Draft ETSI ES 202 7xx V0.0.1 (2013-04)
10

Draft ETSI ES 202 7xx V0.0.1 (2013-04)
Methods for Testing and Specification (MTS);
The Testing and Test Control Notation version 3;
TTCN-3 Language Extensions: Support for Security Testing

ETSI Standard
[image: ETSI_BG_final_new]

Reference
RES/MTS-138ed121 T3ExtExtTRI
Keywords
testing, TTCN

ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2013.
All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Contents
Intellectual Property Rights	4
Foreword	4
1	Scope	5
2	References	5
2.1	Normative references	5
2.2	Informative references	6
3	Definitions and abbreviations	6
3.1	Definitions	6
3.2	Abbreviations	6
4	Package conformance and compatibility	6
5	Package concepts for the core language	7
5.1	The fuzz function	7
6	Package semantics	8
7	TRI extensions for the package	8
8	TCI extensions for the package	8
Annex A (normative): BNF and static semantics	9
A.1	Additional TTCN‑3 terminals	9
A.2	Modified TTCN‑3 syntax BNF productions	9
A.3	Additional TTCN‑3 syntax BNF productions	9
Annex C (normative): Pre-defined TTCN-3 functions	9
C.6	Other functions	10
C.6.1	The seed	10
History	11

[bookmark: _Toc346006412][bookmark: _Toc346015634][bookmark: _Toc228329440]
Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
[bookmark: _Toc346006413][bookmark: _Toc346015635][bookmark: _Toc228329441]Foreword
This final draft ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS), and is now submitted for the ETSI standards Membership Approval Procedure.
The present document relates to the multi-part standard covering the Testing and Test Control Notation version 3, as identified below:
ES 201 873-1 [1]:	"TTCN‑3 Core Language";
ES 201 873-3 [i.2]:	"TTCN‑3 Graphical presentation Format (GFT)";
ES 201 873-4 [2]:	"TTCN‑3 Operational Semantics";
ES 201 873-5 [3]:	"TTCN‑3 Runtime Interface (TRI)";
ES 201 873-6 [4]:	"TTCN‑3 Control Interface (TCI)";
ES 201 873-7 [i.3]:	"Using ASN.1 with TTCN‑3";
ES 201 873-8 [i.4]:	"The IDL to TTCN-3 Mapping";
ES 201 873-9 [i.5]:	"Using XML schema with TTCN‑3";
ES 201 873-10 [i.6]:	"TTCN-3 Documentation Comment Specification";
ES 202 784 [i.8]:	"TTCN-3 Language Extensions: Advanced Parameterization";
ES 202 781 [i.7]:	"TTCN-3 Language Extensions: Configuration and Deployment Support";
ES 202 782 [i.10]:	"TTCN-3 Language Extensions: Performance and Real-Time Testing Concepts";
ES 202 785 [i.9]:	"TTCN-3 Language Extensions: Behaviour Types".
[bookmark: _Toc346006414][bookmark: _Toc346015636][bookmark: _Toc228329442]
1	Scope
The present document defines the Security Testing Support package of TTCN‑3. TTCN‑3 can be used for the specification of all types of reactive system tests over a variety of communication ports. Typical areas of application are protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module testing, testing of CORBA based platforms, APIs, etc. TTCN‑3 is not restricted to conformance testing and can be used for many other kinds of testing including interoperability, robustness, regression, system and integration testing. The specification of test suites for physical layer protocols is outside the scope of the present document.
TTCN‑3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as concepts in the TTCN-3 core language or in its interfaces TRI and TCI, but which are optional as part of a package which is suited for dedicated applications and/or usages of TTCN-3.
This package defines the TTCN-3 support for data fuzzing. Fuzz testing or fuzzing is a well-established automated and efficient black-box testing method for finding software flaws. It is widely used to test for security problems in software or computer systems. It is a black-box testing technique in which the system under test is stressed with invalid, unexpected or random data inputs and data structures through its interfaces. The purpose of fuzzing is to reveal implementation vulnerabilities by triggering failure modes. This is done by stimulating the system with unexpected data in the form of modified valid data, and observing the behavior of the system.
While the design of TTCN‑3 package has taken into account the consistency of a combined usage of the core language with a number of packages, the concrete usages of and guidelines for this package in combination with other packages is outside the scope of the present document.
[bookmark: _Toc346006415][bookmark: _Toc346015637][bookmark: _Toc228329443]2	References
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the reference document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
[bookmark: _Toc297648727][bookmark: _Toc346015638][bookmark: _Toc228329444]2.1	Normative references
The following referenced documents are necessary for the application of the present document.
[bookmark: REF_ES201873_1][1]	ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language".
[bookmark: REF_ES201873_4][2]	ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics".
[bookmark: REF_ES201873_5][3]	ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".
[bookmark: REF_ES201873_6][4]	ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".
[bookmark: REF_ITU_TX290][5]	Recommendation ITU-T X.290: "OSI conformance testing methodology and framework for protocol Recommendations for ITU-T applications - General concepts".
NOTE:	The corresponding ISO/IEC standard is ISO/IEC 9646-1: "Information technology -- Open Systems Interconnection -- Conformance testing methodology and framework -- Part 1: General concepts".
[bookmark: _Toc346006417][bookmark: _Toc346015639][bookmark: _Toc228329445]2.2	Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: REF_ES201873_2][i.1]	Void.
[bookmark: REF_ES201873_3][i.2]	ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".
[bookmark: REF_ES201873_7][i.3]	ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 7: Using ASN.1 with TTCN-3".
[bookmark: REF_ES201873_8][i.4]	ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 8: The IDL to TTCN-3 Mapping".
[bookmark: REF_ES201873_9][i.5]	ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 9: Using XML schema with TTCN-3".
[bookmark: REF_ES201873_10][i.6]	ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".
[bookmark: REF_ES202781][i.7]	ETSI ES 202 781: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Configuration and Deployment Support".
[bookmark: REF_ES202784][i.8]	ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Advanced Parameterization".
[bookmark: REF_ES202785][i.9]	ETSI ES 202 785: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Behaviour Types".
[bookmark: REF_ES202782][i.10]	ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: TTCN-3 Performance and Real Time Testing".
[bookmark: REF_ES202786][i.11]	ETSI ES 202 786: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: TTCN-3 Continuous Signal Support".
[bookmark: _Toc346006418][bookmark: _Toc346015640][bookmark: _Toc228329446]3	Definitions and abbreviations
[bookmark: _Toc346006419][bookmark: _Toc346015641][bookmark: _Toc228329447]3.1	Definitions
For the purposes of the present document, the terms and definitions given in ES 201 873-1 [1], ES 201 873‑4 [2],
ES 201 873-5 [3], ES 201 873-6 [4] and Recommendation ITU-T X.290 [5] apply.
[bookmark: _Toc346006420][bookmark: _Toc346015642][bookmark: _Toc228329448]3.2	Abbreviations
For the purposes of the present document, the abbreviations given in ES 201 873-1 [1], ES 201 873‑4 [2],
ES 201 873-5 [3], ES 201 873-6 [4], Recommendation ITU-T X.290 [5] and the following apply:
	
[bookmark: _Toc346006421][bookmark: _Toc346015643][bookmark: _Toc228329449]4	Package conformance and compatibility
The package presented in the present document is identified by the package tag:
	"TTCN-3:2013 Security Testing" - to be used with modules complying with the present document.
For an implementation claiming to conform to this package version, all features specified in the present document shall be implemented consistently with the requirements given in the present document, ES 201 873-1 [1] and
ES 201 873-4 [2].
The package presented in the present document is compatible to:
ES 201 873-1 [1] (V4.5.1)
ES 201 873-4 [2] (V4.4.1)
ES 201 873-6 [4] (V4.5.1)
ES 201 873-7 [i.3] (V4.5.1)
ES 201 873-8 [i.4] (V4.5.1)
ES 201 873-9 [i.5] (V4.5.1)
ES 201 873-10 [i.6] (V4.5.1)
If later versions of those parts are available and should be used instead, the compatibility of the package defined in the present document has to be checked individually.
The package defined in the present document is also compatible to:
ES 202 784 [i.8] (V1.3.1)
ES 202 781 [i.7] (V1.2.1)
ES 202 782 [i.10] (V1.2.1)
ES 202 785 [i.9] (V1.3.1)
ES 202 786 [i.11] (V1.2.1)
and can be used together with those packages.
If later versions of those packages are available and should be used instead, the compatibility to the package defined in the present document has to be checked individually.
[bookmark: _Toc346006422][bookmark: _Toc346015644][bookmark: _Toc228329450]5	Package concepts for the core language
This package defines the TTCN-3 means to define fuzz functions. Fuzzing operations are defined on basis of the TTCN-3 type system and formally specified by special fuzz functions. The fuzzing itself (i.e. the generation of fuzzed data) is done implicitly during the call of the send operation, or explicitly by calling valueof. The repeated application of data fuzzing, i.e. generation of multiple variants to be sent, can be realized via loop constructs. To allow deterministic test cases and to support repeatability we are using pseudo randomness specified on basis of a constant seed. While simple dump random fuzzing often causes poor results, intelligent application/protocol based fuzzing is much more powerful. To support application/protocol based fuzz generators fuzz functions can also specified as external functions.
[bookmark: _Toc268609458][bookmark: _Toc228329451]5.1	The fuzz function
Syntactical Structure
external fuzz function ExtFunctionIdentifier "(" [{ FormalValuePar [","] }] ")" return Type
fuzz function FunctionIdentifier "(" [{ FormalValuePar [","] }] ")" [runs on ComponentType] return Type StatementBlock
Semantic Description
The concept of a fuzz function is similar to the present ordinary functions, but their evaluation is delayed until a specific value is selected via send or valueof operation (lazy evaluation). Fuzz functions may declare formal (in) parameters, and must declare a return type. Apart from the time of evaluation fuzz functions are treated as usual function resp. external functions, hence no extension of the runtime interfaces is required.
EXAMPLES:
	external fuzz function fxz_UnicodeUtf8ThreeCharMutator(// Declaration of an
		in charstring p_param1) return charstring;			// external fuzz function

 	fuzz function fz_RandomSelect(// Declaration and implementation
		in RecordOfInteger list) return integer {			// of an internal fuzz function
			return list[float2int(rnd(getseed()) * int2float(lengthof(list)))];
	}

Generally, fuzz function instances are used to replace values of single template fields or to replace even the entire contents of a template. Fuzz function instances may also be used in-line. A fuzz function instance represents an element of a set of values (the function range), and can only occur in value templates used like a native matching mechanism “instead of values” to define a list of values or templates.
EXAMPLES:
	template myType mw_myData := {
		field1 := fxz_UnicodeUtf8ThreeCharMutator(“abc”),
		field2 := '12AB'O,
		field3 := fz_RandomSelect({ 1, 2, 3 })
}

A single value will be selected in the event of a sending operation or of the invocation of a valueof operation.
EXAMPLES:
	myPort.send(mw_myData);
	myPort.send(fxz_UnicodeUtf8ThreeCharMutator(“abc”));
	var myType v_myVar := valueof(mw_myData);

Storing the selected value of a fuzz function for later use is possible within the sending operation using the ‘-> value’ notation and via explicit invocation of the valueof operation.
EXAMPLES:
	myPort.send(mw_myData) -> value v_myVar;
	myPort.send(fxz_UnicodeUtf8ThreeCharMutator(“abc”)) -> value v_myVar;
	var myType v_myVar := valueof(mw_myData);

Restrictions
a) Fuzz functions shall not be used as incoming templates.
b) All formal parameters must have driecction in.
c) Fuzz functions must have a return type.

[bookmark: _Toc346006423][bookmark: _Toc346015645][bookmark: _Toc228329452]6	Package semantics
[bookmark: OLE_LINK1][bookmark: OLE_LINK2]Not applicable.
[bookmark: _Toc346006424][bookmark: _Toc346015646][bookmark: _Toc228329453]7	TRI extensions for the package
Not applicable.
[bookmark: _Toc346006435][bookmark: _Toc346015657][bookmark: _Toc228329454]8	TCI extensions for the package
Not applicable.
[bookmark: _Toc268609535][bookmark: _Toc228329455]Annex A (normative):
BNF and static semantics
[bookmark: _Toc268609536][bookmark: _Toc228329456]A.1	Additional TTCN‑3 terminals
Table A.1 presents all additional TTCN-3 terminals which are reserved words when using this package. Like the reserved words defined in the TTCN-3 core language, the TTCN‑3 terminals listed in table A.1 shall not be used as identifiers in a TTCN‑3 module. These terminals shall be written in all lowercase letters.
Table A.1: List of additional TTCN‑3 terminals which are reserved words
	fuzz
	
	
	

[bookmark: _Toc268609537][bookmark: _Toc228329457]A.2	Modified TTCN‑3 syntax BNF productions
This clause includes all BNF productions that are modifications of BNF rules defined in the TTCN-3 core language document [1]. When using this package the BNF rules below replace the corresponding BNF rules in the TTCN-3 core language document. The rule numbers define the correspondence of BNF rules.
7.ModuleDefinition ::= (([Visibility] (TypeDef |
							ConstDef |
							TemplateDef |
							ModuleParDef |
							FunctionDef |
							SignatureDef |
							TestcaseDef |
							AltstepDef |
							ImportDef |
							ExtFunctionDef |
							ExtConstDef |
							FuzzFunctionDef |
							ExtFuzzFunctionDef
)) |
							(["public"] GroupDef) |
							(["private"] FriendModuleDef)
) [WithStatement]
297. PortSendOp ::= SendOpKeyword "(" InlineTemplate ")" [ToClause] [PortRedirectValue]
303. PortCallOp ::= CallOpKeyword "(" CallParameters ")" [ToClause] [PortRedirectValue]
314. PortReplyOp ::= ReplyKeyword "(" InLineTemplate [ReplyValue] ")" [ToClause] 							[PortRedirectValue]
318. PortRaiseOp ::= RaiseKeyword "(" Signature "," InLineTemplate ")"
							 [ToClause] [PortRedirectValue]
[bookmark: _Toc268609538][bookmark: _Toc228329458]A.3	Additional TTCN‑3 syntax BNF productions
This clause includes all additional BNF productions that needed to define the syntax introduced by this package. Additional BNF rules that have a relation to modified BNF rules defined in clause A.2, will have the rule number of the modified rule followed by a lower case letter, e.g. number of modified rule 316, number of related additional rule 316a. The numbering of other new rules start with number 900.
[bookmark: TTestcaseDef]900. FuzzFunctionDef ::= FuzzKeyword FunctionKeyword Identifier "(" [FunctionFormalParList] ")"
							[RunsOnSpec] ReturnType StatementBlock
901. ExtFuzzFunctionDef ::= ExtKeyword FuzzKeyword FunctionKeyword Identifier "("
							[FunctionFormalParList] ")" ReturnType
[bookmark: TTestcaseKeyword]902. FuzzKeyword ::= "fuzz"
903. PortRedirectValue ::= PortRedirectSymbol ValueSpec
[bookmark: _Toc228329459]Annex C (normative):
Pre-defined TTCN-3 functions
This annex defines the TTCN-3 predefined functions.
[bookmark: _Toc228329460]C.6	Other functions
[bookmark: _Toc228329461]C.6.1	The seed
To allow repeatability of fuzzed test cases, an optional seed shall be used. There will be one seed per test component. Two predefined functions will be introduced to set the seed and to read the current seed value of the component calling the function. This value exposes the seed used by the predifined rnd function. When rnd is called, this always causes the seed to be implicitly set to the result of the rnd call. When rnd is called with a seed parameter, this is equivalent to calling setseed with the same seed parameter before the rnd call.
Syntactical Structure
setseed "(" in float initialSeed ")"
getseed "(" ")" return float
Semantic Description
The setseed predefined function allows setting of a special seed value per test component. With getseed this value can be read out.Without a previous initialization a value calculated randomly will be used as seed.
[bookmark: OLE_LINK3][bookmark: OLE_LINK4]Upon creation of a new test component a new seed will be created implicitly, if no seed is set via setseed.
EXAMPLES:
	setseed(1.0);
	var float v_f := getseed();

[bookmark: _Toc346006436][bookmark: _Toc346015658][bookmark: _Toc228329462]
History
	Document history

	V0.0.1
	April 2013
	First Draft

	
	
	

	
	
	

	
	
	

	
	
	

ETSI
image1.jpeg

oraft ETSI ES 202 7XX v0.0.1 oracs)

(&)

Mathods for Testing and Specification (T
‘Th Tesling and Tes! Gontrol Notatlon version 3;
TTCN-3 Language Extensions: Support for Security Te

