	
	 DOCPROPERTY "Information" * MERGEFORMAT
	

	[image: image5.png]ERICSSON 2

	Ericsson Internal
 DOCPROPERTY "DocName" * MERGEFORMAT
	1 (19)

	Prepared (Subject resp)
	No.

	Gusztáv Adamis
	 DOCPROPERTY "DocNo" "LangCode" * MERGEFORMAT

	Approved (Document resp)
	Checked
	Date
	Rev
	Reference

	 DOCPROPERTY "ApprovedBy" * MERGEFORMAT
	 DOCPROPERTY "Checked" * MERGEFORMAT
	2012-12-21
	PA2
	 DOCPROPERTY "Reference" * MERGEFORMAT

	
	

TDL
Contents

21
Abbreviations

22
Introduction

23
TDL Requirements

53.1
Ericsson’s comments on TDL Requirements

63.2
New Ericsson’s Requirements

74
UTP constructs

84.1
UTP constructs

95
Comparison of existing TDL documents

126
Ericsson’s Comments on Proposed TDL Elements

126.1
Data representation

136.2
Test scenarios, Lifelines

146.3
Operators, Types

146.4
Timers

156.5
State Invariant

156.6
Combined Fragments – Interaction Operators

156.6.1
Sequence

166.6.2
Alternative

176.6.3
Loop, Break

176.6.4
Default

186.6.5
Other operators to introduce

186.7
Test Scenario Graphs

187
References

1 Abbreviations
	IE
	Information Element

	SUT
	System Under Test

	TDL
	Test Description Language

	UML
	Unified Modeling Language

	UTP
	UML Testing Profile

2 Introduction

This document describes the Ericsson’s opinion on the requested features of a new graphical Test Description Language (TDL), and analyzes the documents [1] [2] [3] [4] prepared by other organizations in the same topic.
3 TDL Requirements
Document [4] lists the Requirements of TDL, as follows:
1. TDL must be specifically designed for describing black-box tests.

2. TDL must focus on interactions at SUT interfaces

a. message passing (MUST)

b. procedure-based (SHOULD)

c. shared variables (MAY)

3. TDL must define the interaction flow with declarative (timing) constraints plus data flow, i.e. focus on what a test/system shall do, not how. The abstraction level of TDL must be higher than executable tests.

4. TDL describes tests independently from a concrete tester implementation.

5. TDL must have a simple type system; data items in the TDL are presented by names/identifiers.

6. TDL must define expected test scenarios.

a. Everything in actual scenario that do not match TDL scenario is a test failure.

b. Defining explicitly verdicts on the scenario should be avoided

7. TDL must be usable for test engineers who cannot code scripts.

8. TDL must base on UML2.0.
Rationales:

· UML is de-facto industry standard. It’s not reasonable to compete with UML.

· All CASE tools support UML. Tool support for TDL acceptance is important.

· A good marketing strategy could be to create TDL as UML profile.

9. Any UML CASE tool should be possible to use for authoring TDL.
Rationales:

a. At least for the beginning there are no special TDL authoring tools available.

10. TDL should reuse UML SC notation as much as needed and as less as possible.
Rationales:

· TDL should be easy to use notation, therefore it should include from SC only the features that are mandatory for TDL. All nice-to-have features should be left out.

11. TDL must be formal for deriving executable test cases automatically from it.

12. TDL must have common concepts and various representation formats:

a. Graphical presentation: constrains and extends UML sequence diagrams.

b. Tabular: supporting document-based approaches (Word / Excel / HTML).

c. Textual: for tool support and freaks.

13. TDL must be independent of any test scripting language.
Rationales:

· TDL should be possible to render into any scripting language in choice.

· This will make market acceptance of TDL easier.

14. TDL must be combined with a test development framework, e.g. for supporting a type system.

a. Data types and instances of any programming language must be supported.

b. Data types and instances must be defined in separate (language-specific) files.

15. Timing constraints must be modeled by defining min-max durations between events, instead of using timer operations like start, stop, and timeout.

16. Multiple communicating SUT or SUT component instances must be supported. But only the tester/SUT interface is relevant. How SUT parts are decomposed and how they are communicating by themselves is not relevant.

17. TDL must support hierarchical composition of sequence charts similar to High-level Interaction Diagrams in UML and HMSCs in MSC-2000.

18. TDL must support asynchronous and synchronous (function call) messaging.

19. Test architecture definition must be supported – SUT and test components, ports, interface types.

20. TDL sequence charts must support context variables.

21. Tester should be able to handle several alternative (input) events from the SUT.

22. TDL must enable tracing of requirements down to tests.

3.1 Ericsson’s comments on TDL Requirements

· #2 and #18 express the same but in a contradictory way. Ericsson suggests implementing only the message-based communication in the first version of the TDL, and procedure-based communication can be added in a later version if there is a need for it.
· #6 Let it be the possibility of the explicit verdict setting. For example, an error handling procedure should have a pass verdict if the test purpose is to test the error handling mechanism itself, but must have a fail verdict if it is executed in a default.
· #8 If TDL depends on a concrete UML version (why 2.0?) will it mean that any further development of UML will be automatically reflected in TDL or TDL then must be redefined or from a given point there will be no more dependency between the two notations?

· #8 UTP is an existing UML profile for testing. Why should we have 2 test-related profiles?

· #9 If we add new elements to UML or modify the meaning of existing ones, the existing UML CASE tools will not be suitable for TDL. The UML tools are good to model the SUT, but are inappropriate to express what the tester should accept. Ericsson believes, that
· the TDL should not be determined by the features of an existing UML tool

· the features of any existing UML tool will not be enough for the TDL.

· #11 It is impossible to generate executable test cases directly from TDL.
· #5 Too abstract data

· #6 How to define what to do if a test fails

· etc.

If the abstraction level of TDL is too high, then a lot of stuff must be implemented in the test harness, which also depends highly on the protocol to be tested. Therefore, a modification in a high-level TDL diagram requires a modification in the very low-level test harness code.
· #12 [1] proposes to define the abstract language not a concrete representation. We should give only an example for a concrete syntax.
· #14 and #5 If data types of a concrete framework/programming language are used how to match them with the TDL’s simple types?

· #15 Sometimes the timer start/stop/timeout is more expressive than duration, we should support both.
Duration implies that the beginning and the expiration of a timer are in the same fragment. That is against the modularity and the default concept.
3.2 New Ericsson’s Requirements

In general, Ericsson believes, that the UML SD is mainly to be used for modeling the SUT and not for testing it. The TDL should be a graphical testing notation that “observes the world from the perspective of the Tester”. That is, by the TDL, we should not express the correct behavior of the SUT, but we have to express, what the Tester must see. (E.g. not it is important, which is the concrete value of a parameter of a message sent by the SUT, but it is important e.g. in which range the value may fall to accept it.)
If we want to use the TDL also for generating real, executable code from a TDL specification, a test harness is needed. The TDL is for test developers, who do not want to code. If the TDL is only suitable to describe the desired behavior of the SUT, then a lot of low-level coding is required to develop the test harness, which will highly depend on the protocol executed by the SUT (e.g. the harness must know the states/messages of the SUT). To reduce the need of the low-level coding in test harness, the TDL must be able to express the whole protocol behavior, including error-handling procedures, negative tests, etc.; and the test configuration. Otherwise, though the test cases can be specified in a very high abstraction level, the test harness development would require a extensive, very low-level of coding.
23. Possibility of decomposition of Tester and the possibility of the assignment of the Tester elements to several concrete network nodes/components.
24. Only relevant part of the messages (specific IEs, headers etc.) that make difference in the behavior – but ONLY that part of the data – to be handled in TDL/model level [6]
25. Relevant data/data classes shall be possible to define -> Data Pools
There are a lot of protocols, where the protocol automaton is so simple, and the testing means to test the same simple automaton with several different pieces of data or data combinations (e.g. with valid and invalid username/password pairs)
26. Defaults are to be defined and has to be explained in details what to do in an erroneous situation
27. It should be able to define what to do if a test case fails, e.g. to bring the tester/SUT to a stable state.
28. TDL should be able to support negative testing
29. TDL shall support both test definition (MBT & manual) and log presentation [6]
30. Shall be intuitive – no learning curve “at all” [6]
4 UTP constructs

If a new UML-based language is defined, we have to clearly specify the relationship of the new language with the existing UTP.
Ericsson does not want to integrate the UTP into TDL. However, if we found a construct that is needed to TDL, and is not part of the UML SD, then let us examine the UTP. If this or similar construct can be found in UTP, then let us take it from UTP with the same syntax. If the UTP does not have the requested feature, or the syntax is not appropriate in TDL, then let us find a new solution in TDL.
Ericsson believes that at least there are several useful constructs, which are implemented in UTP and therefore could be taken over to TDL.

Ericsson suggests taking into consideration the implementation at least the following items in TDL:

· To be able to structure/partition the Tester somehow. The concept of the TDL known so far is that the Tester is one unit having one lifeline. This would result in very complicated and unreadable test descriptions, if a real tester had several different ports (e.g. upper interface and lower interface). If a tester has several ports but just one lifeline, it would be too complicated to recognize the individual communications on different ports. In addition, how to express, if the order of messages to different tester ports can be any, but messages on the same port strict? Ericsson believes that at least different ports of the tester should be explicitly indicated (different lifelines).
Another reason for the decomposition is the way of working in combined agile/scrum development process. In these groups, the testing is carried out in parallel with the design. Here the topology of the system/network is defined, and which concrete components are the SUT and which concrete components compose the tester depends on the test purpose.
· Test Objective (~Test Purpose)

· Verdicts – to be discussed

· Defaults.

· Default behavior should be expressed in TDL. In [4] Default is introduced, but on fragment level. (In [2] “unless” is used with similar meaning and similar “scope”). This approach in practice is often too detailed; typically, a test case-wide default is enough. On the other hand, if only fragment level default is applied, probably the same sequence or at least reference should be added to each fragment, which causes heavy boring task for the designer and should the system change, the same modification must be done at a lot of places. Therefore, Ericsson wants to introduce a Default construct on test case (Frame) level, as well.
· UTP’s multi-level default handling should be considered as alternatives of several other constructs (Ignore, Negative testing)

· Finish

· Flexible wildcard mechanism

· Test Data Pools

· Apart from the suggested Time Duration notion, Ericsson considers to allow the conventional Timer start/stop/timeout operations, as well.

· easier to express “inter-interaction occurrence” timers than with duration start/end observation

· timer names can be assigned on TDL level

4.1 UTP constructs

This chapter summarizes the most important constructs of UTP:

· Test Architecture

· Arbiter

· Scheduler

· SUT

· Test Context (~ Test configuration)

· Test Components

· Test Behavior

· Test Case

· Test Objective

· Test Log

· Verdict

· Default

· repeat (~ Interrupt)

· continue (with the next fragment)

· conclude test (~ TTCN-3)

· Finish

· Log

· Test Data

· Wildcards

· Data Partition

· Data Pool

· Data Selector

· Coding Rules

· Timer Concepts

· Start

· Stop

· Timeout

· Read

· Running

· Timer related messages

Timezone
5 Comparison of existing TDL documents

In this chapter, we summarize and compare the requested features of TDL language as proposed in [1] [2] [3] [4].

Red italic entries reflect to UML constructs should not be implemented in TDL [3].
	
	[2]
	[3]
	[4]
	Ericsson

	Metamodel
	UML
	UML MOF
	
	

	Constructs
	
	Frame

(Test scen.)
	Frame

(Test scen.)
	+

	
	
	Lifeline
	Lifeline
	+

	
	
	
	SUT
	+

	
	
	
	SUT port
	+

	
	
	Execution Specification (“Activation”)
	Execution Specification (“Activation”)
	+

	
	
	
	Context (Tester) variables
	+

	
	
	Message
	Asynch. message sending
	+

	
	
	Timer constraints
	Time duration
	Start/stop/timeout as well

	
	
	
	Time observation
	Further discussions

	
	
	State Invariant (2 versions)
	State Invariants (only {…})
	+

	
	Interaction Use (Reference)
	Interaction Use (Reference)
	Interaction Use (Reference)
	+

	Combined Fragments
	Sequence
	Seq
	Seq
	No

	
	
	Parallel
	Parallel (2 versions)
	+

	
	Optional
	Option
	
	Further discussions

	
	Unless

	
	
	

	
	Loop also with unless
	Loop also with guard and break
	Loop also with guard and break
	Loop definitions to precise

	
	Ignore
	Ignore
	Ignore (as an open issue)
	Should

	
	
	Critical
	
	No

	
	
	Consider
	
	No

	
	
	Assert
	
	No

	
	
	Neg
	
	May

	
	
	
	
	Conditional operator (if)

	
	
	
	Default

	+
Not only on fragment level

	Other
	Nesting
	
	
	+

	
	Requirements
	
	Requirements
	+

	
	
	Guard
	
	

	
	
	
	Package
	+

	
	
	
	Scenario Graph (2 versions)
	

	
	
	
	Quiescence

	No

	
	
	
	Asynchronous. events
	+

	
	
	
	Synchronous events
	Probably not in the first version of TDL

6 Ericsson’s Comments on Proposed TDL Elements
In this chapter, Ericsson makes remarks on TDL elements proposed in [4].

In general, we have to state again, that the UML SD can be a good starting point for the development of TDL, but UML is a modeling and not a testing notation. TDL must be a graphical test language that should be able to express, what the Tester should wait for in different situations, when a Tester can state, that the SUT behaves according the specification. We do not feel, that this general requirement is fully reflected in the documents [1] [2] [3] [4]. This is why we feel that some proposed constructs are not defined in a right way, e.g. message contents, alt, default, ignore, option.
6.1 Data representation

Further discussions are needed on the proposed data representation method. Problems identified so far:

· How to interconnect the two contradictory requirements: to have a TDL-specific, easy type systems with the requirement that the data definition is not part of TDL, any language/framework could be use for data specification

· The proposed solution is neither graphical, nor intuitive; introduces a programming language-like solution with nested parenthesis.

· More powerful template mechanism needed (range, value list, etc.)

· What is the meaning of the parameters on messages/function calls: sent or received (accepted) values? How can we describe, which are the ACCEPTED by tester values in a message? E.g.: SUT sends its IP address, then this will be on the arrow (?), but the test acceptance criteria probably should be, if this IP address is in a predefined range. How to express it? (Data pools can be a solution in some, but not in all the cases). It should be decided, if the TDL describes the behavior of the SUT (serving as a kind of model of the SUT) or describes what a Tester should/could observe. If we want to specify tests, probably the latter is more meaningful. If we want to use TDL as a modeling language, then the first approach is better. If we want to use for both purposes, then we have to create the possibility in TDL to be able to specify the sent and to-receive values separately.
6.2 Test scenarios, Lifelines

· It should be able to structure/partition the Tester somehow. The concept of the TDL known so far is that the Tester is one unit having one lifeline.

This concept would result in very complicated and unreadable test descriptions, if a real tester had several different ports (e.g. upper interface and lower interface). If a tester has several ports but just one lifeline, and the messages carry the port information, on one hand, it would be too complicated to recognize the individual communication flows on different ports, but on the other hand, it would require a boring stuff from the test developer to identify the port on each message. In addition, how to express, if the order of messages from/to different tester ports can be any, but messages on the same port strict? Ericsson believes that at least different ports of the tester should be explicitly indicated (different lifelines).
Another reason for the decomposition is the way of working in combined agile/scrum development process. In these groups, the testing is carried out in parallel with the design. Here the topology of the system/network is defined, and which concrete components are the SUT and which concrete components compose the tester depends on the test purpose.
· How to express the ordering? (On the figure below, taken from [4], msg2 MUST arrive BEFORE msg3? It is quite complicated to express (with the par construct) the messages of different ports are not ordered, but messages of the same port are ordered, which is the typical case in real life. If the tester might have more than lifelines, then it would be obvious.
[image: image1.emf]

6.3 Operators, Types

The proposed sets of
· operators
· unary: -, NOT, ++, --

· binary: +, -, *, /, AND, OR, XOR

· and types
· char, int, bool, arrays, records
should be further discussed. E.g. comparison operators, strings are missing.
It is an open question how to relate/map the protocol/SUT-dependent data types/variables defined in an external language and the data types/variables defined in TDL.

6.4 Timers

Ericsson agrees on introducing the duration symbol. But
· a duration interval constraint (e.g. a response should arrive not earlier than 5 and not later than 10 seconds) should also be introduced

· as an alternative, we suggest to keep the conventional timer start/stop/timeout etc. operations.

· In some situations it will produce more readable specification

· This way timer names can be used that makes it easier to refer e.g. to a standard or to give hints to the automatic code generator

· If only a duration symbol is introduced, it causes that a timer must start and stop in the same fragment. It is against the modularity (e.g. when different parts of the test case are written in different fragments and these fragments are referenced in the test case. Or similar problem arises when a timer expiration is to be handled in a default.)

· Probably timer/start/stop/timeout can be a more intuitive alternative of the proposed Duration start time observation construct, whose recommended notation itself seems to be complicated.
6.5 State Invariant

Ericsson suggests using the following alternative symbol – as proposed in [3] – as well.

[image: image2.emf]
6.6 Combined Fragments – Interaction Operators
6.6.1 Sequence

Ericson proposes for the “by default” ordering of the messages:

· ordering of the messages on the same lifeline should be strict
· ordering of the messages between different timelines should be any.

Since from the point of the Tester, only the order of the messages on the lifeline of the Tester is important, if a Tester has just one lifeline, there is no need for the Sequence symbol.

If a Tester (components or ports) may have several lifelines, the Sequence may have a meaning, if we want to indicate the strict ordering of messages among different lifelines of the Tester.

6.6.2 Alternative
Further discussion is needed.

Ericsson agrees with the introduction of the modified meaning of the alt operator. However, the given definition
 in [4] is not consistent. We also suggest to providing the possibility of using explicit guard conditions in alt instructions, that may substitute the intensive usage of if/else constructs.
It should be decided, if the TDL describes the behavior of the SUT (serving as a kind of model of the SUT) or describes what a Tester should/could observe.
6.6.3 Loop, Break
The proposed definition in [4] is not precise, similar problem arises as in case of UML Sequence Diagram definition. We can accept the way of clarification of UML 2.4
, however, this approach is not for sure the best for the testing practice, since the guarding condition typically handles some unexpected events (e.g. buffer full) that may make it useless to execute the loop ‘min-int’ times.
Probably a better approach could be to separate the ‘for’ and the ‘while’ loop constructs, or to use the ‘break’ operator explicitly instead of a guard condition in the head of the loop.
6.6.4 Default

Ericsson agrees with the introduction of a ‘Default’ operator. However, it should be investigated the introduction of a whole test-case-wide default as well, not only the proposed version, which is valid only for a fragment.
It should also be investigated to introduce different default types, as it is in UTP. Sometimes an event in ‘default’ is just to be handled as an interrupt (see Ignore chapter, too), but in some cases, it causes the explicit end of the test case or lifeline. Some mechanism should be found for termination of a lifeline.
6.6.5 Other operators to introduce

6.6.5.1 Ignore

Ignore operator can be used in an effective way in a test case for example to filter some periodic ‘keep-alive’ messages while waiting for a desired event to happen. Therefore, Ericsson proposes it in TDL.
6.6.5.2 Neg

Negative operator probably may be useful in negative (“provocative”) testing.
6.6.5.3 Condition (if)

In the proposed versions of TDL there is no conditional operator at all.
6.7 Test Scenario Graphs

Further discussion is needed to choose from the proposed notations.
The notation should be able to express:

· static conditions (e.g. TestScenario1 is to run if SUT implements a given optional feature of a standard)

· dynamic conditions (e.g. TestScenario2 is to run if TestScenario1 fails)

· parallel execution (e.g. for load testing).
7 References

[1] A. Ulrich: Overview of the ETSI Test Description Language – 2nd MBT User Conference 2012 Tallinn PowerPoint

[2] A. Ulrich: ETSI Work Item on “Test Description Language” – SIEMENS AG; MTS(12)TDL005_Potential_TDL_features.pptx PowerPoint

[3] Andres Kull: Elvior Input to TDL discussion – Elvior 20th Jan. 2012 - MTS(12)TDL001_Elvior_input_to_TDL_discussion.pdf
[4] A. Kull, J. Nikolajev, K. Raiend: TDL Specification – 29th June 2012
[5] Kirill Fakhroutdinov: Sequence Diagrams Reference
http://www.uml-diagrams.org/sequence-diagrams-reference.html
[6] Gy. Réthy: Ericsson input to the TDL 1 meeting
MTS(12)TDL002_Ericsson_input_to_the_TDL_1_meeting.ppt

� Unless “as the last block of any fragment” can be considered similar to “Default”. Question: Do we really need this “precision” or Test Case wide Default enough?

� It can be used e.g. for message filtering and in defaults.

� If no explicit verdict assignment in TDL, this could be the only way to test the error handling mechanism of the SUT, which is invoked if not an otherwise requested message arrives.

� Again on fragment level. Do we really need this “precision” or Test Case wide Default enough?

� Document states it can be modeled with Time Duration.

� Tester is modeled as a single instance, even if comprised of several distributed components. This helps to track of causality relation between events.

If it is important to generate parallel test components for distributed tester components then the input/output events in tester’s lifeline should be tagged with the port names that distinguish which events are related to which tester components. This information allows to generate scripts for parallel test components and to synchronize them�. � REF _Ref342395135 \r \h ��[4]�

� The interaction operator alt means that the combined fragment represents a choice or alternatives of behavior. alt fragment includes several alternative regions. At most one region of the alt fragment will be chosen. alt fragments are ONLY used to describe alternative outputs from the SUT.

Instead of UML SC the chosen operand cannot have� an explicit or implicit guard expression in TDL. SUT selects the alt region to be executed based on the message it sends to the tester that matches the first message in an alt region. If there are many fragments that match, then the first of them will be chosen by the tester. If any of the first regions do not match then the last region with “default” will be selected.�

�

Alternative regions define mutually exclusive event scenarios. The choice between the regions depends on the initial event of the region.

Initial event of the region must be tester input event. After tester receives an event that matches one of the initial events of alternative regions then the region is selected and the test execution continues according to the test sequence defined in that region.

�

� INCLUDEPICTURE "http://www.uml-diagrams.org/notation/sequence-loop-bounds-guard.png" * MERGEFORMATINET ���

We may guess that as per UML 2.3, the loop is expected to execute minimum 5 times and no more than 10 times. If guard condition [size<0] becomes false loop terminates regardless of the minimum number of iterations specified. (Then why do we need that min number specified?!)�
If both bounds are specified, loop will iterate minimum the min-int number of times and at most the max-int number of times.

Besides iteration bounds loop could also have an � HYPERLINK "http://www.uml-diagrams.org/sequence-diagrams.html" \l "interaction-constraint" �interaction constraint� - a Boolean expression in square brackets. To add to the other confusions, UML 2.3 also calls both of them guards.

UML tries to shuffle the simplest form of for loop and while loop which causes weird UML 2.3 loop semantics on p.488: "after the minimum number of iterations have executed and the Boolean expression is false the loop will terminate". This is clarified - with opposite meaning - on the next page as "the loop will only continue if that specification evaluates to true during execution regardless of the minimum number of iterations specified in the loop." � REF _Ref342552128 \r \h � * MERGEFORMAT �[5]��
�

[image: image3.emf]

[image: image4.png]

[image: image5.png]