TS 1xx xxx V<0.0.2> (<2013-01>)
Methods for Testing and Specification (MTS);
Security Testing;
Security testing terminology, concepts and lifecycle

[image:]

TECHNICAL SPECIFICATION

Reference
DTS/MTS-101583 SecTest_Terms
Keywords
Analysis, SECURITY, TESTING
ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute yyyy.
All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

TS 1xx xxx V<m.t.e> (<yyyy-mm>)
4

Contents

ETSI
Intellectual Property Rights	5
Foreword	5
1	Scope	5
2	References	5
2.1	Normative references	5
2.2	Informative references	5
3	Definitions, symbols and abbreviations	6
3.1	Definitions	6
3.3	Abbreviations	7
4	Introduction to security testing	7
4.1	Types of dynamic security testing	8
4.2	Penetration testing tools	8
4.3	Test verdicts in security testing	8
5	Use cases for security testing	9
6	Security test requirements	9
7	Functional security testing	10
8	Performance testing for security	11
9	Robustness testing and fuzzing	11
9.1	Types of fuzzers	11
History	14
[bookmark: _GoBack]

[bookmark: _Toc220135599]Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
[bookmark: _Toc220135600]Foreword
[bookmark: For_tbname][bookmark: For_shortname]This Technical Specification (TS) has been produced by ETSI Technical Committee {ETSI Technical Committee|ETSI Project|<other>} <long techbody> (<short techbody>).
[bookmark: _Toc220135601]1	Scope
The present document defines terminology and an ontology which, together, provide the basis for a common understanding of security testing techniques which can be used in testing communication products and systems. The terminology and ontology have been derived from current standards and best practices specified by a broad range of standards organizations and industry bodies and offers guidance to practitioners on testing and assessment of security, robustness and resilience throughout the product and systems development lifecycle. This document specifies terms and methods for the following security testing approaches:
· Verification of security functions
· Load and performance testing
· Resilience and robustness testing (fuzzing)
Target audience: for ETSI MTS and related committees, and the generic testing community.
[bookmark: _Toc220135602]2	References
References are either specific (identified by date of publication and/or edition number or version number) or nonspecific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
[bookmark: _Toc220135603]2.1	Normative references
The following referenced documents are necessary for the application of the present document.
N/A
[bookmark: _Toc220135604]2.2	Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: Ref_TR187011] [i.1]	ETSI TR 187 011 (2008): "Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); NGN Security; Application of ISO-15408-2 requirements to ETSI standards - guide, method and application with examples"
[bookmark: Ref_TS102165_1][i.2]	ETSI TS 102 165-1 TISPAN methods and protocols part 1: TVRA
[bookmark: Ref_ISO9646_1][i.3]	ISO/IEC 9646-1: 1994: "Information technology -- Open Systems Interconnection -- Conformance testing methodology and framework -- Part 1: General concepts"
[bookmark: Ref_ISO15288][i.4]	ISO/IEC 15288: 2008: "Systems and software engineering -- System life cycle processes"
[bookmark: Ref_ISO15408_1][i.5]	ISO/IEC 15408: 2009: "Information technology -- Security techniques -- Evaluation criteria for IT security -- Part 1: Introduction and general model"
[bookmark: Ref_Eckert_et_al][i.6]	C.Eckert 2004 Oldenburg-Verlag: IT-Sicherheit, Chapter 4 Security Engineering
[i.7]	IEEE Standard Glossary of Software Engineering Terminology, IEEE St. 610.121990
[i.8]	Kaksonen, Rauli. A Functional Method for Assessing Protocol Implementation Security. 2001. Espoo. Technical Research Centre of Finland, VTT Publications 447. 128 p. + app. 15 p. ISBN 951-38-5873-1 (soft back ed.) ISBN 951-38-5874-X (on-line ed.).
[i.9]	ISTQB Standard glossary of terms used in Software Testing. Version 2.2 (dd. October 19th, 2012).
[bookmark: _Toc220135605]3	Definitions, symbols and abbreviations
[bookmark: _Toc220135606]3.1	Definitions
For the purposes of the present document, the following terms and definitions apply:
[bookmark: line-331][bookmark: line-321]Attack: A process or script, malicious code or malware that can be launched to trigger a vulnerability.
Zero-day attack: A special form of attack that exploits an unknown vulnerability, and therefore cannot be protected against.
Black-box testing: Testing that ignores the internal mechanism of a system or component and focuses solely on the outputs generated in response to the selected inputs and execution conditions. [i.7]
Bit flipping: A fuzzing technique where input data is mutated by systematically modifying all bits in the communication message or a file.
Fail closed: The software will attempt to shut itself down in case of a vulnerability to prevent further attack attempts.
Fail open: The software will attempt to recover from the failure.
Fail safe: The software can control the failure and restrict the exploitability of the vulnerability.
Failure: A fault, an indication of a vulnerability.
False negative: A vulnerability was not detected even if there was one.
False positive: A vulnerability was detected, but it is not a real vulnerability.
Fuzzing, Fuzz testing: Technique for intelligently and automatically generating and passing into a target system valid and invalid message sequences to see if the system breaks, and if it does, what it is that makes it break.
Grammar testing: An abstract grammar, e.g. ABNF, serves as the basis for test case generation.
Input fault injection: mutates the software or data at interfaces. [i.8]
Negative testing: Testing for the absence of (undesired) functionality.
Risk-based testing: Testing is prioritized on the likelihood of detecting significant failures.
Robustness testing: Testing for robustness of the software system.
Robustness: The degree to which a system or component can function correctly in the presence of invalid inputs or stressful environmental conditions. [i.7]
Syntax testing: A grammar serves as the basis for testing the syntax of an ex- or implicit language.
Threat: The possibility of a successful attack.
Threat agent: The person or automated software that will realize the threat.
Vulnerability: A weakness or a bug in code by design, implementation and configuration mistakes that can be used by malicious people to cause failure in the operation of the software.
Known vulnerability: A known weakness in software that has been found in the past.
Unknown vulnerability, or a Zero-day vulnerability: a weakness or a bug that is hiding in software waiting for later discovery and exploitation.
[bookmark: _Toc220135607]3.3	Abbreviations
For the purposes of the present document, the following abbreviations apply:
DAST	Dynamic Application Security Testing
DoS	Denial of Service
DDoS	Distributed Denial of Service
SAST	Static Application Security Testing
SDLC	System Development Lifecycle
TVRA	Threat, Vulnerability and Risk Analysis
[bookmark: _Toc220135608]4	Introduction to security testing
Various security testing techniques are performed at various phases in the product/system lifecycle, starting from requirements definition and analysis and continuing through design, implementation, verification, operations and maintenance. Mapping the security techniques to different phases of the SDLC is briefly discussed in Section 5, and in Appendix A.
Security tests using Static Analysis, also called Static Application Security Testing (SAST), analyse the source code or the binary for security weaknesses without executing it. Security tests using Dynamic Analysis, or Dynamic Application Security Testing (DAST), execute the code and analyse the behaviour. SAST tools and techniques are out of scope for this document.
[bookmark: _Toc220135609]4.1	Types of dynamic security testing
[bookmark: line-154][bookmark: line-144][image:]
[bookmark: _Ref220127359]Figure 1: Categories of dynamic application security testing domains
Dynamic security testing can be divided in three main domains, as shown in Figure 1:
· testing for security features and functionality (see clause 7);
· testing for performance, load and stress situations (see clause 8); and
· testing for robustness and reliability (see clause 9).
The purpose of security testing is to determine whether a system meets its specified security objectives and security requirements. The security objectives and requirements should include statements about security functions, performance limitations and software reliability. The security engineering process begins with the specification of security objectives and associated requirements [i.1] and involves iterative Threat, Vulnerability and Risk Analysis (TVRA) [i.2].
Especially in the fields of penetration testing and security auditing, additional tests for attack surface analysis and scanning for known vulnerabilities are used. Selected penetration testing tools are briefly discussed in Section 4.2, but otherwise penetration testing is out of scope for this document.
[bookmark: _Ref220128135][bookmark: _Toc220135610]4.2	Penetration testing tools
In penetration testing, the system, device or a software component is analysed using various available hacking tools, with the mentality of a hacker. Some of the available tools are collections of specific exploits or hacker scripts, whereas others are commonly used tools for mapping the attack surface or scanning for common weaknesses in software.
A Vulnerability Scanner is a library of vulnerability fingerprints and friendly attacks in order to reveal known vulnerabilities in the system.
A Port Scanner is a piece of software that will send probes to all UDP and TCP ports in order to trigger responses, mapping the attack vectors by identifying open network services.
Fuzzing tools, or Fuzzers, send a multitude of generated unexpected and abnormal inputs to a service in order to reveal both known and unknown vulnerabilities.
Monitoring tools and Instrumentation, or Instruments, analyse the network traffic, the executable binary, operating environment or the operating platform, in order to detect failures and abnormal behaviour that could indicate existence of a vulnerability.
[bookmark: _Toc220135611]4.3	Test verdicts in security testing
Observability of Failures/Faults is critical in security testing. A fault tolerant system attempts to hide or survive failures, making detection of vulnerabilities extremely hard, but not impossible. Good instrumentation and exception monitoring is required to detect faults and failures that are handled by the fault tolerant code. Failure traces, audit traces, and crash traces are critical for analysing the exploitability of failures. Informative log files and debug logs are required for fault identification and repair.
Test verdicts in security testing should be mapped to the following three categories:
· Pass
· Fail
· Inconclusive
After detection, a failed security test can be further analysed based on the exploitability of the flaw. Exploitability is often divided by which security target the vulnerability threatens: Confidentiality, Integrity or Availability. For example, a Denial of Service exploit will aim to crash a system, or make it unavailable for valid users. A Distributed Denial of Service attack will launch a range of requests to the system from a distributed source, making the system unavailable under heavy load. Buffer Overflow Exploit and other memory handling bugs alter the internal system behaviour by overwriting memory areas. In worst case, this will result in the target system executing the input data. SQL Injection Exploit and other Execution Exploits will inject parameters to executed commands. Directory Traversal Exploit and other file handling attacks will modify file names and directory names to access data that was not intended to be accessible to the attacker. Other availability issues include Busy Loops, Memory Leaks and other resource limitations.

[bookmark: _Toc220135612]5	Use cases for security testing
[bookmark: line-53][bookmark: line-42]The assessment of the security of a system is not a single, stand alone activity but, rather, takes place at a number of differing stages of the System Development Lifecycle (SDLC).
[bookmark: line-711][bookmark: line-63]The various clusters of testing activity are:
a. [bookmark: line-91][bookmark: line-82]Internal Assurance (by the Customer and/or Producer):
[bookmark: line-101]Specification Validation
[bookmark: line-111]Unit Test
[bookmark: line-122]Product Test
[bookmark: line-143][bookmark: line-132]System / Acceptance Test
b. [bookmark: line-162][bookmark: line-153]External Assurance (review Independent 3rd party):
[bookmark: line-172]Producer Organisation Verification
[bookmark: line-181]Producer Practitioner Verification
[bookmark: line-191]Operating Organisation Verification
[bookmark: line-201]Product / Component Verification
[bookmark: line-211]System Verification
[bookmark: line-231][bookmark: line-221]System Compliance
A model mapping these against a generic system lifecycle - as derived from ISO/IEC 15288 [i.2] can be found in Annex A.
[bookmark: _Toc220135613]6	Security test requirements
[bookmark: line-52]Requirements are drawn from:
[bookmark: line-62]Hazard/Threat Analysis
[bookmark: line-710]Vulnerability Analysis
[bookmark: line-81]Risk Analysis
Control Selection
[bookmark: line-152][bookmark: line-142]Hazard analysis and threat analysis should be performed early in the SDLC, but should also be revised during the lifecycle. Vulnerability analysis on the other hand should be performed against an operational system. Control selection affects security test requirements, as it is the starting point for selecting security functionalities in the system. Risk Assessment is the process of analysing potential threats to a system in order to calculate the likelihood of their occurrence [i.4]. The analysis involves the evaluation of the effort required to mount an attack and the gain an attacker might expect from executing the threat successfully.
ETSI TS 102 1651 [i.2] describes a method for carrying out Threat, Risk and Vulnerability Analysis (TVRA) within a standardization environment. This is a 10-step process involving both subjective and numerical analysis to determine the risk factor associated with each identified threat.
[bookmark: _Toc220135614]7	Functional security testing
[bookmark: line-41][bookmark: line-3]Generically, functional testing considers the system from the end user's perspective. It comprises both interoperability and conformance testing. Functional security testing adopts the same approach but, in addition to benign, legitimate users, also considers possible attackers such as those attempting to consume benefits from the system without registering.
The following list of terms and concepts established for traditional functional testing are also suitable for functional security testing:
functional testing is based on an analysis of the specification of the functionality of a component or a system [i.9] without knowledge of the internal structure (black-box testing), depending, for example, on:
scope of testing:
components; or
full system;
context of testing:
integration testing;
interoperability (IOP) testing; or
testing during the System Evaluation [i.4]
A test specification should comprise the following elements [i.3]:
test scenarios including behaviour with data defining a (conditional) sequence of statements or actions
expectations: outcome or results in combination with test verdicts
a configuration or architecture that describes the setting of the target system under test (components) in contrast to the environment including the test system (components) and e.g. communication utilities (middleware or network)
The conformance test methodology specified in ISO/IEC 96461 [i.3] clearly defines a distinction between abstract (specification) and executable (program/script) test suites. Furthermore, it specifies that a single test objective should implemented in a single separated test case and the full list of test cases forms the test suite. These mappings may be different in other standards and practices that may combine multiple test objectives in a single test case.
Taking into account a test base with all the requirements of the system/service under test next step is followed by the description of test purposes including test objectives that must not be provided in a formal way. The following step to find test cases with some concrete test oracle, the conditions and test procedure (i.e. the sequence of test steps) belongs to the test design and results in the test model. Final development step adds a test selection criterion towards a conditional execution considering special prerequisites only. In most cases the test generation happens offline, i.e. before any test execution. We speak about online test generation if test generation considers also observations from any test execution (see below).
Test development is followed by the implementation and execution of the test, i.e. the interaction of the Implementation Under Test (IUT) and the test system. This step may require a test bed or test tool/harness. Any parameterizations of the tests needs to have concrete settings which are provided are provided in an Implementation Conformance Statement (ICS) and Implementation eXtra Information for Testing (IXIT). Finally, the observed test results need to be analysed and compared with the expected results.
Functional testing from the Common Criteria viewpoint focus on the Target of Evaluation (TOE) security functional interfaces that have been identified as enforcing or supporting Security Functional Requirements (SFRs) identified and stated for the TOE. The test documentation shall consist of test plans, expected test results and actual test results. The test plans shall identify the tests to be performed and describe the scenarios for performing each test. These scenarios shall include any ordering dependencies on the results of other tests. Following the BSI application notes the Test plan (procedure) is an informal description of the tests. According to the related test, the description uses pseudo code, flow diagram etc.; related test vectors, test programmes are referenced.
[bookmark: _Toc220135615]8	Performance testing for security
[bookmark: line-5][bookmark: line-4]One of the most common and easiest ways to deploy attacks against systems is a Distributed Denial of Service (DDoS) attack. In this attack, messages or message sequences are sent to the target system in order to restrict or limit valid access to the system. The target system will not receive important messages or information due to performance limitations in the application, limited network bandwidth, resource limitations of the platform operating system, or physical resource limits of the used hardware. In worst case, the entire system can crash under overwhelming load, which is often the goal of the hacker.
In traditional load or performance tests, the system is stressed just slightly above the load that is expected in real deployment. In security tests, however, the system is pushed to its limits by fast sequential or parallel load (). Each parallel session can bind resources, and each sequential session can push the processing power to the limits. Both test scenarios are typically required to measure the performance limits, and to demonstrate what happens when those limits are reached.
If countermeasures for DDoS are applied, then the load and performance tests should be written as functional tests against the relevant countermeasures.
[bookmark: _Toc220135616]9	Robustness testing and fuzzing
Robustness testing, often referred to as "Fuzzing", is a form of testing where system inputs are randomly mutated or systematically modified in order to find security-related failures such as crashes, busy-loops or memory leaks. Hackers use these flaws in order to inject malicious code into the system, compromising the integrity of the system.
In some areas, fuzzing is also used to find reliability and robustness errors caused by corrupted packets or interoperability mistakes. Robustness testing is a more generic name for fuzzing, as the name "fuzz" typically refers to random white noise anomalies.
Fuzzing tests a live executable system for unknown vulnerabilities. Fuzzing is a form of dynamic risk-based system evaluation and should be used as part of the post-development TVRA activities. It is not a conformance activity although it can be used as part of testing the error handling conformity. There is no expected response to a test input, and therefore conformance oracles are very difficult to build for fuzz testing. Fuzzing is typically performed as black-box testing through the exposed interfaces but there are gray-box variants of fuzzing where the code execution is instrumented and fuzz test generation changes based on actions inside the tested binary.
[bookmark: line-7][bookmark: line-6][bookmark: _Toc220135617]9.1	Types of fuzzers
"Smart Fuzzing" is typically based on a behavioural model of the interface being tested. Such testing needs to be protocol aware and have optimized anomaly generation. When fuzz tests are generated from a model built from the specifications, the tests and expected results can also be documented automatically. Protocol awareness increases test efficiency and coverage by going deep into the behaviour in order to test areas of the interfaces that rarely appear within typical use cases. Smart fuzzing is dynamic in behaviour with the model implementing the required functionality for exploring deeper in the message sequence. The creation of anomalies can be optimized and can go beyond simple boundary value analysis. Smart model-based fuzzers explore a much wider range of attacks by testing with data, structure and sequence anomalies. Libraries of anomalies are typically built by inspecting the system or design to determine what and where potential errors might occur, selecting known hostile data and then systematically trying it in all areas of the interface specification.
"Dumb Fuzzing" is typically template based, building a simple structural model of the communication from network activity capture or files. In its simplest form, a template-based fuzzer will use the template sample as a binary block of data, which it mutates. Depending on the algorithm used, template-based fuzzing can appear similar to random white noise ad-hoc testing. Random test generators include everything from simple bit-flipping routines to more complex mutation algorithms such as moving input data around, removing data, or replacing data with other unexpected data.
[bookmark: x___x___x]Test generation can be either on-line or off-line. Online test generation has the benefit of adapting to the behaviour and feature set of the test target. Offline tests can sometimes save time from the test execution, but can take significant amount of disk space. Offline tests will also require regeneration in case the interface changes, and therefore maintenance of the tests consumes a lot of time.
Fuzzer types (note that a fuzzing tool can feature several of these techniques or classifications):
Specification-based fuzzer is a tool that is always also model-based, and where the behavioural model is build from the interface/protocol specification.
Model-based fuzzer is a test generator that uses a behavioural model internally in order to generate and execute the fuzz tests. The model can be interpreted from an abstract test notation, formal specification, or from a template (traffic capture or a file).
[bookmark: line-31]Block-based fuzzer is a simple model where the structure of a message is described as data blocks, with meta data to help test generation.
[bookmark: line-32]Random fuzzer applies random mutations in random places in the data.
[bookmark: line-33]Mutation fuzzer applies random or non-random mutations into the data. It can be either model-based or template based fuzzer.
[bookmark: line-34]Evolutionary/Learning fuzzer applies changes to the data based on replies from the target system, or based on information provided by other monitoring or instrumentation tools such as branch coverage information.
[bookmark: line-35]File fuzzer is a fuzzer that tests file formats such as videos, documents, pictures or audio.
[bookmark: line-36]Protocol fuzzer is a fuzzer that tests communication protocols such as SIP, RTP, HTTP, or DHCP.
[bookmark: line-37]Client-side fuzzer tests the client side implementation such as browser or VoIP terminal.
Server-side fuzzer tests the server-side implementation such as a web server or VoIP proxy/registrar.

Annex A (informative):
Title of informative annex
[image:]

[bookmark: _Toc220135618]History

	Document history

	<Version>
	<Date>
	<Milestone>

	0.0.1
	September 2012
	First draft

	0.0.2
	January 2013
	Stable draft

	
	
	

	
	
	

[bookmark: pages12][bookmark: docnumber][bookmark: docversion][bookmark: docdate][bookmark: doclogo][bookmark: docdiskette][bookmark: GSBox][bookmark: doctypelong][bookmark: page2][bookmark: docworkitem][bookmark: keywords][bookmark: ETSIinfo][bookmark: mailto][bookmark: copyrightaddon][bookmark: tbcopyright]
image2.png

image3.jpg

image1.jpeg

