
	 	 	 	 	 	 	 	

	 OÜ	 Elvior	 	 	 	 	 	 -‐-‐	 	 	 	 	 	 	 Mäealuse	 4,	 	 12618	 Tallinn,	 ESTONIA	 	 	 	 	 	 -‐-‐	 	 	 	 	 www.elvior.com	 	 	 	 	 	 	 	 	 	 	

	
	
	
ELVIOR	 INPUT	 TO	 TDL	 DISCUSSION	

20.1.2012

Andres Kull

Elvior
andres.kull@elvior.com

	 	 	 	 	 	 	 	

	 OÜ	 Elvior	 	 	 	 	 	 -‐-‐	 	 	 	 	 	 	 Mäealuse	 4,	 	 12618	 Tallinn,	 ESTONIA	 	 	 	 	 	 -‐-‐	 	 	 	 	 www.elvior.com	 	 	 	 	 	 	 	 	 	 	

1 Introduction

This document is Elvior position about the Test Description Language (TDL).

The document gives an overview about the history of scenario-based modeling
notations. The high-level requirements for TDL are proposed. Then is proposed
which elements of the UML SD and TTCN-3 GFT should be reused to define TDL.

2 History of scenario-based notations

2.1 MSC

Message Sequence Chart (MSC) is an interaction diagram between communicating
entities that exchange events. There have been several MSC versions standardized by
ITU. The first version of the MSC standard was released in 1992.

The 1996 version added references, ordering and inline expressions concepts, and
introduced HMSC (High-level Message Sequence Charts), which are the MSC way
of expressing state diagrams.

The latest MSC 2000 version added object orientation, refined the use of data and
time in diagrams, and added the concept of remote method calls.

Figure	 1:	 History	 of	 MSC	

MSC 2000 is easy to use and well-formalized notation. It became popular especially
in telecommunications industry. MSC has been used for requirements specification,
systems design and test design.

MSC 2000 lost ground by the introduction of UML.

2.2 TTCN-3 GFT

TTCN-3 is a test dedicated high-level programming language for automated test
scripts. Inspired in the popularity of the MSC the TTCN-3 graphical notation GFT
was worked out. GFT became a formal graphical programming language for test cases
by adding lot of TTCN-3 constructs to MSC-2000. As such it lost some of the
important MSC benefits becoming too close to the programming language of
describing the tester behaviour. For the people who can write TTCN-3 scripts it
became useless because they prefer textual notation to graphical one. GFT also didn’t

	 	 	 	 	 	 	 	

	 OÜ	 Elvior	 	 	 	 	 	 -‐-‐	 	 	 	 	 	 	 Mäealuse	 4,	 	 12618	 Tallinn,	 ESTONIA	 	 	 	 	 	 -‐-‐	 	 	 	 	 www.elvior.com	 	 	 	 	 	 	 	 	 	 	

help people who don’t know TTCN-3 because using GFT you have to know TTCN-3.
Therefore currently GFT is used mainly for documenting purposes by rendering
TTCN-3 textual test cases into GFT.

2.3 UML

UML standardization took over the results achieved on the MSC field. UML SD
(Sequence Diagram) became the new MSC notation. Most of the MSC-2000 features
were taken over and some new features were added. UML quickly became an industry
standard and tool vendors updated their tools to support UML. It can be said that this
was the end of original MSC-2000 and the life of MSCs were continued as UML SD.
Concepts of GFT were pushed to UML standards in form of UML TP (Test Profile).
UML Test Profile provides the concepts to design test architecture, to define test data,
and to define test behaviour. The concepts for defining the test behaviour are quite
close to the respective concepts in GFT.

3 Why do we need TDL?

It can be asked why do we need another scenario-based notation for test definition
(TDL) if we have already notations like GFT, UML SD and UML TP. The answer is
that with GFT and UML TP one can specify the algorithm that the test component has
to implement in order to test the SUT. Those notations provide means to graphically
program the test cases from the test component point of view. This is not what the test
engineer wants. The test engineer is often not very skilful in programming but they
can define the test cases as message scenarios between the SUT instances and test
components. They can define also that some fields in the messages have to be
matched to the expected values. TDL should be the notation to define the test
scenarios on the message sequence chart level without having to define how the test
components should be implemented to achieve this. The difference between TDL and
GFT/UML TP is “what” vs “how”. UML SD is a good notation that TDL can be
based on. TDL do not need everything that is present in UML SD and it might need
something test specific to be added. In overall UML SD is in the notation on the same
abstraction level than TDL is supposed to have.

4 TDL requirements

1. TDL must define the test case scenario without defining the execution
algorithm of the test components explicitly. The abstraction level of TDL must
be higher than executable tests.

2. TDL must define expected test scenarios as interaction between SUT and SUT
components.

a. Everything in actual scenario that do not match TDL scenario is a test
failure.

b. Defining explicitly verdicts on the scenario is not needed
3. TDL must be usable for test engineers who cannot code scripts.
4. TDL must base on UML meta-model.

Rationales:

	 	 	 	 	 	 	 	

	 OÜ	 Elvior	 	 	 	 	 	 -‐-‐	 	 	 	 	 	 	 Mäealuse	 4,	 	 12618	 Tallinn,	 ESTONIA	 	 	 	 	 	 -‐-‐	 	 	 	 	 www.elvior.com	 	 	 	 	 	 	 	 	 	 	

• UML is de-facto industry standard. It’s not reasonable to compete with
UML.

• All CASE tools support UML. Tool support for TDL acceptance is
important.

• A good marketing strategy could be to create TDL as UML profile.
5. Any UML CASE tool should be possible to use for authoring TDL.

Rationales:
• At least for the beginning there are no special TDL authoring tools

available.
6. TDL should reuse UML SD notation as much as needed and as less as

possible.
Rationales:

• TDL should be easy to use notation therefore it should include from
SD only the features that are mandatory for TDL. All nice-to-have
features should be left out.

7. TDL must be formal for deriving executable test cases automatically from it.
8. TDL must have graphical presentation.
9. TDL may have tabular presentation.
10. TDL should have textual presentation.
11. TDL must be independent of test scripting language. Scenarios must use only

data types and templates/instances references that can be defined in different
module for the specific programming language in use.
Rationales:

• TDL should be possible to render into different scripting languages.
• This will make market acceptance of TDL easier.

12. TDL must support associating data types and data instances to sequence
charts.

13. Data types and instances of different programming language including UML
must be supported.

14. Data types and instances must be defined in separate (language-specific) files.
15. Timing constraints must be modelled by defining min-max durations between

events instead of using timer operations like start, stop, and timeout.
16. Multiple communicating SUT and test component instances must be

supported.
17. TDL must support hierarchical composition of sequence charts similar to

High-level Interaction Diagrams in UML and HMSCs in MSC-2000.
18. TDL must support asynchronous and synchronous (function call) messaging.
19. Test architecture definition must be supported – SUT and test components,

ports, interface types.
20. TDL sequence charts must support context variables.
21. TDL must support attaching system requirements to the test scenarios.

	 	 	 	 	 	 	 	

	 OÜ	 Elvior	 	 	 	 	 	 -‐-‐	 	 	 	 	 	 	 Mäealuse	 4,	 	 12618	 Tallinn,	 ESTONIA	 	 	 	 	 	 -‐-‐	 	 	 	 	 www.elvior.com	 	 	 	 	 	 	 	 	 	 	

5 What to take over from UML SD?

The pictures and text about UML SD in the current chapter are copied from [1] and
[2].

5.1 Frame

5.2 Lifeline

Lifeline is a named element, which represents an individual participant in the
interaction. While parts may have multiplicity greater than 1 then lifelines
represent only one interacting entity.

If the referenced connectable element is multivalued (i.e, has a multiplicity > 1), then
the lifeline may have an expression (selector) that specifies which particular part is
represented by this lifeline. If the selector is omitted, this means that an arbitrary
representative of the multivalued connectable element is chosen.

A lifeline is shown using a symbol that consists of a rectangle forming its "head" followed
by a vertical line (which may be dashed) that represents the lifetime of the participant.
Information identifying the lifeline is displayed inside the rectangle in the following
format (slightly modified from what's in UML 2.4 standard):

lifeline-ident ::=
 [connectable-element-name ['[' selector ']']] [':' class-name] [decomposition] | 'self'
selector ::= expression
decomposition ::= 'ref' interaction-ident ['strict']

where class-name is the type referenced by the represented connectable element.
The lifeline head has a shape that is based on the classifier for the part that this
lifeline represents.

Lifeline "data" of class Stock

	 	 	 	 	 	 	 	

	 OÜ	 Elvior	 	 	 	 	 	 -‐-‐	 	 	 	 	 	 	 Mäealuse	 4,	 	 12618	 Tallinn,	 ESTONIA	 	 	 	 	 	 -‐-‐	 	 	 	 	 www.elvior.com	 	 	 	 	 	 	 	 	 	 	

Anonymous lifeline of class User

Lifeline "x" of class X is selected with selector [k]

If the name is the keyword self, then the lifeline represents the object of the classifier

that encloses the Interaction that owns the Lifeline.

5.3 Execution Specification

Execution specification, informally called activation, is interaction
fragment, which represents a period in the participant's lifetime when it is

• executing a unit of behaviour or action within the lifeline,
• sending a signal to another participant,
• waiting for a reply message from another participant.

Note, that the execution specification includes the cases when behaviour is not
active, but just waiting for reply. The duration of an execution is represented by
two execution occurrences - the start occurrence and the finish occurrence.
Execution is represented as a thin grey or white rectangle on the lifeline.

Execution specification can be represented by a wider labeled rectangle, where the
label usually identifies the action that was executed.

Overlapping execution specifications on the same lifeline are represented by
overlapping rectangles.

	 	 	 	 	 	 	 	

	 OÜ	 Elvior	 	 	 	 	 	 -‐-‐	 	 	 	 	 	 	 Mäealuse	 4,	 	 12618	 Tallinn,	 ESTONIA	 	 	 	 	 	 -‐-‐	 	 	 	 	 www.elvior.com	 	 	 	 	 	 	 	 	 	 	

5.4 State Invariant

A state invariant is an interaction fragment, which represents a

runtime constraint on the participants of the interaction. It may be used to specify

different kinds of constraints, such as values of attributes or variables, internal or

external states, etc.

The constraint is evaluated immediately prior to the execution of the next occurrence

specification such that all actions that are not explicitly modeled have been executed.

If the runtime constraint is true, the trace is a valid trace, otherwise the trace is an invalid

trace and the test fails.

State invariant is usually shown as a constraint in curly braces on the lifeline.

It could also be shown as a state symbol representing the equivalent of a constraint that
checks the state of the object represented by the lifeline. This could be either the internal
state of the classifier behaviour of the corresponding classifier or some external state
based on a "black-box" view of the lifeline.

5.5 Interaction use

Interaction use is an interaction fragment, which allows to use (or call) another
interaction. Large and complex sequence diagrams could be simplified with interaction
uses. It is also common reusing some interaction between several other interactions.

	 	 	 	 	 	 	 	

	 OÜ	 Elvior	 	 	 	 	 	 -‐-‐	 	 	 	 	 	 	 Mäealuse	 4,	 	 12618	 Tallinn,	 ESTONIA	 	 	 	 	 	 -‐-‐	 	 	 	 	 www.elvior.com	 	 	 	 	 	 	 	 	 	 	

5.6 Guard

A guard is a constraint used in interactions - a Boolean expression that guards an

operand in a combined fragment.

An interaction constraint is shown in square brackets covering the lifeline where the

first event occurrence will occur, positioned above that event, in the containing

interaction or interaction operand.

5.7 Combined Fragment

Combined fragment is an interaction fragment, which defines a combination
(expression) of interaction fragments. An interaction operator and corresponding
interaction operands define a combined fragment. Through the use of combined
fragments the user will be able to describe a number of traces in a compact and concise
manner.

Interaction operators in TDL could be one of:

• alt - alternatives
• opt - option
• loop - iteration
• break - break
• par - parallel

5.7.1 Alternatives

UML SD:
The interaction operator alt means that the combined fragment represents a choice or
alternatives of behavior. At most one of the operands will be chosen. The chosen
operand must have an explicit or implicit guard expression that evaluates to true at
this point in the interaction.

An implicit true guard is implied if the operand has no guard.

An operand guarded by else means a guard that is the negation of the disjunction of
all other guards. If none of the operands has a guard that evaluates to true, none of the
operands are executed and the remainder of the enclosing interaction fragment is
executed.

guardsguards

	 	 	 	 	 	 	 	

	 OÜ	 Elvior	 	 	 	 	 	 -‐-‐	 	 	 	 	 	 	 Mäealuse	 4,	 	 12618	 Tallinn,	 ESTONIA	 	 	 	 	 	 -‐-‐	 	 	 	 	 www.elvior.com	 	 	 	 	 	 	 	 	 	 	

Figure	 2:	 Call	 accept()	 if	 balance	 >	 0,	 call	 reject()	 otherwise.	

TDL:
The semantics of the operand without the guard will differ from the UML SD as
follows:
If the operand has no guard then the first alternative without guard is executed where
the actual message matches the first message of the alternative.

5.7.2 Option

The interaction operator opt means that the combined fragment represents a choice of
behavior where either the (sole) operand happens or nothing happens.

Figure	 3:	 Post	 comments	 if	 there	 were	 no	 errors.

5.7.3 Loop

The interaction operator loop means that the combined fragment represents a loop.
The loop operand will be repeated a number of times.

UML SD:
Either or both iteration bounds and a guard could control loop.
The loop operand could have iteration bounds, which may include a lower and an
upper number of iterations of the loop. Textual syntax of the loop is:
loop-operand ::= loop ['(' min-int [',' max-int] ')']

min-int ::= non-negative-integer

max-int ::= positive-integer | '*'

If loop has no bounds specified, it means potentially infinite loop

If only min-int is specified, it means that upper bound is equal to the lower bound,
and loop will be executed exactly the specified number of times.

	 	 	 	 	 	 	 	

	 OÜ	 Elvior	 	 	 	 	 	 -‐-‐	 	 	 	 	 	 	 Mäealuse	 4,	 	 12618	 Tallinn,	 ESTONIA	 	 	 	 	 	 -‐-‐	 	 	 	 	 www.elvior.com	 	 	 	 	 	 	 	 	 	 	

Besides iteration bounds loop could also have a guards.

Loop is executed 5 times if size < 0
Loop is executed less than 5 times if size becomes >= 0

TDL:
Differences from UML SD are the following:

1) Max-int is not possible
loop-operand ::= loop ['(' min-int ')']

min-int ::= non-negative-integer

5.7.4 Break

The interaction operator break represents a breaking or exceptional scenario that is
performed instead of the remainder of the enclosing interaction fragment.

A break operator with a guard is chosen when the guard is true. In this case the rest
of the directly enclosing interaction fragment is ignored. When the guard of the break
operand is false, the break operand is ignored and the rest of the enclosing interaction
fragment proceeds.

Break enclosing loop if y>0.

	 	 	 	 	 	 	 	

	 OÜ	 Elvior	 	 	 	 	 	 -‐-‐	 	 	 	 	 	 	 Mäealuse	 4,	 	 12618	 Tallinn,	 ESTONIA	 	 	 	 	 	 -‐-‐	 	 	 	 	 www.elvior.com	 	 	 	 	 	 	 	 	 	 	

A combined fragment with the operator break should cover all lifelines of the
enclosing interaction fragment.

5.7.5 Parallel

The interaction operator par defines potentially parallel execution of behaviors of the
operands of the combined fragment. Different operands can be interleaved in any way
as long as the ordering imposed by each operand is preserved.

Set of traces of the parallel operator describes all the possible ways or combinations
that occurrence specifications of the operands may be interleaved without changing
the order within each operand.

Search Google, Bing and Ask in any order, possibly parallel.

Parallel combined fragment has notational shorthand for the common situations where
the order of events on one lifeline is insignificant. In a coregion area of a lifeline
restricted by horizontal square brackets all directly contained fragments are
considered as separate operands of a parallel combined fragment.

Coregion - search Google, Bing and Ask in any order, possibly parallel.

5.8 Message

Message is a named element that defines one specific kind of communication

between lifelines of an interaction. The message specifies not only the kind of

communication, but also the sender and the receiver. Sender and receiver are normally

two occurrence specifications (points at the ends of messages).

A message is shown as a line from the sender message end to the receiver message end.

The line must be such that every line fragment is either horizontal or downward when

traversed from send event to receive event. The send and receive events may both be on

the same lifeline. The form of the line or arrowhead reflects properties of the message.

	 	 	 	 	 	 	 	

	 OÜ	 Elvior	 	 	 	 	 	 -‐-‐	 	 	 	 	 	 	 Mäealuse	 4,	 	 12618	 Tallinn,	 ESTONIA	 	 	 	 	 	 -‐-‐	 	 	 	 	 www.elvior.com	 	 	 	 	 	 	 	 	 	 	

A message reflects either an operation call and start of execution or a sending and

reception of a signal.

When a message represents an operation call, the arguments of the message are the

arguments of the operation. When a message represents a signal, the arguments of the

message are the attributes of the signal.

Depending on the type of action that was used to generate the message, message could

be one of:
• asynchronous signal
• asynchronous call
• synchronous call
• reply

5.9 Time constraints

6 Which UML SD features to leave out of TDL?

1) The following combined fragment operators are irrelevant for TDL:

• strict
• seq
• critical
• ignore
• consider
• assert
• neg

	 	 	 	 	 	 	 	

	 OÜ	 Elvior	 	 	 	 	 	 -‐-‐	 	 	 	 	 	 	 Mäealuse	 4,	 	 12618	 Tallinn,	 ESTONIA	 	 	 	 	 	 -‐-‐	 	 	 	 	 www.elvior.com	 	 	 	 	 	 	 	 	 	 	

2) Dynamical participants – dynamical creation and destruction of test
components.

3) Syntax of the message.
4) Message actions:

a. create
b. delete

5) lost and found messages

7 What to take over from TTCN-3 GFT?
7.1 Syntax of the message

Asynchronous signal (message) is defined by

• a data instance/template reference with type information or
• an inline template with type information

Asynchronous and synchronous call are defined by

• keyword “call”
• procedure name
• procedure parameters

o template reference or
o list of parameters (can include wildcards, variables and

constants)
Reply is defined by

• data instance/template reference or
• inline template

Template matching mechanism (like in TTCN-3) must be used for defining how the
actual message field values must be match the expected values.

	 	 	 	 	 	 	 	

	 OÜ	 Elvior	 	 	 	 	 	 -‐-‐	 	 	 	 	 	 	 Mäealuse	 4,	 	 12618	 Tallinn,	 ESTONIA	 	 	 	 	 	 -‐-‐	 	 	 	 	 www.elvior.com	 	 	 	 	 	 	 	 	 	 	

8 Conclusions

The most important proposals in the document were the following:

1) TDL must be declarative language instead of the algorithmic one.
2) Executable test cases must be possible to generate from TDL automatically.
3) TDL must be independent of executable test cases language.
4) TDL should be based on UML meta-model.
5) It should be easy to use and should include only the most important features of

UML SD.
6) For message types and templates references TTCN-3 GFT notation should be

used.
7) For validating the test cases the messages order matching and message fields

matching mechanisms are used (no explicit verdict clauses).

	 	 	 	 	 	 	 	

	 OÜ	 Elvior	 	 	 	 	 	 -‐-‐	 	 	 	 	 	 	 Mäealuse	 4,	 	 12618	 Tallinn,	 ESTONIA	 	 	 	 	 	 -‐-‐	 	 	 	 	 www.elvior.com	 	 	 	 	 	 	 	 	 	 	

9 References

[1] OMG Unified Modeling Language (OMG UML), Superstructure, Version 2.4.1.

http://www.omg.org/spec/UML/2.4.1/Superstructure/PDF/
[2] http://www.uml-diagrams.org/sequence-diagrams.html

