[image: image13.jpg]

Stable draft ES 203 119 V00.00.02 (2013-09)
Methods for Testing and Specification (MTS);
The Test Description Language (TDL);
Meta-Model Description

<
ETSI SPECIFICATION
Reference

DES/MTS-140_TDL
Keywords

METHODOLOGY, Language, MBT, TESTING, TSS&TP, TTCN-3, UML
ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute yyyy.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.
Contents

If you need to update the table of content you would need to first unlock it.
To unlock the Table of Contents: select the Table of Contents, click simultaneously: Ctrl + Shift + F11.
Then lock it: reselect the Table of Contents and then click simultaneously: Ctrl + F11.
5Intellectual Property Rights

Foreword
5
1
Scope
6
2
References
6
2.1
Normative references
6
2.2
Informative references
6
3
Definitions, symbols and abbreviations
7
3.1
Definitions
7
3.2
Symbols
8
3.3
Abbreviations
8
4
Introduction to TDL
8
4.1
Motivation
8
4.2
Design Considerations
9
4.3
Document Structure
10
5 Foundation
10
5.1
Abstract Syntax
11
5.2
Classifier Description
11
5.2.1
Element
11
5.2.2
NamedElement
12
5.2.3
PackageableElement
12
5.2.4
Package
12
5.2.5
TDLSpecification
13
5.2.6
ElementImport
13
6
Test Architecture
14
6.1
Abstract Syntax
14
6.2
Classifier Description
15
6.2.1
ComponentType
15
6.2.2
ComponentKind
15
6.2.3
GateType
15
6.2.4
TestConfiguration
16
6.2.5
ComponentInstance
16
6.2.6
GateInstance
17
6.2.7
Connection
17
7
Types and Data
18
7.1
Abstract Syntax
19
7.2
Classifier Description
19
7.2.1
DataElement
19
7.2.2
DataType
19
7.2.3
DataInstance
20
7.2.4
DataResourceMapping
20
7.2.5
DataElementMapping
20
8
Test Behaviour
21
8.1
Abstract Syntax
21
8.2
Classifier Description
22
8.2.1
TestDescription
22
8.2.2
Behaviour
23
8.2.3
Block
23
8.2.4
CombinedBehaviour
24
8.2.5
MultipleCombinedBehaviour
24
8.2.6
AlternativeBehaviour
25
8.2.7
ParallelBehaviour
25
8.2.8
ConditionalBehaviour
25
8.2.9
SingleCombinedBehaviour
26
8.2.10
CompoundBehaviour
26
8.2.11
BoundedLoopBehaviour
26
8.2.12
UnboundedLoopBehaviour
27
8.2.13
OptionalBehaviour
27
8.2.14
ExceptionalBehaviour
28
8.2.15
Default
28
8.2.16
Interrupt
28
8.2.17
Break
29
8.2.18
PeriodicBehaviour
29
8.2.19
AtomicBehaviour
30
8.2.20
Interaction
30
8.2.21
Action
31
8.2.22
ActionReference
31
8.2.23
TestDescriptionReference
31
8.2.24
VerdictType
32
8.2.25
VerdictEvent
32
8.2.26
StopEvent
33
9
Time
33
9.1
Abstract Syntax
34
9.2
Classifier Description
35
9.2.1
TimeDimension
35
9.2.2
Time
35
9.2.3
TimeOperation
36
9.2.4
Wait
36
9.2.5
Quiescence
36
9.2.6
TimeConstraint
37
9.2.7
Timer
37
9.2.8
TimerOperation
37
9.2.9
TimerStart
38
9.2.10
TimerStop
38
9.2.11
TimeOut
38
10
Miscellaneous
39
10.1
Abstract Syntax
39
10.2
Classifier Description
40
10.2.1
TestObjective
40
10.2.2
TestObjectiveRealizer
40
10.2.3
Comment
40
10.2.4
Annotation
41
10.2.5
AnnotationType
41
Annex A (informative): TDL Examples with Concrete Syntax
43
History
44

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This stable draft ETSI Standard (ES) has been produced by the ETSI Technical Committee Methods for Testing and Specification (MTS), and is now submitted for the ETSI standards Membership Approval Procedure.

This version takes into account most issues that were brought up during the joint STF / steering group meeting on 2013-06-05 with one noticeable exception. Currently it is not possible to define sub test configurations. That is, all test descriptions need to share the same test configuration. The necessary amendments of the TDL meta-model for this feature are postponed to a future version of the TDL standard.

1
Scope

The ES (ETSI Standard) shall be chosen when the document contains normative provisions and it is considered preferable or necessary that the document be submitted to the whole ETSI membership for its approval.

The scope shall always be clause 1 of each ETSI deliverable and shall start on a new page (more details can be found in clause 11 of the EDRs).

No text block identified. Forms of expression such as the following should be used:

The Scope shall not contain requirements.
This document provides the Stable Draft of the TDL ETSI Standard. It contains mainly the description of the TDL abstract syntax, i.e. the TDL meta-model, while a possible TDL concrete syntax is exemplified in the (informative) annex.

TDL supports the design and documentation of test descriptions that are the basis for the implementation of concrete tests on a given test execution platform such as TTCN-3 for the black-box test of distributed, concurrent real-time systems. (Informal) Test descriptions exist in large quantities at ETSI for specifying interoperability tests and conformance tests, e.g. for IMS and 3GPP. TDL provides a means to a formal specification of test descriptions for such applications at ETSI and other organisations.

A future version of the TDL standard will support the generation of concrete (executable) tests from abstract test descriptions and the generation of test descriptions from higher-order TDL specifications (with quantifiers).
2
References

The following text block applies. More details can be found in clause 12 of the EDRs.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE:
While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
2.1
Normative references

Clause 2.1 only shall contain normative (essential) references which are cited in the document itself. These references have to be publicly available and in English.
The following referenced documents are necessary for the application of the present document.
 [1]
OMG: Unified Modeling Language (UML) V2.4.1, Superstructure specification, formal/2011-08-06.

2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
ETSI ES 201 873-1 Ver. 4.5.1: Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language, published 2013-04-30.

[i.2]
ETSI ES 202 553 Ver. 1.2.1: Methods for Testing and Specification (MTS); TPLan: A notation for expressing Test Purposes, published 2009-06-02.
[i.3]
ISO/IEC/IEEE 29119-3:2013: Software and Systems Engineering – Software Testing; Part 3: Test Documentation.

[i.4]
ITU-T Z.120: Series Z: Languages and General Software Aspects for Telecommunication Systems: Formal description techniques (FDT) – Message Sequence Chart (MSC), published 02/2011.

[i.5]
OMG: UML Testing Profile (UTP) V1.2, formal/2013-04-03.
3
Definitions, symbols and abbreviations

Delete from the above heading the word(s) which is/are not applicable, (see clauses 13 and 14 of EDRs).

Definitions and abbreviations extracted from ETSI deliverables can be useful when drafting documents and can be consulted via the Terms and Definitions Interactive Database (TEDDI) (http://webapp.etsi.org/Teddi/).
3.1
Definitions

Clause numbering depends on applicability.

· A definition shall not take the form of, or contain, a requirement.
· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).
· The terms and definitions shall be presented in alphabetical order.
For the purposes of the present document, the following terms and definitions apply.

· Action: Any activity carried out by a tester and/or system under test. An activity is typically a local computation of a particular component with or without changes of the test verdict.
· Abstract Syntax: The data structure of a TDL specification that is independent of any particular representation of encoding.

· Concrete Syntax: The particular representation of a TDL specification, typically encoded in a textual, graphical or tabular format.

· Interaction: Any form of communication between components, which can be point-to-point or point-to multipoint (broadcast). A concrete realization of an interaction can take on different forms, e.g. message exchange in an asynchronous communication framework, function calls, or accessing variables shared between components.

· Meta-model: The language elements needed to form a model. It is used to express the abstract syntax of a language. The meta-model for TDL is provided as a UML meta-model based on CMOF.

· System Under Test: The instance within a test configuration that is subjected to execution of a test description, represented as a component.

· TDL model: The abstract representation of a TDL specification, i.e. an instance of the TDL meta-model.

· TDL specification: The concrete representation of a test design in a given concrete syntax.

· Test configuration: The setting of the test system consisting of at least one tester component and one system under test component.

· Test description: The (abstract or concrete) representation of a test that runs on a given test configuration.

· Test verdict: The result of executing a test description, usually of the value ‘pass’ for correct execution and ‘fail’ or ‘inconclusive’ for incorrect execution. TDL has an implicit verdict mechanism, i.e., a test description expresses always the correct behaviour (‘pass’ verdict) if not stated otherwise.
· Tester: The instance within a test configuration that controls the execution of a test description, represented as a component.

3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations

Abbreviations should be ordered alphabetically.
Clause numbering depends on applicability.

For the purposes of the present document, the following abbreviations apply:
CMOF
Complete MOF

MOF
UML Meta-Object Facility

MSC
Message Sequence Chart

SUT
System Under Test

TDL
Test Description Language

UML
Unified Modeling Language
UTP
UML Testing Profile

4
Introduction to TDL

4.1
Motivation

The trend towards a higher degree of system integration such as in case of cyber-physical systems as well as the emergence of service-oriented architectures leads to a growing importance of integration testing of such distributed, concurrent, and real-time systems. Integration testing, which is a black-box testing approach, encompasses also conformance testing of a system against a standard and interoperability testing of two or more systems of different vendors.

Moreover, testing complex systems becomes such a complex activity that it needs to follow a development process on its own. ETSI has defined such a test development process for their own purpose (see Figure 0). While most phases of this process are covered with efficient methods, notably TPLan for the specification of test purposes and TTCN-3 for the specification of test cases, a method that provides support for the specification of test descriptions is lacking. This gap shall be closed with TDL.

[image: image1.jpg]ETSI\(((%)) CONFORMIQ

Stages in ETSI (Test) Specification Development

Base Standard or Profile Specification

Cataloguing of Requirements

Creation of Implementation Check List (ICS/IFS)

Identification of Test Group Structure (TSS)

Specification of Test Purposes (TP)

Specification of Test Descriptions (TD)

Specification of Test Cases (TC)

Validation of Test Cases

MBT 2007 Invited talk: MBT in Standardization of ICT

Figure 0. ETSI test development process.

In the testing domain, a variety of languages and frameworks are used to express tests at different levels of abstraction (from concrete, executable tests to high-level test descriptions), e.g. xUnit, TTCN-3, UTP. However, tests expressed at a higher description level using existing technologies tend to get syntactically and semantically loose such that implementations of those approaches become heavily tool-dependent. This approach results in test descriptions that are not exchangeable (syntax) and are also hard to comprehend without explicit knowledge of the tool, in which the tests are represented (semantics). TDL attempts to bridge the gap between high-level test purpose specifications, e.g. expressed in TPLan, and executable test cases, e.g. expressed in TTCN-3, by providing a language for the specification of test descriptions.

New testing techniques that stem from agile development methods such as test-driven development (TDD) relies heavily on the specification of so-called ‘user stories’. Typically such user stories are represented as scenarios, i.e. interaction flows, between the system and a user of this system. User stories are a natural input to the design of tests. Therefore test engineers shall be supported with methods and tools that help them creating test descriptions that reflect the user stories they want to express and deriving executable tests from them.

Application areas of TDL that would benefit from homogeneous approach for the test design phase can be therefore summarized in the following:

· Manual design of test descriptions from a test purpose specification (ETSI process), user stories (TDD) or other sources;

· Representation of test descriptions derived from other sources, e.g. MBT test generation tools, system simulators, test execution traces from test runs.

4.2
Design Considerations

TDL makes a clear distinction between concrete syntax that is adjustable to different application domains and user needs and a common abstract syntax, which a concrete syntax can be mapped to. The definition of an abstract syntax for a TDL specification plays the key role in offering interchangeability and unambiguous semantics of test descriptions. It is defined in this standard in terms of a meta-model based on UML CMOF [1].
A TDL specification is considered abstract in the following ways:

· The way how interactions between components of a test configuration are performed is not detailed. For example, an interaction can represent a message exchange, a function/procedure call, or a shared variable access.

· All behavioural elements of a test description are totally ordered. That is, there is an implicit synchronization mechanism assumed to exist between different components of a test configuration.

· The behaviour of a test description represents only the expected, foreseeable behaviour that occurs during test execution.

· The data exchanged in interactions of a test description or used in parameters of actions or other test descriptions are represented only as name tuples without further semantics.

The key element of a TDL specification is the test description. A test description expresses a test in terms of interactions of data exchanged between tester and SUT components and local actions. It therefore represents a closed system, that is, each interaction has a sender and a receiver that is contained within the given test configuration a test description runs on.

All behavioural elements of a test description, i.e. interactions, actions, timer and time operations, verdict operations etc., are totally ordered even if they occur at different components of a given test configuration. In particular, there is no need to specify synchronization between components explicitly, e.g. by inserting special sync messages. It is up to the concrete realisation of the test description to ensure this total ordering during test execution.
Time in TDL is considered as a discrete quantity of arbitrary granularity. Progress in time is expressed as a monotonically increasing function. Time starts with the execution of a selected test description and is reset if the execution end is reached. There are two different concepts in TDL to operate on time: a descriptive way to express time in terms of wait and quiescence operations and an operational way in terms of timer operations (start, stop, timeout of a timer). Besides time constraints can be specified between any behavioural elements.
TDL offers an implicit verdict mechanism. That is, specified behaviour of a test description is assumed to represent passing behaviour (verdict pass). Any deviation from the specified behaviour observed during a test run is considered a failure (verdict fail). Though in addition, one can set verdicts explicitly in a test description if needed. The standard verdict values pass, inconclusive, fail are predefined. In addition further values can be defined by a user. However, there is no assumption about verdict arbitration, which is left to the concrete realisation of a test description.
4.3
Document Structure

This document defines the TDL language features expressed as abstract syntax of a UML CMOF meta-model. In more detail, the TDL meta-model offers language features to express:

· Structuring concepts that allow packaging of the various parts of a TDL specification (Clause 5).

· Test configurations, on which the specified test descriptions are executed. A test configuration is decomposed into two or more tester and SUT components, which are linked via connections and gates (Clause 6).

· Abstract representations of types and data used in the specification of a test description (Clause 7).

· A number of behavioural operations to express different kinds of test descriptions, including e.g. parallel and exceptional behaviour (Clause 8).

· Various ways to express time and time constraints of behavioural elements in a test description (Clause 9).

· Tracing a test description or a behavioural part to test purposes and other external sources such as system requirements or other artefacts (Clause 10).

5 Foundation

The 'Foundation' package is responsible of specifying the fundamental concepts of a TDL model. All other features of TDL rely on the concepts defined in the 'Foundation', but may refine or restrict them, if required.
5.1
Abstract Syntax

[image: image2.png]metaclass
TDLSpecification

emetaclasss
Element

emetaclasss
NomedElement

name: Sting [0.1]

specification [0.1] subsets owner)

content [] {unique, subsets ownedElement)

owner (0.1 {readOnly, union}

emetaclasss

Pactageanebiament jmportedElement [*] {unique}

7 qualifiedName; String [1] {readOn.

packagedElements [*]{unique, subsets ownedElement}

owningPackage [0..1] {subsets owner}

elementimport [1]

mport] fuique,subsets ounedlemegy -

Elementimport

elementimport [1]

metacis |
Package package (1)

Figure 1. Foundational Language Elements
5.2
Classifier Description

5.2.1
Element

Semantics

An 'Element' is a constituent of a 'TDLSpecification'. It is the super-class of each other class in the meta-model. It provides the ability to add 'Comments' and 'Annotation' to each 'Element'.

Generalizations

No generalizations specified.

Properties

· /owner : Element (0..1)
The owner of the 'Element'.

· /ownedElement : Element (0..*) {unique}
This is a derived property that expresses a possibly empty set of elements that are directly owned by this 'Element'.

· comment : Comment (0..*) {unique}
A set of 'Comments' attached to the 'Element'.

· annotation : Annotation (0..*) {unique}
A set of 'Annotations' attached to the 'Element'.

Constraints

No additional constraints specified.

5.2.2
NamedElement

Semantics

A 'NamedElement' represents 'Elements' that may have a name. The name is used for identification of the 'NamedElement'. The attribute 'name' may contain any character, including white-spaces. Having no name specified is different from the empty name (which is represented by an empty string).

Generalizations

· Element

Properties

· name : String (0..1)
The optional name of the 'NamedElement'.

Constraints

No additional constraints specified.

5.2.3
PackageableElement

Semantics

A 'PackageableElement' is contained in a 'Package'. It has a mandatory qualified name that has to be unique throughout the owning and potentially imported 'TDLSpecifications'. The 'qualifiedName' distinguishes equally named 'NamedElements' which are contained in different 'Packages' from each other. It allows them to be imported into 'Packages' with equally named 'NamedElements' without causing a name clash.

The 'qualifiedName' is a compound name derived from all directly and indirectly parent packages by concatenating the names of each 'Package'. As separator between the segments of a 'qualifiedName' the string '::' is used. The name of the 'TDLspecification' that (transitively) owns the 'PackageableElement' constitutes always the first segment of the 'qualifiedName'.

The visibility of a 'PackageableElement' is restricted to the 'Package' in which it is directly contained. 'PackageableElements' might be imported into other 'Packages' by using 'ElementImport' in order to reuse them. 'PackageableElements' have no means to actively increase their visibility.

Generalizations

· NamedElement

Properties

· /qualifiedName : String (1..1)
A derived property that represents the unique name of a package within a TDL specification.

· owningPackage : Package (0..1)
The 'Package' that owns the 'PackageableElement'.

Constraints

Distinguishable qualified names

All qualified names must be distinguishable within a TDL specification.

5.2.4
Package

Semantics

A 'Package' represents a container for 'PackagebaleElements'. A 'TDLSpecification' may contain any number of 'Packages' which may have any arbitrary substructure. A 'Package' may contain any number of 'PackageableElements'.

'Packages' build a scope of visibility for their contained 'PackageableElements'. 'PackageableElements' are only visible within the 'Package' they are directly contained in. 'Packages' have no means to make 'PackageableElements' visible to other 'Packages'.

A 'Package' may import 'PackageableElements' from other 'Packages' with the means of 'ElementImport'. By importing 'PackageableElements', the imported 'PackageableElements' become visible within the importing 'Package'. This means that there must not be two equally qualified named 'PackageableElements' within a 'Package'. Cyclic imports of 'Packages' are not permitted.

A 'Package' provides the ability to add further meta-information about the content of the 'Package' via the 'viewpoint' attribute. Tool vendors might use the 'viewpoint' of a 'Package' for tool-specific functionality.

Generalizations

· PackageableElement

Properties

· viewpoint : String (0..1)
An optional property of a package to provide additional information about the contents of this package.

· packagedElements : PackageableElement (0..*) {unique}
The 'PackageableElements' that are directly contained in the 'Package'.

· import : ElementImport (0..*) {unique}
The import declarations a 'Package' establishes to other 'Packages'.

Constraints

No cyclic imports

Cyclic imports are not allowed. That is, a package cannot import itself directly or indirectly via other packages.

5.2.5
TDLSpecification

Semantics

A 'TDLSpecification' represents the root of each test specification. It may contain any number of 'PackageableElements'. The 'PackageableElements' contained in a 'TDLSpecification' might be imported into other 'TDLSpecifications'.

Generalizations

· NamedElement

Properties

· content : PackageableElement (0..*) {unique}
The packageable elements a 'TDLSpecification' consists of.

Constraints

TDLSpecification must have a name

A TDLSpecification must always have a name being present.

5.2.6
ElementImport

Semantics

An 'ElementImport' allows importing 'PackageableElements' from other 'Packages' into the scope of a context package (context package refers to the 'Package' that contains the 'ElementImport'). By establishing an import, the imported 'PackageableElements' become visible within the context package.

Only those 'PackageableElements' can be imported via 'ElementImport' that are directly contained in the exporting 'Package'. If an 'ElementImport' declares the import of a 'Package' all the directly contained 'PackageableElements' in the imported 'Package' become visible within the context package.

Generalizations

· Element

Properties

· importedElement : PackageableElement (0..*) {unique}
The 'PackageableElements' that are imported into the context package via this 'ElementImport'.

· exportingPackage : Package (1..1)
The 'Package' from which directly contained 'PackageableElements' can be imported into the context package.

Constraints

Consistency of imported elements

The imported 'PackageableElement' must be directly owned by the exporting 'Package'.

6
Test Architecture

The 'Test Architecture' package describes all elements needed to define a test configuration consisting of tester and SUT components, gates, and their interconnections. A test configuration is a mandatory element for specifying a test description that is based on the specified gates and components. The fundamental units of a test description are the component instances. Each component instance models a functional entity of the test system. A component instance may either be (a part of) the Tester or (a part of) the SUT. That is, both the Tester and the SUT can be decomposed. The communication among the components takes place through gate instances that are interconnected via connections. To offer reusability, TDL introduces component types and gate types.
6.1
Abstract Syntax

[image: image3.png]emetaclasss emetaclasss

(Foundation) (Foundation)
PackageableElement Element

“metaclass

TestConfiguration metaclass
< connection [1.] {unique, subsets ownedElement} | ¢ onnection

o
testConfiguration [1] (subsets owner}

testConfiguration [1](

connection [1.7] unique}

“Enumerations emetaclasss

ComponentKind (Foundation)
SuT NamedElement
Tester

componentlnstance [2.] {unique, subsets ownedElemen

endPoint [2] {unique}

componentlnstance [1] uniquel| metach:

Componentlnstance
fole: ComponentKind [1]

po<

componentlnstance [1] subsets owner)

“metaclasss
Gatelnstance

gatelnstance [1."] {ordered, unique, subsets nwn:dE\ama%

Jtimer '] {readOnly, uniq gatelnstance [']

componentinstance ']

“metaclasss

(Time)

Timer

type(0.1) typel0.1]

timer [*] {unique} gate (1.7 funique} «metaclasss

GateType

“metacl:
ComponentType

omponent '] unique}

componentType [0.1] (unique} gateType [']

metacl

(Types and Data)|
DataType | dataType [1.] (unique)

Figure 2. Test Architecture Concepts
6.2
Classifier Description

6.2.1
ComponentType

Semantics

A 'ComponentType' is an element used to specify the type of a component in a test configuration. It refers to at least one 'GateType' element and contains any number of 'Timer' elements. Instances of component types model the functional entities of a test system.

A component type has no role 'Tester' or 'SUT' assigned yet. The assignment is done when creating individual instances of component types in a test configuration.

Generalizations

· PackageableElement

Properties

· gate : GateType (1..*) {unique}
This property refers to a non-empty ordered list of gate types used for the purpose of defining gates attached to a component of this type. A 'ComponentType' shall refer to at least one 'GateType'.

· timer : Timer (0..*) {unique}
This property refers to a possibly empty set of unique timers contained in a component type.

Constraints

Test configuration and components roles

A test configuration shall refer to at least two component instances. At least one of the component instances shall be a ‘Tester’ and at least one of the components shall be an ‘SUT’.

6.2.2
ComponentKind

Semantics

'ComponentKind' describes the role of a 'ComponentInstance' whether it is (a part of) a 'Tester' or (a part of) an 'SUT'.

Literals

· SUT
The component acts in the role 'SUT'.

· Tester
The component acts in the role 'Tester'.

6.2.3
GateType

Semantics

A 'GateType' is an element that specifies the data types of the element instances that are allowed to be exchanged via that gate type.

Generalizations

· PackageableElement

Properties

· dataType : DataType (1..*) {unique}
This property refers to a non-empty set of unique data types that can be exchanged via this gate type. Interactions with data instances only of these declared data types can be exchanged via this gate type.

· component : ComponentType (0..*) {unique}
This property refers to a possibly empty set of unique component types, in which the gate type is contained.

Constraints

No additional constraints specified.

6.2.4
TestConfiguration

Semantics

A 'TestConfiguration' element contains all elements that make up a test configuration, i.e. two or more component instances with connections via their gates.

Generalizations

· PackageableElement

Properties

· componentInstance : ComponentInstance (2..*) {unique}
This property refers to a set of unique 'ComponentInstance' elements. There must be at least two instances in a test configuration. The component instances are contained within a test configuration.

· connection : Connection (1..*) {unique}
This property refers to a non-empty set of ‘Connection’ elements, which are contained within a test configuration.

Constraints

No additional constraints specified.

6.2.5
ComponentInstance

Semantics

A 'ComponentInstance' element models a functional entity of the test system. It acts either as a 'Tester' or as an 'SUT' component instance. A component instance contains one or more gate instances that are the endpoints of connections.

Generalizations

· NamedElement

Properties

· type : ComponentType (0..1)
This property refers to an optional 'ComponentType' element denoting the type of the component instance.

· role : ComponentKind (1..1)
This property denotes the role of the component instance within the given test configuration. It can be either of kind 'Tester' or 'SUT'. A role shall be always assigned to a component instance.

· gateInstance : GateInstance (1..*) {ordered, unique}
This property refers to an ordered, non-empty set of unique gate instances that the ‘ComponentInstance’ contains.

· /timer : Timer (0..*) {unique}
This property refers to a possibly empty set of unique timers contained in a component instance. The set of timers is derived from the set of timers contained in the component type of the ‘ComponentInstance’. That is, a component instance shall refer to the same set of timers as contained in the component type, which the component instance belongs to.

Constraints

Number of 'GateInstances'

A component instance shall contain as many gate instances as many gate types are declared in the associated component type. The gate instances shall have the types assigned according to their ordering. That is, the first gate instance in this list shall have the type assigned of the first element in the gate type list of the associated component type, and so on.

'Timers' of 'ComponentInstances'

A component instance refers exactly to the same set of timers as contained in the associated component type.

6.2.6
GateInstance

Semantics

A 'GateInstance' element is an instance of a gate type. A gate instance shall be contained by a component instance. Gate instances are involved in the exchange of interactions and the execution of time operations.

Generalizations

· NamedElement

Properties

· connection : Connection (1..*) {unique}
This property refers to a non-empty set of 'Connection' elements that are used to establish links between different gate instances of different component instances. It is possible that the same gate instance is used in multiple connections, e.g. to allow broadcast communication.

· type : GateType (0..1)
This property refers to an optional 'GateType' element denoting the type of the gate instance.

· componentInstance : ComponentInstance (1..1)
This property refers to the 'ComponentInstance' element that is the container of this gate instance. A gate instance is exactly contained within one component instance.

Constraints

No additional constraints specified.

6.2.7
Connection

Semantics

A 'Connection' element is contained within a test configuration. The connections are the communication paths between component instances of a test configuration. Each connection refers to two different gate instances as its endpoints.

Generalizations

· Element

Properties

· endPoint : GateInstance (2..2) {unique}
This property refers to exactly two 'GateInstance' elements that are the endpoints of a connection. The same endpoint can be a part of another connection. Between these connected gate instances interactions can occur. In case of multiple connections via the same gate instance, multicast communication can be modelled.

Constraints

Self-looped Connections

The two gate instances (endpoints) of any connection shall be different from each other, i.e., no self-loop connection is allowed.

Only one connection allowed

Between any two gate instances there can be at most one connection.

7
Types and Data

The 'Types and Data' package defines the elements needed to express data types and data instances used within TDL. TDL does not feature a complete concrete data type system. Instead, it relies on loosely structured data instances which can serve as proxies for concrete data instances outside of TDL.

Data instances within TDL are contained in data types which represent groups of related instances. A data type in TDL typically maps to a concrete data type outside of TDL. However there are no specific restrictions on the mapping imposed by TDL. In particular, a TDL data type could also map to several concrete data types.

Data instances within TDL may also refer to zero or more data instance parameters. Data instance parameters can be either data instances or data types, where a data type as a data instance parameter serves as a wildcard referring to any of the data instances contained within that data type. A data instance referencing another data instance as a data instance parameter would represent a concrete data instance that combines these two data instances. A data instance referencing a data type as a data instance parameter would represent a concrete data instance that combines the data instance with any of the instances within the referenced data type.

The data instance parameters may also be used for specifying any instance of a data type, e.g. to express that any data instance of a particular data type is acceptable in an interaction. For this purpose, an "any type" data type needs to be defined, instances of which take the desired data type as a data instance parameter. With this mechanism data instances of the "any type" data type can also take multiple different data types as data instance parameters, expressing that any of the instances of any of the types supplied as parameters will be accepted.

[Editor note: Consider the example below for illustrative purposes. To be discarded if not needed in final draft.]

Given data types M and P defined as

· M: m1, m2, m3

· P: p1, p2, p3

where m1, m2, and m3 are instances of M, and p1, p2, and p3 are instances of P. To express any instance of M an "ANY" type is used, with instances taking corresponding types as parameters

· ANY: any(M), any(P)

as an added value, using this mechanism even multiple types can be combined, e.g. any(M,P), which would correspond to accepting all of m1, m2, m3, p1, p2, and p3, regardless of how these are represented in a concrete type system.
In order to map data types and data instances to concrete data type and instance representations outside of TDL, data element mappings and data resource mappings need to be defined. The data resource mappings represent resources where the concrete data type and data instance definitions are located, as identified by a 'resourceURI'. The data element mappings represent the location of the concrete data types and data instances within the resources, as identified by an 'elementURI', which can represent fully qualified names in a concrete data and type system, for example. The actual mapping mechanism between data types and instances within TDL and concrete data types and instances outside of TDL is outside the scope of TDL. A TDL specification operates only on the data types and data instances defined within TDL without the need to reference them to concrete types and values.
7.1
Abstract Syntax

[image: image4.png]emetaclasss

(Foundation)
PackageableElement

emetaclosss emetaclasss
(Foundation) (Foundation)
Namedelement Element
‘ dataElement [L1{UniaUe) gataflementhMapping [} {unique
P e st (i)
(Foundation) Datablement DataElementMappin
Packageableflement datalnstanceParameter [] {unique} elementURL[0.1]
e
dataElementMapping (L] {unique
datalnstance [1] dataResourceMapping [1} {uniqu
— datalnsta emetachazzs
R— iatalnstance [*] {unique} Datalnstance

DataType

po<
dataType 1] {unique}

metaclasss
DataResourceMapping

resourceUR: String (0..1]

Figure 3. Types and Data Concepts
7.2
Classifier Description

7.2.1
DataElement

Semantics

A 'DataElement' is an abstraction of 'DataInstance' and 'DataType' that may be referenced as a 'dataInstanceParameter' from 'DataInstance' elements or as a 'dataElement' by 'DataElementMapping' elements.

Generalizations

· NamedElement

Properties

No properties specified.

Constraints

No additional constraints specified.

7.2.2
DataType

Semantics

A 'DataType' is a 'PackageableElement' that contains zero or more 'DataInstance' elements. It may correspond and be mapped to a concrete data type specification outside of TDL, by means of a 'DataMappingElement'.

Generalizations

· PackageableElement

· DataElement

Properties

· dataInstance : DataInstance (0..*) {unique}
Set of contained data instances.

Constraints

No additional constraints specified.

7.2.3
DataInstance

Semantics

A 'DataInstance' is a 'NamedElement' contained in a 'DataType' element. It may reference zero or more data instance parameters in order to support loosely structured data instances. It may be mapped to a concrete data instance by means of a 'DataMappingElement', thus serving as a proxy for that concrete data instance.

Generalizations

· DataElement

Properties

· dataInstanceParameter : DataElement (0..*) {unique}
References to further data elements which are attached to the given data instance.

· dataType : DataType (1..1) {unique}
Containing data type element.

Constraints

No additional constraints specified.

7.2.4
DataResourceMapping

Semantics

A 'DataResourceMapping' is a 'PackageableElement'. It contains a set of 'DataElementMappings' and defines resources where the concrete data type and data instance definitions are located, as identified by a 'resourceURI'.

Generalizations

· PackageableElement

Properties

· resourceURI : String (0..1)
Location of resources containing concrete data type and data instance definitions.

· dataElementMapping : DataElementMapping (1..*) {unique}
Mappings to data elements used within TDL for concrete data elements defined within the resource.

Constraints

No additional constraints specified.

7.2.5
DataElementMapping

Semantics

A 'DataElementMapping' is an 'Element' contained in a 'DataResourceMapping' element. A 'DataElementMapping' represents the location of a concrete data type or a concrete data instance within the resource identified by the 'resourceURL' of the containing 'DataElementMapping' element. The location within the resource is described by means of an 'elementURI' attribute, which can represent fully qualified names in a concrete data and type system.

Generalizations

· Element

Properties

· dataElement : DataElement (1..1) {unique}
This property refers to the abstract data element in TDL (type or instance) to be mapped to a concrete data element (type or value).

· elementURI : String (0..1)
Location of a concrete data element within the containing resource, e.g. a fully qualified name.

Constraints

No additional constraints specified.

8
Test Behaviour

The 'Test Behaviour' package defines all elements needed to describe the behaviour of a test description.
8.1
Abstract Syntax

[image: image5.png]“metaclasss
(Miscellaneo
TestObjective

testDescription [1]

emetaclasss

(Foundation)
Packageablelement

“metach
TestDescription

testConfiguration [1]

3

testPurpose ['] {unique}

FormalParameter: Datalnstance [*] {ordered]

testDescription [0..1] subsets owner)

testDescription [*] {unique}

“metaclasss

(Test Architecture)
TestConfiguration

behaviour [1] {subsets ownedElement}

“metaclasss
(Test Behaviour:TestBehaviourEleme.
CompoundBehaviour

Figure 4. Test Description Concepts

[image: image6.png]“emetaclass>

(Foundation)
Element

—J\—\

(Test Behaviour: Test Description)

emetaclasss

haviour [1."] {unique, subs

metaclass
ets ownedElemeny Block

Behaviour

block 1] {subsets owner

block [1.}{ordered, unique, subscts ownedtTeme

guard: String [0.1]

o
R
|MutipleCombinedBehaviour emetaclasss

singleCombinedBehavior [1] (subsets owner}

block 1] {subsets ownedElement}

“metacha:
BoundedLoopBehaviour | | UnboundedLoopBehaviou

“metaclass
OptionalBehaviour

Figure 5. Behaviour Concepts

[image: image7.png]“metaclasss
VerdictEvent

verdictEvent [1]

emetaclasss
AtomicBehaviour

ctionReference [1]

“metaclass
(Test Behaviour:Test Description)
TestDescription

referencedTestDescription [1]

testDescriptionReference [1] (unique}

“metaclasss

ActionReference

“metacl:
Interaction

“metacla:
StopEvent

“metaclass
TestDescriptionReference

verdict (1 Y/ scton i foriaue)
ac emetaclasss emetachazss
ametacasss et
A (st Architecture)
Ve body:Saing [1] Componentintance

emetaclasss

(Foundation)
PackageableElement

componentlnstance [0..1]

actualParameter '] {ordered, unique}

Figure 6. Atomic Behaviour Concepts

[image: image8.png]emetaclasss

(Test Description)
Behaviour
(Test Architecture)
Componentinstance
«metaclass» combinedBehaviour [1] {subsets owner}
combinedBehaviour (1 (subsets owner) | rect behayioursTestBehaviourElements) guardedComponent (0.1
CombinedBehaviour
metaclazss | " vt } unique, subset: & exceptional [*] {ordered, unique, subsets ownedElement) ptionalfeh: [{unique}

PeriodicBehaviour emetaclass

ExceptionalBehaviour.

owningPeriodic [1] subsets owner)
exceptionalBehaviour [1] subsets owner)

block 1] subsets ownedElement] block 1] {subsets ownedElement}

“metaclasss

(Test Behaviour: TestBehaviourElements)
Block “metaclasss

Break

“metaclasss
Interrupt

Default

‘ et

Figure 7. Exceptional Behaviour and Periodic Behaviour

8.2
Classifier Description

8.2.1
TestDescription

Semantics

The 'TestDescription' is a 'PackageableElement'. A 'TestDescription' defines the test behaviour based on interactions. A test description contains exactly one 'CompoundBehaviour' defining the interactions of the test description and is associated with exactly one 'TestConfiguration'. A 'TestDescription' may be associated with any number of 'TestObjectives'.

A 'TestDescription' may have any number of formal parameters to allow for parameterization of the test description.

Generalizations

· PackageableElement

· TestObjectiveRealizer

Properties

· formalParameter : DataInstance (0..*) {ordered}
The 'formalParameter' property is an ordered possibly empty list of 'DataInstances'. The 'formalParameter' property defines the data parameters that shall be substituted with actual data when the 'TestDescription' is executed.

· testConfiguration : TestConfiguration (1..1)
The property 'testConfiguration' refers to the 'TestConfiguration' associated with the 'TestDescription'.

· behaviour : CompoundBehaviour (1..1)
The property 'behaviour' defines the actual behaviour of the test description in terms of exactly one 'CompoundBehaviour' element.

· testPurpose : TestObjective (0..*) {unique}
The property 'testPurpose' contains a possibly empty set of associated 'TestObjectives'.

· timeConstraint : TimeConstraint (0..*) {unique}
This property refers to a possibly empty set of Boolean expressions used to express time constraints between behavioural elements that occur within this test description.
Constraints

Named test description

A test description shall have a name.

8.2.2
Behaviour

Semantics

A 'Behaviour' is a generic, abstract 'Element' that is refined into 'AtomicBehaviour' and 'CombinedBehaviour'. Some 'Behaviour's operate on gate instances and some are independent from gates.

Generalizations

· Element

· TestObjectiveRealizer

Properties

· timestamp : Time (0..1)
This property specifies the time when the 'Behaviour' element occurred in a case of an atomic behaviour or started in a case of a combined behaviour. This property can be used for logging purposes.
Constraints

No additional constraints specified.

8.2.3
Block

Semantics

A 'Block' element is a container of 'Behaviour' elements that are executed in a strictly sequential way. A 'Block' element may optionally have a 'guard'. If a 'Block' has a 'guard', it will be only executed, if its guard condition is evaluated to true.

Generalizations

· Element

Properties

· behaviour : Behaviour (1..*) {unique}
This property is a nonempty list of unique 'Behaviour' elements describing the behaviour of the 'Block' element. The 'Behaviour' elements must be executed in their definition order.

· guard : String (0..1)
This property is a String that represents a Boolean expression. The 'guard' is an optional attribute and determines if the behaviour of the 'Block' element shall be executed or not. If 'guard' is evaluated to true, the behaviour is executed, otherwise not. If a 'Block' element has no 'guard' it will be unconditionally executed

Constraints

Guard must evaluate to Boolean

The 'guard' property is a String that shall represent a Boolean expression.

8.2.4
CombinedBehaviour

Semantics

A 'CombinedBehaviour' element is a 'Behaviour' that involves all gate instances defined in the associated test configuration. It can contain one (in case of 'SingleCombinedBehaviour') or many (in case of 'MultipleCombinedBehaviour') ordered and potentially guarded 'Block' elements. A 'CombinedBehaviour' may have any number of ordered 'ParallelBehaviour' and 'ExceptionalBehaviour' elements. The 'CombinedBehaviour' and the 'ExceptionalBehaviour' elements are evaluated in their definition order.

Generalizations

· Behaviour

Properties

· periodic : PeriodicBehaviour (0..*) {ordered, unique}
A 'CombinedBehaviour' element can contain any number of 'PeriodicBehaviour' elements. This property refers to the ordered list of unique 'PeriodicBehaviour' elements.

· exceptional : ExceptionalBehaviour (0..*) {ordered, unique}
A 'CombinedBehaviour' element can contain any number of 'ExceptionalBehaviour' elements. This property refers to the ordered list of unique 'ExceptionalBehaviour' elements.

Constraints

No additional constraints specified.

8.2.5
MultipleCombinedBehaviour

Semantics

A 'MultipleCombinedBehaviour' element is a 'CombinedBehaviour' that can contain one to many (in case of 'ConditionalBehaviour') or two to many (in case of 'AlternativeBehaviour' or 'ParallelBehaviour') ordered and potentially guarded 'Block' elements.

Generalizations

· CombinedBehaviour

Properties

· block : Block (1..*) {ordered, unique}
This property refers to a nonempty list of 'Block' elements that specify the behaviour of the 'MultipleCombinedBehaviour' element.

Constraints

No additional constraints specified.

8.2.6
AlternativeBehaviour

Semantics

An 'AlternativeBehaviour' element is a 'MultipleCombinedBehaviour' that shall contain at least two 'Block' elements. Each block of an 'AlternativeBehaviour' element may have a guard condition and shall start with one of the following events: 'Interaction' received by a 'Tester' component, 'TimeOut' or 'Quiescence'. If a ’Block' has no guard condition, it is equivalent to a 'Block' with a guard condition of true. The first 'Block' whose guard condition is evaluated to true and whose first event occurs, will be executed.

Generalizations

· MultipleCombinedBehaviour

Properties

No properties specified.

Constraints

Blocks

An 'AlternativeBehaviour' element shall contain at least two 'Block' elements. Each block of an 'AlternativeBehaviour' element may have a guard condition and shall start with one of the following events: 'Interaction' received by a 'Tester' component, 'TimeOut' or 'Quiescence'.

8.2.7
ParallelBehaviour

Semantics

A 'ParallelBehaviour' element is a 'MultipleCombinedBehaviour' that shall contain at least two 'Block' elements. None of the blocks of a 'ParallelBehaviour' element can have a guard condition. The blocks are executed in parallel. The execution of a 'ParallelBehaviour' element terminates when all its blocks are terminated.

Generalizations

· MultipleCombinedBehaviour

Properties

No properties specified.

Constraints

Blocks

A 'ParallelBehaviour' element is a 'MultipleCombinedBehaviour' that shall contain at least two 'Block' elements. None of the blocks of a 'ParallelBehaviour' element can have a guard condition.

8.2.8
ConditionalBehaviour

Semantics

A 'ConditionalBehaviour' element is a 'MultipleCombinedBehaviour' that can contain one or more 'Block' elements. All the blocks must have a guard condition. If there are more than one blocks, the last one may have no guard. In this case the last block is equivalent to a block with a guard condition of true ("else" block). The guard conditions of the 'Block' elements are evaluated in the order of their definition. The first 'Block' whose guard condition is evaluated to true will be executed. If none of the guard conditions are evaluated to true, no action will be taken.

Generalizations

· MultipleCombinedBehaviour

Properties

No properties specified.

Constraints

Guards required

All the blocks must have a guard condition. If there are more than one blocks, the last one may have no guard. In this case the last block is equivalent to a block with a guard condition of true ("else" block)

8.2.9
SingleCombinedBehaviour

Semantics

A 'SingleCombinedBehaviour' element is a 'CombinedBehaviour' that contains one potentially guarded 'Block' element. It can be further refined to as ‘CompoundBehaviour’, BoundedLoopBehaviour’, UnboundedLoopBehaviour’ or ‘OptionalBehaviour’.

Generalizations

· CombinedBehaviour

Properties

· block : Block (1..1)
This property refers to a 'Block' element that specifies the behaviour of the 'SingleCombinedBehaviour'.

Constraints

No additional constraints specified.

8.2.10
CompoundBehaviour
Semantics

A 'CompoundBehaviour' element groups any 'Behaviour' elements together. It contains exactly one 'Block' element. As a derived 'CombinedBehaviour' element, a 'CompundBehaviour' element can also have exceptional or periodic behaviour attached to it.
Generalizations

· SingleCombinedBehaviour

Properties

No properties specified.

Constraints

No additional constraints specified.
8.2.11
BoundedLoopBehaviour

Semantics

A 'BoundedLoopBehaviour' element is a 'SingleCombinedBehaviour', therefore it shall contain one 'Block' element, which must not have a guard condition. The 'Block' element will be executed as many times as is determined by the 'numIteration' attribute..

Generalizations

· SingleCombinedBehaviour

Properties

· numIteration : Integer (1..1)
This property of a 'BoundedLoopBehaviour' element determines how many times the 'Block' element of a 'BoundedLoopBehaviour' element shall be executed. It must be a positive Integer value.

Constraints

No guard condition

The 'Block' element of a 'BoundedLoopBehaviour' element shall not have a guard condition.

Iterations number must be positive

The 'numIteration' attribute of a 'BoundedLoopBehaviour' element shall be a positive Integer value.

BoundedLoop must not have a guard

A ‘BoundedLoop’ is not allowed to have a guard condition, i.e., it will only terminate after the specified number of iterations.

8.2.12
UnboundedLoopBehaviour

Semantics

An 'UnboundedLoopBehaviour' element is a 'SingleCombinedBehaviour', therefore it shall contain one 'Block' element, which may have a guard condition. The 'Block' element will be executed as many times as long as the guard condition of the 'Block' element is evaluated to true. If the 'Block' element has no guard condition, it will be executed an infinite number of times.

Generalizations

· SingleCombinedBehaviour

Properties

No properties specified.

Constraints

No additional constraints specified.

8.2.13
OptionalBehaviour

Semantics

An 'OptionalBehaviour' element is a 'SingleCombinedBehaviour', therefore it shall contain one 'Block' element, which may have a guard condition and shall start with one of the following events: 'Interaction' received by a 'Tester' component, 'TimeOut' or 'Quiescence'. If a 'Block' has no guard condition it is equivalent to a 'Block' with a guard condition of true. If the guard condition of the 'Block' element is evaluated to true and the first event occurs, the ‘OptionalBehaviour’ will be executed, otherwise no action will be taken.

Generalizations

· SingleCombinedBehaviour

Properties

No properties specified.

Constraints

First event allowed

The contained 'Block' element shall start with one of the following events: 'Interaction' received by a 'Tester' component, 'TimeOut' or 'Quiescence'.

8.2.14
ExceptionalBehaviour

Semantics

An 'ExceptionalBehaviour' element is optionally contained within a 'CombinedBehaviour' element. It is a 'Behaviour' that consists of one 'Block' element that shall have no guard and shall start with one of the following 'AtomicBehaviour' elements: 'Interaction' received by a 'Tester' component, 'TimeOut' or 'Quiescence'.
An 'ExceptionalBehaviour' element defines a behaviour that is an alternative to either any 'Interaction' received by a 'Tester' in the enclosing 'CombinedBehaviour' element or if the 'guardedComponent' attribute is presented then any 'Interaction' received by the specified component in the enclosing 'CombinedBehaviour' element.
An 'ExceptionalBehaviour' can be a 'Default', a 'Break' or an 'Interrupt'.

Generalizations

· Behaviour

Properties

· block : Block (1..1)
This property refers to a 'Block' element that specifies the behaviour of the 'ExceptionalBehaviour'

· guardedComponent : ComponentInstance (0..1)
This optional property refers to a component instance for which the behaviour specified by the 'ExceptionalBehaviour' element is to be applied.

Constraints

First element in block allowed

The 'Block' element referred to by the 'block' property shall have no guard and shall start with one of the following 'AtomicBehaviour' elements: 'Interaction' received by a 'Tester' component, 'TimeOut' or 'Quiescence'.

Guarded component role

The 'guardedComponent' can refer only to a 'Tester' component.

8.2.15
Default

Semantics

A 'Default' element is an 'ExceptionalBehaviour'. If it is executed, the execution continues with the next 'Behaviour' element of the enclosing 'CombinedBehaviour' element following the one that caused the execution of the 'Default' element.

Generalizations

· ExceptionalBehaviour

Properties

No properties specified.

Constraints

No additional constraints specified.

8.2.16
Interrupt

Semantics

An 'Interrupt' element is an 'ExceptionalBehaviour'. If it is executed, the execution continues with the same 'Behaviour' element of the enclosing 'CombinedBehaviour' element, at which the execution of the 'Interrupt' started.

Generalizations

· ExceptionalBehaviour

Properties

No properties specified.

Constraints

No additional constraints specified.

8.2.17
Break

Semantics

A ‘Break’ element is an ‘ExceptionalBehaviour’. If it is executed, it terminates the execution of the enclosing ‘CombinedBehaviour’element. Execution continues with the 'Behaviour' element that follows the enclosing 'CombinedBehaviour' element.
Generalizations

· ExceptionalBehaviour

Properties

No properties specified.

Constraints

No additional constraints specified.
8.2.18
PeriodicBehaviour

Semantics

A 'PeriodicBehaviour' element is optionally contained within a 'CombinedBehaviour' element. It is a 'Behaviour' that consists of one 'Block' element that shall start with an 'Interaction' initiated by a 'Tester' component. A 'PeriodicBehaviour' element defines a behaviour that is executed periodically in parallel with the enclosing 'CombinedBehaviour' element. The frequency of the execution is specified by its 'period' attribute.

Generalizations

· Behaviour

Properties

· block : Block (1..1)
This property refers to a 'Block' element, whose behaviour will be executed periodically in parallel with the behaviour of the enclosing 'CombinedBehaviour' element.

· period : Time (1..1)
This property defines the frequency of the execution of the behaviour of the 'Block' element specified by the 'block' attribute. The 'period' is a 'Time' value.

Constraints

First event allowed

The 'Block' element referred by the 'block' attribute shall start with an 'Interaction' initiated by a 'Tester' component.

8.2.19
AtomicBehaviour

Semantics

'AtomicBehaviour' is a 'Behaviour'. An 'AtomicBehaviour' element defines the simplest form of behaviour that cannot be decomposed further. An 'AtomicBehaviour' can be: 'TimerOperation', 'TimeOperation', 'VerdictEvent', 'StopEvent', 'ActionReference', ' Interaction' or 'TestDescriptionReference'.

Generalizations

· Behaviour

Properties

· timeConstraint : TimeConstraint (0..*) {unique}
This property specifies a (possibly empty) list of 'TimeConstraint' elements that determine the execution of the given 'AtomicBehaviour' element.

Constraints

No additional constraints specified.

8.2.20
Interaction

Semantics

The 'Interaction' element denotes the exchange of a value defined as a 'DataInstance' element between component instances of a test configuration. The data exchange is done via the gate instances of the component instances assuming that they are connected via a connection. An 'Interaction' element covers all kinds of interactions used in real implementations such as message-passing, procedure-calls, or shared variable access.

Generalizations

· AtomicBehaviour

Properties

· argument : DataInstance (1..1)
This property refers to exactly one 'DataInstance' element that is taken as the argument (payload) of this interaction. A data instance itself can contain arguments that cannot be evaluated to values in a concrete implementation, e.g. an argument that expresses any value of a certain data type or a range of values of a certain type. The usage of such data instances as an argument of an interaction in a test description is not further specified.
An interaction is an abstract representation of any information exchange between two or more (Tester or SUT) components. In particular, it can refer to a message being sent and received (message-passing communication), a function call being initiated (sent) and invoked (received) or its return values being transmitted back (procedure-based communication), or a shared variable being read (sent if the component owns this variable) or updated (received if the component owns this variable) (shared variable access).

· sender : GateInstance (1..1) {unique}
This property refers to exactly one 'GateInstance' element that acts as the sender of this interaction. That is, the associated component instance outputs the data instance of this interaction via its gate instance.

· receiver : GateInstance (1..*) {ordered, unique}
This property refers to a non-empty set of unique 'GateInstance' elements that act as the receivers of this interaction. That is, the associated component instances input the data instance of this interaction via their gate instances. In case of point-to-point communication there is exactly one receiver. In case of point-to-multipoint communication there are as many receiving gate instances as connected with the sending gate instance (broadcast).

Constraints

Gate instances of an interaction shall be different

All gate instances that act as sender or receiver of an interaction shall be different from each other.

Broadcast communication

In case of point-to-multipoint communication, i.e., an interaction occurs on a gate instance that is connected with more than one other gate instance, all gate instances that are interconnected must be listed in this interaction. Exactly one of them shall be the sender, while the remaining ones shall be listed as receivers.

Gate instances of an interaction shall be connected

The gate instances that act as a sender or a receiver of an interaction shall be linked via a connection.

8.2.21
Action
Semantics

An ‘Action’ element is a ‘PackageableElement’ that can be used to specify any activity (e.g. local computation, function call, etc.) in an informal way. The interpretation of the action is outside the scope of TDL.
Generalizations

· PackageableElement

Properties

· body : String (1..1)
This property describes the action as an informal String.

Constraints

Named action

An action shall have a name.

8.2.22
ActionReference

Semantics

An 'ActionReference' element can be used to refer to an 'Action' element to be executed. It may have a 'componentInstance' attribute that specifies the component instance on which the action is to be performed.

Generalizations

· AtomicBehaviour

Properties

· componentInstance : ComponentInstance (0..1)
This optional property refers to a 'ComponentInstance' element on which the action is to be performed.

· action : Action (1..1) {unique}
This property is used to refer to an 'Action' element to be executed.

Constraints

No additional constraints specified.

8.2.23
TestDescriptionReference

Semantics

A 'TestDescriptionReference' is used to describe the invocation of the behaviour of a test description within another test description. The invoked behaviour is executed in its entirety before the behaviour of the invoking test description is executed further. A 'TestDescriptionReference' also has a possibly empty list of actual parameters which are passed to the referenced 'TestDescription'.

Generalizations

· AtomicBehaviour

Properties

· referencedTestDescription : TestDescription (1..1)
The test description whose behaviour will be invoked.

· actualParameter : DataInstance (0..*) {ordered, unique}
A list of parameters passed to the referenced test description.

Constraints

Number of actual parameters

The number of actual parameters in the test description reference must match the number of formal parameters of the referenced test description.

Test configuration of referenced test description

The referenced test description must use the same test configuration as the referencing test description.

8.2.24
VerdictType

Semantics

‘VerdictType’ is a ‘PackageableElement’ that specifies the possible verdicts of a test description. At minimum it defines the following values: pass, inconclusive, fail (default values). This list can be extended according to the needs of concrete implementations.
Generalizations

· PackageableElement

Properties

No properties specified.

Constraints

Minimum set of values of the VerdictType

At minimum the VerdicType must contain the following three values: pass, inconclusive, fail.

8.2.25
VerdictEvent

Semantics

The 'VerdictEvent' is used to set the verdict of the test description explicitly. This might be necessary if the implicit verdict mechanism described below is not sufficient. The verdict is set for the entire test description.

By default, the test description specifies the expected behaviour of the system. If a test run of a test description performs the expected behaviour, the verdict is set to 'pass' implicitly. If a test run deviates from the expected behaviour, the default verdict 'fail' shall be assigned to the test run. Other verdicts, including user-defineable verdict values, need to be set explicitly within a test description.
Generalizations
· AtomicBehaviour
Properties
· verdict : VerdictType (1..1)
This 'VerdictType' property stores the value of the verdict to be set.
Constraints
No additional constraints specified.
8.2.26
StopEvent
Semantics
A 'StopEvent' is used to describe an explicit stop of the execution of a test description. No further behaviour can be executed beyond a 'StopEvent'. In particular, a stop event in a called test description stops also the behaviour of the calling test description.
Generalizations

· AtomicBehaviour

Properties

No properties specified.

Constraints

No additional constraints specified.

9
Time

The Time package defines the elements to express time, time requirements, and timer operations in TDL. In TDL there is an assumption of global time that is used for time related operations.
9.1
Abstract Syntax

[image: image9.png]“metaclasss
Timer

timer[1]

timerOperation [*] {unique}

emetaclasss

(Foundation)
NamedElement

“metaclasss
(Test Description)
TestDescription

testDescription [1]

emetaclasss
TimerOperation

i

timeCanstraint ') {unique}

emetaclasss

(Test Behaviour: TestBehaviourElements)

AtomicBehaviour

metaclass
TimeConstraint

expression: String [1]

timeCanstraint ') {unique}

atomicBehaviour [L.*] {unique}

TimeOperation | timeOperation 1]

“metaclasss

(Test Architecture)
Gatelnstance

AN

“metaclasss
TimerStart

“metaclasss
TimerStop

“metaclasss
TimeOut

“metaclasss “metaclasss
Wait Quiescence

Figure 8. Basic Time and Timing Concepts

[image: image10.png]“emetaclasss emetaclasss
(Test Behaviour: Test Description) (Foundation)
Behaviour Element

“metaclasss
TimerStart

atomicBehaviour [*]{subsets owner} timerStart [1] (subsets owner}

period [1] (subsets ownedElement]

“metaclass
Time riod [1] (subsets ownedElement
|operiod 1] tubsets ownedElement)

timestamp 10,1} subsets ownedElement] | value:Real (1]
dimension: TimeDimension [1]

“Enumeration: period 1] (subsets ownedElement)

TimeDimension timeOperation [1] {subsets owner}

emetaclasss

periodicBehaviour [1] {subsets owner} TimeOperation

metacl

(Test Behaviour:TestBehaviourElement
PeriodicBehaviour

Figure 9. Time Concept

9.2
Classifier Description

9.2.1
TimeDimension

Semantics

'TimeDimension' describes the dimension of a 'Time' value, i.e. the size of a tick, which is the smallest countable time duration.

Literals

· day
The dimension is one day.

· hour
The dimension is one hour.

· min
The dimension is one minute.

· sec
The dimension is one second.

· msec
The dimension is one milli-second.

· usec
The dimension is one micro-second.

· nsec
The dimension is one nano-second.

9.2.2
Time

Semantics

'Time' is an 'Element' that defines the concept of global time in TDL. Time is understood in TDL as a discrete quantity of arbitrary granularity. Progress in time is expressed as a monotonically increasing function. The time instance or a time duration are expressed by a positive value of type 'real'. The measurement unit is set by the property 'dimension' which defines a predefined set of measurement units.

The time of executing a non-referenced test description starts with value 0.0.

Generalizations

· Element

Properties

· value : (1..1)
The 'value' property represents either a time value or a duration value.

· dimension : TimeDimension (1..1)
The 'dimension' property defines the unit of the time value or duration value.

Constraints

Time value shall be non-negative

The 'Time::value' shall be a non-negative value.
9.2.3
TimeOperation

Semantics

A 'TimeOperation' element is an 'AtomicBehaviour' element. A 'TimeOperation' is an abstract element that summarizes the two possible time operations that can occur at a gate instance of a tester component instance: wait and quiescence.
Generalizations
· AtomicBehaviour
Properties
· gateInstance : GateInstance (1..1)
The 'gateInstance' property references the 'GateInstance', to which the 'TimeOperation' is associated.
· period : Time (1..1)
The 'period' property defines the time duration of the 'TimeOperation'.

Constraints

Time operations on tester components only
A time operation shall be performed only on a gate instance that is associated with a component instance of the role 'Tester'.

9.2.4
Wait

Semantics

'Wait' is a 'TimeOperation'. 'Wait' defines the time duration that a 'Tester' component instance waits before performing the next behaviour.

Generalizations

· TimeOperation

Properties

No properties specified.

Constraints

No additional constraints specified.

9.2.5
Quiescence

Semantics

'Quiescence' is a 'TimeOperation'. 'Quiescence' defines the time duration during which a 'Tester' component instance shall expect no input from the 'SUT' component instance.

Generalizations

· TimeOperation

Properties

No properties specified.

Constraints

No additional constraints specified.

9.2.6
TimeConstraint

Semantics

A 'TimeConstraint' is a 'NamedElement'. 'TimeConstraint' is used to express a timing requirement over an atomic behaviour, e.g. to express that the execution of a number of interactions or referenced test descriptions shall be performed within a specific time interval.

Generalizations

· NamedElement

Properties

· expression : String (1..1)
The 'expression' property defines the timing requirement as an informal string.

· atomicBehaviour : AtomicBehaviour (1..*) {unique}
The 'atomicBehaviour' property references the 'AtomicBehaviour' elements whose time labels are used in the time constraint. There may be one or more references in this set.

Constraints
No additional constraints specified.
9.2.7
Timer

Semantics

A 'Timer' is a 'NamedElement'. The 'Timer' element defines a timer that can be referenced by different timer operations. If a ‘Timer’ is associated with and contained within a ‘ComponentType’, then each ‘ComponentInstance’ of the given ‘ComponentType’ will have its local copy of that timer. If a timer is not associated with a component type it is considered as a global timer that is accessible by all components used in a test description.

Generalizations

· NamedElement

Properties

· componentType : ComponentType (0..1) {unique}
This optional property defines the ‘ComponentType’ in which the ‘Timer’ is defined. If this property is missing, the ‘Timer’ is global.

Constraints

Named timer
A timer shall have a name.

Timer state.

A timer shall be initially in the state 'idle'.

9.2.8
TimerOperation

Semantics

'TimerOperation' is an 'AtomicBehaviour'. A 'TimerOperation' operates on a defined 'Timer'. It is an abstract element that summarizes the operations on timers: timer start and stop and time-out.

Generalizations

· AtomicBehaviour

Properties

· timer : Timer (1..1)
This property refers to the ‘Timer’ on which the ‘TimerOperation’ operates.

Constraints

No additional constraints specified.

9.2.9
TimerStart

Semantics

'TimerStart' is a 'TimerOperation'. A 'TimerStart' operation starts a specific 'Timer'. The state of that timer becomes then 'running'. If a running timer is started, first the timer is stopped implicitly and then (re-)started.

Generalizations

· TimerOperation

Properties

· period : Time (1..1)
The 'period' property defines the duration to timeout when starting the timer.

Constraints

No additional constraints specified.

9.2.10
TimerStop

Semantics

'TimerStop' is a 'TimerOperation'. A 'TimerStop' operation stops a running timer. If an idle timer is stopped, then no action shall be taken.

Generalizations

· TimerOperation

Properties

No properties specified.

Constraints

No additional constraints specified.

9.2.11
TimeOut

Semantics

'TimeOut' is a 'TimerOperation'. A 'TimeOut' occurs when the duration set at the 'TimerStart' operation of that timer has elapsed. The timer changes then from its 'running' state to the 'idle' state.

Generalizations

· TimerOperation

Properties

No properties specified.

Constraints

Running timer

The state of the timer shall be 'running' before the 'TimeOut' element can be specified.

10
Miscellaneous

The 'Miscellaneous' package defines additional elements of a test description such as test objectives, annotations, and comments.
10.1
Abstract Syntax

[image: image11.png]commentedElement [0..1] subsets owner}

comment [{unique, subsets ownedElement]

“metaclass
Comment

body: String [1]

emetaclasss
(Foundation)

annotstedElement [0.1] (unique, subsets owner)

annotation [*}{unique, subsets ownedElement}

Element
“metaclas
Annotation
Value: String [0.1]
emetaclasss
(Foundation)
PackageableElement

ey (1)
emetactasss
AnnotationType

annotation [1.7] {unique}

Figure 10. Comments and Annotations

[image: image12.png]emetaclasss

(Foundation)
PackageableElement

“metaclass
TestObjective

emetaclasss
Element

emetaclass>

TestObjectiveRealizer|

realizedBy [*) (unique}

description: String [0.1]
objectiveURE: String []

testObjective [0..1] {ordered, unique)

N

“metaclass

TestDeseription

(Test Behaviour:Test Description)

emetaclasss
Behaviour

Figure 11. Test Objective Concepts

10.2
Classifier Description

10.2.1
TestObjective

Semantics

A 'TestObjective' specifies the objective for designing either a test description or a particular behaviour within a test description. A 'TestObjective' can either contain a description of the test objective directly or may refer to an external resource for further information about the test objective.

The 'description' of a 'TestObjective' is supposed to be natural language in the first place, however, it is not prohibited to provide structured (i.e., machine-readable) text.

Generalizations

· PackageableElement

Properties

· objectiveURI : String (0..*)
A set of URIs locating resources that provide further information about the test objective. These resources are usually external to TDL such as requirements specifications or TPLan artefacts.

· description : String (0..1)
A textual description of the objective of the test.

· realizedBy : TestObjectiveRealizer (0..*)
This property refers to a possibly empty list of realizers that implement this test objective.

Constraints

No additional constraints specified.

10.2.2
TestObjectiveRealizer

Semantics

A 'TestObjectiveRealizer' element establishes traces to 'TestObjective' elements. The semantics of such a trace is that a 'TestObjectiveRealizer' realizes the test objective stated or referred to by the 'TestObjective'.

Generalizations

· Element

Properties

· testObjective : TestObjective (0..1) {ordered, unique}
This property refers to at most one test objective that is realized by this test objective realizer (which in turn is an entire test description or a behavioural element of a test description).

Constraints

No additional constraints specified.

10.2.3
Comment

Semantics

A 'Comment' is an 'Element' that provides a non-empty 'body' attribute. Any element except for a comment can contain any number of comments. Comments can be attached to elements for documentation or other informative purposes. The contents of comments shall not be used for adding semantics to elements.

Generalizations

· Element

Properties

· commentedElement : Element (0..1)
The element that gets a comment attached to it.
· body : String (1..1)
The contents of the comment.

Constraints

No additional constraints specified.

10.2.4
Annotation

Semantics

Annotations allow to attach user- or tool-defined semantics to 'Element' instances of a TDL model. An 'Annotation' is an 'Element' that provides a pair of a 'key' attribute and an optionally empty ’value’ attribute. Any element except for comment and an annotation itself can contain any number of annotations. In contrast to comments, annotations can be attached to elements to provide added semantics and user-defined extensions to TDL, which may be interpreted by tooling. The available 'key' attributes must be defined as 'AnnotationType' elements. The annotation concept is similar to the tag (or rather tagged value) concept in UML.

[Editor note: Scope of applicability and overwriting of annotations is not yet defined. <- Is this still a concern?]

Generalizations

· Element

Properties

· value : String (0..1)
Optionally empty value mapped to the 'key'.

· annotatedElement : Element (0..1) {unique}
This property refers to the 'Element', which is annotated.

· key : AnnotationType (1..1)
Reference to a user defined 'AnnotationType'.

Constraints

No additional constraints specified.

10.2.5
AnnotationType

Semantics

An 'AnnotationType' is a 'PackageableElement' used to define structured annotations. Currently there are no standardized predefined 'AnnotationType' instances, but some standardized predefined 'AnnotationType' instances may be added in the finalized draft for TDL v1.0 or in future versions of TDL to supply light-weight extensions of the language. Proposed instances are:

· Step ID - may be used to assign labels to 'Behaviour' elements, e.g. for reference and navigation within documentation

· Entry point - may be used to identify test descriptions which serve as entry points for testing a particular use case, distinguishing them from test descriptions referenced within other test descriptions, which cover only a part of a use case.

Generalizations

· PackageableElement

Properties

No properties specified.

Constraints

No additional constraints specified.

D:\DATA\mch1312a\Testen\TTCN-3\ETSI-MTS\test description language\SVN\STFworkarea\DraftDeliverables\TDL-ES_203_119_v0.0.2 INCLUDETEXT "\\ETSI_ES_TDL-annex.docx"
Annex A (informative):
TDL Examples with Concrete Syntax
[Editor note: To be provided as a separate submission to MTS.]

ABOVE: LINKS TO EXTERNAL FILES FOR THE VARIOUS CLAUSES

History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).

	Document history

	 V0.0.1
	2013-04-29
	Submission for MTS review

	V0.0.2
	2013-09-17
	2nd submission for MTS review

	
	
	

	
	
	

	
	
	

