DEG 201 582 V0.0.1 (2013-05)DTS 201 582 V0.0.1 (2013-05)
2

[bookmark: doctype][bookmark: page2][bookmark: pages12][bookmark: docnumber][bookmark: docdate]DEG DTS 201 5821 V0.0.2 1 (2013-0405)
[bookmark: doctitle]Methods for Testing and Specification (MTS);
Security Testing Case Study Experiences Security design guide enabling test and assurance (V&V)
[bookmark: doclogo]
<

[bookmark: GSBox]
[bookmark: doctypelong]ETSI GUIDE
[image: ETSI_BG_final_new]

Reference
DEG/MTS-2015821
Keywords
Security; Design; Testing; Assurance

[bookmark: ETSIinfo]ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
[bookmark: mailto]If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: doccopyright][bookmark: copyrightaddon]© European Telecommunications Standards Institute yyyy.
[bookmark: tbcopyright]All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.
[bookmark: _GoBack]

Reproduction is only permitted for the purpose of standardization work undertaken within ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

Contents
Intellectual Property Rights	5
Foreword	5
1	Scope	6
2	References	6
2.1	Normative references	6
2.2	Informative references	6
3	Definitions, symbols and abbreviations	6
3.1	Definitions	6
3.2	Symbols	6
3.3	Abbreviations	7
4	Overview on case studies	7
..	7
5	G&D Banking Case Study	7
5.1	Introduction	7
5.2	Background	7
5.3	System under Test	10
5.4	Risk Analysis	10
5.5	Security Testing Approaches	11
5.5.1	Detection of vulnerability to injection attacks	11
5.5.1.1	Data Fuzzing with TTCN-3	13
5.5.1.2	Data Fuzzing Library	14
5.5.2	Usage of Unusual Behaviour Sequences	16
5.5.2.1	Behavioural Fuzzing of UML Sequence Diagrams	17
5.5.2.2	Online Model-Based Behavioural Fuzzing	19
5.6	Final Results	20
5.6.1	Requirements	20
5.6.2	Test Results	20
5.7	Exploitation	21
5.8	Summary	22
6	Accurate	22
6.1	Case Study Characterization	22
6.2	Security Testing Approaches	24
6.3	Results	27
6.4	Exploitation	30
7	Radio case study results	30
8	Automotive case study results	30
9	Spacios case study results	30
10	Comparision and assessment of case study results	31
History	33
Intellectual Property Rights	6
Foreword	6
1	Scope	7
2	References	7
2.1	Normative references	7
2.2	Informative references	7
3	Definitions, symbols and abbreviations	8
3.1	Definitions	8
3.2	Symbols	8
3.3	Abbreviations	8
4	Security in the Lifecycle	8
4.1	Definition of security	8
4.2	Defintion of Lifecycle	8
4.3	Security Architectural Framework	9
4.4	Lifecycle stage component activities	10
4.4.1	Stakeholder Requirement Definition	11
4.4.2	Requirements Analysis	11
4.4.3	Architectural Design	11
4.4.4	Implementation	12
4.4.5	Integration	12
4.4.6	Verification	12
4.4.7	Transition	12
4.4.8	Validation	13
4.4.9	Operation	13
4.4.10	Maintenance	13
4.4.11	Disposal	13
4.5	Lifecycle-specific security characterictics	14
5	Security design activities	14
5.1	Approach	14
5.2	Design dependencies	14
5.3	Security design and implementation processes	14
5.2.1	Adversity Analysis (AA)	14
5.2.2	Risk Analysis (RA)	15
5.2.3	Vulnerability Analysis (VA)	15
5.2.4	Architectural Reference Model (ARM)	15
5.2.5	Architectural Reference Case (ARC)	15
5.2.6	Architectural Specification Case (ASC)	15
5.2.7	Design and/or Effect Classes	15
5.2.8	System Design	15
5.2.9	Traceable Implementation	15
5.2.10	Integration and Configuration	15
5.4	Assurance and Testing processes	15
5.4.1	Testing	15
5.4.2	Assurance	16
5.5	Post-implementaion processes	16
5.6.1	Commissioning	16
5.6.2	Operation	16
5.6.4	Disposl	16
6	Tools and methods mapping to lifecycle stages and security processes	16
Annex A (informative): Security contexts and principles	17
Annex B (informative): Security Architectural Components	18
Functional Groups and Classes	18
Annex C (informative): Application of common criteria in security standardisation	22
Annex D (informative): Application of security assurance profile in security standardisation	23
Annex E (informative): Bibliography	24
History	25

[bookmark: _Toc356297780]
Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
[bookmark: _Toc356297781]Foreword
[bookmark: For_tbname][bookmark: For_voteonly][bookmark: For_standards][bookmark: For_procedure]This final draft ETSI Guide (EG) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS), and is now submitted for the ETSI standards Membership Approval Procedure.
[bookmark: _Toc356297782]
1	Scope
The present document reports on the application of model-based security testing in the telecommunication domain. A relevant case study is briefly described in terms of system under test, applied tool chain, together with an overview of the technical requirements. The case study were conducted as part of ITEA2DIAMONDS project [i.1] and SPACIOS project [i.2].The document concentrates on the results and conclusions from this work, giving an insight into how applicable such methods are today for testing and indicating the current strengths and weaknesses.

Security is defined as being protection of 3 key attributes (Confidentiality, Integrity and Availability) of a product or service.

It extends the guidance given in EG 202 387 [i.1], TS 102 165‑1 [i.2], TR 187 023 [i.3] and TS 101 583 [i.4]
Target audience: for ETSI MTS and related committees, and the generic testing community.

[bookmark: _Toc356297783]2	References
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
[bookmark: _Toc356297784]2.1	Normative references
The following referenced documents are necessary for the application of the present document.
Not applicable.
[bookmark: _Toc356297785]2.2	Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: REF_EG202387][i.1]	[i.1]	ITEA2 DIAMONDS project: Case Study Experience Report

ETSI EG 202 387: "Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); Security Design Guide; Method for application of Common Criteria to ETSI deliverables".
[i.2]	ETSI TS 102 165-1 (V4.2.1): "Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); Methods and protocols; Part 1: Method and proforma for Threat, Risk, Vulnerability Analysis".
[i.3]	ETSI TR 197 023: "Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); Security Assurance Profile for Secured Telecommunications Operations"
[i.4]	ETSI TS 101 583: “Security Testing Terminology and Concepts”
[i.5]	ISO/IEC 12207-2008: “Systems and software engineering -- Software life cycle processes”
[i.6]	ISO/IEC 15288-2008: “Systems and software engineering -- System life cycle processes”
[i.7]	BSI PAS nnn (201y): “Trustworthy Software Framework”
[i.8]	ISO/IEC 15026-2-2011: “Systems and software engineering -- Systems and software assurance -- Part 2: Assurance case”

[bookmark: _Toc356297786]3	Definitions, symbols and abbreviations
[bookmark: _Toc356297787]3.1	Definitions
For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply:
<defined term>: <definition>
example 1: text used to clarify abstract rules by applying them literally
NOTE:	This may contain additional information.
[bookmark: _Toc356297788]3.2	Symbols
For the purposes of the present document, the [following] symbols [given in ... and the following] apply:
<symbol>	<Explanation>
<2nd symbol>	<2nd Explanation>
<3rd symbol>	<3rd Explanation>
[bookmark: _Toc356297789]3.3	Abbreviations
For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:
<ACRONYM1>	<Explanation>
<ACRONYM2>	<Explanation>
<ACRONYM3>	<Explanation>
[bookmark: _Toc356297790]4	Security in the LifecycleOverview on case studies
4.1	Definition of security
[bookmark: _Toc356292606][bookmark: _Toc356297791]Security is defined as being protection of 3 key attributes (Confidentiality, Integrity and Availability) of a.. product or service:
Confidentiality (
keeping information away from those without a need to know)
Integrity
(keeping data or information in the form intended)
Availability
(making sure that data or information, and the technical systems that store, process or forward this data or information)

4.2	Defintion of Lifecycle

[bookmark: LogicalModel]

[bookmark: DetailedModel]There are many definitions of the Lifecycle for a product or service, from the very simple (Specification – Realisation – Use) to the complex. Probably the most widely accepted are those produced by ISO/IEC JTC1 SC7 as defined in ISO/IEC 12207 [i.5] and ISO/IEC 15288 [i.6].
A mapping of security component activities to the ISO/IEC 15288 Lifecycle is summarised in Figure 1.

[bookmark: _Ref319330987]Figure 1: Security design lifecycle activity diagram

4.3	Security Architectural Framework
In the context of products and services, architectcure can be express as having “the conceptual structure and logical organization of a system”, which is itself also derivative of the discipline wider of Architecture, which, according to Marcus Vitruvius Pollio (~75 BCE - ~15 BCE) is intended produce Artefacts that are:
Dependable - in good condition and resilient
Usable - should function well
Agreeable - should address needs of users

These are also valid goals for Security Architecture.
In terms of ICT, high level architecture is generally accepted to first introduced as the Zachman Framework[footnoteRef:1], and has gone through many iterations since[footnoteRef:2]. 	Comment by Scott Cadzow: I am not convinced that this historical note adds any value [1:] [2:

]

Architectural Frameworks typically decompose an architecture into a number of Levels, with a common set being

Level 1 - Conceptual
Level 2 - Contextual
Level 3 - Logical
Level 4 - Physical
Level 5 - Detailed

Interpreting these levels for Information Security to cover both Requirements and Implementation, leads to a Security Architecture Framework (SAF) as shown in Figure 2.
[image:]
Figure 2: Security Architecture Framework
In this model Generic functional specifications are defined as a CLASS and detailed implementations defined as PATTERNS. A collection of Patterns is referred to as a Composed Package.
An import distinction in this model is between DESIGN and EFFECT:
DESIGNS define requirements for components provide architectural Security Enforcing Functions (SEF), with Designs Classes / Patterns for Infrastructure (IC/ IP) being a special case which define SEFs for use as common Enterprise Architecture (EA) infrastructure components
EFFECTS define IA requirements for components where security is a Non-Functional Requirement (NFR)

4.4	Lifecycle stage component activities
From consideration of both the lifecycle mapping of security activities and Security Architecture Framework (SAF), a relevance mapping has been produced, covering both Architecture and Assurance activities, as provided at Figure 3, which also shows the minor variances between products and services.

[image:]
Figure 3: Security activity relevance mapping
These activities are summarised in the following sections.
4.4.1	Stakeholder Requirement Definition
Product or System Architecture
Development or selection of Architectural Reference Model (ARM)
Product Assurance
Performance of Adversity (Hazard + Threat) Analysis
System Assurance
Asset & Adversity (Hazard + Threat) Analysis
4.4.2	Requirements Analysis
Product or System Architecture
Development of Architectural Reference Case (ARC)
Selection of appropriate Design and/or Effect Class(es)
Product or System Assurance
Performance of Vulnerability Analysis
4.4.3	Architectural Design
Product or System Architecture
Development of Architectural Specification Case (ASC)
Selection of appropriate Design and/or Effect Pattern(s) or Package(s)
Product Architecture
Development of Component Design
System Architecture
Development of System Design
Product or System Assurance
Performance of Risk Analysis
Development of Intitial Assurance Case
4.4.4	Implementation
Product or System Architecture
Implementation of selected Security Design(s) and/or Effect(s)
Selection of required Components
Product Architecture
Implementation of required Components
Product Assurance
Developer test of implemented Components
System Assurance
Developer review of testing of implemented Components
4.4.5	Integration
Product or System Architecture
Integration of implemented Security Design(s) and/or Effect(s)
Integration and configuration of implemented Components
System Architecture
Integration and configuration of implemented Products
Product Assurance
Integration test of implemented Components
System Assurance
Integration review of testing of implemented Components and Products
4.4.6	Verification
Product or System Assurance
Acceptance Test
4.4.7	Transition
Product or System Architecture
Delivery
Product or System Assurance
Finalisation of Assurance Case
Product Assurance
Performance of Vulnerability Test
System Assurance
Performance of Susceptability (“Pentration”) Test
4.4.8	Validation
Product Assurance
Performance of Assurance Review
Performance of Release Review
System Assurance
Performance of Assurance and Acceptance Review
Performance of Commissioning Review
4.4.9	Operation
Product or System Assurance
Risk Monitoring
System Assurance
Performance of Compliance Tests
4.4.10	Maintenance
Maintenance can be considered to be a “mini-lifecycle”, potentially reflecting all preceding stages, and to be carried out successfully access to artefacts from the original development lifecycle will be a fundamental dependency.
In particular, considation is needed of:
Product or System Architecture
Regular upkeep (Configuration and Patching)
Product or System Assurance
Revision of Risk Analyses
Update of Assurance Case
Performance of Compliance Reviews
Product Assurance
Performance of Assurance and Acceptance Review
Performance of Vulnerability Test
System Assurance
Performance of Susceptability (“Pentration”) Test
4.4.11	Disposal
Product or System Assurance
Definition of Decommissioning Process
Update of Assurance Case
Performance of Compliance Reviews
System Assurance
Decommissioning Review
Disposal Review

4.5	Lifecycle-specific security characterictics
In order to achieve security through an extended lifecycle, a fundamental requirement is for Traceability, with a need for continuity of access to artefacts from earlier lifecycle stages.
In addition, due consideration is needed of Composability, with an understanding of the Risks and Dependencies, Assumptions and Assertions introduced as atomic components are composed into compound packages, packages are composed in compound products, products are composed into compound systems, and systems are composed into compound systems-of-systems.
5 [bookmark: _Toc356232994][bookmark: _Toc356292607][bookmark: _Toc356297792]
6 [bookmark: _Toc350161665][bookmark: _Toc356297793]5	G&D Banking Case Study
5.1 [bookmark: _Toc356224598][bookmark: _Toc356297794]Introduction
This document provides the revised case study description and requirements from the Giesecke & Devrient case study in the banking sector. It presents the applied security testing approaches as well as results achieved. The case study consists of a banknote processing system that counts and sorts banknotes depending on their currency, denomination, condition and authenticity.
5.2 [bookmark: _Toc356224599][bookmark: _Toc356297795]Background
Banknote processing machines are used in central, large and medium banks and also in CITs (cash in transport) and other organisations that handle large amounts of banknotes. These machines are usually configured to work in a network as shown in Figure 1. Currency processors, reconciliation stations, vault management systems and control centres are connected on a network either on a LAN or WAN.
 (
external
 p
e
ripherals
external
 p
e
ripherals
CP
CP
CP
RS
RS
VMS
CC
CC
CC / GW
LAN
WAN
CP = Currency Processor
RS = Reconciliation Station
CC = Control Centre
VMS = Vault Management System
Firewall
)
[bookmark: _Ref339469896][bookmark: _Toc356224708]Figure 1: Banknote processing network overview
Different type of information is transferred between network entities. In Figure 2 we can see that deposit information is send to the vault management from the currency processor.
RS
RS
CC
CC
VMS
CP
RS
CC
deposit data
Shift + Reject
data
updated
Shift + Reject
data
configure &
monitor CP
Data Flow:

[bookmark: _Ref339377728][bookmark: _Toc356224709]Figure 2: Data flow in processing network
Configuration and monitoring information is exchanged between the currency processor and the control centre. The type of information exchanged requires a high degree of security. Table 1 summarizes the requirements imposed by the Giesecke & Devrient case study.

	Req. no
	Requirement Type
	Description

	1
	Operating system for test generator (if specific requirements)
	Windows XP/ Windows 7

	2
	Operating system for monitoring tools (if specific requirements)
	Windows XP/ Windows 7

	3
	Operating system for test controller framework (if specific requirements)
	Windows XP/ Windows 7

	4
	Operating system (and platform) for the SUT
	Windows XP/ Windows 7

	5
	List of “physical” interfaces for testing (keyboard, usb, wireless, MAC/Ethernet, ATM, Serial/Parallel and/or communication bus such as TTF/CAN/MOST)
	Keyboard and USB provided by the VM abstraction layer, .Net Remoting over Ethernet.

	6
	List of network interfaces/protocols
	TCP/IP

	7
	List of API interfaces/protocols (C, C#, XML/SOAP/REST, SQL, …)
	.Net remoting over TCP/IP, TTCN-3

	8
	Programming language used in SUT
	C/C++/C# .Net 4.0

	9
	Existing system/protocol models (languages)
	.Net Remoting

	10
	Requirements for test controller and/or tool interconnection/integration
	Test execution should be based on existing TTCN-3 test framework or integrated to work with TTCN-3.

	11
	Requirements for risk modelling
	Risk models should enable the communication about threats with non-technical stake holders as well as provide the basis for test.

	12
	Requirements on security testing approaches, such as hacking tools (if available), functional test scripts/plans or fuzzing or other type of negative testing (or other)
	Any tool shall provide a TTCN-3 interface, including types, functions, and TCI/TRI implementations.

	13
	Requirements for monitoring techniques such as process/memory monitors, network monitors, security incident monitors or fault detection monitors (or other)
	Monitoring tools shall not interfere with the operation of the SUT especially in regards to performance.

	14
	Test environment exists (yes/no)
	Yes. A TTCN-3 framework is available.

	15
	Physical access to the test environment is possible to arrange (yes/no)
	Possible to arrange.

	16
	Remote access (VPN) to the test environment exists (yes/no)
	No.

	17
	Local copy (virtual setup or similar) is available of the test environment exists (yes/no)
	Yes.

	18
	NDA required from partners to access the test environment (yes/no)
	Yes.

[bookmark: _Ref293920945][bookmark: _Ref293920938][bookmark: _Toc293936161][bookmark: _Toc170877340][bookmark: _Toc350161687]Table 1: Requirements for bank note processing case study

5.3 [bookmark: _Toc356224600][bookmark: _Toc356297796]System under Test
While the banknote processing system consists of several components as depicted in Figure 1, the focus of security tests is on the currency processor and the reconciliation station. The currency processor as well as the reconciliation station was provided as virtual machines for VMware Workstation where external interfaces are replaced by simulation and were supplemented with snapshots. That allows creating a consistent state of the SUT before executing a test case and is necessary for batch execution of test cases. The test bed at Fraunhofer FOKUS is depicted in Figure 3 and consists of the two virtual machines, one for the currency processor and another for the reconciliation station. Windows 7-based host system runs the virtual machines. The main focus of security tests will be the components inside the virtual machines. The available interfaces are the Message Router (.Net Remoting implementation) over LAN, as well as keyboard, USB and other peripherals through the hardware abstraction layer of the virtual machine. There is a database running inside the virtual machine.

[image: GuD_Case_Study_Review_Slides]
[bookmark: _Ref323053299][bookmark: _Toc356224710]Figure 3: Test Bed Setup for Batch Execution
Additionally, the executable test system runs on the host system. It is responsible for executing the test cases, starting the virtual machines with a dedicated snapshot and sending and receiving messages from and to the system under test. The test framework is written in TTCN-3 (Testing and Test Control Notation version 3) and is executed at Fraunhofer FOKUS using the test development and execution environment TTworkbench provided by Testing Technologies. In order to run the TTCN-3 test cases using TTworkbench, adapter for encoding and decoding messages were necessary and were adapted from the TTCN-3 test execution environment Telelogic Tau Tester. By this adaptation, the existing TTCN-3 test framework provided by Giesecke & Devrient was used for performing security tests.

5.4 [bookmark: _Ref339472367][bookmark: _Toc356224601][bookmark: _Toc356297797]Risk Analysis
The currency processor is exposed to threats which compromise the accounting accuracy. The following high level treatments against the threats were identified:
· Restricted access to functions: The access to security functions is restricted to authorized users.
· [bookmark: _Toc293930675]Operation system access restriction: The access to the operation system, i.e. file system, or process monitor is restricted to authorized users.
· [bookmark: _Toc293930679]Prevent Admin Hijacking: Hijacking an administrator account is used to get the privileges of an administrator account as a user that is not assigned to the administrator group.
· Prevent infiltration/manipulation of software: Software manipulation can be used to fake data or to provoke errors on the currency processor application.
· [bookmark: _Toc293930682]Prevent manipulation of application configuration: The configuration of the machine should be secured to prevent manipulation otherwise it could be possible to change the classification of banknotes.
The underlying threats were used as starting point for the risk analysis. A risk analysis following the CORAS approach was performed and the potential vulnerabilities as well as the consequences of the threats were analysed.

CORAS is a model-based risk analysis method developed by SINTEF. It provides several kinds of diagrams for different phases of the analysis. E.g. threat diagrams are used to analyse threats to a system by determining potential attackers and vulnerabilities that may be exploited to reach a threat scenario. A threat scenario is a description of how a threat may lead to an unwanted incident by exploiting vulnerabilities. An unwanted incident is the result of reaching one or more threat scenarios by exploiting vulnerabilities and has an impact on an organization. This impact is denoted by assets that are connected with unwanted incidents. Treatment diagrams are the result of analysis possible mitigations against the analysed vulnerabilities.

A threat to prevent is a manipulation of the configuration of the SUT that may lead to shedding of banknotes which should not be shed. It may result from exploiting an authentication bypass vulnerability. The corresponding risk diagram is depicted in Figure 4.
[image:]
[bookmark: _Ref339458829][bookmark: _Toc356224711]Figure 4: Risk diagram for authentication bypass

5.5 [bookmark: _Toc356224602][bookmark: _Toc356297798]Security Testing Approaches
As a result of the risk analysis, several vulnerabilities were considered that should be tested whether they actually exists within the SUT. In order to generate appropriate tests for these vulnerabilities, security test patterns provide a suitable way to select test generation techniques or test procedures. Those security test patterns constitute the link between security risk analysis and security testing. Two security test patterns are fitting to the results of the risk analysis.
5.5.1 [bookmark: _Toc356224603][bookmark: _Toc356297799]Detection of vulnerability to injection attacks
The security test pattern is described by the following table.
	Pattern name
	Detection of Vulnerability to Injection Attacks

	Context
	Test pattern kind: Data
Testing Approach(es): Prevention

	Problem/Goal
	Injection attacks (CAPEC 152) represent one of the most frequent security threat scenarios on information systems. They basically consist in an attacker being able to control or disrupt the behaviour of a target through crafted input data submitted using an interface functioning to process data input. To achieve that purpose, the attacker adds elements to the input that are interpreted by the system, causing it to perform unintended and potentially security threatening steps or to enter an unstable state.
Although it could never be exhaustive, testing information systems resilience to injection attacks is essential to increase their security confidence level. This pattern addresses methods for achieving that goal.

	Solution
	Test procedure template:
1. Identify all interfaces of the system under test used to get input with the external world, including the kind of data potentially exchanged through those interfaces.
2. For each of the identified interfaces create an input element that includes code snippets likely to be interpreted by the SUT. For example, if the SUT is web-based, programming languages and other notations frequently used in that domain (JavaScript, JAVA…) will be used. Similarly, if the SUT involves interaction with a database, notations such as SQL may be used. The additional code snippets should be written in such a way that their interpretation by the SUT would trigger events that could easily be observed (automatically) by the test system. Example of such events include:
· Visual events: e.g. a pop-up window on the screen
· Recorded events: e.g. an entry in a logging file or similar
· Call-back events: e.g. an operation call on an interface provided by the test system, including some details as parameters
3. Use each of the input elements created at step 2 as input on the appropriate SUT interface, and for each of those
· Check that none of the observable events associated to an interpretation of the injected code is triggered

	Known uses
	

	Discussion
	The level of test automation for this pattern will mainly depend on the mechanism for submitting input to the SUT and for evaluating potential events triggered by an interpretation of the added probe code.

	Related patterns (optional)
	· CAPEC 152

	References
	

The application of this security test pattern leads to data fuzzing in order to generate injection attack strings that may be able to as discussed in the following.
5.5.1.1 [bookmark: _Toc356297800]Data Fuzzing with TTCN-3
In order to test for the abovementioned vulnerabilities identified during risk analysis, both well established and new developed methods were applied to the system. Data fuzzing approaches for SQL injection were applied by a new developed fuzz testing extension for TTCN-3. Data fuzzing sends a large number of invalid values to the system under test at certain points within a test case. At these points, the values for fuzzing must be retrieved, for instance by an external function. TTCN-3 external functions retrieve a value from an external function once, buffer this value and use it each time the external function is called. This is not appropriate for fuzzing where another value has to be retrieved and sent to the SUT for each invocation. The fuzz testing extension for TTCN-3 complies with this requirement by requesting values from external fuzz functions each time a value is requested via TTCN-3 valueof or send. It has been submitted for standardization at ETSI. The fuzzing extension was implemented in the test development and execution tool TTworkbench.

TTCN-3
In order to be able to apply this method with TTCN-3, there was a need to extend the standardized language to support fuzz testing. Generally, matching mechanisms are used to replace values of single template fields or to replace even the entire contents of a template. Matching mechanisms may also be used in-line. A new special construct called a fuzz function instance can be used like a normal matching mechanism “instead of values” to define the application of a fuzz operator working on a value or a list of values or templates. The definition of such a function is similar to the existing TTCN-3 concept of external function with the difference that the call is not processed immediately but is delayed until a specific value shall be selected via the fuzz operator. For fuzz testing, such function instances can only occur in value templates.

The fuzz function instance denotes a set of values from which a single value will be selected in the event of sending or invoking the valueof() operation on a template containing that instance. The fuzz function may declare formal parameters and must declare a return type. Since the execution time cannot be predicted, only formal in parameters are allowed (e.g. no out or inout). For sending purposes or when used with valueof(), fuzz functions must return a value.

Example:
 fuzz function zf_UnicodeUtf8ThreeCharMutator(
in template charstring param1) return charstring;

 fuzz function zf_RandomSelect(
in template integer param1) return integer;

 template myType myData := {
		field1 := zf_UnicodeUtf8ThreeCharMutator(?),
		field2 := '12AB'O,
		field3 := zf_RandomSelect((1, 2, 3))
 }

The fuzz function instance may also be used instead of an inline template.

Example:
	myPort.send(zf_FiniteRandomNumbersMutator(?));

To get one concrete value instance out of a fuzzed template the valueof() operation can be used. At this time the fuzz function is called and the selected value is stored in the variable myVar.

Example:
	var myType myVar := valueof(myData);

To allow repeatability of fuzzed test cases, an optional seed for the generation of random numbers used to determine random selection shall be used. There will be one seed per test component. Two predefined functions will be introduced in TTCN-3 to set the seed and to read the current seed value (which will progress each time a fuzz function instance is evaluated).

setseed(in float initialSeed) return float;
getseed() return float;

Without a previous initialization a random value will be used as initial seed.
The above declared fuzz function is implemented as a runtime extension and will be triggered by the TTCN-3 Test Control Interface (TCI) instead of (TRI), as external functions, in order to accelerate the generation by avoiding the encoding of the parameters and return values.
More information about the TTCN-3 extension for data fuzzing can be found in the DIAMONDS project deliverable D5.WP3

5.5.1.2 [bookmark: _Toc356297801]Data Fuzzing Library

In order to retrieve a valuable set of fuzzed values, a fuzzing library was implemented. It provides fuzz testing values from well-established fuzzers, e.g. Peach and Sulley. These tools work standalone and thus, cannot be integrated in the existing test execution environment. So the fuzzing library was developed which allows integration in the test execution environment by using XML interface provided by it or by accessing the Java code directly. The integration of the fuzzing library with TTworkbench was done by implementing external fuzz functions according to the TTCN-3 fuzz testing extension. These external functions are then used within test cases to retrieve fuzz testing values from the library and submit them to the system under test.
To preserve platform independence as achieved within Java and to minimize dependencies, the fuzzing operators taken from the fuzzing tools are re-implemented in Java. This brings benefits for the performance of the library since no integration of Python code (for Peach and Sulley) is required. To enable regression testing, the fuzzing library returns a seed that can be used for later requests in order to retrieve the same values. Thus, the requirement for repeatability is fulfilled.

In order to receive fuzzed values from the fuzzing library, a request must be submitted to the library. Such a request specifies a type that shall be fuzzed, e.g. valid lengths and null termination for a string, as shown in Figure 5. Additional information are the number of values to be retrieved (attribute maxValues) as well as a name acting as a user-defined identifier (attribute name) that can be used for referring this request.

The following types are supported:
· Strings: Different kinds of strings, including filenames, hostnames, SQL query parameters.

· Numbers: Integers and floats, signed or unsigned with different kinds of precisions.

· Collections: Lists and sets. The type of each element is specified by referring one of these four types (strings, numbers, collections, or data structures) using the value of the name attribute.

· Data structures: Enables the specification of records with several fields where the type of each field is specified by referring one of these four types (strings, numbers, collections, or data structures) using the value of the name attribute.

	<string name="SimpleStringRequest" maxValues="10">
 <specification type="String" minLength="1" maxLength="5" nullTerminated="true"
 encoding="UTF8" />
 <generator>BadStrings</generator>
 ...
 <validValues>
 <value>ABC</value>
 ...
 <operator>StringCase</operator>
 ...
 </validValues>
</string>

[bookmark: _Ref323134035][bookmark: _Toc203210330][bookmark: _Toc356224712]Figure 5: Excerpt from an XML Request File
Along with the specification of the data type, it is possible to specify which fuzzing heuristics shall be used and which valid values shall be fuzzed. This is of particular interest if a specific kind of invalid input data is needed, e.g. based on Unicode strings. This allows it to efficiently use the fuzzing library to get certain fuzzed values.

The fuzzing library replies to such a request with a response file containing fuzzed values. These values are complemented by information how they were generated. They are grouped by the employed fuzzing generators for fuzzed values that are generated along the type specification, as well as the employed fuzzing operators, and the valid values they were applied to. This makes the generation of fuzzed values transparent to the user of the library, and allows further requests of fuzzed values generated by specific fuzzing operators if a previously generated value revealed some abnormal behaviour of the SUT.
	<string name="SimpleStringRequest" id="ca53abee-0719-43da-a70d-96d61931fb08"
 moreValues="true">
 <generatorBased>
 <generator name="BadStrings">
 <fuzzedValue>+]s}9$# *Y</fuzzedValue>
 <fuzzedValue>0$2)v3D^U1_{X7x,Us\\</fuzzedValue>
 ...
 </generator>
 ...
 </generatorBased>
 <operatorBased>
 <operator name="StringCaseOperator" basedOn="ABC">
 <fuzzedValue>abc</fuzzedValue>
 <fuzzedValue>aBc</fuzzedValue>
 ...
 </operator>
 ...
 </operatorBased>
</string>

[bookmark: _Ref323134897][bookmark: _Toc203210331][bookmark: _Toc356224713]Figure 6: Excerpt from an XML Response File
The format of the request file as well as the format of the library’s response file is specified using an XML schema. The parser and serializer for the XML are generated from those XML schemata using the Eclipse Modelling Framework (EMF).
More information on the fuzzing library can be found in the DIAMONDS project deliverable D5.WP3.

5.5.2 [bookmark: _Toc356224604][bookmark: _Toc356297802]Usage of Unusual Behaviour Sequences
The vulnerability from the risk analysis “Messages are executed without checking authentication” constitutes a message sequence that is unusual with respect to normal use of the SUT. Therefore, the security test pattern “Usage of Unusual Behaviour Sequences” is an appropriate starting point for generating test cases that test for this vulnerability.
	Pattern name
	Usage of Unusual Behaviour Sequences

	Context
	Test pattern kind: Behaviour
Testing Approach(es): Prevention

	Problem/Goal
	Security of information systems is ensured in many cases by a strict and clear definition of what constitutes valid behaviour sequences from the security perspective on those systems. For example, in many systems access to secured data is pre-conditioned by a sequence consisting of identification, then authentication and finally access. However, based on vulnerabilities in the implementation of software systems (e.g. in the case of a product requiring authentication, but providing an alternate path that does not require authentication – CWE 288), some attacks (e.g. Authentication bypass, CAPEC 115) may be possible by subjecting the system to a behaviour sequence that is different from what would be normally expected. In certain cases, the system may be so confused by the unusual sequence of events that it would crash. Thus potentially making it vulnerable to code injection attacks. Therefore uncovering such vulnerabilities is essential for any system exposed to security threats. This pattern describes how this could be achieved through automated testing.

	Solution
	Test procedure template:
1. Use a specification of the system to clearly identify the normal behaviour sequence it expects in interacting with an external party. If possible, model this behaviour sequence using a notation such as UML, which provides different means for expressing sequenced behaviour, e.g. sequence diagrams or activity diagrams.
2. Run the normal behaviour sequence (from step 1) on the system and check that it meets its basic requirements.
3. From the sequence of step 1, derive a series of new sequences whereby the ordering of events would each time differ from the initial one.
4. Subject the system to each of the new behaviour sequences and for each of those
· Check that the system does not show exceptional behaviour (no live-/deadlock, no crashing, etc.)
· Check that no invalid behaviour sequence is successfully executed on the system (e.g. access to secure data without authentication)
· Check that the system records any execution of an invalid events sequence (optional)

	Known uses
	Model-based Behavioural fuzzing of sequence diagrams is an application of this pattern

	Discussion
	

	Related patterns (optional)
	

	References
	CWE 288, CAPEC 115

The application of this security test pattern leads to behavioural fuzzing in order to generate attacks based on invalid message sequences as discussed in the following.

5.5.2.1 [bookmark: _Toc356297803]Behavioural Fuzzing of UML Sequence Diagrams

A new fuzzing approach was developed for testing against the vulnerability of an authentication bypass. It consists of creating invalid message sequences instead of invalid input data by modifying functional test cases. While existing fuzzing approaches focus on data generation, a few approaches also implicitly or explicitly perform behavioural fuzzing. These approaches generally use context-free grammars or state machines. The behavioural fuzzing approach developed in DIAMONDS uses UML sequence diagrams and modifies these. This allows reusing functional test cases for non-functional security testing. For that purpose, a functional test case from the case study, written in TTCN-3, was modelled as UML sequence diagram and then used for test case generation. The generated test cases aim at revealing authentication bypass vulnerabilities by submitting messages for configuring the banknote processing system before or without authentication.
The fuzzed sequence diagrams are generated as follows: In a first step only one model element at once leading to a fuzzed sequence diagram representing a test case. For instance, an interaction constraint of a combined fragment of kind alternatives is negated. This is done for the different model elements and the possibilities to fuzz their behaviour.
In a second step, fuzzing different model elements is combined resulting in fuzzed sequence diagrams each containing at least two fuzzed model elements. For instance if a sequence diagram is fuzzed on the one hand by negating the interaction constraint of an alternatives combined fragment and on the other hand by repeating a single message, in the second step a fuzzed sequence diagram is created by combining these two fuzzed model element in a single fuzzed sequence diagram. This is done due to the fact that an invalid sequence containing only one invalid element does not necessarily reveal a vulnerability what is showed for data fuzzing.
The third step consists of fuzzing three model elements at once, for example negating the interaction constraint of an alternative combined fragment and repeating a message within the first interaction operand. This is done for the same reason as in step 2. The second and the third step are repeated increasing the number of fuzzed model elements in each iteration.
The number of iterations can be stopped for several reasons depending on the capabilities to get feedback from the SUT.
The modification of elements of UML sequence diagrams is done by a set of fuzzing operators. Each fuzzing operators performs a single modification of an element in order to generate an invalid message sequence. In the DIAMONDS project, a set of fuzzing operators for messages, combined fragments, their interaction operands and guards as well as for state/duration invariants were developed, e.g. Remove Message, Repeat Message or Move Message, Change Bounds of Loop Combined Fragment, and Negate Guard of an Interaction Operand.

How the approach can be used for testing for an authentication bypass vulnerability is described using a simple example as given in Figure 7. Before the machine can be used, a user has to login with valid login data. If the login was successful, he is logged in as an operator and may configure the banknote processing machine in order to count money and at the end the operator logs out. The actions configure and count money are protected as required by the values of the tag protected. The operator is taking the role of the money counter (tag role) and may access the protected actions configure and count money.
[image: Counting money UMLsec]
[bookmark: _Ref323814435][bookmark: _Ref323814430][bookmark: _Toc323923358][bookmark: _Toc324167123][bookmark: _Toc324240139][bookmark: _Toc324257590][bookmark: _Toc329268878][bookmark: _Toc356224714]Figure 7: Simple Example of an Activity Diagram with the UMLsec rbac
In order to reduce the number of test cases generated by behavioural fuzzing to a manageable set, a model augmented with stereotypes regarding role-based access control is helpful. It allows identifying a subset of test cases that are able to find weaknesses regarding authentication. To achieve that goal, it is necessary to enhance the UMLsec rbac mechanism to mark such messages that change the authentication state and to allow rbac to be applied to sequence diagrams. Those messages generally are login and logout messages. For the sake of simplicity, the terms login and logout are used instead of messages that increase respectively decrease the authentication state.
Having the piece of information what messages are login and logout messages, the number of messages considered by behavioural fuzzing operators as well as their number of applications can be reduced:
· The fuzzing operator Move Message can now only move the login and logout messages. Login messages can be moved stepwise closer to the logout message to test if the messages appearing after the login can be successfully executed without authentication. Accordingly, the logout message can be moved stepwise closer to the login message to test if the logout is successful and no operations can be executed after a logout.
· Remove Message may consider only the login message in order to test if messages that need authentication can be performed without.
· Repeat Message may only repeat the login and logout message in order to check if the authentication state remains unchanged by the repeated message
When considering the example depicted in Figure 7, a corresponding test case would look like the one in Figure 8 where the information about protected resources, roles and rights are copied from the activity diagram. Additionally, there is one more tag authentication with a tuple whose first element contains the information which message performs authentication and which performs a de-authentication.
[image: Counting money Sequence]
[bookmark: _Ref329290733][bookmark: _Toc323923359][bookmark: _Toc324167124][bookmark: _Toc324240140][bookmark: _Toc324257591][bookmark: _Toc329268879][bookmark: _Toc356224715]Figure 8: Test Case derived from the Activity Diagram in Figure 7

More information about model-based behavioural fuzzing can be found in the DIAMONDS project deliverable D5.WP2.

5.5.2.2 [bookmark: _Toc356297804]Online Model-Based Behavioural Fuzzing
Execution of a single test case takes very long time due to start-up times of the virtual machines and initializing them with a snapshot in order to achieve a consistent state. This step takes several minutes. Because fuzzing approaches generally result in a large number of test cases, this is a serious impediment. To overcome it, a concept called online model-based behavioural fuzzing was conceived that improves runtime efficiency by reducing the number of restarts and initialization of the virtual machines and increases the number of tests executed while the SUT is healthy. Figure 10 illustrates the approach. The current test setup is amended by an online test generator.
[image:]
[bookmark: _Ref356208108][bookmark: _Ref356208098][bookmark: _Toc356224717]Figure 10: Online Model-based Behaviour Fuzzing Approach
This approach is driven by the desire to apply more fuzzing to interesting behaviour and simultaneously use the test execution time efficiently. The interesting areas in the behaviour model are identified from the CORAS model thus reducing fuzzing to areas where a vulnerability might be located. At the same time more fuzzing operators can be applied while the SUT is healthy. This approach has been implemented and tested using the case study. The test framework needed to be adapted to be able to deal with incorrect sequences which where correctly rejected. The results are very promising because even though no new vulnerabilities were discovered the number of fuzzing operations per test time has increased and heightened the confidence in the implementation of the SUT.
Online model-based behavioural fuzzing is an approach to make the test execution for behavioural fuzz testing more efficient by
· generating test cases at runtime instead of before execution,
· focusing on interesting regions of a message sequence based on a previously conducted risk analysis, and
· reducing the test space by integrating already retrieved test results in the test generation process.
More information about model-based behavioural fuzzing can be found in the DIAMONDS project delivera-ble D5.WP2.
5.6 [bookmark: _Toc356224605][bookmark: _Toc356297805]Final Results
5.6.1 [bookmark: _Toc356224606][bookmark: _Toc356297806]Requirements
The existing TTCN-3 framework including their test adapters were customized for TTworkbench. This was necessary because of subtle differences in the interpretation of the TTCN-3 specification by the different TTCN-3 test execution environments (Telelogic Tau Tester and TTworkbench). For this step, test adapters were reused and adapted (applies to requirements 10 and 14 in Table 1). The TTCN-3 test framework provides also simple monitoring of the SUT by observing the timing behaviour of and the messages received from the SUT. Thus, it does not interfere with the operation of the SUT (requirement 13).

For enabling fuzzing approaches, a fuzz testing extension for TTCN-3 was developed and implemented for TTworkbench that allows integrating fuzz data generators from the Fuzzing Library with TTworkbench and use of them in the TTCN-3 code (requirement 12).

Risk models following the CORAS approach were developed on the basis of the identified threats to prevent. These models describe on one hand vulnerabilities but on the other hand the threat scenarios and unwanted incidents, vulnerabilities it may lead to, as well as the impact on assets. An example of an unwanted incident is “The integrity and confidentiality of the data is compromised” and an example of an asset “Service Availability, SLA Violation” or “revenue” which are understandable also by non-technical stakeholders. The different vulnerabilities, threat scenarios, unwanted incidents and assets are connected through edges and thus, risk models allow understanding the relationships between these elements also for non-technical stakeholders. The identified vulnerabilities in the risk models constitute the basis for the performed test. Therefore, the requirement that risk models should enable the communication with non-technical stakeholders as well as providing a reasonable test basis is fulfilled (requirement 11).

The remaining requirements (1-9) regards the technical basis of the SUT that are fulfilled by providing the SUT as a virtual machine and reusing the test adapter for the communication with the SUT. Requirements 15-18 apply to technical access to the SUT and organizational issues.
5.6.2 [bookmark: _Toc356224607][bookmark: _Toc356297807]Test Results
Based on the risk models, 30 behavioural fuzz test cases were executed on the SUT regarding an authentication bypass. Additionally, an initial set of 24 test cases using SQL injection to bypass the authentication were executed. No security-related issues were found. Considering the domain of the case study, banking, this is not surprising because it requires a much higher level for security resulting in a more secure development process than for other domains.

For measuring the coverage of risks by test cases, we used an integration platform “Trace Management Platform for Risk-Based Security Testing” developed during the DIAMONDS project. The integration platform integrates all used tools, CORAS for risk analysis, papyrus for the behaviour model, ReqIF and ProR for managing the security test pattern, the test case generator for model-based behavioural fuzzing, and TTworkbench as test execution platform. It allows for creating links called traces between the different artefacts of risk models, system model elements, security test patterns and modelled test cases as well as TTCN-3 code for test cases. Additionally, it allows for tracing back the test verdicts to the risks. Figure 9 shows how this looks like for the Giesecke & Devrient case study. It shows in each line for a vulnerability from the risk model the test verdict of the test cases that are linked back to the vulnerabilities from the risk model.

[image:]
[bookmark: _Ref355283908][bookmark: _Toc356224716]Figure 9: Tabular overview of test execution results and vulnerabilities from the risk model

While the initial traces between vulnerabilities from the risk model, the behavioural model of the SUT and the chosen security test patterns has to be created manually, the most traces that results from test case generation and execution are generated automatically. This allows a semi-automatic measurement of risk coverage.

By executing these test cases, the risk of an authentication bypass using behavioural means was covered by applying behavioural fuzzing. Additionally, the risk of an authentication bypass by malicious input data was partially covered. SQL injection is one possibility to pass an authentication without valid authentication data. A query to the database where user input data is used as a parameter may modify the syntax of the query in a way where it e.g. returns a user record independent from the provided password. Other ways to perform an authentication bypass are by adding or modifying the records in the database where knowledge of the database schema is used. Since this knowledge was currently not used, the risk of an authentication bypass was only partially covered by SQL injection. Additionally, further manipulation of the authentication mechanism may be possible. Therefore, SQL injection is only one possibility of an authentication bypass using malicious input data. Likewise, the risk of database manipulation by SQL injection is currently partially covered because of the lack of database schema knowledge.

The Online MBBF approach has been implemented and tested using the case study. The test framework needed to be adapted to be able to deal with incorrect sequences which where correctly rejected. The results are very promising because even though no new vulnerabilities were discovered the number of fuzzing operations per test time has increased and heightened the confidence in the implementation of the SUT.

5.7 [bookmark: _Toc356224608][bookmark: _Toc356297808]Exploitation
Starting the security tests with the development of a CORAS model to visualize and discuss the vulnerabilities, threats and consequences has proved useful and will be adopted by the standard development process.
The applied fuzzing approaches allow reusing of existing, functional test cases for test the non-functional security aspect. This is achieved by using certain inputs (login, manual input of barcodes data that was incorrectly read by the currency processor) of functional test cases for inserting fuzz test data. Fuzz test data could be easily integrated in a test case because a TTCN-3 fuzzing extension allows direct access to the fuzz data generator. The developed behavioural fuzzing approach extends existing functional test cases towards tests of security aspects. Therefore, the applied fuzzing approaches can take advantage of the effort made for functional testing of the SUT and do not require development of new test cases for security testing. In combination with the results of the risk analysis modelled in the risk diagrams, the focus of the generated security test cases can be narrowed to the identified vulnerabilities and thus, reduce the number of test cases that are necessary to cover these vulnerabilities. This may help saving resources when performing security tests.

5.8 [bookmark: _Toc356224609][bookmark: _Toc356297809]Summary
In order to access the results of the DIAMONDS project on the case study we can look at the Security Test Improvement Profile (STIP) before the start of the project and now. Figure 11 shows the score before the project started in red and after the project in blue. We can observe that the case study advanced in nearly every aspect of model-based security testing.
[image:]
[bookmark: _Ref356219666][bookmark: _Toc356224718]Figure 11: Security Test Improvement Profile Comparison

Therefore the case study gained from nearly all developments of the DIAMONDS project with the exception of monitoring. The biggest gains were made in the areas where the case study was used as a driver for the research project. Moreover the case study provided an interesting field to research and application of security testing techniques.

5 [bookmark: _Toc356297810]Banking Case Study Security design activities
5.1	Approach
In order to achieve Security, it needs to be considered in 4 contexts:
Governance – the processes and people needed for properly administering secure delivery of a product or service
Risk – the factors which could have a deleterious impact on secure delivery of a product or service
Controls – the principles and technqiues used to reduce the risk to secure delivery of a product or service, which can be further subdivided as:
Personnel Controls
Physical Controls
Procedural Controls
Technical Controls
Compliance – the processes and people needed for ensuring secure delivery of a product or service is proceeding as intended
A summary of Principles for realisation of secure products and services, as drived from UK’s Trustworthy Software Framework (TSF) [i.7] is provided at Annex A.
5.2	Design dependencies
In line with the lifecycle definition, it is assumed that before commencing a fresh design for a product or service, Stakeholder Requirements Definition will have been completed.
Design will also be a phase during the Maintenance “mini-lifecycle”, and to be carried out successfully access to artefacts from the original development lifecycle will be a fundamental dependency.
5.3	Security design and implementation processes
The lifecycle mapping of security activities and Security Architecture Framework (SAF) identifies the following activitities for system design and implementation in support of Test and Assurance.
5.2.1	Adversity Analysis (AA)
<< Here we review and update the TVRA guidance referencing TS 102 165-1 >>
<< Extend to include Asset and Adversity (Hazard + Threat) Analysis >>
[bookmark: _Toc356233032][bookmark: _Toc356292645][bookmark: _Toc356297830]
5.2.2	Risk Analysis (RA)
<< Here we review and update the TVRA guidance referencing TS 102 165-1 >>
5.2.3	Vulnerability Analysis (VA)
<< Here we review and update the TVRA guidance referencing TS 102 165-1 >>
5.2.4	Architectural Reference Model (ARM)
<< This is where we add guidance on how to perform >>
5.2.5	Architectural Reference Case (ARC)
<< This is where we add guidance on how to perform >>
5.2.6	Architectural Specification Case (ASC)
<< Here we review and update the guidance for the use of functional modelling for CC (EG 202 387) >>
5.2.7	Design and/or Effect Classes
<< This is where we add guidance on how to perform Selection and Implementation >>
<<ISO/IEC JTC1 WG4 WI SAF >>
<< Annex B >>
5.2.8	System Design
<< This is where we add guidance on how to perform >>
<< include Component Selection>>
5.2.9	Traceable Implementation
<< This is where we add guidance on how to perform >>
5.2.10	Integration and Configuration
<< This is where we add guidance on how to perform >>
5.4	Assurance and Testing processes
The lifecycle mapping of security activities and Security Architecture Framework (SAF) identifies the following activitities for Assurance and Testing.
5.4.1	Testing
<< Reference out to TS 101 583 >>
<< - Component >>
<< - Integration >>
<< - Acceptance >>
<< - Vulnerability Test >>
<< - Susceptability (“Pentration”) Test >>
<< Use of CC – extension of work done in TISPAN – Annex C / D>>
5.4.2	Assurance
<< This is where we add guidance on how to perform Assurance >>
<< Reference to Assurance Case [i.8] >>
<< Include Assurance and Acceptance Review >>
<< Include Release Review >>
5.5	Post-implementaion processes
The lifecycle mapping of security activities and Security Architecture Framework (SAF) identifies the following activitities as impinging on security, after intial Assurance has been achieved.
5.6.1	Commissioning
<< This is where we add guidance on how to perform >>
5.6.2	Operation
<< This is where we add guidance on how to perform Compliance Reviews (incl. Vulnerability Test and Susceptability (“Pentration”) Test), Regular upkeep (Configuration and Patching), >>
5.6.4	Disposl
6 << This is where we add guidance on how to design a Decommissioning Process, including Reviews >>
7 [bookmark: _Toc356297875]Accurate

[bookmark: _Toc354669561][bookmark: _Toc230141562][bookmark: _Toc356297876]6.1	Case Study Characterization
The aim of the Accurate Equity (formerly known as Norse Solutions) case study was to evaluate a process which combines security risk assessment and security testing when applied to the Norse Options web-portal (which is the software that Accurate Equity provides to its customers). In the case study, Accurate Equity played the role as domain expert for Norse Options (the system under test), while the security risk assessment and security testing was conducted by SINTEF in collaboration with Accurate Equity.
Accurate Equity delivers software for efficient administration, accounting and disclosure of share-based payment programs. Accurate Equity has developed corporate finance and accounting software since 1986. During the late 90's, Accurate Equity decided to shift focus to more complex accounting and disclosure issues in order to increase their competitive advantage. Accurate Equity identified the stock-based payment market as a growing niche with few competitors in the European Market. In 2002, the founders invested gains earned through own stock-based payment from previous employment as start capital for Accurate Equity. Thus, Accurate Equity was founded as a result of stock-based payment ("By Options"), and aims to play a significant role in developing the stock-based payment industry ("for Options"). Accurate Equity is wholly owned by the employees. Accurate Equity started coding their comprehensive web-based software Norse Options from scratch, in accordance with our "Top Down" architecture principle. Accurate Equity currently holds AAA rating with Dun & Bradstreet. Founded in 2002, Accurate Equity is today the leading supplier of customized web-based software for the administration of share-based compensation plans in the North-European region. Accurate Equity is currently expanding to other European countries. The target of analysis (system under test) in the case study was Norse Options, which is the primary product developed by Accurate Equity. The first commercial version was released in August 2003.
Norse Options is designed to deliver streamlined administration and reporting of all forms of equity based compensation plans in compliance with the prevailing standards and requirements such as:
•	Employee Share Ownership Plans (ESOPs)
•	Employee Share Saving Plans (ESSPs)
•	Employee Share Purchase Plans (ESPPs)
•	Employee Stock Options and Warrants
•	Synthetic Options
•	Stock Appreciation Rights (SARs)
•	Restricted Stock Units (RSUs)
•	Restricted Stock Awards (RSAs)

Norse Options has two kinds of primary users: Employees and Administrators. Employees refer to the employees of companies that use Norse Options as their accounting system for shared based payment. Employees use Norse Options (through a web-based interface) to manage their individual share-based payment. Administrators are typically accounting personnel in companies that use Norse Options. Administrators use Norse Options to manage the share-based payment on behalf of the company they belong to. Norse Options is structured into a 4-layered architecture as shown in Figure 1.

[bookmark: _Ref340142157][bookmark: _Ref340142148][bookmark: _Toc354669534]Figure 1 Layered architecture of the System Under Test
The view layer is a thin layer used to render web pages. A web browser presents the HTML pages to the users and communicates using HTTPS to a servlet container. The servlet container translates Java Servlet pages (JSP) into Java, compiles these and executes the code. The control layer builds the request-specific HTML to be returned to the view layer. As part of this, it may request the service layer for business services to be able to fill the HTML with appropriate data. The control layer also uses the service layer if the request involves updating the data. In addition to generating the HTML, the control layer sanitises the input and performs access control to prevent unauthorised access to data and functions.

The service layer contains the business logic. This means that all calculations are performed in the service layer. The services are invoked from the control layer and may use the domain layer to persist or retrieve data. Finally, the domain layer manages the persistent data. It transforms requests from the service layer to SQL queries to the database. The details of the security testing and the security risk assessment of the case study are confidential, and so are the security requirements that were addressed. However, in general, we can say that the Norse Options system handles sensitive financial information and the main overall security requirements were related to protection of the confidentiality and the integrity of the sensitive information handled by Norse Options.
[bookmark: _Toc354669562][bookmark: _Toc230141563][bookmark: _Toc356297877]6.2	Security Testing Approaches
In this section, we give an overview of the process for test-based security risk assessment that was followed in the Accurate Equity case study. For a more a description of the current version of this process, see deliverable DIAMONDS deliverable D5.W4.

[image: TSRNewPhases]
[bookmark: _Ref354582512][bookmark: _Toc326329369][bookmark: _Toc354669535]Figure 2 Overview of the steps in the process
The process was divided into three phases. The goal of Phase 1 is first was establish the context and target of evaluation, and then conduct a security risk assessment of the target of evaluation. This includes defining the scope of the assessment, identifying security risks w.r.t. the target of evaluation, estimating and evaluating the security risks based on likelihood and consequence values. Having discovered security risks in Phase 1, the analysis proceeded to Phase 2 in which security tests were identified and prioritized base on the risk assessment, and then specified and executed to explore the security risks. Finally, Phase 3 completed the analysis by validating and updating the risk models based on the security testing results obtained in Phase 2. Additionally, treatments were suggested in order to mitigate the vulnerabilities identified during Phase 2. The phases were further decomposed into the following seven consecutive steps:

· Phase 1 Establish context and target of evaluation, and carry out security risk assessment of the target of evaluation.
· Step 1 Establish context and target of evaluation.
· Step 2 Risk identification.
· Step 3 Risk estimation.
· Step 4 Risk evaluation.
· Phase 2 Generate and execute security tests that explore the risks identified during the security risk assessment.
· Step 5 Test case generation and prioritization.
· Step 6 Test execution.
· Phase 3 Validate and update the risk model based on the security test results.
· Step 7 Risk consolidation and treatment.

Phase 1: As indicated by Figure 2, the process was two-folded in the sense that it addressed both security risk assessment and security testing. Security risk assessment was conducted using the CORAS approach for model-based risk assessment.
[image: risk_estimation]
[bookmark: _Ref354664461][bookmark: _Toc354669536]Figure 3 Example of a CORAS model

In the CORAS risk assessment process, results are documented using CORAS risk models (an example is shown in Figure 3). A CORAS risk model is a directed acyclic graph whose nodes are of one the following kinds
· Threat: A potential cause of an unwanted incident (illustrated by a man with a warning sign in case of a human threat).
· Threat scenario: A chain or series of events that is initiated by a threat and that may lead to an unwanted incident (illustrated by ellipses with warning signs).
· Unwanted incident: An event that harms or reduces the value of an asset (illustrated by box with a star in the top right corner).
· Asset: Something to which a party assigns value and hence for which the party requires protection (illustrated by money bags).

Risks are not explicitly shown in the CORAS model of Figure 3. However, in the CORAS methodology, risks correspond to unwanted incidents together with a likelihood value and a consequence value. Hence, the model in Figure 3 describes two risks (implicitly). Relations may be of one of the following kinds
· Initiates relation going from a threat A to a threat scenario or unwanted incident B, meaning that A initiates B.
· Leads to relation going from a threat scenario or unwanted incident A to a threat scenario or unwanted incident B, meaning that A leads to B.
· Harms relation going from an unwanted incident A to an asset B, meaning that A harms B.

In addition, relations may be annotated by a
· Vulnerability: A weakness, flaw or deficiency that opens for, or may be exploited by, a threat to cause harm to or reduce the value of an asset (illustrated by red open locks).

Phases 2: Security testing was carried out in a structured manner by (1) identifying and prioritizing potential test scenarios based on CORAS risk model of Phase 1, (2) selecting the most important test scenarios and refining these into executable test cases, and (3) executing the concrete test cases. The security tests were carried out automatically, semi-automatically and manually. The following tools were used in the case study:
· IBM Rational Software Architect: IBM Rational Software Architect is a modelling and development environment that uses the Unified Modelling Language (UML) for designing architecture for C++ and Java 2 Enterprise Edition (J2EE) applications and web services. Rational Software Architect is built on the Eclipse open-source software framework and includes capabilities focused on architectural code analysis, C++, and model-driven development (MDD) with the UML.
· Smartesting CertifyIt: Smartesting CertifyIt is a test design automation tool that creates tests based on system models (i.e., model based testing). It has built-in integrations with Micro Focus, HP and IBM solutions.
· Selenium: Selenium is a suite of tools specifically for testing web applications. The ones used in this case were Selenium IDE, Selenium Server and Selenium Client Drivers. Selenium IDE is a Firefox plug-in that does record-and-playback of interactions with the browser. The Selenium Server is needed in order to run either Selenium RC style scripts or Remote Selenium WebDriver scripts. The Selenium Client Driver is necessary in order to create scripts that interact with the Selenium Server or create local Selenium WebDriver scripts (e.g., in order to run the scripts directly from Eclipse).
· OWASP WebScarab: WebScarab is a framework for analysing applications that communicate using the HTTP and HTTPS protocols. WebScarab has several modes of operation, implemented by a number of plugins. In its most common usage, WebScarab operates as an intercepting proxy, allowing the operator to review and modify requests created by the browser before they are sent to the server, and to review and modify responses returned from the server before they are received by the browser. WebScarab is able to intercept both HTTP and HTTPS communication. The operator can also review the conversations (requests and responses) that have passed through WebScarab.
· Eclipse: Eclipse is a multi-language software development environment comprising an integrated development environment (IDE) and an extensible plug-in system.
· Wireshark: A tool for capturing and analyzing network traffic supporting numerous communication protocols.

All tests were executed were black-box tests, i.e. Norse Options system was tested through its HTTP interface.
Part of the security testing that was carried in the case study was model-based. We used IBM Rational Software Architect (RSA) to build a functional model of the Norse Options systems which described typical user operations that could be performed on the client side through a web-browser. We then used Smartesting CertifyIt to generate functional tests that were exported to Java code, and implemented security specific tests in Java "on top" of the functional tests that were generated. Finally we executed the tests by using Selenium.
Phase 3
In phase 3, the test results were used to verify the correctness of the risk model (produced in phase 1). In particular, we took into account test results that
· confirmed the presence of a potential vulnerability;
· identified new vulnerabilities that were not previously known;
· were not able to confirm the presence of potential vulnerabilities.

If the test results were found to be in conflict with the risk model, then the risk model was updated to take into account the additional information obtained by testing. For example, if the presence of a potential vulnerability (whose existence or non-existence was unknown before the testing), then this typically resulted in the conditional likelihood value of the relation to which the vulnerability was associated to increase.
[bookmark: _Toc354669563][bookmark: _Toc230141564][bookmark: _Toc356297878]6.3	Results
The objective of the evaluation is was assess how useful testing is for gaining confidence in the correctness the risk models produced in the risk assessment (phase 1 above). To make the evaluation precise, we have specifically focused the degree to which the testing yielded information that caused us to change the risk model. Our overall hypothesis was that
The risk model created before testing (in phase 1 above) is equal to the risk model after testing (phase 3) above.
If the hypothesis is false, then this means that new information was obtained in the testing step that resulted in the risk model having to be updated/corrected. Our underlying assumption is that this would indicate that process of performing the tests was useful. If the hypothesis is true however, then we cannot, on the basis of this fact alone, conclude that the testing was or was not useful.
Our evaluation suggests that the hypothesis is false. In the case study, the risk model had to be updated after testing. In particular many of the likelihood values of the threat scenarios and risk had to be changed. Moreover, the testing uncovered vulnerabilities that would never have been uncovered in the risk assessment phase (phase 1 above), regardless of how much effort we would have spent in this phase. We therefore believe that the combination of risk assessment and testing is useful.
In the following, we provide more detailed information about the difference between the risk model before and after testing.

[bookmark: _Ref324938332][bookmark: _Ref324937032][bookmark: _Toc326329373][bookmark: _Toc354669537]Figure 4 Number of risk model elements before and after testing

Figure 4 shows the number of risk model elements in the risk models before and after testing. Only one element was deleted after testing (a vulnerability), hence the figure shows that four new vulnerabilities were added after testing, but no new threats, threat scenarios, unwanted incidents, or assets were added.
Figure 5 shows the number of threat scenarios and risks that were tested. As can be deduced from the figure, 33% of the threat scenarios were tested, and 42% of the risks were tested. Note however, that we have distinguished between those model elements that were directly tested from those that were not. We say that a threat scenario T was directly tested if T was used a basis for deriving tests. A threat scenario or a risk TR is indirectly tested if there is a threat scenario or a risk leading up to TR that was directly or indirectly tested. From the figure we can see 14% of the threat scenarios were directly tested, and that none of the risks were directly tested.

[bookmark: _Ref324937346][bookmark: _Toc326329374][bookmark: _Toc354669538]Figure 5 Number of risks and threat scenarios tested and updated
Figure 6 shows the difference between the threat scenarios and risks that were tested before and after testing. In the figure, each threat scenario and risk TR has a label of the form i / j which means that TR had a likelihood value of i before testing, and j after testing. The likelihood scale that was used in the case study can be mapped to a number between 1 and 5 where 1 represents the most unlikely value and 5 represents the most likely value. All the threat scenarios and risks whose likelihood values were edited after testing are in the Figure 6 given a darker colour than those threat scenarios and risks that were not edited. Note that all except one risk element whose likelihood values were edited after testing were estimated to me more likely after testing than before testing.
In Figure 6 the threat scenarios that were directly tested are represented by ellipses with a dotted outline; all the other elements of the diagram are indirectly tested. It can be noted that the level of indirection from the directly tested threat scenarios to the risks is quite large.

[bookmark: _Ref324938074][bookmark: _Toc326329375][bookmark: _Toc354669539]Figure 6 Difference between risk models before and after testing
Based on the previous discussion and the numbers in Figure 4, we know that new vulnerabilities were added to the risk model after testing, and that no other kinds of risk elements were added. Why did the testing only yield new information about the vulnerabilities? The main reason for this is that the tests were designed from the threat scenarios. The threat scenario would typically describe some kind of security attack and the purpose of the tests were to investigate whether the system had some vulnerability that could be exploited by the attack. In other words, the tests were designed to uncover vulnerabilities; not unknown assets, threats, threat scenarios, or risks. These elements were instead part of the context in which the testing was performed.

We believe that this result is generalizable, i.e. if our process were to be applied in another case study in the future, then the testing will most likely lead to the identification of new vulnerabilities, but not any other kinds of risk model elements. It is worth noting that vulnerabilities uncovered by testing in the case study could never have been uncovered if we had performed a risk assessment alone (without doing the testing), regardless of how much effort we would have spent. This is because the testing uncovered issues which only appeared in extremely specific circumstances which could not have been reproduced without execution the system under analysis. As discussed in the previous section, the testing resulted in the deletion of exactly one risk element - a vulnerability. The reason why we deleted a vulnerability after testing was that the testing provided evidence that a potential vulnerability identified in the risk assessment phase was actually not present in the system. This led us to remove the vulnerability from the risk model.
We also believe that in general, testing can result in the deletion of vulnerabilities, since the tests can be designed to check whether a vulnerability is actually present in the system or not. However, we think it is unlikely that the test results will lead to the deletion of any other kinds of risk model elements. As documented Figure 6, 11% of the threat scenarios and 13% of the risks were edited after testing. Moreover, only likelihood values were edited after testing.
For all risk elements that were edited (with the exception of one), the likelihood value was increased after testing, i.e. the risk element was believed to be more likely after testing than before testing. The reason for this was that the testing uncovered vulnerabilities that were previously unknown, and that led to the belief that certain threat scenarios were more likely to occur than believed before testing. For one of the threat scenarios, the likelihood values were decreased after testing as a result of one vulnerability being deleted.
In general, we believe that when following our process, the testing may uncover information that may cause the conditional likelihood values of relations to be edited, and this in turn may cause the likelihood values of threat scenarios and unwanted incidents to be edited after testing. However, we do not believe that the testing can yield information about the consequence value of risks.
[bookmark: _Toc354669564][bookmark: _Toc230141565][bookmark: _Toc356297879]6.4	Exploitation
The partners involved in the case study have gained important practical experience in applying a process which combines risk assessment and testing. As a result of the case study, Accurate Equity has increased its awareness about security in their application, and will continue to use risk assessment as part of their business process also after the completion of the DIAMONDS project. SINTEF, will, based on the experiences from the case study, improve their process for risk assessment and testing, focusing on improved techniques for test case identification and prioritization based on risk assessment results.
Based on the results of our evaluation, we yet cannot claim that our process leads to saved resources. This will require further evaluation, ideally trying out two different processes on the same systems to compare the effort required. We can however say that we believe that the testing improved the risk assessment results. This is because the testing uncovered information which resulted in the risk model having to be updated based on this information. Furthermore, the vulnerabilities uncovered by testing in the case study could never have been uncovered if we had performed a risk assessment alone (without doing the testing), regardless of how much effort we would have spent. This is because the testing uncovered issues which only appeared in extremely specific circumstances which could not have been reproduced without execution the system under analysis.
The case study process helped improve the security of the Norse Options system since vulnerabilities were discovered and treated. In general, an improved security risk model will likely lead to a more secure system, as it gives a more accurate description of the vulnerabilities of the system and allows for appropriate mitigations/treatments to be identified.

8 [bookmark: _Toc356297880]Radio case study results
tbd

9 [bookmark: _Toc356297881]Automotive case study results
tbd

10 [bookmark: _Toc356297882]Spacios case study results
tbd

11 [bookmark: _Toc356297883]6	Tools and methods mapping to lifecycle stages and security processesComparision and assessment of case study results
Describe use of UML. SDL, TTCN3, TPlan (new name ??).
Also describe mapping of methods to each of TS 102 165-1, TR 187 023 and the CC stuff.
<< TS 101 583 >>tbd

Annex A (informative):
Security contexts and principles
	Context
	Principles

	Governance
	Understand General Environment

	
	Understand Threat Environment

	
	Implement formal management regime

	Risk

	Understand General Risks

	
	Understand Security Risks

	Controls - Personnel
	Maintain Practitioner Competence

	
	Maintain Organisational Competence

	Controls - Physical
	Protect Physical Environment

	
	Provide Artefact Protection

	Controls - Procedural
	Perform Project Management

	
	Perform Supplier Management

	
	Understand Requirements

	
	Maintain Configuration Management

	
	Confirmation of Assurance

	
	Perform Trusted Software Asset Management

	
	Maintain Fault Management

	Controls - Technical
	Follow Architecture-driven Implementation

	
	Make appropriate tool choices

	
	Follow Structured Design

	
	Follow Structured Implementation

	
	Seek Trustworthy Realisation

	
	Minimise risk exposure

	
	Practice Hygienic Coding

	
	Use Methodological Implementation

	
	Perform Internal Pre-release Review

	
	Perform Internal Verification

	
	Enable Dependable Deployment

	Compliance
	Perform Independent Verification

	
	Maintain Ongoing Review

Annex B (informative):
Security Architectural Components
Functional Groups and Classes

1. 	Functional Groups (12)

Most abstract – Logical Level – decomposition of the Implementation Segment of the Security Architectural Framework is into IA Functional Groups (IAFG):

a. IA Technical Functions (8)
Connectivity Protection (Te - Conn)
Cryptography (Te - Cryp)
Entity Authorisation (Te - EntA)
Media & Device Protection & Disposals (Te - MDPD)
Monitoring and Surveillance (Te - MonS)
Information Integrity Preservation & Protection (Te - IIPP)
Media and Information Authentication (Te MIAu)
Intrinsic ICT Functions (Te - IICT)

b. IA Non-Technical(“P3”) Functions (3)
Personnel Security Functions (Pers)
Physical Security Functions (Phys)
Procedural Functions (Proc)

c. Data Management Functions (1)
Security Labels

2. 	Classes (69)

a.	IA Connectivity Protection (Te – Conn (6))
Perimeter Control Design Class
Virtual Connection Design Class
Wireless Protection Design Class
Port Protection Effects Class
WAN/MAN Protection Effects Class
LAN/PAN Protection Effects Class

b.	IA Cryptography (Te – Cryp (7))
Credential Generation
Credential Management
Credential Storage
Network Encryption
File Encryption
Internal Media Encryption
Removable Media Encryption

c.	IA Entity Authorisation (Te – EntA (8))
User Authentication
Multifactor Authentication
Privilege Management
Biometrics
ID Management
Federation
Session Authentication
User Registration

d.	IA Media & Device Protection & Disposals (Te – MDPD (4))
Media Erasure
Object Erasure
Mobile device remote disable/erase
Hard Copy Protection

e.	IA Monitoring and Surveillance (Te – MonS (8))
Intrusion Detection
Intrusion Protection
Protective Monitoring
Content Scanning (Malware / SpyWare)
Forensic Capture
Network Devices
Network Management
Mobile device tracking

f.	IA Information Integrity Preservation & Protection (Te – IIPP (11))
Device / Executable Control
Technical Vulnerability Management
Information Management
Code Management
Pre Boot controls
System Virtualisation
Time synchronisation
Software licensing
Offline Backup
Remote Backup
BCP / DR Facilities

g.	IA Media and Information Authentication (Te MIAu (2[footnoteRef:3])) [3:]

Media Authentication
Realtime Policy Advice / Enforcement

h.	Intrinsic ICT Functions (Te – IICT (12))
Generic Effects Class
Server Effects Class
Workstation Effects Class
Web Browser Effects Class
Web Server Effects Class
Email Server Effects Class
DNS Server Effects Class
PED Effects Class
Service Bus Effect Class
Audio Device Effect Class
Video Device Effect Class
Database Effect Class

i.	Personnel Security Functions (Pers (3))
Awareness
Training
Education

j.	Physical Security Functions (Phys (3))
Data Centre Security
Static UAD Security
Mobile UAD Security

k.	Procedural Security Functions (Proc (5))
Audit Analysis
Forensic Analysis
Assurance Testing
Supply Chain Trust
BCP/DR testing

l.	Data Management Functions (1)
Security Labels

Annex C (informative):
Application of common criteria in security standardisation
ETSI EG 202 387: "Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); Security Design Guide; Method for application of Common Criteria to ETSI deliverables".

Annex D (informative):
Application of security assurance profile in security standardisation

ETSI TR 197 023: "Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); Security Assurance Profile for Secured Telecommunications Operations"

Annex E (informative):
Bibliography
 The annex entitled "Bibliography" is optional.
It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itselft (see clause 12.2 of the EDRs http://portal.etsi.org/edithelp/Files/other/EDRs_navigator.chm).
It shall not include references mentioned in the document.
Use the Heading 9 style for the title and B1+ or Normal for the text.
<Publication>: "<Title>".
OR
[bookmark: REF_ISOIEC13335][i.41]	ITEA2 ISO/IEC 13335: "Information technology - Guidelines for the management of IT security".DIAMONDS project: Case Study Experience Report
[i.5]	AS/NZS 4360: "Risk Management".
[i.6]	Directive 2002/21/EC of the European Parliament and of the council of 7 March 2002 on a common regulatory framework for electronic communications networks and services (Framework Directive).
[i.7]	Directive 2002/58/EC of the European Parliament and of the council of 12 July 2002 concerning the processing of personal data and the protection of privacy in the electronic communications sector (Directive on privacy and electronic communications).
[i.8]	ISO/IEC 15408-2: "Information technology - Security techniques - Evaluation criteria for IT security - Part 2: Security functional requirements".
[i.9]	ISO/IEC 15408: "Information technology - Security techniques - Evaluation criteria for IT security".
NOTE:	When referring to all parts of ISO/IEC 15408 the reference above is used.
[i.10]	ETSI TR 187 011: "Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); NGN Security; Application of ISO-15408-2 requirements to ETSI standards - guide, method and application with examples".
[i.11]	Directive 95/46/EC Of The European Parliament And Of The Council of 24 October 1995 on the protection of individuals with regard to the processing of personal data and on the free movement of such data.
[i.12]	UK Home Office; R.V.Clark, "Hot Products: understanding, anticipating and reducing demand for stolen goods", ISBN 1-84082-278-3.
[i.13]	ISO/IEC 7498-2: " Information processing systems -- Open Systems Interconnection -- Basic Reference Model -- Part 2: Security Architecture".
[i.14]	ETSI TS 102 165-2: " Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); Methods and protocols; Part 2: Protocol Framework Definition; Security Counter Measures"
<PAGE BREAK>

[bookmark: _Toc356297884]History
	Document history

	V0.0.1
	March May 20132
	Initial Early draft for MTS Security SIG: J.GroßmannScott Cadzow mailto:scott@cadzow.com

	V0.0.2
	April 2013
	Revised draft for ISO/IEC JTC1 SC27: Ian Bryant mailto:ian.bryant@uk-tsi.org

	V0.0.3
	Planned
	Revised draft for MTS Security SIG: Ian Bryant mailto:ian.bryant@uk-tsi.org

	
	
	

ETSI
image2.wmf

Establish Security Objectives

Carry Out Vulnerability Analysis

(

Objectives

)

Specify Security Requirements

Syst

em Design

Security

Objectives

Assurance

Objectives

Threats

Security

Requirements

Security Services

Security

Architecture

Security

Mechanisms

Carry Out Vulnerability Analysis

(

Requirements

)

Carry Out Vulnerability Analysis

(

Syst

em

)

Key

:

Process

Process

Input

/

Output

Information

Control

oleObject1.bin
[image: image1.emf]

Establish Security Objectives

Carry Out Vulnerability Analysis

(

Objectives

)

Specify Security Requirements

System Design

Security

Objectives

Assurance

Objectives

Threats

Security

Requirements

Security Services

Security

Architecture

Security

Mechanisms

Carry Out Vulnerability Analysis

(

Requirements

)

Carry Out Vulnerability Analysis

(

System

)

Key

:

Process

Process

Input

/

Output

Information

Control

image3.wmf

TVRA

Application of

c

ountermeasures

(Internal change)

External

change

oleObject2.bin

TVRA

Application of countermeasures

(Internal change)

External

change

image4.emf
cd General model

«asset»

DesignModule

SystemDesign

«Objective»

SystemObjectives

«Objective»

SecurityObjectives

«Objective»

AssuranceObjectives

«Requirement»

SystemRequirements

«Requirement»

SecurityRequirements

«Requirement»

AssuranceRequirements

«realize»

+Is an aggregation of

image5.emf
cd SecurityRelationships

«asset»

DesignModule

«Vulnerability»

AssetVulnerability

«Threat»

AttackingThreat

«Weakness»

AssetWeakness

SystemDesign

«Countermeasure»

SecCountermeasure

«UnwantedIncident»

Incident

ThreatAgent

+Enacts specific threat

+Exploit may lead to

+Protects

+Is an aggregation of

+May have

image6.gif
I building black which infarmation
| Entiti

FEL

An indi

image7.emf
Disposal Maintenance Operation Validation Transition Verification Integration Implementation Archictectural

Design

Requirements

Analysis

Stakeholder

Requirement

Definition

R

i

s

k

A

s

s

u

r

a

n

c

e

S

p

e

c

i

f

i

c

a

t

i

o

n

V

e

r

i

f

i

c

a

t

i

o

n

Final Assurance Case

Adversity Analysis Vulnerability Analysis

Initial Assurance Case

SRD

Asset Catalogue Control Catalogue

Unit Test Product Test System Test

Detailed Design

Risk Monitoring

Update Assurance Case

Risk Monitoring

Reference Model Reference Case Specification Case

Penetration Test

oleObject3.bin
Requirements Analysis

Archictectural Design

Implementation

Integration

Verification

Transition

Validation

Operation

Risk

Specification

Stakeholder Requirement Definition

Maintenance

Disposal

Verification

Assurance

Final Assurance Case

Adversity Analysis

Vulnerability Analysis

Initial Assurance Case

SRD

Asset Catalogue

Control Catalogue

Unit Test

Product Test

System Test

Detailed Design

Risk Monitoring

Update Assurance Case

Risk Monitoring

Reference Model

Reference Case

Specification Case

Penetration Test

image8.png
Information Security Requirements

Conceptual Information Security Architectural Reference Model (ISARM)|

Logical Specification Case(s) (SC)

~ Logical Composed Packages (CP) | ——

Physical Design Class(es) (DC)

Detailed IA Design Pattern(s) (DP)

Physical Detailed
Infrastructure Infrastructure

Classes Pattern(s)

) Physical Effect Class(es) (EC) (IP)

Detailed Effect Pattern(s) (EP)

Logical Functional Groups (FG)

Information Security Implementation - Functional Packages (FP)

image9.png
Architecture Framework Level 1
(Conceptual)
Archicecture Fromework Level 2
(Contextual)

Architecture Framework Level 3
(Logical)

Architecture Framework Level &
(hysical

Architecture Framework Level 5
(Detailed)

Assurance Framework Level 1
(Conceptual)

Assurance Framework Level 2
(Contextual)

Assurance Framework Level 3
(Logical

Assurance Framework Level 4
(Physical)

Assurance Framework Level 5
(Detailed)

Avehtectural
Reference Mokl
Feenreetaal
ReferenceCase
Acitectral
Speciicaton Gase.
- Desgn /e | oo
oy | SOV T gt | o
Gassseecton | "4/ P24 | npiementton | inegraton
e | e
Product: | Componert | <P Product/System:
component s | mplementaton | ("1 | praguc/system: | prodctsyte: Upkeep | roductiSystem:
System: Overall | System: Acceptance Delivery (Configuration and e
System Procuct Process Defnton
Design Comporer o Patching)
= Configuration
Producer Orgaristion (PR0)Specicaton Competence. Proucer Orgnisation (PRD)Reaiation Competence InServie Management Organisaton (MGT) Competence
Product: Adversity
[Tl —— —
Analysis. ‘Vulnerabilfty Product/System: | Product/System: Product/System: jised Risk
sytem:Asers | Vet sk Analyis | Control Selction Rk waitorng | "t
|Adversiy (Hazard + i
‘Threat) Analysis
product: Asurance
Product/System: Product/system: Review Prod """"c: e
Initial Assurance Final Assurance | System: Assurance v
Update and. Review
e e and Acceptance o pteand |
Review .
Practictioner (PRA) Specification Competence Practictioner (PRA) Realisation Competence Practictioner (PRA} In Service Management Competence
Product; Product:. Product: Release
Component Test | Integration Test: MM’.;::*M Review '::elmm System:
System: [System: ntegrarion| ProSUCH/SYsem: . system:) - Decomissioning
omponent lest | lestand Product Acceptance Test sonTest Commissioning (Comeliance Testing| Penetration Test Heview
Review Test Review : Review
Koy
[Common [oiferng
] o
lapplctionfor lopictionfor [iopies i tocre
systems and lrodactsand Produc
Jproducts Jsystems [pems

image10.wmf
Firewall

oleObject4.bin
�

Firewall�

image11.png
Host

Executable Test
System

M soromeme 1

Currency Reconciliation
Processor Station

image12.png
Correctness of the C
Hh

Attder

%

Ftacker sends configuration messags:
over the Message Router

%

%

‘Attacker may change configuration
without authentication

%

%

Barknotes are shedded which
shouid not be shedded
%

ing Procedure knotes

[}

Enterprise Reputation

[

Customers

®

Attacker has access to the Message Router

®

Messages are executed without
checking authentication

[}

Service

fabitfy, SLA Viclation

Revenue

image13.png
activity Courting money ULsec [[Couring money UilLsec 1]

Counting money «rbac»
{role=(operator, money counten)

friht=(money counter, configure), (money counter,
count money)}

{protected="configure" "count money'"logout’)

Operator

vaiid logn cata]

configure)

Count money)

image14.png
<rbacs>
n Courtig money | [F Courting money |

+Operator
T

invald login data] 1: loging)

2 configure()

, 3 countioney(

! 4 logout()

{role=(operator, money counten}

{right=(money counter, configure), (money counter,
count maney)}

{protected="configurs" "count money'}
{authentication=(login logout}

image15.png
[Host
——|

Executable Test

System

Currency

Processor

1
g U

Reconciliation
Station

image16.png
Y Tracing Explorer | BE Weakness Explorer 23

Name of Vulnerabilty #Testeases #Pass #Fail #None #Inconclusive #Ermor

Authentication Bypass £ E 0 0 0 0
SQL Injection 2 2 0 0 0 0

image17.png
Risk assessment

Tool integration
score

score

Automated
) generation of test
models score

Static testing
score

est generation

Monitoring score
"8 score

N
Test execution
automation uzzing score
score

M Giesecke & Devrient
DIAMONDS

| Giesecke & Devrient

image18.emf
Domain

(database queries)

DB

Service

(business logic)

Control

(GUI and input

control)

JSP

SQL

Java

Java

Java

Web

HTTPS

Domain

layer

Service

layer

Control

layer

MySQL

IE, Opera, Firefox, …

Apache Tomcat 5.5.25

View

layer

Microsoft_PowerPoint_Slide1.sldx
Domain

(database queries)

DB

Service

(business logic)

Control

(GUI and input control)

JSP

SQL

Java

Java

Java

Web

HTTPS

Domain

layer

Service

layer

Control

layer

MySQL

IE, Opera, Firefox, …

Apache Tomcat 5.5.25

View

layer

image19.wmf

image20.png
Lack of user security awareness

acker obtains account use?
name and password
[Unlikely]

SQU injection aunched Major

Likely]

SQ injection successful
[Unlikely]

Hacker
Confidentialty of user data

Poor server/network capacity

g ;
Moderate N
Non-robust protocol implementation ‘

Avalabilty of service

Service unavailable
[Unlikely]

enial of serivee attack launche
[Possible]

image21.emf
0

5

10

15

20

25

30

35

40

45

50

Before

After

Microsoft_Excel_Worksheet2.xlsx
Chart1

Before	Threat scenarios	Risks	Threats	Vulnerabilities	Assets	43	31	7	3	4	After	Threat scenarios	Risks	Threats	Vulnerabilities	Assets	43	31	7	6	4	

Sheet1

						Risk		TS		V		T

				Confidentiality				2

				Integrity				7

				Availability				13

				Accountability				6

				Common				15

						Nr. before		Nr. after		Tested		Directly updated		Indirectly updated

				Risks		31		31		0

				Threat scenarios		43		43

				Vulnerabilities		1		X		0

				Threats		7		7		0

				Arrows

				Total		82		81		0		0		0

				Threat scenario		Likelihood		Min depth		Max depth		Tested by

				T1

				T2

				T3

				T4

				T5

				T6

				T7

				T8

				T9

				T10

				T11

				T12

				T13

				T14

				T15

				T16

				T17

				T18

				T19

				T20

				T21

				T22

				T23

				T24

				T25

				T26

				T27

				T28

				T29

				T30

				T31

				T32

				T33

Sheet2

				Likelhood scale

				Certain		5

				Likely		4

				Possible		3

				Unlikely		2

				Rare		1

				Threat scenarios

				TS id		T1		T2		T3		T4		T5		T6		T7		T8		T9		T10		T11		T12		T13		T14		T15		T16		T17		T18		T19		T20		T21		T22		T23		T24		T25		T26		T27		T28		T29		T30		T31		T32		T33		T34		T35		T36		T37		T38		T39		T40		T41		T42		T43

				Likelihood before		3						3				2		2		3		3		2		1				3		2		1								2						2		2																												2

				Likelihood after		2						3				3		3		3		3		3		1				3		3		1								2						2		2																												3

				Min depth		1						1				1		1		1		1		2		2				2		3		3								4						3		4																												4

				Max depth		1						1				1		1		1		1		2		2				3		3		3								4						4		5																												4

				Min test distance		0						0				0		0		0		1		1		1				1		2		2								3						0		1																												3

				Max test distance		0						0				0		0		0		1		1		1				2		2		2								3						0		1																												3

				Tested by		T1						T4				T6		T7		T8		T4		T4		T4				T1		T4		T4								T4						T22		T22																												T4

																						T6		T6						T4		T6		T6								T6																																				T6

																						T7		T7						T5		T7		T7								T7																																				T7

																						T8		T8						T6		T8		T8								T8																																				T8

																														T7

				Threat scenarios (total)		43

				Threat scenarios tested		14

				Threat scenarios directly tested		6

				Threat scenarios updated		5

				Percentage directly tested		0.1395348837

				Percentage tested		0.3255813953

				Percentage th. Sc. updated		0.1162790698

				Percentage tested th. sc. updated		0.3571428571

				Risks		A1		A2		A3		A4		A5		A6		A7		A8		A9		A10		A11		C1		C2		C3		C4		C5		C6		C7		C8		I1		I2		I3		I4		I5		I6		I7		I8		AC1		AC2		AC3		AC4

				Likelihood before		2		3																				2		2		2		3		2				2				1		1		1		1								2

				Likelihood after		2		3																				3		3		3		3		2				2				3		3		3		1								2

				Min depth		3		5																				4		3		4		3		3				4				5		5		5		5								3

				Max depth		6		5																				4		4		4		4		4				4				5		5		5		5								4

				Min test distance		4		4																				3		3		3		3		2				3				4		4		4		4								2

				Max test distance		5		4																				3		3		3		3		3				3				4		4		4		4								3

				Tested by		T1		T4																				T4		T4		T4		T1		T1				T4				T4		T4		T4		T4								T1

						T4		T6																				T6		T6		T6		T4		T4				T6				T6		T6		T6		T6								T4

						T5		T7																				T7		T7		T7		T5		T5				T7				T7		T7		T7		T7								T5

						T6		T8																				T8		T8		T8		T6		T6				T8				T8		T8		T8		T8								T6

						T7																												T7		T7																						T7

						T22

				Risks (total)		31

				Risks tested		13

				Risks updated		6

				Percentage of risks tested		0.4193548387

				Prcentage of risks updated		0.1935483871

				Percentage of tested risks updated		0.4615384615

Threat scenarios (total)	Threat scenarios tested	Threat scenarios directly tested	Threat scenarios updated	43	14	6	5	Risks (total)	Risks tested	Risks updated	31	13	6	

Sheet3

						Before		After

				Threat scenarios		43		43

				Risks		31		31

				Threats		7		7

				Vulnerabilities		3		6

				Assets		4		4

								Before		After

				TCA1: Too many employee requrests				1		1

				SSO payload disclosed				1		0

				XSS				0		1

				Broken authenitcation sess. Mng.				0		1

				CSRF				0		1

				Misconfiguration				0		1

						Threat scenarios		Risks

				Total		43		31

				Total tested		14		13

				Total directly tested		6		0

				Total updated		5		6

Before	Threat scenarios	Risks	Threats	Vulnerabilities	43	31	7	3	After	Threat scenarios	Risks	Threats	Vulnerabilities	43	31	7	6	Threat scenarios	Total	Total tested	Total directly tested	Total updated	43	14	6	5	Risks	Total	Total tested	Total directly tested	Total updated	31	13	0	6	Before	Threat scenarios	Risks	Threats	Vulnerabilities	Assets	43	31	7	3	4	After	Threat scenarios	Risks	Threats	Vulnerabilities	Assets	43	31	7	6	4	

image22.emf
0

5

10

15

20

25

30

35

40

45

50

Total Total tested Total directly

tested

Threat scenarios

Risks

Microsoft_Excel_Worksheet3.xlsx
Chart2

Threat scenarios	Total	Total tested	Total directly tested	43	14	6	Risks	Total	Total tested	Total directly tested	31	13	0	

Sheet1

						Risk		TS		V		T

				Confidentiality				2

				Integrity				7

				Availability				13

				Accountability				6

				Common				15

						Nr. before		Nr. after		Tested		Directly updated		Indirectly updated

				Risks		31		31		0

				Threat scenarios		43		43

				Vulnerabilities		1		X		0

				Threats		7		7		0

				Arrows

				Total		82		81		0		0		0

				Threat scenario		Likelihood		Min depth		Max depth		Tested by

				T1

				T2

				T3

				T4

				T5

				T6

				T7

				T8

				T9

				T10

				T11

				T12

				T13

				T14

				T15

				T16

				T17

				T18

				T19

				T20

				T21

				T22

				T23

				T24

				T25

				T26

				T27

				T28

				T29

				T30

				T31

				T32

				T33

Sheet2

				Likelhood scale

				Certain		5

				Likely		4

				Possible		3

				Unlikely		2

				Rare		1

				Threat scenarios

				TS id		T1		T2		T3		T4		T5		T6		T7		T8		T9		T10		T11		T12		T13		T14		T15		T16		T17		T18		T19		T20		T21		T22		T23		T24		T25		T26		T27		T28		T29		T30		T31		T32		T33		T34		T35		T36		T37		T38		T39		T40		T41		T42		T43

				Likelihood before		3						3				2		2		3		3		2		1				3		2		1								2						2		2																												2

				Likelihood after		2						3				3		3		3		3		3		1				3		3		1								2						2		2																												3

				Min depth		1						1				1		1		1		1		2		2				2		3		3								4						3		4																												4

				Max depth		1						1				1		1		1		1		2		2				3		3		3								4						4		5																												4

				Min test distance		0						0				0		0		0		1		1		1				1		2		2								3						0		1																												3

				Max test distance		0						0				0		0		0		1		1		1				2		2		2								3						0		1																												3

				Tested by		T1						T4				T6		T7		T8		T4		T4		T4				T1		T4		T4								T4						T22		T22																												T4

																						T6		T6						T4		T6		T6								T6																																				T6

																						T7		T7						T5		T7		T7								T7																																				T7

																						T8		T8						T6		T8		T8								T8																																				T8

																														T7

				Threat scenarios (total)		43

				Threat scenarios tested		14

				Threat scenarios directly tested		6

				Threat scenarios updated		5

				Percentage directly tested		0.1395348837

				Percentage tested		0.3255813953

				Percentage th. Sc. updated		0.1162790698

				Percentage tested th. sc. updated		0.3571428571

				Risks		A1		A2		A3		A4		A5		A6		A7		A8		A9		A10		A11		C1		C2		C3		C4		C5		C6		C7		C8		I1		I2		I3		I4		I5		I6		I7		I8		AC1		AC2		AC3		AC4

				Likelihood before		2		3																				2		2		2		3		2				2				1		1		1		1								2

				Likelihood after		2		3																				3		3		3		3		2				2				3		3		3		1								2

				Min depth		3		5																				4		3		4		3		3				4				5		5		5		5								3

				Max depth		6		5																				4		4		4		4		4				4				5		5		5		5								4

				Min test distance		4		4																				3		3		3		3		2				3				4		4		4		4								2

				Max test distance		5		4																				3		3		3		3		3				3				4		4		4		4								3

				Tested by		T1		T4																				T4		T4		T4		T1		T1				T4				T4		T4		T4		T4								T1

						T4		T6																				T6		T6		T6		T4		T4				T6				T6		T6		T6		T6								T4

						T5		T7																				T7		T7		T7		T5		T5				T7				T7		T7		T7		T7								T5

						T6		T8																				T8		T8		T8		T6		T6				T8				T8		T8		T8		T8								T6

						T7																												T7		T7																						T7

						T22

				Risks (total)		31

				Risks tested		13

				Risks updated		6

				Percentage of risks tested		0.4193548387

				Prcentage of risks updated		0.1935483871

				Percentage of tested risks updated		0.4615384615

Threat scenarios (total)	Threat scenarios tested	Threat scenarios directly tested	Threat scenarios updated	43	14	6	5	Risks (total)	Risks tested	Risks updated	31	13	6	

Sheet3

						Before		After

				Threat scenarios		43		43

				Risks		31		31

				Threats		7		7

				Vulnerabilities		3		6

				Assets		4		4

								Before		After

				TCA1: Too many employee requrests				1		1

				SSO payload disclosed				1		0

				XSS				0		1

				Broken authenitcation sess. Mng.				0		1

				CSRF				0		1

				Misconfiguration				0		1

						Threat scenarios		Risks

				Total		43		31

				Total tested		14		13

				Total directly tested		6		0

				Total updated		5		6

Before	Threat scenarios	Risks	Threats	Vulnerabilities	43	31	7	3	After	Threat scenarios	Risks	Threats	Vulnerabilities	43	31	7	6	Threat scenarios	Total	Total tested	Total directly tested	Total updated	43	14	6	5	Risks	Total	Total tested	Total directly tested	Total updated	31	13	0	6	Before	Threat scenarios	Risks	Threats	Vulnerabilities	Assets	43	31	7	3	4	After	Threat scenarios	Risks	Threats	Vulnerabilities	Assets	43	31	7	6	4	Threat scenarios	Total	Total tested	Total directly tested	43	14	6	Risks	Total	Total tested	Total directly tested	31	13	0	

image23.emf
T1

3 / 2

A1

2 /2

A2

3 / 3

C1

2 / 3

C2

2 / 3

C3

2 / 3

C4

3 / 3

C5

2 / 2

C7

2 / 2

I1

1 / 3

I2

1 / 3

I3

1 / 3

I4

1 / 1

I8

2 / 2

T4

3 / 3

T6

2 / 3

T7

2 / 3

T8

3 / 3

T9

3 / 3

T10

2 / 3

T11

1 / 1

T13

3 / 3

T14

2 / 3

T22

2 / 2

T23

2 / 2

T19

2 / 2

T37

1 / 3

Likelihood value edited after testing

Likelihood value not edited after testing

Tested directly

Tested indirectly

oleObject5.bin
T1
3 / 2

A1
2 /2

T4
3 / 3

A2
3 / 3

C1
2 / 3

C2
2 / 3

C3
2 / 3

C4
3 / 3

C5
2 / 2

C7
2 / 2

I1
1 / 3

I2
1 / 3

I3
1 / 3

I4
1 / 1

I8
2 / 2

T6
2 / 3

T7
2 / 3

T8
3 / 3

T9
3 / 3

T10
2 / 3

T11
1 / 1

T13
3 / 3

T14
2 / 3

T22
2 / 2

T23
2 / 2

T19
2 / 2

T37
1 / 3

Likelihood value edited after testing

Likelihood value not edited after testing

Tested directly

Tested indirectly

image1.jpeg

