Title:

Proposed concrete syntax for TDL based on 3GPP PRD13
Date:

05.09.2013
Author:
Anthony Wiles, ETSI CTI (as contributor to STF454)
1
Introduction
This document proposes a concrete syntax for TDL representing the 3GPP Test Case prose specification, also known as test descriptions, defined in 3GPP RAN5 PRD 13 V7.0 (2010-03). For convenience, in this document this represention is referred to as TDL even though it covers only a sub-set of the TDL Meta Model (MM).
The intention is to bring a similar level of syntactic rigorousness to PRD13 that can be found in TPLan while retaining and strengthening the practical aspect of the current 3GPP approach.
The EBNF grammar defined in clause 4 of this present document maps directly to the tabular presentation format defined in PRD13 and could offer a way to ensure and/or check the syntactical correctness (consistency) of test descriptions produced as tables. If linked to a TDL tool, further processing, such as basic code generation may be possible (FFS).

STF 454 has reviewed this proposal and confirms that a mapping of this concrete syntax to the current TDL MM is indeed feasible. A partial mapping is shown in this document. However, more work needs to be done to show the complete mapping.
2
TDL tables
The tabular format of this TDL specification comprises one table for the definitions (PICS, messages and user defined words) followed by one or more test description tables.
 FFS: are additional fields needed in this table, e.g., references to configurations, TPs, base standard or other data?
The definitions table (currently not a table in PRD13) has the following format:

	spec_header

	PICS Definitions

	:

	PICS_list

	:

	Message Defintions

	:

	MSG_list

	:

	Action Definitions

	:

	ACT_list

	:

	notes

Mapping to the TDL meta-model

M1) PICS definitions (create a PICS data type and put PICS definitions as data instances of this data type

M2) Message definitions (create one or more message data types and put message definitions as data instances of these message data types

M3) Action definitions (actions are packageable elements
A TDL test description table consists of a header, column headings and one or more sequentially numbered steps followed by an optional entry for notes. It is identical to the table format of PRD13 except that the table header is an integral part of the table and not a clause number.

The test description table has the following format:
	table_header

	St
	Procedure
	Message Sequence
	TP
	Verdict

	
	
	U - S
	Message
	
	

	:
	:
	:
	:
	:
	:

	:
	:
	:
	:
	:
	:

	step_ num
	procedure
	direction
	msg_sequence
	TP_ref
	verdict

	:
	:
	:
	:
	:
	:

	:
	:
	:
	:
	:
	:

	Notes

2.1
Relation between TDL and PRD13
Step num (PRD13 5.7.1)

· Steps are denoted by step numbering 1, 2, 3 ... n. Associated TDL keyword: step.

· Inserted steps, e.g., due to maintenance are denoted by the previous step number followed by an upper case letter. There seems to be confusion as to whether this is of the form: 1A, 1AA, 1AAA ... or 1A, 1B, 1C
FFS: Propose the second, cycling through 1AA, 1AB, 1AC when more than 26 insertions.
· Omitted step numbers (e.g., on comments and other exceptions) are denoted by dash (‘-‘).
Mapping to the TDL meta-model

M4) (Step numbers are not explicit elements in the MM, but annotations could be used for it, e.g. an annotation “step no” assigned to a compound element that expresses a test step. A numbering scheme needs to be developed that can be implemented in concrete syntax.

Procedure (PRD13 5.7.1)

· Specific actions performed by the SS or UE that can be identified in PRD13 are indicated by the TDL keywords,followed by an optional colon:
· send or sends

· transmit or transmits

· receive or receives

· check or checks
· cause or causes

· set or sets

· start or starts

· stop or stops
· clear or clears

· user defined actions (not explicit in PRD13)
· The body of all actions is described using freetext.

Direction (PRD13 5.7.1)

Indicated by <- or ->. Currently only between SS and UU but could be made more generic to allow other entities. For example, by writing [A -> B] or [A <-B].
Mapping to the TDL meta-model

M5) (More study needed on how to express configurations
Message (PRD13 5.7.1)

· Message name followed by optional parameter list, possibly with assigned values.
· FFS: should TDL force underscore or allow spaces in message names?
Mapping to the TDL meta-model

M6) Message (MM messages (data type)
M7) (This is an issue of the parser used for the concrete syntax to recognize words. The MM has no restrictions.
TP Reference (PRD13 5.7.1)

· List of numbers.
· FFS: Need a ref in the definitions, not just a TP line ref?
Mapping to the TDL meta-model

M8) (Needs to be elaborated in the concrete syntax.
Verdict (PRD13 5.7.1)

· P, F, I or dash.
· FFS: Consider Pass, Fail etc?
Mapping to the TDL meta-model

M9) (Needs to be handled in concrete syntax.
2.2
Behavioural elements
Invoked steps in parallel (PRD13 5.7.2)
· Steps processed in parallel to the main sequence of steps. Defined in another TDL table. In TTCN-3 would probably run on a PTC. Associated TDL keyword: parallel (was exception). Has no step number.
Mapping to the TDL meta-model

M10) (parallel execution supported in the MM

Conditional steps (PRD13 5.7.3)
· Equivalent to IF ... THEN ... ELSE construct. The branches are denoted by a, b, c ... with sequence numbers 1, 2, 3 ... , for example: 6a1, 6a2, 6a3 ...i, 6b1, 6b2, 6b3 ... j, 6c1, 6c2, 6c3 ... k etc. Assumed at least one TRUE path through the entire set of choices. Associated TDL keywords: if, then, else (was exception).
· FFS: propose (to 3GPP) that the IF and ELSE lines have no step number (as shown below):
	// PRD13 form
4: procedure
5: procedure
6a1: IF cond1 THEN procedure

6a2: procedure

6a3: procedure
6b1: ELSE IF cond2 THEN procedure

6b2: procedure

6b3: procedure
6c1: ELSE IF cond 3 THEN procedure

6c2: procedure

6c3: procedure
7: procedure
8: procedure

	// TD Prose form (proposed)
4: procedure
5: procedure
- IF cond1 THEN

6a1: procedure

6a2: procedure

6a3: procedure
- ELSE IF cond2 THEN

6b1: procedure

6b2: procedure

6b3: procedure
- ELSE IF cond 3 THEN

6c1: procedure

6c2: procedure

6c3: procedure
7: procedure
8: procedure

Mapping to the TDL meta-model

M11) (conditional execution supported in the MM

Repeated steps (PRD 5.7.4)
· Repetition of steps strictly within one branch. Has no step number. Associated TDL keyword: repeat (was exception).
Mapping to the TDL meta-model

M12) (repeat execution supported in the MM

Included steps (PRD13 5.7.6)
· Insertion of a referenced set of sequential steps from another table (called generic procedures in PRD13). Step numbers correspond to to number of steps ‘inserted’. Associated TDL keyword: include.
Mapping to the TDL meta-model

M13) (In TDL MM only test description tables can be invoked, but no single steps of a table.
Invoked tables in sequence (Not in PRD13)
· Behaviour invoked as a subroutine. Execution diverted from main flow and returns to point of call. Defined an another TDL table. Associated TDL keyword: call.
Mapping to the TDL meta-model

M14) (parallel execution supported in the MM

2.2
Miscellaneous elements
Using PICS values (PRD13 5.7.5)
· Treated as global values of type Boolean (TRUE / FALSE)
· FFS: consider other values, e.g., Release#?
Comments (PRD13 5.7.1)

· Informative comments that can appear at the end of the description of an individual procedure,or in a separate procedure ‘box’ (in which case the comment is not given a step number). Alternatively, a global comment(s) can be given at the foot of the table. Associated TDL keyword: comment or note.
Mapping to the TDL meta-model

M15) (comments supported in the MM

3
Syntactic Rules
This clause defines the TDL grammar as a set of EBNF (Extended Backus-Nauer Form) productions. This can be used either as a reference or as input to parser generator tools.
Table 1 defines the syntactic conventions that should be used when reading the TDL EBNF.

Table 1: The syntactic metanotation

	::=
	is defined to be

	abc
	the non-terminal symbol abc

	abc xyz
	abc followed by xyz

	abc | xyz
	alternative (abc or xyz)

	[abc]
	0 or 1 instances of abc

	{abc}
	1 or more instances of abc

	[{abc}]
	0 or more instances of abc

	<n,m>
	length restriction in range n to m

	'...'
	denotes a regular expression

	(...)
	denotes a textual grouping

	"abc"

	the terminal symbol abc

	 ;
	end of an EBNF production

References in clause3 of this document of the form // PRD13 5.7 show the link between the TC Prose grammar and 3GPP PRD 13 v7.0
4
TDL EBNF Productions
// ---
// EBNF grammar for 3GPP PRD 13 v7.0
// Version: 1.0
// Date: 24.05.2013
// Author: Anthony Wiles, ETSI CTI
// ---
// Headers and defintions
TDL_spec
::=
spec_header
[{PICS_defs}]

[{MSG_defs}]
[{USR_defs}]
{table};
spec_header
::=
KWD_title id;
PICS_defs
::=
KWD_PICS_def PICS_list;

// PRD13 5.7.5
MSG_defs
::=
KWD_MSG_def MSG_list;

// PRD13 5.7.8
USR_defs
::=
KWD_USR_def USR_list;
PICS_list
::=
id [{SEPARATOR id}];
MSG_list
::=
id [par_list] [{SEPARATOR id [par_list]}];
USR_list
::=
id [{SEPARATOR id}];
table

::=
table_header {step} {note} end_table;
table_header::=
table_num table_type;
table_num
::=
KWD_table dotted_num;
table_type
::=
(KWD_main | KWD_parallel) KWD_behaviour;
end_table
::=
KWD_end KWD_table;

// Step
step

::=
KWD_step step_num L_BRACE

// Try to avoid the use of braces
procedure
msg_sequence

TP_ref

verdict

R_BRACE;
step_num
::=
(number [LC_char number] UC_char) | DASH;

// STATIC SEMANTICS 1: The grammar does not take into account the context in which the numbering occurs. An additional pass must be made in order to ensure correct usage according to clause 2 of this document.

// Procedure
procedure
::=
[entity_id] action [COLON] freetext {note};

action
::=
(cause

| call

| check
| clear

| condition

// PRD13 5.7.3
| include

// PRD13 5.7.6 & 5.7.7
| parallel

// PRD13 5.7.2
| repeat

// PRD13 5.7.4
| send

// PRD13 5.7.4
| set
| start

| stop

| user-word)

cause

::=
KWD_cause;
call

::=
KWD_call;
check
::=
KWD_check {number};
clear

::=
KWD_clear;

condition
::=
KWD_condition;
include
::=
KWD_include table_num step_range;

parallel
::=
KWD_parallel table_num;
repeat
::=
KWD_repeat step_range;
send

::=
KWD_send;

set

::=
KWD_set;
send

::=
KWD_start;

set

::=
KWD_stop;

user_word
::=
id;
// STATIC SEMANTICS 2: user word id must be defined in USR_list.

step_range
::=
step_num KWD_to step_num

entity_id
::=
KWD_SS | KWD_UE;

note

::=
KWD_note {number} [COLON] freetext;

// Message sequence
msg_sequence::=
KWD_seq [COLON] direction message {direction message}
direction
::=
[L_BRACKET entity_id] (“<--“ | “-->”) [R_BRACKET entity_id]

message
::=
(id [par_list]) | DASH;
// STATIC SEMANTICS 3: message id and par id must be defined in MSG_list.
// TP reference and verdict

TP_ref
::=
KWD_TP [COLON] (num_list | DASH);
verdict
::=
KWD_verdict [COLON] (“P” | “F” | “I” | DASH);
// STATIC SEMANTICS 4: ‘check’ should always have an associated verdict.
// Lists
par_list
::=
L_PAREN par_id [{SEPARATOR par_id} R_PARAM];
par_id
::=
id [EQUALS value)];

value

::=
number | id;
num_list
::=
number {SEPERATOR number};
// Keywords

// To be decided: all UC, all LC or initial letter UC. Or case insensitive?

// To be decided: add ‘s’ to action keywords (e.g., send and sends)?
// To be decided: add ‘s’ to definitions keywords (e.g., word and words)?

KWD_title
::=
"TDL" "Specification";
KWD_PICS_def::=
"PICS"
KWD_MSG_def::=
"Message";
KWD_USR_def::=
"Word";
KWD_action
::=
"Action";

KWD_behaviour::=
"Behaviour";

KWD_cause
::=
"Cause";
KWD_check
::=
"Check";
KWD_clear
::=
"Clear";

KWD_condition::=
"Condition";
KWD_include
::=
"Include";
KWD_main
::=
"Main";
KWD_note
::=
"Note";
KWD_parallel::=
"Parallel”;
KWD_send
::=
"Send";
KWD_set
::=
"Set";
KWD_seq
::=
"Seq";
KWD_start
::=
"Start";
KWD_stop
::=
"Stop";
KWD_step
::=
"Step";
KWD_SS
::=
"SS";
KWD_table
::=
"Table";
KWD_end
::=
"End";
KWD_to
::=
"To";
KWD_UE
::=
"UE";
// Delimiters, seperators etc.

COLON

::=
":";
DASH

::=
"-";

DOT

::=
".";
L_BRACKET
::=
"[";

R_BRACKET
::=
"]";

L_PAREN
::=
"(";

R_PAREN
::=
")";

SEPARATOR
::=
",";
EQUALS
::=
"=";

L_BRACE
::=
"{";

// Needed?
R_BRACE
::=
"}";

// Needed?
LT

::=
"<";

// Needed?
RT

::=
">";

// Needed?
F_SLASH
::=
"/";

// Needed?
U_SCORE
::=
"_";

// Needed?
// Identifiers, strings, numbers etc.
LC_char
::=
'[a-z]’;

UC_char
::=
'[A-Z]’;

char

::=
'[a-zA-Z]’;

id

::=
'[a-zA-Z0-9]’;

extended_id
::=
'[a-zA-Z0-9|._&%$*@%?></\#!-]+';

number
::=
'[0-9]’;
dotted_num
::=
number [{DOT number}];

freetext
::=
"'" *("'") "'";

// Anything in quotes!? Can we avoid the quotes?
5
Examples

Text format:

TDL specification An_example_TDL_specification
PICS PID1, PID2
PICS PID3

Message AMD_PDU(SN)
Message CM_SERVICE_REQUEST, AUTHENTICATION_REQUEST
Table 1.2.3.4 Main Behaviour
Step 1
SS sends *** free text description ***

Note 1: textual comment 1

Note 2: textual comment 2

SEQ:
<-- AMD_PDU (SN=0)

<-- AMD_PDU (SN=1)

<-- AMD_PDU (SN=2)

<-- AMD_PDU (SN=3)

TP:

-

VERDICT:
-
Step 2
SS sends: a CM SERVICE REQUEST message

SEQ:
--> CM_SERVICE_REQUEST

TP:

-

VERDICT:
-
Step 3
SS action: the SS starts the Authentication Procedure by sending an

 AUTHENTICATION REQUEST

SEQ:
<-- AUTHENTICATION_REQUEST

TP:

-

VERDICT:
-
Step 4
Check: does the UE transmits a CP-ACK message?

SEQ:
<-- CP_ACK

TP:

(1)

VERDICT:
P
Note: final global comment
End table
Tabular format:

	An_example_TDL_specification

	PICS Definitions

	PID1, PID2

	PID3

	Message Defintions

	AMD_PDU(SN)

	CM_SERVICE_REQUEST, AUTHENTICATION_REQUEST

	Table: 1.2.3.4 Main Behaviour

	St
	Procedure
	Message Sequence
	TP
	V

	
	
	U - S
	Message
	
	

	1
	SS sends *** free text description ***
Note 1: textual comment 1
Note 2: textual comment 2
	<--
<--

<--

<--
	AMD_PDU (SN=0)

AMD_PDU (SN=1)

AMD_PDU (SN=2)

AMD_PDU (SN=3)
	-
	-

	2
	UE sends a CM SERVICE REQUEST message
	-->
	CM_SERVICE_REQUEST
	-
	-

	3
	SS action the SS starts the Authentication Procedure by sending an AUTHENTICATION REQUEST
	<--
	AUTHENTICATION_REQUEST
	-
	-

	4
	Check: Does the UE transmit a CP-ACK message?
	-->
	CP_ACK
	(1)
	P

	Note: Final global comment

Column headings

Step

