10
	TP_GEONW_PON_LOS_BV_11
	TP_GEONW_PON_LOS_BV_12

	ITS_LocService_Testcase_1
	X
	X
	
	
	
	
	
	
	
	
	
	X

	ITS_LocService_Testcase_2
	X
	
	X
	X
	
	
	
	
	
	
	
	X

	ITS_LocService_Testcase_3
	X
	
	X
	X
	
	
	
	
	
	
	
	X

	ITS_LocService_Testcase_4
	X
	
	
	
	
	
	X
	
	
	
	
	X

	ITS_LocService_Testcase_5
	X
	X
	
	
	
	X
	
	
	
	
	
	X

	ITS_LocService_Testcase_6
	X
	
	X
	X
	
	X
	
	
	
	
	
	X

	ITS_LocService_Testcase_7
	X
	
	X
	X
	
	X
	
	
	
	
	
	X

	ITS_LocService_Testcase_8
	X
	
	
	
	
	X
	X
	
	
	
	
	X

	ITS_LocService_Testcase_12
	X
	
	
	
	X
	X
	
	
	
	
	
	X

	ITS_LocService_Testcase_13
	X
	
	
	
	X
	X
	
	
	
	
	
	

Table 5 Traceability matrix for ITS Geoloc case study

<Text>

7.7
Résumé for case study 2
<Text>

8
Case study 3: Diameter

<Text>

8.1
General description of case study 3

<Text>

8.1.1
Overview of case study 3

Modeled features, reasons for choosing subset

<Text>

8.1.2
Abstract model of case study 3

Description of an abstract model (if possible) that has been refined to be fed into the different tools.

<Text>

8.1.2
ETSI test cases for case study 3

ETSI test case descriptions (TPs, TCs, TTCN-3) for the case study.

<Text>

8.2
Applying Microsoft SpecExplorer to case study 3

This section describes modelling of policy and charging control over Rx protocol [i.3k] and further test generation for this functionality with the help of Microsoft SpecExplorer.

8.2.1
Modeling case study 3 with SpecExplorer

The functionality modelled in this case study is policy and charging control (PCC) over Rx reference point, which is implemented as Diameter-based exchange of messages between Application Function (AF) and Policy Charging and Control Function (PCRF) [i.3k, 4].

To implement this functionality AF and PCRF establish a session by exchange of Authorization/Authentication Request message, AA-Request, from AF side and Authorization/Authentication Answer message, AA-Answer, from PCRF side, these messages composition is defined in Diameter Network Access Server Application RFC [i.5k] and extened with Rx-specific Attribute-Value Pairs, AVPs. Each session has specific properties, concerning what devices and data flows are under control/charging and what related events should be reported to AF. These properties are described in AVPs contained in the initial AA-Request. Several sessions with different settings can be supported simultaneously.

The properties of a session can be modified, with some restrictions, during its lifetime, may be several times. This is performed by exchange of AA-Request from AF side and AA-Answer from PCRF side containing the identifier of existing session.

A session is terminated by request from AF, by exchange of Session Terminatoin Request message, ST-Request, from AF side and Session Termination Answer message, ST-Answer, from PCRF side, also defined in [i.5k]. In addition PCRF can ask AF to terminate a session by exchange of Abort Session Request message, AS-Request, from PCRF side and Abort Session Answer message, AS-Answer, from AF side, also defined in [i.5k], in result of some events under control.

Notifications on events not requiring session termination, on which AF is subscribed, is performed by exchange of Re-Authorization/Authentication Request message, RA-Request, from PCRF side and Re-Authorization/Authentication Answer message, RA-Answer, from AF side, also defined in [i.5k]. Notification data is contained in message AVPs.

NOTE:
The standard notes possibility to work outside of a session in [i.3k, 4.4.1], but formalization of this functionality requires a lot of additional technical details from other standards. For that reason interaction without a session is not modeled and not considered here.
The standard [i.3k] provides a lot of details on session settings and event notification, which cannot be interpreted unambiguously without deep understanding of many related standards and operation of other functional units concerned with policy control and charging. The further exposition is based on some interpretation of the standard [i.3k], which may contain some mistakes and definitely doesn’t cover all the mentioned features, only a subset, which can be easily related with externally observable message exchange over Rx interface. The model described below formalize this partial understanding of the standard [i.3k].

The modelling process used is based on the following decisions.

· The single source of information for modelling is the requirements of the PCC over Rx standard [i.3k]. Where the text of the standard is unclear, some interpretation is chosen based on the simplicity and consistence with other parts. Incomplete parts are not modelled.

· The functionality of PCC is modelled on an abstract level, without taking into accout other events and data then the ones directly related with message exchange over Rx interface. The events initiating such message exchange (occurring in other parts of a system) are modelled without any details and data, just as abstract events of several types. The data of Diameter messages used in exchange over Rx interface is modelled based on the main distinctions between messages concerning events of different types (see below).

· The model developed consists of two executable models of AF and PCRF functional units. These models describe only a part of behaviour of such units, even the behavior related with message exchange over Rx interface is specified only prtially. Other functionality and data are not specified at all.

· The data structures of messages used was modelled only partially. Each message is modelled as having the session identifier and (maybe) several additional AVPs sufficient to distinguish it from messages realted with other event types. Only AVPs mentioned in the description of the corresponding distinguishing procedure are modelled, all other AVPs, both optional and mandatory, but not mentioned in distinguishing algorithm or not playing a decisive role in it, are skipped.

· Two techniques are used to detect the errors in the model: model reviews and model simulation on a set of simple scenarios. Both approaches help to find some errors.

The following decisions are made concerning the general structure of the model.

· The model is synchronous, that is it operates by processing external events and providing outputs on them without parallel processing of several events.
Synchronous modelling is possible due to the structure of Rx protocol itself — its operation can be represented in synchronous way, although implementations can work asynchronously.

· The model consists of two parts: model of AF unit and model of PCRF unit.

· AF unit model interface includes the following events.

· Events causing message sending through Rx interface:

· session initiation [i.3k, 4.4.1];

· session modification [i.3k, 4.4.2];

· session termination [i.3k, 4.4.4].

· Income of a message from PCRF unit.

Introduction of special events causing message sending slightly increase the complexity of adaptation of tests created on the base of the model.

· PCRF model interface includes the following events.

· Events causing message sending through Rx interface:

· Resource allocation failure [i.3k, 4.4.3];

· IP-CAN session termination [i.3k, 4.4.6.1];

· Service data flow deactivation [i.3k, 4.4.6.2]; such event type is modelled only partially – the situation when it concerns all flows related with a session isn’t modelled, mostly because it leads to more effort in test adaptation.

· Signalling path status notification [i.3k, 4.4.6.3];

· IP-CAN type change [i.3k, 4.4.6.4];

· Usage reporting [i.3k, 4.4.6.6].

Access network charging information notification [i.3k, 4.4.6.5] isn’t modelled, because the conditions, under which supscritption on such notification is given, are not clearly specified in the standard text.

· Income of a message from AF unit.

· The following decisions concerning session settings, possibility of their modification, and subscription on different events are made.

· Only the following types of sessions are modelled:

· Default [i.3k, 4.4.1];
· Using sponsored connections [i.3k, 4.4.1, par. 10];
· Subscribed to usage reporting [i.3k, 4.4.1, par. 12];
· Subscribed to IP-CAN type change notifications [i.3k, 4.4.1, par. 26];
· Enabling/disabling specific IP flows [i.3k, 4.4.3];
· Subscribed to notifications of signaling path status [i.3k, 4.4.5];
· Providing AF signaling flow data [i.3k, 4.4.5a].
· The following modifications of session settings are allowed in the model:

· Sessions of the first three types listed above can be modified into each other.

· Session subscribed to notifications of signaling path status can be modified into the one providing AF signaling flow data.
· An event can occur fro a session only if such type of events is allowed for sessions of the corresponding type.

· Resource allocation failure is allowed only for sessions enabling/disabling specific IP flows.
· IP-CAN session termination and service data flow deactivation allowed for all sessions.

· Signalling path status notification is allowed for sessions subscribed to notifications of signaling path status or providing AF signaling flow data.
· IP-CAN type change is allowed only for sessions subscribed to IP-CAN type change notifications.
· Usage reporting is allowed only for sessions subscribed to usage reporting.
· The modular structure of the model is unrelated with the structure of the standard requirements — because the model is abstracted from most details, often its one part corresponds to several different places in the standard text. For example, session initiation and termination is processes in same units, in spite of the session settings.

· For both functional units their behaviour ismodelled in the corresponding model unit and their communication is modelled as external events, so that they can be considered as separate and independent models of AF and PCRF, without any constraints on their possible communication (it made possible, but not obligatory for test generation purposes).

8.2.2
SpecExplorer model of case study 3

The SpecExplorer model of policy and charging control over Rx interface consists from the following parts, all written in C#.

· Common types module (the file RxTypes.cs forming a separate project in the Visual Studio solution), containing definition of all the data types used in external events. These definitions are made separate because they are used both in the model and in the abtract description of implementation interface needed for test generation.
In addition this module contains test data pools for data used in tests — AF- and PCRF-related events, command messages.
The complete list of data types defined in this module is the following.

· Enumerations

· AFEventKind enumeration representing possible types of AF-related events (session initiation, modification, or termination).

· PCRFEventKind enumeration representing possible types of PCRF-related events (causing notification of AF through Rx interface).

· SessionKind enumeration representing possible types of sessions (see above).

· SpecActionKinds class providing named constants for Specific-Action AVP contents [i.3k, 5.3.13].

· CommandKind enumeration representing possible types of commands used in Rx protocol [i.3k, 5.6].

· Event-related and protocol packet data structures

· AFEvent representing data structure of AF-related events.

· PCRFEvent representing data structure of PCRF-related events.

· AVP representing common data structure of AVPs used in messages exchanged through Rx interface.
Also contains auxiliary methods for construction of AVP objects of different kinds, these methods are used both in AF model and in test data preparation for PCRF model.

· Command representing common data structure of Rx protocol commands [i.3k, 5.6].
Also contains auxiliary methods processing AA-Request command and determining the type of session it describes.

· Test data pools

· SessionIdPool contains named constants for several session identifiers.

· AFEventPool contains definition and initialization of several AF-related events.

· PCRFEventPool contains definition and initialization of several PCRF-related events.

· CommandPool contains definition and initialization of several command instances, part of them is used for testing AF unit and part – for testing PCRF unit.

· The main model module (the file RxModelProgram.cs) containing the following items.

· Enumerations

· AFSessionStatus representing internal status of a session from AF viewpoint.

· PCRFSessionStatus representing internal status of a session from PCRF viewpoint.

· Data structure types for internal data

· AFSessionData representing status and type of a session supported by AF unit.

· PCRFSessionData representing status and type of a session supported by PCRF unit.

· AF unit behaviour model — AFModelProgram class — modelling single AF unit (so all its data fields and methods are static) and having the following elements.

· Data fields

· sessions representing maintained session data.
Implemented as a map of session identifiers to session status and type.

· Model operations corresponding to operations of the interface under test.

· Command GetRxMessageRule(Command c) models processing an Rx message from PCRF unit.

· Command ReactOnEventRule(string sid, AFEvent e) models processing of an event related with a session having sid identifier.

· PCRF unit behaviour model — PCRFModelProgram class — modelling single PCRF unit (so all its data fields and methods are static) and having the following elements.

· Data fields

· sessions representing maintained session data.
Implemented as a map of session identifiers to session status and type.

· Model operations corresponding to operations of the interface under test.

· Command GetRxMessageRule(Command c) models processing an Rx message from AF unit.

· Command ReactOnEventRule(string sid, PCRFEvent e) models processing of an event related with a session having sid identifier.

· Runner auxiliary class implementing several operation scenarios for model simulation and testing.

8.2.3
Generating test cases with SpecExplorer for case study 8

Due to the complexity of the model developed straightforward test generation for it is impossible or the results will be meaningless. To select a relevant set of scenarios for test generation from a model a target test coverage criterion is needed.

The coverage of specific statements of standard requirements is taken as a target test coverage criterion in this case study. To select the relevant set of requirements the standard text [i.3k] related with processing of the chosen interface events (see 8.2.1) is analysed and the statements presented in the following table are selected — only the requirements presented below are modelled. Both the paragraphs cited and other parts of the standard text may also contain requirements, which are not modelled in this case study (if some text is skipped from the presented paragraph, it is marked with […]).

	N
	Position in the standard text [i.3k]
	Requirement statement
	Target module of the requirement

	1
	4.4.1, par. 1
	When a new AF session is being established and media information for this AF session is available at the AF and the related media require PCC supervision, the AF shall open an Rx Diameter session with the PCRF for the AF session using an AA-Request command. […]
	AF, PCRF

	2
	4.4.1, par. 10
	For sponsored data connectivity, the AF shall provide the application service provider identity and the sponsor identity to the PCRF byincluding the Application-Service-Provider-Identity AVP and the Sponsor-Identity AVP in the Sponsored-Connectivity-Data AVP in the AA-Request.
	AF, PCRF

	3
	4.4.1, par. 12
	To support the usage monitoring of sponsored data connectivity, the AF may also include the Granted-Service-Unit AVP in the Sponsored-Connectivity-Data AVP and the Specific-Action AVP set to the value USAGE_REPORT in the AA-Request to request notification when the usage threshold has been reached.
	AF, PCRF

	4
	4.4.1, par. 20
	When the PCRF receives an initial AA-Request from the AF, the PCRF shall perform session binding as described in 3GPP TS 29.213. […]
	PCRF (see 1)

	5
	4.4.1, par. 26
	The AF may request notifications of specific IP-CAN session events through the usage of the Specific-Action AVP in the AA-Request command. The PCRF shall make sure to inform the AF of the requested notifications in the event that they take place.
	AF, PCRF

	6
	4.4.1, par. 28
	The PCRF shall reply with an AA-Answer to the AF. […]
	PCRF, AF

	7
	4.4.2, par. 1
	The AF may modify the session information at any time (e.g. due to an AF session modification or internal AF trigger) by sending an AA-Request command to the PCRF containing the Media-Component-Description AVP(s) with the updated Service Information. The AF shall send an AA-Request command to the PCRF, only after the previous AARequest has been acknowledged.
	AF, PCRF

	8
	4.4.2, par. 5
	For sponsored data connectivity, the AF shall provide the application service provider identity and the sponsor identity to the PCRF by including Application-Service-Provider-Identity AVP and the Sponsor-Identity AVP in the Sponsored-Connectivity-Data AVP in the AA-Request.
	AF, PCRF

	9
	4.4.2, par. 6
	To support the usage monitoring of sponsored data connectivity, the AF may also include the Granted-Service-Unit AVP in the Sponsored-Connectivity-Data AVP in the AA-Request.
	AF, PCRF

	10
	4.4.2, par. 10
	The PCRF shall reply with an AA-Answer to the AF. […]
	PCRF, AF

	11
	4.4.3, par. 1
	Depending on the application, in the Service Information provision, the AF may instruct the PCRF when the IP flow(s) are to be enabled or disabled to pass through the IP-CAN. The AF does this by sending the AA-Request message containing the Media-Component- Description AVP(s) that contains the flow status information (in the Flow-Status AVP) for the flows to be enabled or disabled.
	AF, PCRF

	12
	4.4.3, par. 3
	If a Media-Sub-Component AVP under a Media-Component-Description AVP contains a Flow-Usage AVP with the value RTCP, then the corresponding RTCP IP Flows in both directions shall be enabled even if the Flow-Status AVP under the Media-Sub-Component AVP is set to ENABLED-UPLINK, ENABLED-DOWNLINK, ENABLED, or DISABLED.
	AF, PCRF

	13
	4.4.3, par. 4
	The PCRF shall reply with an AA-Answer and shall include the Access-Network-Charging-Identifier(s) available at this moment. […]
	PCRF, AF

	14
	4.4.3, par. 6
	If the PCRF modifies existing PCC/QoS rules based on the updated service information and the modification fails due to resource allocation failure as specified in 3GPP TS29.212 and if requested by the AF, the PCRF shall send an RAR command to the AF with the Specific-Action AVP set to the value INDICATION_OF_FAILED_RESOURCES_ALLOCATION to report the modification failure. The AF shall send an RAA command to acknowledge the RAR command.
	PCRF, AF

	15
	4.4.4, par. 1
	When an AF session is terminated, if the AF had received a successful AA-Answer for the initial AA-Request, the AF shall send a Session-Termination-Request command to the PCRF. Otherwise, the AF shall wait for the initial AAAnswer to be received prior to sending the Session-Termination-Request command to the PCRF.
	AF, PCRF

	16
	4.4.4, par. 2
	When the PCRF receives a ST-Request from the AF, indicating an AF session termination, it shall acknowledge that request by sending a ST-Answer to the AF. […]
	PCRF, AF

	17
	4.4.4, par. 5
	[…] The PCRF shall send then the ST-Answer to the AF […]
	PCRF, AF

	18
	4.4.5, par. 1
	An AF may subscribe to notifications of the status of the AF Signalling transmission path. To do so, the AF shall open

an Rx Diameter session with the PCRF for the AF signalling using an AA-Request command. The AF shall provide […] the Specific-Action AVP requesting the subscription to "INDICATION_OF_LOSS_OF BEARER" and/or 'INDICATION_OF_RELEASE_OF_BEARER'. The AF shall additionally provide a Media-Component-Description AVP including a single Media-Sub-Component AVP with the Flow-Usage AVP set to the value "AF_SIGNALLING". The Media-Component-Description AVP shall contain the Media-Component-Number AVP set to '0'.
	AF, PCRF

	19
	4.4.5, par. 2
	If the procedures in Clause 4.4.5a are not applied, the Media-Sub-Component AVP shall contain the Flow-Number AVP set to '0', and the rest of AVPs within the Media-Component-Description and Media-Sub-Component AVPs shall not be used in this case.
	AF, PCRF

	20
	4.4.5, par. 3
	When the PCRF receives an AA-Request as described in the preceding paragraph from the AF, the PCRF shall perform session binding as described in 3GPP TS 29.213 and acknowledges the AAR command by sending an AA-Answer command to the AF.
	PCRF, AF (see 1,4,6,22)

	21
	4.4.5, par. 5
	The AF may cancel the subscription to notifications of the status of the AF Signalling transmission path at any time. In that case, the AF shall use a Session-Termination-Request (STR) command to the PCRF, which shall be acknowledged with a Session-Termination-Answer (STA) command.
	AF, PCRF (see 14)

	22
	4.4.5a, par. 1
	An AF may provision information about the AF signalling IP flows between the UE and the AF. To do so, the AF shall make use of an Rx Diameter session already opened with the PCRF if an Rx Diameter session related to the AF signalling is already established. The AF may modify an already open Rx Diameter session related to the AF signalling (e.g. an Rx Diameter session established for the purpose of subscription to notification of signalling path status as described in 4.4.5) or it may open a new Rx Diameter session related to the AF signalling if none exists.
	AF, PCRF

	23
	4.4.5a, par. 2
	[…]. The AF shall additionally provide a Media-Component-Description AVP including one or more Media-Sub-Component AVP(s) representing the AF signalling IP flows. The Media-Component-Description AVP shall contain the Media-Component-Number AVP set to "0". Each Media-Sub-Component AVP representing an AF signalling IP flow shall contain the Flow-Number AVP set according to the rules described in Annex B and one or two Flow-Description AVP(s) set to the IP flows of the AF signalling. Additionally, the Media-Sub-Component AVP shall include the Flow-Usage AVP set to the value "AF_SIGNALLING", the Flow-Status AVP set to "ENABLED" and the AF-Signalling-Protocol AVP set to the value corresponding to the signalling protocol used between the UE and the AF.
	AF, PCRF

	24
	4.4.5a, par. 3
	When the PCRF receives from the AF an AA-Request as described in the preceding paragraph, the PCRF shall perform session binding as described in 3GPP TS 29.213 and shall acknowledge the AAR command by sending an AA-Answer command to the AF.
	PCRF, AF (see 1,4,6,18)

	25
	4.4.5a, par. 5
	The AF may de-provision the information about the AF signalling IP flows at any time. To do that the AF shall close the Rx Diameter session by sending a Session-Termination-Request (STR) command to the PCRF, which shall be acknowledged with a Session-Termination-Answer (STA) command.
	AF, PCRF (see 14,19)

	26
	4.4.6.1, par. 1
	When an IP-CAN session is terminated, the PCRF shall inform the AF about the IP-CAN session termination by sending an ASR (abort session request) command to the AF on each active Rx Diameter session.
	PCRF, AF

	27
	4.4.6.1, par. 2
	When the AF receives the ASR command, it shall acknowledge the command by sending an ASA (abort session answer) command to the PCRF and indicate the termination of the session by sending an STR (session termination request) command to the PCRF. The PCRF shall acknowledge the termination of the session by sending an STA (session termination answer) command to the AF.
	AF, PCRF

	28
	4.4.6.2, par. 1
	[…]When the PCRF gets the knowledge that one or more SDFs have been deactivated, (e.g. due to a bearer release or loss of bearer or out of credit condition), the PCRF shall inform the AF accordingly if the AF has previously subscribed using the Specific-Action AVP in the AAR command.
	PCRF, AF

	29
	4.4.6.2, par. 2
	When not all the service data flows within the AF session are affected, the PCRF shall inform the AF by sending an RAR (re-authorization request) command. The RAR command shall include the deactivated IP Flows encoded in the Flows AVP and the cause encoded in the Specific-Action AVP.
	PCRF, AF

	30
	4.4.6.2, par. 3
	When the AF receives the RAR command, it shall acknowledge the command by sending an RAA (re-authorization answer) command to the PCRF. The AF may also update the session information by sending an AAR (AA-request) command to the PCRF.
	AF, PCRF

	31
	4.4.6.3, par. 1
	In the event that the PCRF is notified of the loss or release of resources associated to the PCC/QoS Rules corresponding with AF Signalling IP Flows, the PCRF shall inform the AF about the Loss of the Signalling Transmission path by sending a Re-Authorization Request (RAR) command to the AF. The RAR shall include the Specific-Action AVP set to the value "INDICATION_OF_LOSS_OF_BEARER" or 'INDICATION_OF_RELEASE_OF_BEARER' and the deactivated IP Flow encoded in the Flows AVP.
	PCRF, AF

	32
	4.4.6.3, par. 3
	When the AF receives the RAR command, it shall acknowledge the command by sending an RAA command to the PCRF.
	AF, PCRF

	33
	4.4.6.4
	If the AF has successfully subscribed to change notifications in UE's IP-CAN type and RAT type, the PCRF shall send an RAR command when a corresponding event occurs, i.e. when the UE's IP-CAN type or RAT type (if the IP-CAN type is GPRS), changes. In this case the RAR from the PCRF shall include the Specific-Action AVP for the subscribed event and include the IP-CAN-Type AVP and RAT-Type AVP (if the IP-CAN type is GPRS) for the UE's new IPCAN/RAT. […]
	PCRF, AF

	34
	4.4.6.6, par. 1,2
	When the AF session is associated with a sponsor and the AF provided usage monitoring thresholds for such sponsor to the PCRF when the Rx Diameter session was established or modified, the PCRF shall report accumulated usage to the AF, when
- the PCRF detects that the usage threshold provided by the AF has been reached. […]
	PCRF, AF

	35
	4.4.6.6, par. 5
	When the PCRF detects that the usage threshold has been reached, the PCRF shall report the accumulated usage as provided by the PCEF to the AF in a RA-Request (RAR) command with the Specific-Action AVP set to the value USAGE_REPORT. […]
	PCRF, AF

	36
	4.4.6.6, par. 6
	The accumulated usage shall be reported in the Used-Service-Unit AVP within the Sponsored-Connectivity-Data AVP.
	PCRF, AF

	37
	4.4.6.6, par. 7
	If the AF receives a RAR command indicating the usage threshold is reached, the AF may terminate the AF session or provide a new usage threshold in the Granted-Service-Unit AVP within the Sponsored-Connectivity-Data AVP to the PCRF in the AAR comand. Alternatively, the AF may allow the session to continue without providing new usage threshold in the AAR command.
	AF, PCRF

Only a few of the requirements statements presented in the table are essential for a coverage measuring. The items presented in the next table were chosen as branching marks in terms of standard requirements. They are also partitioned into requirements to AF and PCRF modules.
	ID
	Module
	Row(s) in the table above
	Position(s) in the standard text [i.3k]
	Notes

	R01
	AF
	6, 10
	4.4.1/28, 4.4.2/10
	Processing of AA-Answer

	R02
	AF
	14, 30, 32, 37
	4.4.3/6, 4.4.6.2/3, 4.4.6.3/3, 4.4.6.6/7
	Processing of RA-Request

	R03
	AF
	27
	4.4.6.1/2
	Processing of AS-Request

	R04
	AF
	17, 21, 25
	4.4.4/5, 4.4.5/5, 4.4.5a/5
	Processing of ST-Answer

	R05
	AF
	1
	4.4.1/1
	Creation of a default session

	R06
	AF
	2
	4.4.1/10
	Creation of a session with sponsored connection

	R07
	AF
	3
	4.4.1/12
	Creation of a session subscribed to usage reporting

	R08
	AF
	18, 19
	4.4.5/1-2
	Creation of a session subscribed to notifications of signaling path status

	R09
	AF
	23
	4.4.5a/2
	Creation of a session providing AF signaling flow data

	R10
	AF
	7
	4.4.2/1
	Modification of a session to default one

	R11
	AF
	8
	4.4.2/5
	Modification of a session to a one with sponsored connection

	R12
	AF
	9
	4.4.2/6
	Modification of a session to a one subscribed to usage reporting

	R13
	AF
	22, 23
	4.4.5a/1-2
	Modification of a session to a one providing AF signaling flow data

	R14
	AF
	15
	4.4.4/1
	Session termination

	R15
	PCRF
	7
	4.4.2/1
	Processing modification request of a session to default one

	R16
	PCRF
	8
	4.4.2/5
	Processing modification request of a session to a one with sponsored connection

	R17
	PCRF
	9
	4.4.2/6
	Processing modification request of a session to a one subscribed to usage reporting

	R18
	PCRF
	22, 23
	4.4.5a/1-2
	Processing modification request of a session to a one providing AF signaling flow data

	R19
	PCRF
	15
	4.4.4/1
	Processing of ST-Request

	R20
	PCRF
	35, 36
	4.4.6.6/5-6
	Adding usage reporting to ST-Answer

	R21
	PCRF
	27
	4.4.6.1/2
	Processing of AS-Answer

	R22
	PCRF
	14, 30, 32, 37
	4.4.3/6, 4.4.6.2/3, 4.4.6.3/3, 4.4.6.6/7
	Processing of RA-Answer

	R23
	PCRF
	1
	4.4.1/1
	Processing creation request of a default session

	R24
	PCRF
	5
	4.4.1/26
	Processing creation request of a session subscribed to IP-CAN type change notifications

	R25
	PCRF
	11, 12, 13
	4.4.3/1-3
	Processing creation request of a session enabling/disabling specific IP flows

	R26
	PCRF
	2
	4.4.1/10
	Processing creation request of a session with sponsored connection

	R27
	PCRF
	3
	4.4.1/12
	Processing creation request of a session subscribed to usage reporting

	R28
	PCRF
	18, 19
	4.4.5/1-2
	Processing creation request of a session subscribed to notifications of signaling path status

	R29
	PCRF
	23
	4.4.5a/2
	Processing creation request of a session providing AF signaling flow data

	R30
	PCRF
	14
	4.4.3/6
	Notification on failed resource allocation

	R31
	PCRF
	26
	4.4.6.1/1
	Notification on IP-CAN session termination

	R32
	PCRF
	28, 29
	4.4.6.2/1-2
	Notification on service data flow desactivation

	R33
	PCRF
	31
	4.4.6.3/1
	Notification on signalling path status

	R34
	PCRF
	33
	4.4.6.4
	Notification on IP-CAN type change

	R35
	PCRF
	34, 35, 36
	4.4.6.6/1,5-6
	Usage reporting

The target coverage criterion chosen for test selection is coverage of all requirements presented in the previous table.

The SpecExplorer model code is marked with requirement capture statements, corresponding to the selected requirements. Such a statement is written in a code block corresponding to the specified requirement. These marks can be made visible on the state-transition graphs of model exploration generated by the tool, and so the tool indirectly helps to design a set of scenarios covering all the coverage goals chosen.

The main prerequisite for creating a covering set of scenarios is a need for the corresponding set of test data. In this case study according to the decisions made before modelling — that single AF and PCRF units are modelled and all their communications are presented as various incoming packets and events, initiating specific actions, — one needs to prepare sets of packets and events sufficient to reach all the coverage goals selected. This needs rather trivial (in this case study) analysis of reachability of the coverage goals. To reach them all it is sufficient to use command message of all different types (also related with different types of sessions) and events of all different types.

The development of the set of scenarios is partitioned into several parts.

· Scenarios for testing AF unit.

· The first scenario covers creation, modification, permissible events processing, and termination for default session, session with sponsored connection, and session subscribed on usage reporting.

· The second scenario covers creation, modification, permissible events processing and termination for session subscribed to notifications of signaling path status and session providing AF signaling flow data.

· The third scenario covers creation, event processing, and termination for two different sessions to check possibility of a unit to identify correctly events related with different sessions.
· Scenarios for testing PCRF unit.
· The first scenario covers creation, modification, non-specific events processing, and termination for default session, session with sponsored connection, and session subscribed on usage reporting.

· The second one covers creation a default session, modification it into a session subscribed on usage reporting, processing usage reporting, and termination.

· The third one covers creation, specific events processing, and termination for session subscribed on IP-CAN type change notifications.

· The fourth one covers creation, specific events processing, and termination for session enabling/disabling specific IP flows.

· The fifth scenario covers creation, modification, specific events processing, and termination for session subscribed to notifications of signaling path status and session providing AF signaling flow data.

· The last, sixth scenario covers creation and termination for two different sessions to check possibility of a unit to identify correctly events related with different sessions.
SpecExplorer generates 35 tests for AF unit, and 54 tests for PCRF unit using the presented slices. Total number of the tests generated is 89.
8.2.4
Evaluation

 Two criteria are used to evaluate the test suite generated: coverage of requirement statements (essential for branches of events processing, see the table above) and coverage of the test purposes for Rx protocol, presented in [i.4k].

The following table presents test purposes from [i.4k].

	ID
	TP Id used in [i.4k]
	Test sequence
	Description

	TP01
	TP_AF_IPS_01
	AF sends AA-Request
	Test of (default) session initiation

	TP02
	TP_AF_IPS_02
	After sending AA-Request AF accepts AA-Answer
	Test of AA-Answer processing during session establishment

	TP03
	TP_AF_IPS_03
	AF sends AA-Request containing Sponsored-Connectivity-Data AVP
	Test of initiation a session with sponsored connection

	TP04
	TP_AF_MSI_01
	After session is established AF sends AA-Request
	Test of (default) session modification

	TP05
	TP_AF_MSI_02
	After session is established and AF sent AA-Request, AF accepts AA-Answer
	Test of AA-Answer processing during session modification

	TP06
	TP_AF_MSI_03
	After session is established AF sends AA-Request containing Sponsored-Connectivity-Data AVP
	Test of session modification into a session with sponsore connection

	TP07
	TP_AF_GRP_01
	After session is established AF receives RA-Request with notification on failed resources allocation and sends RA-Answer
	Test of processing of notification on failed resources allocation

	TP08
	TP_AF_ST_01
	After session is established AF sends ST-Request
	Test of (default) session termination

	TP09
	TP_AF_SN_01
	AF sends AA-Request for subscription on notification of signalling path status
	Test of initiation a session with subscription on notification of signalling path status

	TP10
	TP_AF_SN_02
	AF sends AA-Request for subscription on notification of signalling path status without provisioning of AF signalling flow information
	Test of initiation a session with subscription on notification of signalling path status without provisioning of AF signalling flow information

	TP11
	TP_AF_SN_03
	After session with subscription on notification of signalling path status is established AF sends ST-Request
	Test of termination of a session with subscription on notification of signalling path status

	TP12
	TP_AF_SN_04
	After session with subscription on notification of signalling path status and without provisioning of AF signalling flow information is established AF sends ST-Request
	Test of termination of a session with subscription on notification of signalling path status and without provisioning of AF signalling flow information

	TP13
	TP_AF_SN_05
	AF sends AA-Request for session with provisioning of AF signalling flow information
	Test of initiation a session with provisioning of AF signalling flow information

	TP14
	TP_AF_SN_06
	After session with provisioning of AF signalling flow information is established AF sends ST-Request
	Test of termination of a session with provisioning of AF signalling flow information

	TP15
	TP_AF_TPE_01
	After session is established AF receives AS-Request, after which it sends AS-Answer and ST-Request
	Test of session termination after receiving AS-Request

	TP16
	TP_PCRF_IPS_01
	PCRF receives AA-Request and sends AA-Answer in response
	Test of (default) session initiation of PCRF unit

	TP17
	TP_PCRF_IPS_02
	PCRF receives AA-Request with subscription on usage reporting and sends AA-Answer
	Test of initiation of a session subscribed on usage reporting

	TP18
	TP_PCRF_IPS_03
	PCRF receives AA-Request with sponsored connection data and sends AA-Answer
	Test of initiation of a session with sponsored connection

	TP19
	TP_PCRF_MSI_01
	After session is established PCRF receives AA-Request and sends AA-Answer
	Test of (default) session modification

	TP20
	TP_PCRF_MSI_02
	After session is established PCRF receives AA-Request with sponsored connection data and sends AA-Answer
	Test of a session modification into a session with sponsored connection

	TP21
	TP_PCRF_GRP_01
	After session is established PCRF sends RA-Request to notify on failed resourse allocation
	Test of generation of notification on failed resources allocation

	TP22
	TP_PCRF_ST_01
	After session is established PCRF receives ST-Request and sends ST-Answer
	Test of termination of a default session

	TP23
	TP_PCRF_ST_02
	After session with sponsored connection data is established PCRF receives ST-Request and sends ST-Answer
	Test of termination of a session with sponsored connection data

	TP24
	TP_PCRF_SN_01
	PCRF receives AA-Request with subsciprtion on notification on signaling path status and sends AA-Answer
	Test of initiation of a session with subsciprtion on notification on signaling path status

	TP25
	TP_PCRF_SN_02
	PCRF receives AA-Request subscribing to notifications of the status of the AF without the provision of AF signalling flow information and sends AA-Answer
	Test of initiation of a session with subsciprtion on notification on signaling path status without the provision of AF signalling flow information

	TP26
	TP_PCRF_SN_03
	After session subscribed to notifications of the status of the AF without the provision of AF signalling flow information is established PCRF receives ST-Request and sends ST-Answer
	Test of termination of a session without the provision of AF signalling flow information

	TP27
	TP_PCRF_SN_04
	PCRF receives AA-Request with subsciprtion on notification on signaling path status with the provision of AF signalling flow information and sends AA-Answer
	Test of initiation of a session with subsciprtion on notification on signaling path status with the provision of AF signalling flow information

	TP28
	TP_PCRF_SN_05
	After session subscribed to notifications of the status of the AF with the provision of AF signalling flow information is established PCRF receives ST-Request and sends ST-Answer
	Test of termination of a session with the provision of AF signalling flow information

	TP29
	TP_PCRF_TPE_01
	After session is established PCRF sends AS-Request to notify on IP-CAN session termination
	Test of notification of IP-CAN session termination

	TP30
	TP_PCRF_TPE_02
	After session is established and PCRF sent AS-Request to notify on IP-CAN session termination it receives AS-Answer and ST-Request and sends ST-Answer
	Test of session termination after notification on IP-CAN session termination

TP01-TP15 in the table above concern AF unit behaviour, TP16-TP30 concern PCRF unit behaviour.

The next table demonstrates coverage of the presented test purposes for AF unit by the test generated. The sign ‘X’ means that the test purpose is covered with very similar sequence of actions, the sign ‘V’ means that the test purpose is covered with another action sequence (the test suite contains a sequence of actions checking the same properties).

	
	TP01
	TP02
	TP03
	TP04
	TP05
	TP06
	TP07
	TP08
	TP09
	TP10
	TP11
	TP12
	TP13
	TP14
	TP15

	TC01
	
	X
	X
	
	
	
	V
	X
	
	
	
	
	
	
	

	TC02
	
	X
	X
	
	
	
	V
	X
	
	
	
	
	
	
	X

	TC03
	
	X
	X
	
	
	
	
	X
	
	
	
	
	
	
	X

	TC04
	
	X
	X
	
	
	
	
	X
	
	
	
	
	
	
	

	TC05
	
	
	
	
	
	
	V
	X
	
	
	
	
	
	
	X

	TC06
	
	
	
	
	
	
	
	X
	
	
	
	
	
	
	X

	TC07
	
	
	
	
	
	
	
	X
	
	
	
	
	
	
	

	TC08
	
	
	
	
	
	
	V
	X
	
	
	
	
	
	
	

	TC09
	
	
	
	
	
	
	
	
	
	
	
	
	X
	X
	

	TC10
	
	
	
	
	
	
	
	
	
	
	
	
	X
	X
	X

	TC11
	
	
	
	
	
	
	V
	
	
	
	
	
	X
	X
	X

	TC12
	
	
	
	
	
	
	V
	
	
	
	
	
	X
	X
	

	TC13
	
	
	
	
	
	
	
	
	X
	X
	X
	X
	
	
	

	TC14
	
	
	
	
	
	
	
	
	
	
	
	
	X
	X
	

	TC15
	
	X
	X
	
	X
	X
	
	X
	
	
	
	
	
	
	

	TC16
	X
	X
	
	
	X
	X
	
	X
	
	
	
	
	
	
	

	TC17
	
	X
	X
	X
	X
	
	
	X
	
	
	
	
	
	
	

	TC18
	
	
	
	
	X
	X
	
	X
	
	
	
	
	
	
	

	TC19
	X
	X
	
	
	
	
	
	X
	
	
	
	
	
	
	X

	TC20
	X
	X
	
	
	
	
	V
	X
	
	
	
	
	
	
	X

	TC21
	X
	X
	
	
	
	
	
	X
	
	
	
	
	
	
	

	TC22
	X
	X
	
	
	
	
	V
	X
	
	
	
	
	
	
	

	TC23
	
	
	
	
	
	
	
	
	X
	X
	X
	X
	
	
	X

	TC24
	
	
	
	
	
	
	V
	
	X
	X
	X
	X
	
	
	X

	TC25
	
	
	
	
	
	
	
	
	X
	X
	X
	X
	
	
	

	TC26
	
	
	
	
	
	
	V
	
	X
	X
	X
	X
	
	
	

	TC27
	
	X
	X
	
	
	
	
	X
	
	
	
	
	
	
	

	TC28
	
	
	
	X
	X
	
	
	X
	
	
	
	
	
	
	

	TC29
	
	
	
	
	X
	
	
	X
	
	
	
	
	
	
	

	TC30
	X
	X
	
	
	
	
	
	X
	
	
	
	
	
	
	

	TC31
	X
	X
	
	X
	X
	
	
	X
	
	
	
	
	
	
	

	TC32
	X
	X
	
	
	
	
	
	X
	X
	X
	X
	X
	
	
	

	TC33
	X
	X
	
	
	
	
	
	X
	X
	X
	X
	X
	
	
	

	TC34
	X
	X
	
	
	
	
	
	X
	X
	X
	X
	X
	
	
	

	TC35
	X
	X
	
	
	
	
	
	X
	X
	X
	X
	X
	
	
	

	Total number of situations
	15

	Number of covered situations
	15

	Percentage of situations covered
	100%

The next table demonstrates coverage of the presented test purposes for PCRF unit by the test generated. The sign ‘X’ means that the test purpose is covered with very similar sequence of actions, the sign ‘V’ means that the test purpose is covered with another action sequence (the test suite contains a sequence of actions checking the same properties).
	
	TP16
	TP17
	TP18
	TP19
	TP20
	TP21
	TP22
	TP23
	TP24
	TP25
	TP26
	TP27
	TP28
	TP29
	TP30

	TC01
	V
	
	
	
	
	
	X
	
	
	
	
	
	
	
	

	TC02
	
	
	X
	
	
	
	
	X
	
	
	
	
	
	
	

	TC03
	X
	
	
	X
	
	
	X
	
	
	
	
	
	
	
	

	TC04
	
	
	X
	X
	
	
	X
	
	
	
	
	
	
	
	

	TC05
	
	
	X
	X
	
	
	X
	
	
	
	
	
	
	
	

	TC06
	
	
	X
	X
	
	
	X
	
	
	
	
	
	
	
	

	TC07
	
	X
	
	X
	
	
	X
	
	
	
	
	
	
	
	

	TC08
	X
	
	
	
	
	
	
	
	
	
	
	
	
	X
	X

	TC09
	X
	
	
	
	X
	
	
	X
	
	
	
	
	
	
	

	TC10
	X
	
	
	
	X
	
	
	X
	
	
	
	
	
	
	

	TC11
	
	
	X
	
	X
	
	
	X
	
	
	
	
	
	
	

	TC12
	
	X
	
	
	X
	
	
	X
	
	
	
	
	
	
	

	TC13
	
	
	X
	
	X
	
	
	X
	
	
	
	
	
	
	

	TC14
	
	
	X
	
	
	
	
	X
	
	
	
	
	
	
	

	TC15
	X
	
	
	X
	
	
	X
	
	
	
	
	
	
	
	

	TC16
	X
	
	
	
	
	
	X
	
	
	
	
	
	
	
	

	TC17
	V
	
	
	
	
	X
	
	
	
	
	
	
	
	X
	X

	TC18
	
	X
	
	
	
	
	
	
	
	
	
	
	
	X
	X

	TC19
	
	X
	
	
	V
	
	
	
	
	
	
	
	
	X
	X

	TC20
	
	
	
	
	
	
	
	
	X
	X
	X
	
	
	
	

	TC21
	X
	
	
	
	V
	
	
	
	
	
	
	
	
	X
	X

	TC22
	
	X
	
	
	V
	
	
	
	
	
	
	
	
	X
	X

	TC23
	
	X
	
	
	V
	
	
	
	
	
	
	
	
	X
	X

	TC24
	
	X
	
	X
	V
	
	
	
	
	
	
	
	
	X
	X

	TC25
	
	
	X
	
	V
	
	
	
	
	
	
	
	
	X
	X

	TC26
	X
	
	
	
	
	
	
	
	
	
	
	
	
	X
	X

	TC27
	
	X
	
	
	
	
	
	V
	
	
	
	
	
	
	

	TC28
	
	X
	
	X
	
	
	
	
	
	
	
	
	
	X
	X

	TC29
	V
	
	
	
	
	
	V
	
	
	
	
	
	
	
	

	TC30
	X
	
	
	
	
	
	
	
	
	
	
	
	
	X
	X

	TC31
	
	X
	
	
	
	
	
	V
	
	
	
	
	
	
	

	TC32
	
	
	
	
	
	
	
	
	
	
	
	X
	X
	
	

	TC33
	
	
	
	
	
	
	
	
	
	
	
	X
	X
	
	

	TC34
	
	
	
	
	
	
	
	
	X
	X
	
	
	X
	
	

	TC35
	
	
	
	
	
	
	
	
	X
	X
	
	
	X
	
	

	TC36
	
	
	X
	
	
	
	
	X
	
	
	
	
	
	
	

	TC37
	X
	
	
	
	X
	
	
	X
	
	
	
	
	
	
	

	TC38
	X
	
	
	
	X
	
	
	X
	
	
	
	
	
	
	

	TC39
	
	
	
	
	
	
	
	
	X
	X
	X
	
	
	
	

	TC40
	X
	
	
	
	V
	
	
	V
	
	
	
	
	
	
	

	TC41
	X
	
	
	
	
	
	X
	
	
	
	
	
	
	
	

	TC42
	
	
	
	
	
	
	
	
	X
	X
	
	
	
	X
	X

	TC43
	
	
	
	
	
	
	
	
	X
	X
	
	
	
	X
	X

	TC44
	
	
	
	
	
	
	
	
	
	
	
	X
	X
	
	

	TC45
	
	
	
	
	
	
	
	
	X
	X
	
	
	
	X
	X

	TC46
	
	
	
	
	
	
	
	
	
	
	
	X
	
	X
	X

	TC47
	
	
	
	
	
	
	
	
	
	
	
	X
	
	X
	X

	TC48
	X
	
	
	
	X
	
	
	
	
	
	
	
	
	X
	X

	TC49
	
	X
	
	X
	X
	
	
	
	
	
	
	
	
	X
	X

	TC50
	
	
	X
	
	
	
	
	
	
	
	
	
	
	X
	X

	TC51
	X
	
	
	X
	
	
	X
	
	
	
	
	
	
	
	

	TC52
	X
	
	
	X
	
	
	X
	
	
	
	
	
	
	
	

	TC53
	X
	
	
	
	
	
	X
	
	
	
	
	
	
	
	

	TC54
	X
	
	
	
	
	
	X
	
	
	
	
	
	
	
	

	Total number of situations
	15

	Number of covered situations
	15

	Percentage of situations covered
	100%

The next table shows coverage of branching requirements statements by the tests generated for AF unit. Only the requirements related with AF unit behaviour — R01-R14 — are considered.

	
	R01
	R02
	R03
	R04
	R05
	R06
	R07
	R08
	R09
	R10
	R11
	R12
	R13
	R14

	TC01
	X
	X
	
	X
	
	X
	
	
	
	
	
	
	
	X

	TC02
	X
	X
	X
	X
	
	X
	
	
	
	
	
	
	
	X

	TC03
	X
	
	X
	X
	
	X
	
	
	
	
	
	
	
	X

	TC04
	X
	
	
	X
	
	X
	
	
	
	
	
	
	
	X

	TC05
	X
	X
	X
	X
	
	
	X
	
	
	
	
	
	
	X

	TC06
	X
	
	X
	X
	
	
	X
	
	
	
	
	
	
	X

	TC07
	X
	
	
	X
	
	
	X
	
	
	
	
	
	
	X

	TC08
	X
	X
	
	X
	
	
	X
	
	
	
	
	
	
	X

	TC09
	X
	
	
	X
	
	
	
	
	X
	
	
	
	
	X

	TC10
	X
	
	X
	X
	
	
	
	
	X
	
	
	
	
	X

	TC11
	X
	X
	X
	X
	
	
	
	
	X
	
	
	
	
	X

	TC12
	X
	X
	
	X
	
	
	
	
	X
	
	
	
	
	X

	TC13
	X
	
	
	X
	
	
	
	X
	
	
	
	
	X
	X

	TC14
	X
	
	
	X
	
	
	
	
	X
	
	
	
	X
	X

	TC15
	X
	
	
	X
	
	X
	
	
	
	
	X
	
	
	X

	TC16
	X
	
	
	X
	X
	
	
	
	
	
	X
	
	
	X

	TC17
	X
	
	
	X
	
	X
	
	
	
	X
	
	
	
	X

	TC18
	X
	
	
	X
	
	
	X
	
	
	
	X
	
	
	X

	TC19
	X
	
	X
	X
	X
	
	
	
	
	
	
	
	
	X

	TC20
	X
	X
	X
	X
	X
	
	
	
	
	
	
	
	
	X

	TC21
	X
	
	
	X
	X
	
	
	
	
	
	
	
	
	X

	TC22
	X
	X
	
	X
	X
	
	
	
	
	
	
	
	
	X

	TC23
	X
	
	X
	X
	
	
	
	X
	
	
	
	
	
	X

	TC24
	X
	X
	X
	X
	
	
	
	X
	
	
	
	
	
	X

	TC25
	X
	
	
	X
	
	
	
	X
	
	
	
	
	
	X

	TC26
	X
	X
	
	X
	
	
	
	X
	
	
	
	
	
	X

	TC27
	X
	
	
	X
	
	X
	
	
	
	
	
	X
	
	X

	TC28
	X
	
	
	X
	
	
	X
	
	
	X
	
	
	
	X

	TC29
	X
	
	
	X
	
	
	X
	
	
	
	
	X
	
	X

	TC30
	X
	
	
	X
	X
	
	
	
	
	
	
	X
	
	X

	TC31
	X
	
	
	X
	X
	
	
	
	
	X
	
	
	
	X

	TC32
	X
	
	
	X
	X
	
	
	X
	
	
	
	
	
	X

	TC33
	X
	
	
	X
	X
	
	
	X
	
	
	
	
	
	X

	TC34
	X
	
	
	X
	X
	
	
	X
	
	
	
	
	
	X

	TC35
	X
	
	
	X
	X
	
	
	X
	
	
	
	
	
	X

	Total number of situations
	14

	Number of covered situations
	14

	Percentage of situations covered
	100%

The next table shows coverage of branching requirements statements by the tests generated for PCRF unit. Only the requirements related with PCRF unit behaviour — R15-R35 — are considered.

	
	R15
	R16
	R17
	R18
	R19
	R20
	R21
	R22
	R23
	R24
	R25
	R26
	R27
	R28
	R29
	R30
	R31
	R32
	R33
	R34
	R35

	TC01
	
	
	
	
	X
	
	
	
	
	X
	
	
	
	
	
	
	
	
	
	
	

	TC02
	
	
	X
	
	X
	X
	
	X
	
	
	
	X
	
	
	
	
	
	X
	
	
	

	TC03
	X
	
	
	
	X
	
	
	X
	X
	
	
	
	
	
	
	
	
	X
	
	
	

	TC04
	X
	
	
	
	X
	
	
	X
	
	
	
	X
	
	
	
	
	
	X
	
	
	

	TC05
	X
	
	
	
	X
	
	
	
	
	
	
	X
	
	
	
	
	
	
	
	
	

	TC06
	X
	
	
	
	X
	
	
	
	
	
	
	X
	
	
	
	
	
	
	
	
	

	TC07
	X
	
	
	
	X
	
	
	X
	
	
	
	
	X
	
	
	
	
	X
	
	
	

	TC08
	
	
	
	
	X
	
	X
	X
	
	X
	
	
	
	
	
	
	X
	X
	
	X
	

	TC09
	
	X
	X
	
	X
	
	
	
	X
	
	
	
	
	
	
	
	
	
	
	
	

	TC10
	
	X
	
	
	X
	
	
	X
	X
	
	
	
	
	
	
	
	
	X
	
	
	

	TC11
	
	X
	X
	
	X
	
	
	X
	
	
	
	X
	
	
	
	
	
	X
	
	
	

	TC12
	
	X
	
	
	X
	
	
	X
	
	
	
	
	X
	
	
	
	
	X
	
	
	

	TC13
	
	X
	
	
	X
	
	
	
	
	
	
	X
	
	
	
	
	
	
	
	
	

	TC14
	
	
	
	
	X
	
	
	X
	
	
	
	X
	
	
	
	
	
	X
	
	
	

	TC15
	X
	
	
	
	X
	
	
	X
	X
	
	
	
	
	
	
	
	
	X
	
	
	

	TC16
	
	
	X
	
	X
	X
	
	
	X
	
	
	
	
	
	
	
	
	
	
	
	

	TC17
	
	
	
	
	X
	
	X
	X
	
	
	X
	
	
	
	
	X
	X
	X
	
	
	

	TC18
	
	
	
	
	X
	X
	X
	
	
	
	
	
	X
	
	
	
	X
	
	
	
	

	TC19
	
	
	
	
	X
	X
	X
	X
	
	
	
	
	X
	
	
	
	X
	X
	
	
	

	TC20
	
	
	
	
	X
	
	
	
	
	
	
	
	
	X
	
	
	
	
	
	
	

	TC21
	
	
	X
	
	X
	X
	X
	
	X
	
	
	
	
	
	
	
	X
	
	
	
	

	TC22
	
	
	X
	
	X
	X
	X
	X
	
	
	
	
	X
	
	
	
	X
	X
	
	
	

	TC23
	
	
	X
	
	X
	X
	X
	
	
	
	
	
	X
	
	
	
	X
	
	
	
	

	TC24
	X
	
	X
	
	X
	X
	X
	X
	
	
	
	
	X
	
	
	
	X
	X
	
	
	

	TC25
	
	
	X
	
	X
	X
	X
	
	
	
	
	X
	
	
	
	
	X
	
	
	
	

	TC26
	
	
	
	
	X
	
	X
	
	X
	
	
	
	
	
	
	
	X
	
	
	
	

	TC27
	
	
	
	
	X
	X
	
	
	
	
	
	
	X
	
	
	
	
	
	
	
	

	TC28
	X
	
	
	
	X
	
	X
	
	
	
	
	
	X
	
	
	
	X
	
	
	
	

	TC29
	
	
	
	
	X
	
	
	
	
	
	X
	
	
	
	
	
	
	
	
	
	

	TC30
	
	
	
	
	X
	
	X
	X
	X
	
	
	
	
	
	
	
	X
	X
	
	
	

	TC31
	
	
	
	
	X
	X
	
	X
	
	
	
	
	X
	
	
	
	
	X
	
	
	

	TC32
	
	
	
	
	X
	
	
	X
	
	
	
	
	
	
	X
	
	
	
	X
	
	

	TC33
	
	
	
	X
	X
	
	
	
	
	
	
	
	
	
	X
	
	
	
	
	
	

	TC34
	
	
	
	X
	X
	
	
	
	
	
	
	
	
	X
	
	
	
	
	
	
	

	TC35
	
	
	
	X
	X
	
	
	X
	
	
	
	
	
	X
	
	
	
	
	X
	
	

	TC36
	
	
	
	
	X
	
	
	
	
	
	
	X
	
	
	
	
	
	
	
	
	

	TC37
	
	X
	X
	
	X
	
	
	
	X
	
	
	
	
	
	
	
	
	
	
	
	

	TC38
	
	X
	X
	
	X
	
	
	X
	X
	
	
	
	
	
	
	
	
	
	
	
	X

	TC39
	
	
	
	
	X
	
	
	X
	
	
	
	
	
	X
	
	
	
	
	X
	
	

	TC40
	
	
	X
	
	X
	X
	
	X
	X
	
	
	
	
	
	
	
	
	
	
	
	X

	TC41
	
	
	
	
	X
	
	
	
	X
	
	
	
	
	
	
	
	
	
	
	
	

	TC42
	
	
	
	
	X
	
	X
	
	
	
	
	
	
	X
	
	
	X
	
	
	
	

	TC43
	
	
	
	
	X
	
	X
	X
	
	
	
	
	
	X
	
	
	X
	X
	X
	
	

	TC44
	
	
	
	
	X
	
	
	
	
	
	
	
	
	
	X
	
	
	
	
	
	

	TC45
	
	
	
	X
	X
	
	X
	X
	
	
	
	
	
	X
	
	
	X
	
	X
	
	

	TC46
	
	
	
	
	X
	
	X
	
	
	
	
	
	
	
	X
	
	X
	
	
	
	

	TC47
	
	
	
	
	X
	
	X
	X
	
	
	
	
	
	
	X
	
	X
	X
	X
	
	

	TC48
	
	X
	
	
	X
	
	X
	
	X
	
	
	
	
	
	
	
	X
	
	
	
	

	TC49
	X
	X
	
	
	X
	
	X
	X
	
	
	
	
	X
	
	
	
	X
	X
	
	
	

	TC50
	
	
	
	
	X
	
	X
	
	
	
	
	X
	
	
	
	
	X
	
	
	
	

	TC51
	X
	
	
	
	X
	
	
	
	X
	
	
	
	
	
	
	
	
	
	
	
	

	TC52
	X
	
	
	
	X
	
	
	
	X
	
	
	
	
	
	
	
	
	
	
	
	

	TC53
	
	
	
	
	X
	
	
	
	X
	
	
	
	
	
	
	
	
	
	
	
	

	TC54
	
	
	
	
	X
	
	
	
	X
	
	
	
	
	
	
	
	
	
	
	
	

	Total number of situations
	21

	Number of covered situations
	21

	Percentage of situations covered
	100%

8.4
Applying Conformiq Designer to case study 3

The goal of the case study is to produce a QML model of the for the Diameter protocol on the Rx interface as specified in TS 129 214, which can be used to generate a test suite with the Conformiq Designer tool. This test suite should be comparable to the test purposes defined in the Test Specification for the Diameter protocol on the Rx interface.
8.4.1
Modeling case study 3 with Conformiq Designer

The modeling work is based on the ETSI standard of the Diameter Rx interface TS 129 214. The Rx reference point is used to exchange application level session information between the Policy and Charging Rules Function (PCRF) and the Application Function (AF).

Besides the standard the test purposes defined in ETSI TS 101 580-2 were also taken into account during modeling. The test purposes made it easier to understand how the Diameter protocol works on the Rx interface, and provided some guidance in cases where the standard’s text was not entirely clear.

The modeling was done in iterations:

· First, the Diameter PDUs were modeled as data types.

· Based on the test purposes and the standard the main uses cases of the Rx interface were modeled.

· Next, the details from the standard were also added to the model.

· The final part of each iteration is the validation of the model. This can be done by generating tests from the model and then analyzing if the generated tests are according to the expected behavior. In addition to thus, the Conformiq tool allows its user to define some message sequences and during test generation it verifies wether these message sequences can be generated.

The model is refined in each iteration until we get to the desired level of abstraction and we build some confidence that the model is valid.

8.4.2
Conformiq Designer model of case study 3

During modeling two models were created. A model describing the Rx interface from the AF’s point of view, and an other describing it from the PCRF’s point of view. This decomposition is the same as the test purposes are structured in the test specification.

The type definitions are common for both models. The PDUs on the interface of the model are describing a Diameter Request and a Diameter Response. Each is modelled with a record which contains the Command Code of the message and the embedded AVPs. The AVPs are also modelled with a record, where the fields are describing its name, its value and in case it is a grouped AVP, the embedded AVPs, so an AVP hierarchy can be contructed. The value of a not grouped AVP is modelled as a string to keep the model simple.

The behaviour model for the AF Role and the PCRF role are defined in two separate FSMs. Each FSM describes the behaviour of the System Under Test (AF, or PCRF) for the following Policy and Charging Control procedures:

· Initial provisioning of session information

· Modification of session information

· Gate Related Procedures

· Session Termination

· Subscription to Notification of Signalling Path Status

· Traffic Plane Events

The FSM for the AF role can be seen in Figure Figure 16, while the FSM for the PCRF role can be seen in Figure 17.

[image: image26.png]

Figure 16 AF Role FSM in Conformiq Modeler

[image: image27.png]nitial Provisioning

Modification

E
I
I

Figure 17 PCRF Role FSM in Conformiq Modeler

In Conformiq Designer the user can mark the model with requirement statements in order to facilitate requirement traceability. These marks can also be used as test coverage criteria that can be enabled and disabled for test generation. Since the Test Purposes were also taken into account furing modling, those parts of the model that clearly belong to a test purpose were also marked.

During modeling the following requirements were inserted into the model:

· AF Role

· Requirements coming from the standard

· Modifying Session: Requested Service Not Authorized

· New Session: Requested Service Not Authorized

· New Session: Session Binding Failed

· Session Modification: Flow Usage

· Signalling Path Status Change

· Test Purposes

· Initial Provisioning of Session Information for AF Role

· TP_AF_IPS_01

· TP_AF_IPS_02

· TP_AF_IPS_03

· Modification of Session Information for AF Role

· TP_AF_MSI_01

· TP_AF_MSI_02

· TP_AF_MSI_03

· Gate Related Procedures for AF Role

· TP_AF_GRP_01

· Session Termination for AF Role

· TP_AF_ST_01

· Subscription to Notification of Signaling Path Status Change for AF Role

· TP_AF_SN_01

· TP_AF_SN_02

· TP_AF_SN_03

· TP_AF_SN_04

· TP_AF_SN_05

· TP_AF_SN_06

· Traffic Plane Events for AF Role

· TP_AF_TPE_01

· PCRF Role

· Test Purposes
· Initial Provisioning of Session Information for PCRF Role

· TP_PCRF_IPS_01

· TP_PCRF_IPS_02

· TP_PCRF_IPS_03

· Modification of Session Information for PCRF Role

· TP_PCRF_MSI_01

· TP_PCRF_MSI_02

· Gate Related Procedures for PCRF Role

· TP_PCRF_GRP_01

· Session Termination for PCRF Role

· TP_PCRF_ST_01

· TP_PCRF_ST_02

· Subscription to Notification of Signaling Path Status Change for PCRF Role

· TP_PCRF_SN_01

· TP_PCRF_SN_02

· TP_PCRF_SN_03

· TP_PCRF_SN_04

· TP_PCRF_SN_05

· Traffic Plane Events for PCRF Role

· TP_PCRF_TPE_01

· TP_PCRF_TPE_02

8.4.3
Generating test cases with Conformiq Designer for case study 3

The goal during the test generation was to produce a test suite that can be compared to the test purposes defined in the Conformance Test Specification. After experimenting with the parameters I identified the settings described below. The settings were adjusted to generate testcases where the goal is to cover all the test purposes with a compact test suite that doesn’t contain too many testcases.

· Project -> Properties -> Conformiq Options

· Lookahead Depth: Set to the third position

· Only finalized runs: Disabled

· OSI Methodology Support: Enabled

· Coverage Editor

· Requirements: TPs are Target

· State Chart

· States: Target

· Transitions: Target

· 2-Transitions: Don’t case

· Implicit Consumption: Don’t care

· Conditional Branching: Don’t care

· Control Flow (96%)

· Methods: Target

When ‘Only Finalized Runs’ is selected, Conformiq Designer will only generate test cases that end the system in a "clean" state. When this setting is activated, only such test cases are accepted to the generated test suite that would cause all threads in the model to terminate. This setting was disabled and instead ‘OSI Methodology Support’ was enabled. Selecting this option activates the "OSI Methodology" feature which provides support for generating test suites conforming to the OSI methodology for organizing test cases as laid out in the ISO 9646-1 standard. All the generated test cases are divided into three sections: Preamble, Body, and Postamble. Every generated test case is automatically named by the name of one of the requirements that is verified in the Body.

8.4.4
Evaluation

Using the model described in 8.4.2 and setting the parameters of the test generator according to 8.4.3 a test suite consisting of 21 testcases is produced by the conformiq Designer tool for the AF role and 21 for the PCRF role.

The tool generates a Traceability Matrix that makes it possible to check if a Test Purpose is covered by a generated testcase:

[image: image28.png]Req
anF

PR
. AF

Modifying Session: Requested Service Not Authorized
New Session: Requested Service Not Authorized

New Session: Session Binding Failed

Session Modification: Flow Usage.

Signalling Path Status Change

GRP_01
s 01
Ps02
PS03
MSLOL
MSLo2
MSLO3
SN0
SN2
N3
SN.04.
SNOS.
SN.06.
sT01
TPEOL

>

8

9

10

1n

12

13

14

15

> x

16

>

17

18

>

19 20 2
x
X x
X x
X x
x
x
x
x
x

Figure 18 Test Purpose Coverage for AF Role

[image: image29.png]1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2
PR
4 PCRF

GRP_01 x x
s 01 x X X x X x
Ps02 x
PS03 x x
MSLOL x
MSLo2 x
SN0 X x x X x x
SN2 x
N3 x
SN.04. x
SNOS. x
sT01 x
sT02 x
TPEOLa X x x
TPEO1L x
TPEOLC x
TPE02 X

>
>

>
>

Figure 19 Test Purpose Coverage for PCRF Role
All the test purposes were covered by the generated testcases for both roles. The granularity of the generated test data is at least on the same level as the description in the test purposes.

The dependencies between test cases are automatically tracked when the test suite is generated using "OSI Methodology Support" and a Test Dependency Matrix is generated, which shows how the test cases depend on each other.
[image: image30.png]Prerequisite / Dependent 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2

SN.oL “ v ew

s.01 B Y P Y P Y Y R B IR Y]
PS03

SN0z
SN0
P02 ERE R Y Y
New Session: Session Binding Failed

New Session: Requested Service Not Authorized

MsL o Y
Ms103

st P

Method get DIA Ansi(String)

Session Modifcation: Flow Usage P
Signalling Path Status Change

GRP oL

‘Conditional branch guard in DiaRx AF AF Session Modification Flowsage->Diaf AF.AF Session Established-192-8

TPE01

BN

‘Conditional branch guard in DiaRx AF Ry Session Terminating->DiaR AF final-state-2-132

wsL.02

Modifying Session: Requested Service Not Authorized

tt

Figure 20 Test Dependency Matrix for AF Role

[image: image31.png]Prerequisite / Dependent 1.2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 2
s.01 “ “ R R R IR R IR R R BRI
PS03 o
Ps02
SN.oL “ o] v ewew
Conditional branch guard in DiaR_PCRF.Ri AF-> DiaRy PCRF.Rx AF-T:2
SN.02 o K
Conditional branch guard in DiaRx_PCRF.Rx_AF-> DiaRi PCRF final-state-2-82
SN0 o K
N3
SNOS.

MSLOL

MSLo2

sT01

GRP 01 o o K
sT02

Conditional branch guard in DiaRx_PCRF Allocation_Failure-> DiaRi PCRF final-state-1-4:2

TPEOLa ”
Conditional branch guard in DiaR_PCRFIPCAN_Session_Termination->DiaRx_PCRF.Closing-122

TPEO1L

TPEOLC

TPE02

tt

Figure 21 Test Case Dependency Matrix for PCRF Role
8.5
Applying sepp.med MBTsuite to case study 3

<Text>

8.5.1
Modeling case study 3 with sepp.med MBTsuite

Steps for the adaptation of Abstract model, other specifics

<Text>

8.5.2
sepp.med MBTsuite model of case study 3

Description of sepp.med MBTsuite model.

The complete model shall go into an annex.

<Text>

8.5.3
Generating test cases with sepp.med MBTsuite for case study 3

Describing the test generation, options, problems, etc.

<Text>

8.5.4
Evaluation

Criteria need to be specified. How easy was it, how good are the test cases compared to the ETSI test cases.

<Text>

8.6
Applying FOKUS MD Tester to case study 3

<Text>

8.6.1
Modeling case study 3 with FOKUS MD Tester

Steps for the adaptation of Abstract model, other specifics

<Text>

8.6.2
FOKUS MD Tester model of case study 3

Description of FOKUS MD Tester model.

The complete model shall go into an annex.

<Text>

8.6.3
Generating test cases with FOKUS MD Tester for case study 3

Describing the test generation, options, problems, etc.

<Text>

8.6.4
Evaluation

Criteria need to be specified. How easy was it, how good are the test cases compared to the ETSI test cases.

<Text>

8.7
Résumé for case study 3

<Text>

8
Evaluation of all case studies

This section has to be refined.

<Text>

The following text is to be used when appropriate:

Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, ETSI grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

<PAGE BREAK>

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 9 style for the title and the Normal style for the text.
Annex <A>:
Title of annex (style H9)
<Text>

<PAGE BREAK>

Annex :
Title of annex (style H9)
<Text>

B.1
First clause of the annex (style H1)
<Text>

B.1.1
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
The following text is to be used when appropriate:

Abstract Test Suite (ATS) text block

This text should be used for ATSs using TTCN-2 or TTCN-3. The subdivision is recommended.

Use one of the three following choices: Either:

For test suite specified in TTCN version 2 (TTCN-2): Provide both Graphical Rendition (GR) and Machine Processable (MP) files.

The following text should be used for ATSs using TTCN-2. The subdivision is recommended.

This ATS has been produced using the Tree and Tabular Combined Notation (TTCN) according to ISO/IEC 9646-3 [<x>].

The ATS was developed on a separate TTCN software tool and, therefore, the TTCN tables are not completely referenced in the table of contents. The ATS itself contains a test suite overview part which provides additional information and references.

For test suite specified in TTCN version 3 (TTCN-3) Tabular Format: Provide both Graphical Rendition (GR) and Machine Processable (MP) files.

The following text should be used for ATSs using TTCN-3 Tabular Format. The subdivision is recommended.

This ATS has been produced using the Testing and Test Control Notation (TTCN) according to ES 201 873-2 [<x>].

The ATS was developed on a separate TTCN software tool and therefore the TTCN tables are not completely referenced in the table of contents. The ATS itself contains a test suite overview part which provides additional information and references.

For test suites specified in TTCN version 3 (TTNC-3) Core Language: Provide only the machine processable (MP) file.

The following text should be used for ATSs using TTCN-3 Core Language. The subdivision is recommended.

This ATS has been produced using the Testing and Test Control Notation (TTCN) according to ES 201 873-2 [<x>].

<x1>
The TTCN Graphical form (TTCN.GR)

The TTCN.GR representation of this ATS is contained in an Adobe Portable Document Format™ file (<any_name>.PDF contained in archive <Shortfilename>.ZIP) which accompanies the present document.

<x2>
The TTCN Machine Processable form (TTCN.MP)

The TTCN.MP representation corresponding to this ATS is contained in an ASCII file (<any_name>.MP contained in archive <Shortfilename>.ZIP) which accompanies the present document.

Where an ETSI Abstract Test Suite (in TTCN) is published in both .GR and .MP format these two forms shall be considered equivalent. In the event that there appears to be syntactical or semantic differences between the two then the problem shall be resolved and the erroneous format (whichever it is) shall be corrected.

<PAGE BREAK>

Annex <y>:
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself (see clause 12.2 of the EDRs http://portal.etsi.org/edithelp/Files/other/EDRs_navigator.chm).

It shall not include references mentioned in the document.

Use the Heading 9 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Document history

	<Version>
	<Date>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

A few examples:

	Document history

	V1.1.1
	April 2001
	Publication

	V1.3.1
	June 2011
	Pre-processed by the ETSI Secretariat editHelp! e-mail: mailto:edithelp@etsi.org

	
	
	

	
	
	

	
	
	

2012-03-22

[image: image33.png]RT counter
== MAX

9.2.4.2.3/2
Send as TSB |
Has
9.3.5.2 neighbours
A 4 A 4
9.3.5.2/5 9.3.5.2/2

[image: image34.png]___ 2

i Common header processing
19.3.3
sender UCb
non-empty
LS pending
for sender
9.3.3/3.b

9.3.3/4

EmbPacket
1= ANY

i BC buff

i non-empty
il 9.3.3/3.a 9.3.3/3.c

i HeaderType

i 1= ANY

[image: image35.png]Duplicam ‘—>®

Annex A

Annex B.2

Location table update for source 9.2.4.4,9.3.5.3/4

Annex B.2

source !=
sender

9.3.5.3/6,9.3.4.3/9

[image: image36.png]Duplicate packet detection
Annex A

Location table upiate for source
Annex B.2

Annex B.2

9.2.4.2.4,9.3.4.3/5.a

9.2.4.2.4,9.3.4.3/5.b

source UCb
non-empty

[image: image37.png]destination
== this

9.2.4.2.4/8-9 9.24.3->9.343

Hop limit
==0

v
9.3.5.3/6,9.3.4.3/9

Q

[image: image38.jpg]

