
Razorcat Technical Report
Date: 22 December 2010
Status Released

CCDL User Manual

Project CCDL

Customer Airbus

Summary:

This document describes the CCDL language structure and the statements
available for writing CCDL test procedures. It also describes the process of
writing CCDL user functions.

Reference/Related Documents:

User Manual for TRM clients
Notes:

Keywords CCDL, TOP, TRM

© Razorcat Development GmbH 2007. All rights reserved. Confidential and proprietary document. This document and all information herein is the sole property of
Razorcat Development GmbH. No intellectual property rights are granted by the delivery of this document or the disclosure of its content. This document shall not be
reproduced or disclosed to a third party without prior written consent of Razorcat Development GmbH. This document and its content shall not be used for any purpose
other than that for which it is supplied.

User_Manual_CCDL.doc Page 1 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

Revision History

Revision Comment Name Date Issue
 Michael Wittner 06. July 2010 01

Initial revision

 Michael Wittner 21. July 2010 02

-

 Michael Wittner 8. September 2010 03

-

 Michael Wittner 04. November 2010 04

User functions handling updated, CCDL configuration added.

 Michael Wittner 22. December 2010 05

Macro description added.

User_Manual_CCDL.doc Page 2 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

Table of Contents

1 Introduction.. 5
1 CCDL Sample ... 7

1.1 Requirements of the Sample System... 7
1.2 Definition of Tests... 7
1.3 Initial Conditions of the Test ... 8
1.4 Test Steps .. 8
1.5 Test Preparation... 9
1.6 Test Execution Result .. 9

2 CCDL Language.. 11
2.1 Case Sensitivity.. 11
2.2 Comments.. 11
2.3 Structure of a CCDL Test Procedure.. 12

2.3.1 Initial Conditions.. 12
2.3.2 Test Steps... 13
2.3.3 Timeouts ... 13
2.3.4 Modules .. 13
2.3.5 Parameters.. 14
2.3.6 Multi Parameter Specification.. 14
2.3.7 Constants .. 15
2.3.8 Units.. 15
2.3.9 Expressions... 15
2.3.10 Variables ... 17
2.3.11 Macros .. 17

2.4 CCDL Statements .. 21
2.4.1 Value Manipulation Statements... 21
2.4.2 Expected Reaction Statements ... 24
2.4.3 Control Flow Statements... 25
2.4.4 Trigger Statements.. 26
2.4.5 Control Functions for Pins... 28
2.4.6 Other Statements .. 29
2.4.7 User Functions .. 30

3 CCDL User Functions.. 31

User_Manual_CCDL.doc Page 3 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

3.1 Adding/Editing a User Function Declaration... 31
3.2 Implementing a User Function ... 32

3.2.1 Source File Contents... 33
3.2.2 Header File Contents .. 34
3.2.3 Compiling the User Function Library ... 34
3.2.4 Installing the Newly Built Library ... 35
3.2.5 Activating the User Function Library ... 36

4 CCDL Configuration Directory ... 38
5 Troubleshooting... 39

5.1 #debug Statements .. 39

User_Manual_CCDL.doc Page 4 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

1 Introduction
Verification of safety critical systems requires full coverage of system under tests
requirements. This results in many and complex test scenarios, to be executed and
evaluated. Manual execution of such tests is error prone and not efficiently, though
automated testing of the system under test (SUT) is required.
To improve the test coverage while using less human resources, there is a need for a
tool, which allows to define test scenarios including the expected system reactions in
a simple and unambiguous way, automatically run the test scenarios, automatically
evaluate and report the behavior of the system under test after each test run.
The check case definition language (CCDL) is an approach to automate system level
testing by providing a high level script language that allows defining test stimulations
and expected results in a human readable form. The CCDL bridges the gap between
a purely textual description of a test and the compilation into a test stimulation
program required by any automated test execution tool. A well defined interface to
the underlying test execution engine allows execution of CCDL written tests on any
test tool that provides the required functionality.
Moreover, CCDL is embedded into a complete testing process starting from the
definition of tests, linking tests to system requirements, executing tests and review as
well as reporting of test results as shown in the figure below (the V model
development process).

Test Preparation Te
st

 E
va

lu
at

io
n

/ R
ep

or
tin

g

RequirementsRequirementsRequirements

Test Execution

Qualification
Test Report

RequirementsRequirementsTest Cases

Requirements
Evaluation
Requirements
Evaluation
Requirements
Evaluation

CCDL Test
Scripts
CCDL Test
Scripts

CCDL Test
Scripts

RequirementsRequirementsTest Evaluation

RequirementsRequirementsTest Runs/ Results

Coverage
Analysis

Coverage
Analysis

C. A.

Test Preparation Te
st

 E
va

lu
at

io
n

/ R
ep

or
tin

g

RequirementsRequirementsRequirements
RequirementsRequirementsRequirements

Test ExecutionTest Execution

Qualification
Test Report

RequirementsRequirementsTest Cases
RequirementsRequirementsTest Cases

Requirements
Evaluation
Requirements
Evaluation
Requirements
Evaluation

Requirements
Evaluation
Requirements
Evaluation
Requirements
Evaluation

CCDL Test
Scripts
CCDL Test
Scripts

CCDL Test
Scripts

RequirementsRequirementsTest Evaluation
RequirementsRequirementsTest Evaluation

RequirementsRequirementsTest Runs/ Results
RequirementsRequirementsTest Runs/ Results

Coverage
Analysis

Coverage
Analysis

C. A.

User_Manual_CCDL.doc Page 5 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

The CCDL testing process provides open interfaces to test management solutions
and it is already integrated into the Integrated Test Environment (ITE) from Razorcat
Development GmbH which supports the whole testing life cycle according to the V
model mentioned above.
The CCDL language provides means to link individual expected reactions of the
system under test to the respective system requirements. Such traceability of test
results to system requirements and vice versa is one of the most important issues
arising while testing safety critical systems according to aerospace, automotive or
medical standards.

User_Manual_CCDL.doc Page 6 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

1 CCDL Sample
The following very simple actuator system of an airplane wing part shall illustrate the
functionality of the CCDL. The system consists of a controller that controls the
movements of a wing part depending on the lever setting (i.e. the lever is the input
from the operator). The motor drives the wing part and the sensor measures speed
and position of the system. The controller will be the SUT in the following example.

LeverLever

Motor

Sensor

Fault
Indicator

Fault
Indicator

ControllerController

Break

The system shall be verified against the requirements given within the specification of
the system. The default position of the lever is 0 and it may be moved to positions 1
and 2. This drives the motor until the wing part comes into the respective position.

1.1 Requirements of the Sample System
As an excerpt from the system specification, the following requirements for the
controller were selected and they shall be verified by means of system testing:

- RQMT:0815-1 The motor shall operate the system at a speed of 1000
rpm

- RQMT:4711-1 If any overspeed (more than 1100 rpm) is detected, the
system shall stop the motor and activate the break within 100 ms. A fault
warning shall be indicated.

1.2 Definition of Tests
The next step in testing is the definition of test scenarios for the SUT. We will
consider the following test definition for the overspeed tests:

User_Manual_CCDL.doc Page 7 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

- Reset the system to initial state and positions
- Set the lever position to position 1
- Wait until the motor has reached the normal speed (refer to requirement

RQMT:0815-1)
- Simulate a sensor failure: Set the sensor to an offset of 110 rpm above the

originally measured value (refer to requirement RQMT:4711-1)
- Check that the system gets stopped after 100 ms (refer to requirement

RQMT:4711-1)
This test describes the steps to be taken in order to prepare the SUT for the test as
well as the stimulation, error injection and the expected reaction of the SUT. The
CCDL script will implement this test and provide means to automatically check the
expected system reactions.

1.3 Initial Conditions of the Test
One of the prerequisites for the test are the initial conditions and settings of the SUT
as well as the test bench. The CCDL provides the Initial Condition block to specify
this initial setup for the test:

The controller is specified as CTRL whereas the test bench environment model is
specified as TES. Parameters of both systems are initialized within the initial
conditions block.

1.4 Test Steps
The stimulation of the test and the check for expected system reactions is carried out
within test steps. The Test definition above may be tested with the CCDL
implementation shown below

User_Manual_CCDL.doc Page 8 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

This test step stimulates the system, waits for the system to operate properly, then
injects the failure condition and finally checks for the expected reactions of the SUT.
This simple example already outlines the powerful language features of CCDL: The
trigger expression denotes a certain point in time where the respective condition is
fulfilled. Based on this trigger, the stimulation (the when statement) and expected
reaction checks (the within statement) will be carried out at point in time where the
SUT is in the desired state for testing. Time intervals (T1 .. T1 & 100 [ms]) using
trigger expressions and offsets allow precise expected reaction checks in real time.
The expected reaction operator => is applicable for boolean expressions. It checks
whether the value changes exactly once from the negated boolean value to the
boolean value specified in the expression (within the given time interval).

1.5 Test Preparation
Before executing the test, the CCDL script has to be compiled into an executable
application that shall run on the test bench. The CCDL compiler produces C-Code
that is executable on the test bench (through the virtual machine and based on the
adaptable interface library). It may be integrated into the normal compilation process
of the test bench.

1.6 Test Execution Result
During execution of the test, the initial condition settings will be applied and all
specified test steps will be executed one after another. Test steps have an optional
timeout period which will abort the test if the execution time exceeds the specified
time. On successful test completion, the CCDL real time code generates an
automatic evaluation result log file. This log file contains the procedure text and the
passed/failed results of all expected reactions specified within the CCDL procedure.

User_Manual_CCDL.doc Page 9 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

Below is an excerpt of the result log file for the sample CCDL.

User_Manual_CCDL.doc Page 10 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

2 CCDL Language
The CCDL syntax description will use the following notation:

• Expressions like <something> mean that this token will be replaced by a
concrete value when applying the syntax rule.

• Syntax elements enclosed in [<any number of tokens>] are optional and may
be omitted.

2.1 Case Sensitivity
All statements within a CCDL test procedure may be written in one of the following
upper-/lowercase combination:

• All uppercase
• All lowercase
• First character in uppercase, the rest in lowercase

The following statements are all equivalent:

 set HLSF1.FPPU to 300 [deg]

 SET Hlsf1.fppu TO 300 [deg]

 Set HLSF1.FPPU To 300 [deg]

It is recommended to write the statements in lowercase for better readability.

2.2 Comments
The CCDL supports C-style as well as C++-style comments. Comments may not be
nested.

Sample comments:

 // this is a C++ style comment

 /* this is a C style comment

 over several lines */

The CCDL editor within TOP provides easy comment/uncomment actions. You may
type Ctrl-/ (i.e. Ctrl-Shift-7 on a German keyboard) to comment or uncomment the
currently selected line. If there are multiple lines selected, this action will comment all
these lines. Invoking this action again will uncomment the selection again.

User_Manual_CCDL.doc Page 11 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

2.3 Structure of a CCDL Test Procedure
The CCDL test procedure consists of one block with initial conditions for the test and
an arbitrary number of test steps that contain the test procedure actions and
expected reactions. The following structure applies to CCDL test procedures:

CCD
<initial condition block>
<one or more test step blocks>
END OF CCD

The following shows an empty sample test procedure:

CCD

Initial Conditions:
{
}

Test Step 1:
{
}

END OF CCD

2.3.1 Initial Conditions
There must be exactly one initial conditions block at the beginning of the test
procedure. The initial conditions block may contain any number of CCDL statements.
Normally, the initial conditions block will be used to setup the test preconditions and
do other test preparations like starting the data logger or specifying monitoring
functions that shall run for the whole duration of the test procedure. The following
syntax applies to initial conditions:

Initial Conditions:
{
<any number of CCDL statements>
}

The following is a sample initial conditions block:

Initial Conditions:
{
 E.datalogger(START) HLSV
 wait 2 [s]
}

User_Manual_CCDL.doc Page 12 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

2.3.2 Test Steps
The rest of the CCDL test procedure consists of test step blocks that may contain
arbitrary CCDL statements. The following syntax applies to test steps:

Test Step <number> [, Timeout <duration>]:
{
<any number of CCDL statements>
}

The test step numbers within the test procedure must be sequential (i.e. the first test
step starts with “1” and all following test steps numbers must be incremented by
one). The timeout specification is optional. If no timeout is given, the test step may
run infinitely (depending on the contained commands). The following is a sample test
step block:

Test Step 1, Timeout 99 [s]:
{
 set HLSF1.FPPU to 300 [deg]

 wait 5 [s]
}

2.3.3 Timeouts
As a test step option, you may specify a timeout for each test step. If the test step is
not finished until the timeout time has elapsed, the whole test run will be aborted and
an error message will be logged within the CCDL result.

2.3.4 Modules
Modules are the functional units of either the UUT or the system environment. Every
parameter and every user function are related to a module. The first part of every
parameter or user function name is the module name followed by a dot and the name
of the parameter or user function itself. The following gives an example of a
parameter name and a user function:

 set HLSS1.SLAT_FPPU_RH to 300 [deg]
 HLSVE.datalogger(START)

The module HLSS1 is part of the UUT functional units whereas the module HLSVE is
part of the test environment.
The list of available modules is shown within the Functions and Macros view of
TOP (in the procedure edit perspective).

User_Manual_CCDL.doc Page 13 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

2.3.5 Parameters
The parameters are the stimulation and measurement interface for the UUT and the
test environment. Parameter values may be stimulated and expected values may be
specified using CCDL statements. The parameter name consists of the module name
where the respective parameter is related to and the parameter name itself. Both
name components are separated by a dot.

 set HLSS1.SLAT_FPPU_RH to 300 [deg]

All available parameters are shown within the Parameter Browser view of TOP.
They are also available within the auto-completion popup menu of the TOP editor
itself. Please refer to the TOP user manual for details.

2.3.6 Multi Parameter Specification
The CCDL provides means to specify multiple parameters at once within a
statement. Such a multi parameter statement will be handled in the same way, as if
the statement would have been written for each parameter.

 set HLSS[1;2].SLAT_FPPU_[R;L]H to 300 [deg]

The following statements are identical to the above statement (with respect to
functional aspects):

 set HLSS1.SLAT_FPPU_RH to 300 [deg]
 set HLSS1.SLAT_FPPU_LH to 300 [deg]
 set HLSS2.SLAT_FPPU_RH to 300 [deg]
 set HLSS2.SLAT_FPPU_LH to 300 [deg]

User_Manual_CCDL.doc Page 14 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

2.3.7 Constants
Constants may be used within the CCDL test procedure at every location where a
number may be specified. The constant will simply be replaced by the corresponding
value during compilation of the test procedure.
The available constants are visible within the Functions and Macros view of TOP.
They are also available within the auto-completion popup menu of the TOP editor
itself. Please refer to the TOP user manual for details.

2.3.8 Units
The CCDL language supports units for calculation and assignment of values to
parameters. Units are written in “[]” after a value specification like follows:

 set HLSS1.SLAT_FPPU_RH to 300 [deg]

Each parameter may have a unit assigned. In this case, any assignment of values
will be converted automatically into the unit of the parameter. If the unit given with the
assigned value and the parameter unit does not match, the compiler will try to
convert the value into the unit of the parameter. If this is not possible, the compiler
will issue an error message.
The following three value assignments will set the same value (20 [deg]) for the given
parameter:

 set HLSS1.SLAT_FPPU_RH to 20
 set HLSS1.SLAT_FPPU_RH to 20 [deg]
 set HLSS1.SLAT_FPPU_RH to 0.3 [rad]

2.3.9 Expressions
Expressions may be used within statements of the CCDL language. The simplest
expression is just a number or a parameter. The following section lists the
arithmetical and boolean operators that are available to form expressions.

2.3.9.1 Arithmetical Expressions
The following arithmetical expressions are available:

expression1 + expression2 => Addition
expression1 - expression2 => Subtraction
expression1 * expression2 => Multiplication
expression1 / expression2 => Division
expression1 % expression2 => Modulo operator
expression1 ^ expression2 => expression1 power of expression2

abs (expression) => Absolute value
sin (expression) => Sine
cos (expression) => Cosine
tan (expression) => Tangens
asin (expression) => Arcussinus
acos (expression) => Arcuscosinus
atan (expression) => Arcustangens
sinh (expression) => Sinushyperbolikus

User_Manual_CCDL.doc Page 15 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

cosh (expression) => Cosinushyperbolikus
tanh (expression) => Tangenshyperbolikus
exp (expression) => Exponentialfunktion
log (expression) => Logarithmus
log10 (expression) => Logarithmus zur Basis 10
sqrt (expression) => Square root

The normal arithmetic rules for operator precedence and usage of parentheses
apply. Multi selection of parameter names are not allowed within arithmetic
expressions.

2.3.9.2 Logical Expressions
Logical expressions are all expressions that resolve to a boolean value. They either
have the value true (1) or false (0).
The following logical operators are available within CCDL:

expression1 < expression2 true, if expression1 less than expression2
expression1 <= expression2 true, if expression1 less or equal than expression2
expression1 = expression2 true, if expression1 equal to expression2
expression1 >= expression2 true, if expression1 greater or equal than

expression2
expression1 > expression2 true, if expression1 greater than expression2
expression1 and expression2 true, if expression1 and expression2 are true
expression1 or expression2 true, if expression1 or expression2 is true
 not expression1 true, if expression1 is false

expression1 between expression2 and expression3

true, if expression1 resolves to a value within the
range given by expression2 and expression3

The expressions may contain unit specifications if applicable. For the between
operator, only the expression2 and expression3 may contain unit specifications, if
expression1 is a parameter that has a unit assigned.
The following example illustrates the usage of logical expressions:

 HLSS1.SLAT_FPPU_RH <= 0.3 [rad]

The usage of the unit specification is correct, because the parameter
HLSS1.SLAT_FPPU_RH has the unit [deg], which may be converted into [rad].
The expression resolves to true as long as HLSS1.SLAT_FPPU_RH is less than or
equal to 0.3 [rad].
When HLSS1.SLAT_FPPU_RH is greater than this value (e.g. 0.31 [rad]), the
expression will resolve to false.

2.3.9.3 Multi Parameter Specification in Logical Expressions
Within logical expressions, it is possible to specify multi parameter names. The
resulting expression will be build by filling the logical expression with each of the

User_Manual_CCDL.doc Page 16 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

parameters from the resulting multi parameter list and combining them with the
logical and operator.
The following example will be expanded internally to the expression shown below:

 HLSS[1;2].SLAT_FPPU_RH <= 30

This will result in the following expression:

 (HLSS1.SLAT_FPPU_RH <= 30) and (HLSS2.SLAT_FPPU_RH <= 30)

2.3.10 Variables
The CCDL language also provides variables within the test procedure. They may be
declared and initialized like follows:

 set variable sample_var to 300 [deg]

Such variables may be used within any logical or arithmetic expression after the
position of the variable declaration within the test procedure like follows:

 when HLSS1.SLAT_FPPU_RH > sample_var:
 expect …

 expect sample_var < 200

If already declared and used variables shall be updated with a new value, you need
to use the same syntax as for the declaration/initialization:

 set variable sample_var to 299 [deg]

2.3.11 Macros
The CCDL language also provides macros for easy reuse of code fragments. If you
write a piece of CCDL code which you want to reuse or share with other team
members, you may create a macro and insert this code fragment into the macro
body. Macros may have parameters in order to conditionally show or hide fragments
of the macro code and to propagate values into the generated macro code when the
macro gets expanded.
The list of available macros will be shown within the Functions and Macros view of
TOP. The source for the macros list is the macros.ccd file within the configuration
directory of the CCDL compiler (Refer to chapter 4).

User_Manual_CCDL.doc Page 17 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

Macro headers may be inserted into the test procedure code using drag&drop. If the
list of macros is empty, at least one macro need to be inserted into the macros.ccd
configuration file. You may also edit the macros.ccd file directly using any external
editor.

2.3.11.1 Editing Macros
Double-clicking on a macro opens the macro editor. Each macro definition is
enclosed using the #macro and #end macro keywords like shown below.
You may create a new macro either by adding the new macro definition before the
currently displayed macro within the macro editor or by copying, pasting and
renaming any existing macro within the macro editor.

User_Manual_CCDL.doc Page 18 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

A macro definition consists of the following parts:
- Macro name
- Parameter list with numbered entries starting from $0 up to $9 (this is the

maximum number of parameters). Each of these parameters needs to have
an identifier value assigned.

- Additional entries within the parameter list that will be used as defines
within the macro body

- The macro body containing the CCDL code of the macro

Within the macro body, code fragments may be conditionally enabled using the
#ifdef and #endif keywords. If the respective define is provided within the parameter
list, the corresponding code fragment will be used when expanding the macro.

Pressing the Save button will save the new macro definition or any changes of
existing macros to the macros file.

The Refresh button will trigger reading the macros file again and update the list
of macros displayed within the Functions and Macros view.

2.3.11.2 Expanding Macros
Macro headers may be inserted into the test procedure code using drag&drop from
the Functions and Macros view. This will only add the header of the macro
beginning with the macro keyword (this indicates that the macro has not been
expanded yet).

When pressing the Expand Macros button within the toolbar, all macros within
the current test procedure will be expanded (You need to save the procedure before
starting the macro expansion).

The expanded procedure will contain the macro code with the macro parameters
(e.g. $1) replaced by their respective parameter values. Also any defines specified
within the parameter list will control if parts of the macro code enclosed with #ifdef
and #endif will be expanded.

User_Manual_CCDL.doc Page 19 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

The expanded macro definition will be enclosed with the #macro and #end macro
keywords. Another expansion of already expanded macros will replace the current
macro body (within the test procedure) with the latest contents of the macro
definition.

User_Manual_CCDL.doc Page 20 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

2.4 CCDL Statements
2.4.1 Value Manipulation Statements
All manipulator statements will manipulate the value of a parameter until the
parameter is released again using the release statement. In case of using the offset
option, the manipulator statements will continuously read the original value of the
parameter, add the given offset and write this manipulated value to the parameter.

2.4.1.1 set
Syntax:

set <identifier> to [offset] <expression> [<unit>]
[for <expression> <time unit>]
[until <logical expression>]

Short form: <identifier> := <expression> [<unit>]
This statement sets the parameter with the given identifier (or list of parameters in
case of a multi parameter identifier) to the given value. The following options are
available for this statement:

• The for option manipulates the parameter value for the specified duration
time.

• The until option manipulates the parameter value until the specified logical
expression is true.

The offset option manipulates the parameter continuously with the given offset until
the parameter is released again using the release statement.

2.4.1.2 hold/freeze
Syntax:

(hold | freeze) <identifier>
[for <expression> <time unit>]
[until <logical expression>]

This statement freezes the parameter with the given identifier (or list of parameters in
case of a multi parameter identifier) to the current value. Both statements
(hold/freeze) are semantically equivalent. The following options are available for this
statement:

• The for option freezes the value for the specified duration time.
• The until option freezes the value until the specified logical expression is true.

The hold/freeze statement freezes the parameter until the parameter is released
again using the release statement.

User_Manual_CCDL.doc Page 21 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

2.4.1.3 ramp
Syntax:

ramp <identifier> with rate <constant> [<unit> “/” <time unit>]
 [from <constant> [<unit>]]
 [to [offset] <constant> [<unit>]]

[for <expression> <time unit>]
[until < logical expression >]

This statement manipulates the parameter with the given identifier (or list of
parameters in case of a multi parameter identifier) with a series of values that
represent a ramp function with the given ramp rate. The following options are
available for this statement:

• The from option creates a ramp starting at the given value (regardless of the
current parameter value; this may cause a value jump from the current value
to the value given with the from option).

• The to option creates a ramp to the given value. The ramp function will
terminate immediately, if the current parameter already has this value.

• The for option manipulates the parameter for the specified duration time.
• The until option manipulates the parameter until the specified logical

expression is true.
The offset option manipulates the parameter continuously with the given offset until
the parameter is released again using the release statement.

2.4.1.4 increment/decrement
Syntax:

(increment | decrement) <identifier>
by <constant> [<unit>] each <constant> [<time unit>]

 [from <constant> [<unit>]]
[to [offset] <constant> [<unit>]

| for <constant> <time unit>
| until < logical expression >]

This statement increments or decrements the parameter with the given identifier (or
list of parameters in case of a multi parameter identifier). The following options are
available for this statement:

• The from option increments/decrements starting at the given value
(regardless of the current parameter value; this may cause a value jump from
the current value to the value given with the from option).

User_Manual_CCDL.doc Page 22 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

• The to option increments/decrements to the given value. The statement will
terminate immediately, if the current parameter already has this value.

• The for option increments/decrements the parameter for the specified duration
time.

• The until option increments/decrements the parameter until the specified
logical expression is true.

The offset option manipulates the parameter continuously with the given offset until
the parameter is released again using the release statement.

2.4.1.5 release
Syntax: release <identifier> [with rate <constant> [<unit> „/“ <time unit>]]

This statement releases the parameter with the given identifier (or list of parameters
in case of a multi parameter identifier) to the original value.
The option with rate is optional and you may specify a rate value that shall be used
to release the parameter value stepwise until the original value will be reached.

User_Manual_CCDL.doc Page 23 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

2.4.2 Expected Reaction Statements

2.4.2.1 expect
Syntax: expect <logical expression>

Each expected reaction will be evaluated during the test execution. The result may
either be passed or failed and it will be reported within the evaluation log file. The
overall result of the test run is the sum of the individual expected reaction statement
results. Any failed expected reaction will cause the overall test run result to be failed
too.

2.4.2.2 check transitions of
Syntax: check transitions of <identifier> = <expression>

The value changes of the given identifier will be checked. If the number of value
changes is the same as stated within the given expression, the statement result will
be passed otherwise failed. The number of changes will be written into the evaluation
result log.
Value changes may be checked during the whole test run as well as for the duration
of test steps. The position of the “check transitions of” statement within the test
procedure defines the time range for the check:

• If the statement is placed into the initial conditions block, the check will last for
the rest of the whole test run.

• If the statement is placed into any test step block, the check will last for the
rest of the duration of the respective test step.

2.4.2.3 monitor
Syntax: monitor <logical expression>

This statement checks whether the given logical expression is valid within a certain
time range. Logical expressions may be monitored during the whole test run as well
as for the duration of test steps. The position of the “monitoring” statement within the
test procedure defines the time range for the check:

• If the statement is placed into the initial conditions block, the check will last for
the rest of the whole test run.

• If the statement is placed into any test step block, the check will last for the
rest of the duration of the respective test step.

User_Manual_CCDL.doc Page 24 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

2.4.3 Control Flow Statements

2.4.3.1 wait

Syntax: wait <constant> <time unit>

This statement waits for the specified time before executing the next statement within
the test procedure.

2.4.3.2 wait until

Syntax: wait until <logical expression> <time unit>

This statement waits until the given logical expression is true before executing the
next statement within the test procedure.

2.4.3.3 now
Syntax: now: <user function call>

This statement invokes the given user function within a special mode: The execution
of the test procedure statements will continue regardless of the user function
behaviour, i.e. if the user function will run for more than one execution cycle, the next
statement(s) within the test procedure will be executed in parallel.
This is necessary for user functions that shall execute in parallel to the normal
procedure execution control flow.

User_Manual_CCDL.doc Page 25 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

2.4.4 Trigger Statements
Trigger statements provide event based control of the test procedure execution either
for stimulation or expected reaction evaluation. Each trigger block will be processed
automatically upon activation of the trigger condition. This enables in-parallel
execution of expected reaction checks during the normal test procedure control flow.
Each trigger block contains at least one statement. Multiple statements need to be
enclosed into curly brackets.

2.4.4.1 Trigger Variables

Trigger conditions may be stored within trigger variables for further usage.

Syntax: set trigger <identifier> when <logical expression>

[& <constant> <time unit>]

These trigger variables may be used within expressions following the line of the
trigger definition.

2.4.4.2 at/when/after
Syntax: (at | when | after) <logical expression> : <trigger block>

This statement causes all statements contained within the trigger block to be
executed once in parallel as soon as the logical expression is true.
The at, when and after statements are semantically equivalent.

2.4.4.3 within
Syntax: within <logical expression 1> [& <constant> <time unit>]

.. < logical expression 2> [& <constant> <time unit>] :
<trigger block>

This statement causes all statements contained within the trigger block to be
executed in parallel to the normal test procedure control flow for a certain time range.
The start of the time range is defined by the first logical expression: As soon as this
expression is true, the statements of the trigger block will be executed for each time
frame until the second logical expression is true.
The optional & clause may be used to specify a time offset for the start and/or end of
the time range. In such a case, the time range will start when the logical expression
is true and the offset time has elapsed.

User_Manual_CCDL.doc Page 26 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

The expect statement has a special semantic when used within a trigger block of the
within statement: The results of all (repeated) calls to expect statements during the
invocation time range of the trigger block will be evaluated and summarized. If at
least one of the (repeated) calls to an expect statement within the time range is true,
the expect statement will be marked as passed within the evaluation result log.

2.4.4.4 during
Syntax: during <logical expression 1> [& <constant> <time unit>]

.. <logical expression 2> [& <constant> <time unit>] :
<trigger block>

This statement behaves mostly the same like the within statement, the difference is
the handling of expect statements within the trigger block.
The during statement causes all statements contained within the trigger block to be
executed in parallel to the normal test procedure control flow for a certain time range.
The start of the time range is defined by the first logical expression: As soon as this
expression is true, the statements of the trigger block will be executed for each time
frame until the second logical expression is true.
The optional & clause may be used to specify a time offset for the start and/or end of
the time range. In such a case, the time range will start when the logical expression
is true and the offset time has elapsed.
The expect statement has a special semantic when used within a trigger block of the
during statement: The results of all (repeated) calls to expect statements during the
invocation time range of the trigger block will be evaluated and summarized. Only If
all of the (repeated) calls to an expect statement within the time range are true, the
expect statement will be marked as passed within the evaluation result log.

User_Manual_CCDL.doc Page 27 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

2.4.5 Control Functions for Pins
The CCDL language supports operations like short circuit or disconnect/reconnect on
hardware connection pins of the UUT (i.e. the cable hardware which connects the
UUT to the test bench). The test bench need to provide the means to electronically
switch the cabling (e.g. with a relay matrix). The CCDL statements operate on pins
which are provided within the configuration files.

2.4.5.1 short circuit
Syntax: short circuit pin <pin name 1> and <pin name 2>

[for <constant> <time unit>]

This statement connects both pins in order to create a short circuit between the pins
of the physical I/O interface of the UUT. You need to release the short circuit later
within your test procedure using the release short circuit statement.
You may optionally specify a duration time for the short circuit. In this case, both pins
will be released automatically after the specified time.

2.4.5.2 release short circuit
Syntax: release short circuit pin <pin name 1> and <pin name 2>

This statement disconnects both pins in order to release a short circuit between the
previously connected pins of the physical I/O interface of the UUT.

2.4.5.3 disconnect
Syntax: disconnect pin <pin name 1> [, <pin name 2>]

[for <constant> <time unit>]

This statement disconnects the given list of pins of the physical I/O interface of the
UUT.
You may optionally specify a duration time for the disconnect operation. In this case,
all pins will be reconnected automatically after the specified time.

2.4.5.4 reconnect
Syntax: reconnect pin <pin name 1> [, <pin name 2>]

[for <constant> <time unit>]

This statement disconnects both pins in order to release a short circuit between the
previously connected pins of the physical I/O interface of the UUT.
You may optionally specify a duration time for the reconnect operation. In this case,
all pins will be disconnected automatically after the specified time.

User_Manual_CCDL.doc Page 28 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

2.4.6 Other Statements

2.4.6.1 print
Syntax: print <identifier>

Prints the value of the given parameter into the log file.

User_Manual_CCDL.doc Page 29 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

2.4.7 User Functions
Syntax: <user function identifier> ([<argument list>])

Besides the built-in statements, any of the available user functions may be used
within CCDL expressions. The invocation of a user function is declared by writing the
function identifier followed by a list of arguments to the user function (this list may be
empty). An example of a call to a user function is shown below:

 HLSENV.selectFlapsLever(Position=1, duration=2[sec])
 HLSENV.selectFlapsLever(1, 2[sec])

HLSVE.datalogger(1)
 HLSVE.datalogger(START)

The above two sets of calls to user functions are equivalent, you may use the
parameter name to provide a value or you may just write the argument list in the
correct order like within the user functions definition.

User_Manual_CCDL.doc Page 30 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

3 CCDL User Functions
The CCDL language provides user functions in order to encapsulate test bench
specific or complicated functionality into easy-to-handle CCDL language extensions.
Each user function consists of a declaration within the configuration files of TOP and
the corresponding implementation that needs to be compiled into the user function
library.

3.1 Adding/Editing a User Function Declaration
The first step in adding a user function is to add the function declaration into the
configuration files of TOP. Within the Functions and Macros view, select any user
function and click into the text window that will appear below the user functions list:

Add the declaration of the new user function. The argument list of the user function
may contain arguments according to the following specification:

• Name of the argument
• Optional assignment of a default value
• Optionally followed by a unit specification

Press the Save button to save the user function declaration to the local configuration
file. You need to check-in the files into the SVN server in order to propagate the new
declaration to other users. Refer to the TOP user manual for details.

User_Manual_CCDL.doc Page 31 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

3.2 Implementing a User Function
In order to implement a user function, you need to install the following RPM (with the
newest available version number):

ccd-ccdext_userfunctions_source-1.0-1.i386.rpm

This will install the (initially almost empty) source files for the user function library that
will be linked to the test runner binary. The package also includes a build
environment for development and test of the user functions. After installation of the
RPM, you need to copy the following directory somewhere into your private folder
structure:

cp –R /usr/share/doc/ccd-ccdext_userfunctions_source-1.0 ~

This directory contains the following sub folders:

The UserFunctions.c file contains the source code for the implementation of the
user function and the UserFunctions.h file contains the necessary declarations
for the user function. As an example, we will have a look into the implementation of
the tdl_setDCPower function that is already implemented.

User_Manual_CCDL.doc Page 32 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

The sub directory tests contains a sample CCDL procedure. This directory may
contain any number of subdirectories with CCDL procedure files. All of them will be
treated as separate tests and will be compiled and linked when invoking the build and
test process.

Please note: In order to test for correct compiling and linking of your user function,
you need to have at least one test with a CCDL procedure that really uses your user
function.

3.2.1 Source File Contents
The source file (.c) contains the implementation of the user function.

The first three arguments are mandatory and the type of the third parameter is built
from the name of the user function itself:

Name of user function xxx

Type name of third argument xxx_t

User_Manual_CCDL.doc Page 33 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

3.2.2 Header File Contents
The header file (.h) contains the C-style declaration of the user function. Each user
function needs to be declared as prototype according to the implementation:

Additionally, there are the following declarations necessary:

• the type of the third argument needs to be declared
• a #define needs to be added in order to tell the system that this user function

is ready to be used

If the #define is missing, the compilation process of the test runner binary will fail with
an error message stating that the user function is not implemented (Other error
messages may follow, because some compilers unfortunately doesn’t stop at the
#error statement):

3.2.3 Compiling the User Function Library
When you have finished implementing the user function, you may compile the user
function library. This is done by invoking the make all command (using make only
lists other available options):

User_Manual_CCDL.doc Page 34 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

There will be much more messages (indicated by the dots), but the most important
message is the final +++ Finished tests message. If this message does not appear,
please check the messages starting from the bottom up to the top to find the cause of
the problem.
The make command will also build an executable with the same compiler settings
and libraries linked as when compiling and linking done by the test execution system.
If make succeeds, you may install the library on the test execution system.

3.2.4 Installing the Newly Built Library
If everything compiles ok, you can install the newly built library on the test execution
system. You need to adapt the Makefile in order to install the user function library
into any suitable location within the file system. Change the path setting at the
beginning of the Makefile like shown below:

User_Manual_CCDL.doc Page 35 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

Please note: The path settings shown above are only examples and should be
customized.

Invoking the make install command will do the following actions:

• (re)build the user functions library
• copy the newly built library and header file into the specified target installation

directory (TARGET_INSTALL_PATH).

There may be more messages, but the most important message is the final +++
Library installed successfully message. If this message does not appear, please
check the messages starting from the bottom up to the top to find the cause of the
problem.

3.2.5 Activating the User Function Library
The user function library needs to be added into the compilation and linking process
of the test execution system (e.g. the TRM system). A pre-configured plugin makefile
for TRM will be generated and installed when running the make hook-into-trm
command:

19Buildmacros.addon.userfunctions.mk

If you don’t have root access rights, the installation process may be aborted when
copying the generated plug-in makefile like shown below:

User_Manual_CCDL.doc Page 36 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

In this case, another user with root access rights may copy the readily configured
plugin makefile manually into the following directory in order to add it to the TRM
build process:

/opt/trm/plugins

User_Manual_CCDL.doc Page 37 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

4 CCDL Configuration Directory
The CCDL compiler requires some configuration files, which will be installed into the
default location

/opt/razorcat/ccd/etc/config
during the CCDL installation (the default files contain sample data). The following
files are vital for proper operation of the CCDL compiler:

• ccd2c.conf (optional)
• constants.txt
• functions.txt
• macros.ccd
• modules.txt
• parameter.txt
• pins.txt
• units.txt

If you need to change these files (e.g. for an automatic synchronization with an SVN
server) without having root access rights, you may specify an alternate directory for
the CCDL configuration files and other options to the CCDL compiler within the
following file:
 /opt/trm/etc/ccdc-options.mk

You need to change the CCDC_FLAGS variable in order to specify options for the
CCDL compiler (e.g. changing the path for the configuration files using the –d
option):

User_Manual_CCDL.doc Page 38 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

CCDL User Manual
Date 22 December 2010
Status Released

5 Troubleshooting

5.1 #debug Statements
In case of any errors during the CCDL compilation process or when executing tests
on the test execution system, you may (temporarily) add the following debug
statements into the CCDL procedure (e.g. within the first line of the procedure text).
These statements will activate more debug messages that may help to find the
problem location.

• #debug compile enables debug messages concerning the compilation
process of the CCDL compiler.

• #debug interface enables debug messages concerning the test system
interface layer of the CCDL framework.

• #debug runtime enables debug messages concerning the runtime CCDL
framework.

These messages will be available within the default log of the test execution system
(e.g. within the Log Messages view of TOP).

User_Manual_CCDL.doc Page 39 of 39

Razorcat Development GmbH Witzlebenplatz 4 14057 Berlin Tel. +49 (0) 30-536 357-0 Fax +49 (0) 30-536 357–60
Geschäftsführer: Dipl.-Inform. Michael Wittner Amtsgericht Berlin-Charlottenburg HRB 65326 www.razorcat.com

	1 Introduction
	1 CCDL Sample
	1.1 Requirements of the Sample System
	1.2 Definition of Tests
	1.3 Initial Conditions of the Test
	1.4 Test Steps
	1.5 Test Preparation
	1.6 Test Execution Result

	2 CCDL Language
	2.1 Case Sensitivity
	2.2 Comments
	2.3 Structure of a CCDL Test Procedure
	2.3.1 Initial Conditions
	2.3.2 Test Steps
	2.3.3 Timeouts
	2.3.4 Modules
	2.3.5 Parameters
	2.3.6 Multi Parameter Specification
	2.3.7 Constants
	2.3.8 Units
	2.3.9 Expressions
	2.3.9.1 Arithmetical Expressions
	2.3.9.2 Logical Expressions
	2.3.9.3 Multi Parameter Specification in Logical Expressions

	2.3.10 Variables
	2.3.11 Macros
	2.3.11.1 Editing Macros
	2.3.11.2 Expanding Macros

	2.4 CCDL Statements
	2.4.1 Value Manipulation Statements
	2.4.1.1 set
	2.4.1.2 hold/freeze
	2.4.1.3 ramp
	2.4.1.4 increment/decrement
	2.4.1.5 release

	2.4.2 Expected Reaction Statements
	2.4.2.1 expect
	2.4.2.2 check transitions of
	2.4.2.3 monitor

	2.4.3 Control Flow Statements
	2.4.3.1 wait
	2.4.3.2 wait until
	2.4.3.3 now

	2.4.4 Trigger Statements
	2.4.4.1 Trigger Variables
	2.4.4.2 at/when/after
	2.4.4.3 within
	2.4.4.4 during

	2.4.5 Control Functions for Pins
	2.4.5.1 short circuit
	2.4.5.2 release short circuit
	2.4.5.3 disconnect
	2.4.5.4 reconnect

	2.4.6 Other Statements
	2.4.6.1 print

	2.4.7 User Functions

	3 CCDL User Functions
	3.1 Adding/Editing a User Function Declaration
	3.2 Implementing a User Function
	3.2.1 Source File Contents
	3.2.2 Header File Contents
	3.2.3 Compiling the User Function Library
	3.2.4 Installing the Newly Built Library
	3.2.5 Activating the User Function Library

	4 CCDL Configuration Directory
	5 Troubleshooting
	5.1 #debug Statements

