[image: image8.jpg]

Early draft ES 203 119-4 V0.0.1 (2014-09)
Methods for Testing and Specification (MTS);

The Test Description Language (TDL);

Extensions: Advanced Test Objective Specification
<
ETSI SPECIFICATION
Reference

DES/MTS-203119part 2
Keywords

language, MBT, methodology, testing,
TSS&TP, TTCN-3, UML
ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.

The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2014.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.
Contents

If you need to update the table of content you would need to first unlock it.
To unlock the Table of Contents: select the Table of Contents, click simultaneously: Ctrl + Shift + F11.
Then lock it: reselect the Table of Contents and then click simultaneously: Ctrl + F11.
3Contents

Intellectual Property Rights
5
Foreword
6
Introduction
6
1
Scope
7
2
References
8
2.1
Normative references
8
2.2
Informative references
8
3
Definitions, symbols and abbreviations
9
3.1
Definitions
9
3.2
Symbols
9
3.3
Abbreviations
9
4
Basic principles
10
4.1
Introduction
10
4.2
Document Structure
10
4.3
Notational Conventions
10
4.4
Conformance
10
5
Meta-Model Extensions
10
5.1
Overview
10
5.2
Abstract Syntax
10
5.3
Foundation Classifier Description
12
5.3.1
Entity
12
5.3.2
Event
12
5.3.3
PICS
13
5.4
Test Objective Classifier Description
13
5.4.1
StructuredTestObjective
13
5.4.2
PICSReference
14
5.4.3
InitialConditions
14
5.4.4
ExpectedBehaviour
14
5.4.5
FinalConditions
15
5.5
Events Classifier Description
15
5.5.1
EventSequence
15
5.5.2
EventOccurence
15
5.5.3
EntityReference
16
5.5.4
EventReference
16
5.6
Data Classifier Description
17
5.6.1
Value
17
5.6.2
DataReference
17
5.6.3
LiteralValue
18
5.6.4
LiteralValueReference
18
5.6.5
Content
18
5.6.6
ContentReference
19
6.
Concrete Syntax
19
6.1
Graphical Representation Format
19
6.1.1
StructuredTestObjective
19
6.1.2
Entity
22
6.1.3
Event
22
6.1.4
PICS
22
6.2
Textual Representation Format
22
6.2.1
Package
22
6.2.2
AnnotationType
23
6.2.3
Entity
24
6.2.4
Event
24
6.2.5
PICS
24
6.2.6
StructuredTestObjective
25
6.2.7
StructuredDataType
25
6.2.8
StructuredDataInstance
26
Proforma copyright release text block
26
Annexes
27
Annex A (normative): BNF Production Rules
27
A.1
Overview and Conventions
27
A.1
Production Rules
27
Annex B (informative): Examples
29
Annex <X+2> (informative): Title of informative annex (style H8)
29
Annex <X+3> (informative): Change History
29
Annex <X+4> (informative): Bibliography
30
History
30
A few examples:
31

<PAGE BREAK>

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This early draft ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS), and is now submitted for the ETSI standards Membership Approval Procedure.
The present document is part 4 of a multi-part deliverable on the Test Description Language as detailed below:

Part 1: Abstract Syntax and Associated Semantics

Part 2: Graphical Syntax
Part 3: Exchange Format
Part 4: Extensions: Advanced Test Objective Specification
Introduction

Test purposes play an essential role in test specification processes at ETSI. Currently, test purposes are specified in TPLan or TPLan-like notations, whereas TDL treats test purposes, and test objectives in general as informal text without any additional structural constraints. This extension package for TDL refines and formalises test objective specification within TDL by introducing relevant meta-model concepts and a corresponding syntactical notation, both of which are related to TPLan. This enables test purpose specification to enter the modelling world and paves the way for improved tool support and better structured test objectives, as well as additional formal verification and validation facilities down the road by integrating and unifying the means for the specification of test purposes and test descriptions, while relying on the same underlying meta-model and benefiting from other related technologies built around this meta-model.

The present document describes the relevant abstract syntax (meta-model) extensions as well as the corresponding concrete syntactical notation.
Ed. Note: To be extended for the final draft.
1
Scope

The ES (ETSI Standard) shall be chosen when the document contains normative provisions and it is considered preferable or necessary that the document be submitted to the whole ETSI membership for its approval.

The scope shall always be clause 1 of each ETSI deliverable and shall start on a new page (more details can be found in clause 11 of the EDRs).

No text block identified. Forms of expression such as the following should be used:

The present document specifies the extensions to the TDL meta-model described in [1] necessary to support advanced test objective specification, as well as the concrete syntactical notation for the advanced test objective specification. The notation also covers the minimal set of TDL elements that are required to construct a valid model which can enclose the test objectives. The intended use of the present document is to serve as the spefication for the required meta-model extensions and the corresponding concrete syntax which is to be used by users of these extensions.
Ed. Note: To be extended for the final draft.
2
References

The following text block applies. More details can be found in clause 12 of the EDRs.

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE:
While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.
2.1
Normative references

Clause 2.1 only shall contain normative (essential) references which are cited in the document itself. These references have to be publicly available and in English.
The following referenced documents are necessary for the application of the present document.
[1]
ETSI ES 203 119-1 (V1.2.1.): “Methods for Testing and Specification (MTS); The Test Description Language (TDL); Specification of the Abstract Syntax and Associated Semantics"
Ed. Note: To be extended for the final draft.
2.2
Informative references
Clause 2.2 shall only contain informative references which are cited in the document itself.

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[i.1]
ETSI TR 102 473: "<Title>".

[i.2]
ETSI TR 102 469: "<Title>".

Ed. Note: To be extended for the final draft.
3
Definitions, symbols and abbreviations

Ed. Note: Claise not included in the early draft.
Delete from the above heading the word(s) which is/are not applicable, (see clauses 13 and 14 of EDRs).

Definitions and abbreviations extracted from ETSI deliverables can be useful when drafting documents and can be consulted via the Terms and Definitions Interactive Database (TEDDI) (http://webapp.etsi.org/Teddi/).
3.1
Definitions

Clause numbering depends on applicability.

· A definition shall not take the form of, or contain, a requirement.
· The form of a definition shall be such that it can replace the term in context. Additional information shall be given only in the form of examples or notes (see below).
· The terms and definitions shall be presented in alphabetical order.
For the purposes of the present document, the [following] terms and definitions [given in ... and the following] apply:

Definition format

<defined term>: <definition>

example 1: text used to clarify abstract rules by applying them literally

NOTE:
This may contain additional information.

3.2
Symbols

Clause numbering depends on applicability.

For the purposes of the present document, the [following] symbols [given in ... and the following] apply:

Symbol format

<symbol>
<Explanation>

<2nd symbol>
<2nd Explanation>

<3rd symbol>
<3rd Explanation>

3.3
Abbreviations
Abbreviations should be ordered alphabetically.
Clause numbering depends on applicability.

For the purposes of the present document, the [following] abbreviations [given in ... and the following] apply:

Abbreviation format

<ACRONYM1>
<Explanation>

<ACRONYM2>
<Explanation>

<ACRONYM3>
<Explanation>

<PAGE BREAK>

4
Basic principles
Ed. Note: Claise not included in the early draft. Content may include
· Extension facilities – adding support for the extension at the meta-model level and relations to TDL

· Concrete syntax to meta-model mappings

4.1
Introduction
4.2
Document Structure

4.3
Notational Conventions

4.4
Conformance

5
Meta-Model Extensions
The following clauses specify extensions
to the abstract syntax for TDL that enable the support for advanced test objective specification by means of structured test objectives.
5.1
Overview

Ed. Note: Main principles and features to be added for the stable draft.
5.2
Abstract Syntax

[image: image1.png]=E™

B

=0

] pactagesticiment

S

Dewnt

D resobiecive

53 + objectvelRl suing [
5 + description:Sting 0.1

O Stuctracrestbjuciv

Figure 5.1: Advanced Test Objective Specification Foundation Concepts
[image: image2.png]=0

£ rcstateence

[l restonjecie

G +obpectvetRising [| O srucuredrestobiecive
(53, + descption: Sing (0.1

+ intisiCondition: 011 + expectediehaviour (0.1] + finalConditons 0..1]

5 waicandiion: 5 expectdietaviou 5 rnscondion:

4 whenClause [0.1] + thenClause 1]

+ canditons 1] " canditans (1]

[

Figure 5.2: Structured Test Objective Concepts

[image: image3.png]+ oppositEntiyReference [

+ entiReference (1]

i

events [1.7]

+ eventeferance

e

w + eventargument (0.1]

% Deniomaunce

e

Dvaue

+entiy (1]

event (1]

=E™

Dewnt

Figure 5.3: Events Concepts

[image: image4.png][l

D osahaerence

’ﬁﬂ ET———

S value (0.1)

e

3 vaee

5 uneatvatue }.% 5 Lneratvlushefeence
ot 1]

Figure 5.4: Data Concepts

5.3
Foundation Classifier Description
5.3.1
Entity
Semantics

An 'Entity' is a ‘PackageableElement’ that describes a participant in an event. User defined entities, such as IUT, SUT, Tester, etc. may be referenced in ‘EventOccurence’s as the source and/or target of an ‘EventReference’entity. Whether an ‘Entity’ corresponds a ‘ComponentInstance’ or a ‘GateInstance’ is not specified in advance. Whether an ‘Entity’ referenced in an ‘EventOcurrence’ is the source or target of an ‘EventReference’ depends on the interpretation of the corresponding ‘Event’ definition.

Generalizations

· PackageableElement

Properties

There are no properties specified.
Constraints
There are no constraints specified.
5.3.2
Event
Semantics

An 'Event' is a ‘PackageableElement’ that describes a user defined event that may be referenced in ‘EventOccurence’s. The direction of an ‘Event’ with respect to the ‘Entity’ or ‘Entities’ referenced in the ‘EventOccurence’s depends on the interpretation of the ‘Event’, where ‘Annotation’s may be used to provide additional information regarding the kind of the event.

Generalizations

· PackageableElement

Properties

There are no properties specified.
Constraints
There are no constraints specified.

5.3.3
PICS

Semantics

A 'PICS' is a ‘PackageableElement’ that may be referenced in ‘StructuredTestObjective’s.

Generalizations

· PackageableElement

Properties

There are no properties specified.
Constraints
There are no constraints specified.

5.4
Test Objective Classifier Description

5.4.1
StructuredTestObjective
Semantics

A 'StructuredTestObjective' is a refinement of ‘TestObjective’ that enables the use of additional constructs in order formalise the description of ‘TestObjective’s. In addition to the ‘description’ and ‘objectiveURI’ properties inherited from ‘TestObjective’, a ‘StructuredTestObjective’ includes ‘PICS’ references, ‘InitialConditions’, ‘ExpectedBehaviour’, and ‘FinalConditions’.
Generalizations

· PackageableElement

Properties

· picsReference : PICSReference [*] {ordered}
An ordered set of ‘PICSReferences’ to ‘PICS’.

· initialConditions : InitialConditions [0..1]
Initial conditions description for the ‘StructuredTestObjective’.

· expectedBehaviour : ExpectedBehaviour [0..1]
Expected behaviour description for the ‘StructuredTestObjective’.

· finalConditions : FinalConditions [0..1]
Final conditions description for the ‘StructuredTestObjective’.

Constraints
There are no constraints specified.
5.4.2
PICSReference

Semantics

A 'PICSReference' is an ‘Element’ that enables the referencing of ‘PICS’ within ‘StructuredTestObjective’s. An ‘Annotaiton’ may be used to add an operand describing how the referenced ‘PICS’ shall be interpreted and how it is related to other referenced ‘PICS’.

Generalizations

· Element

Properties

· pics : PICS [1]
The referenced ‘PICS’.

Constraints
There are no constraints specified.
5.4.3
InitialConditions

Semantics

'InitialConditions' is an ‘Element’ containing an ‘EventSequence’ describing the initial conditions of a ‘StructuredTestObjective’.

Generalizations

· Element

Properties

· conditions : EventSequence [1]
An ‘EventSequence’ containing the ‘EventOcurrences’ describing the initial conditions for the ‘StructuredTestObjective’.

Constraints
There are no constraints specified.
5.4.4
ExpectedBehaviour

Semantics

'ExpectedBehaviour' is an ‘Element’ containing an ‘EventSequence’ describing the expected behaviour of a ‘StructuredTestObjective’.

Generalizations

· Element

Properties

· whenClause : EventSequence [0..1]
An ‘EventSequence’ containing the ‘EventOcurrences’ describing the stimuli for the ‘ExpectedBehaviour’ of the ‘StructuredTestObjective’.
· thenClause : EventSequence [1]
An ‘EventSequence’ containing the ‘EventOcurrences’ describing the expected reaction for the ‘ExpectedBehaviour’ of the ‘StructuredTestObjective’ or the resulting expected state.

Constraints
There are no constraints specified.
5.4.5
FinalConditions

Semantics

'FinalConditions' is an ‘Element’ containing an ‘EventSequence’ describing the final conditions of a ‘StructuredTestObjective’.

Generalizations

· Element

Properties

· conditions : EventSequence [1]
An ‘EventSequence’ containing the ‘EventOcurrences’ describing the final conditions for the ‘StructuredTestObjective’.

Constraints
There are no constraints specified.
5.5
Events Classifier Description

5.5.1
EventSequence

Semantics

'EventSequence' is an ‘Element’ containing ‘EventOccurences’.

Generalizations

· Element

Properties

· events : EventOccurrence [1..*] {ordered}
A sequence of ‘EventOccurrences’..

Constraints
There are no constraints specified.
5.5.2
EventOccurence
Semantics

An 'EventOcurrence' is an ‘Element’ describing a concrete occurrence of an ‘Event’, including qualified references to the ‘Event’, to the ‘Entity’ related to the occurrence of the ‘Event’ and to any other ‘Entity’s involved in the ‘EventOccurrence’. It also includes a ‘Value’ as argument describing the details of the ‘EventOccurrence’ such as the data being sent or received.

Generalizations

· Element

Properties

· entityReference : EntityReference [1]
An ‘EntityReference’ to the ‘Entity’ related to the occurrence of the ‘Event’.
· oppositeEntityReference : EntityReference [0..*]
‘EntityReference’s to other ‘Entity’s involved in the ‘EventOcurrences’.

· eventReference : EventReference [1]
An ‘EventReference’ to the occurring ‘Event’.
· eventArgument : Value [0..1]
A ‘Value’ describing the details of the ‘EventOccurrence’.
Constraints
There are no constraints specified.
5.5.3
EntityReference

Semantics

An 'EntityReference' is an ‘Element’ that enables the referencing of ‘Entity’s within ‘EventOccurrence’s. ‘Comment’s or ‘Annotation’s may be used to add qualifiers describing peculiarities of the referenced ‘Entity’ related to the specific ‘EventOccurrence’.

Generalizations

· Element

Properties

· entity : Entity [1]
The referenced ‘Entity’.

Constraints
There are no constraints specified.
5.5.4
EventReference

Semantics

An 'EventReference' is an ‘Element’ that enables the referencing of ‘Events’ within ‘EventOccurence’s. ‘Comment’s or ‘Annotaiton’s may be used to add qualifiers describing peculiarities of the referenced ‘Event’ related to the specific ‘EventOccurrence’.

Generalizations

· Element

Properties

· event : Event [1]
The referenced ‘Event’.

Constraints
There are no constraints specified.
5.6
Data Classifier Description

5.6.1
Value

Semantics

A 'Value' is an abstract ‘Element’ that is refined into ‘DataReference’, ‘LiteralValue’, ‘LiteralValueReference’ and ‘ContentReference’. While ‘DataReference’ enables the referencing of ‘DataInstance’s defined in advance, the remaining ‘Value’ refinements enable the inline ad-hoc description of data and data structures, without the requirement of defining ‘DataType’s and ‘DataInstance’s in advance. ‘DataInstance’s and inline data descriptions may be combined to the extent that inline data descriptions may contain ‘DataReference’s to ‘DataInstance’s, but ‘DataInstance’s relying on declared ‘DataType’s may not reference inline data descriptions. ‘Comment’s or ‘Annotaiton’s may be used to add qualifiers describing further details related to the ‘Value’ withing to the specific context of its usage.
Generalizations

· Element

Properties

· content : Content [1]
The referenced ‘Content’.

Constraints
There are no constraints specified.
5.6.2
DataReference

Semantics

A 'DataReference' is a ‘Value’ that enables the referencing of ‘DataInstance’s by means of ‘DataInstanceSpecification’ as an argument of ‘EventOccurence’s or as a value of ‘Content’.

Generalizations

· Value
Properties

· content : DataInstanceSpecification [1]
Specification of the referenced ‘DataInstance’.

Constraints
‘DataInstanceSpecification’ restrictions
Only simple and structured data instances may be referenced.
5.6.3
LiteralValue

Semantics

A 'LiteralValue' is a ‘Value’ that represents any literal label used as an argument of ‘EventOccurence’s or as a value of ‘Content’. A ‘LiteralValue’ may contain ‘Content’ enabling the definition of a substructure of the ‘LiteralValue’ describing the details of the ‘LiteralValue’.
Generalizations

· Value
Properties

· content : Content [0..*] {ordered}
The ‘Content’s of the ‘LiteralValue’.

Constraints
There are no constraints specified.

5.6.4
LiteralValueReference

Semantics

A 'LiteralValueReference' is a ‘Value’ that enables the referencing of ‘LiteralValues’ as an argument of ‘EventOccurence’s or as a value of ‘Content’.

Generalizations

· Value
Properties

· content : LiteralValue [1]
The referenced ‘LiteralValue’.

Constraints
There are no constraints specified.
5.6.5
Content

Semantics

A 'Content' is an ‘Element’ that enables the specification of composite ‘LiteralValue’s which contain additional ‘Value’s.

Generalizations

· Element

Properties

· value : Value [0..1]
A ‘Value’ assigned to the ‘Content’.

Constraints
There are no constraints specified.
5.6.6
ContentReference

Semantics

A 'ContentReference' is a ‘Value’ that enables the referencing of the ‘Content’ of ‘LiteralValues’ as an argument of ‘EventOccurence’s or as a value of ‘Content’.

Generalizations

· Value
Properties

· content : Content [1]
The referenced ‘Content’.

Constraints
There are no constraints specified.
6.
Concrete Syntax
The following clauses specify the graphical representation format extensions for TDL related to the additional concepts specified in Clause 5, as well as a textual representation format for the additional concepts and the minimal set of required TDL concepts to facilitate the specification and representation of ‘StructuredTestObjective’s in pure text.

6.1
Graphical Representation Format
The concrete syntax notation specification for structured test objectives follows the notational conventions described in Clause [#reference#] of the Graphical Representation Format for TDL [#reference#].

6.1.1
StructuredTestObjective
Concrete Graphical Notation
[image: image5.emf]TP Id

Test Objective

Reference

T

EST

O

BJECTIVE

N

AME

L

ABEL

D

ESCRIPTION

L

ABEL

URI

OF

O

BJECTIVE

L

ABEL

PICS Selection <PICSS

ELECTION

L

ABEL

>

Initial Conditions

Final Conditions

Expected Behaviour

I

NITIAL

C

ONDITIONS

L

ABEL

E

XPECTED

B

EHAVIOUR

L

ABEL

F

INAL

C

ONDITIONS

L

ABEL

Figure 6.1: Structured Test Objective Concrete Syntax
[image: image6.emf]Test Objective

D

ESCRIPTION

L

ABEL

Reference

URI

OF

O

BJECTIVE

L

ABEL

Test Purpose

T

EST

O

BJECTIVE

N

AME

L

ABEL

PICS Selection

<PICSS

ELECTION

L

ABEL

>

Initial Conditions

I

NITIAL

C

ONDITIONS

L

ABEL

Expected Behaviour

E

XPECTED

B

EHAVIOUR

L

ABEL

Final Conditions

F

INAL

C

ONDITIONS

L

ABEL

Figure 6.2: Structured Test Objective Alternative Concrete Syntax
Formal Description
context Element
QualifierLabel ::= self.comment.body | self.annotation.key.name

ArticleLabel ::= self.comment.name = ‘a’ | self.comment.name = ‘an’ | self.comment.name = ‘the’

ReferenceLabel ::= self.comment.name = ‘corresponding to’ | self.comment.name = ‘derived from

context StructuredTestObjective
TestObjectiveNameLabel ::= self.name
DescriptionLabel ::= self.description
URIofObjectiveLabel ::= self.objectiveURI
Foreach p : PICSReference in self.picsReferences
PICSSelectionLabel ::= [p.annotations.key.name] p.pics.name

InitialConditionsLabel ::= ‘with’ ‘{‘ <EventSequenceLabel> ‘}’

FinalConditionsLabel ::= ‘with’ ‘{‘ <EventSequenceLabel> ‘}’

ExpectedBehaviourLabel ::= ‘ensure’ ‘that’ ‘{‘

(`when` `{` <EventSequenceLabel> `}` `then` `{` <EventSequenceLabel> `}`) |

<EventSequenceLabel>

 ‘}’
context EventSequence

Foreach e : EventOccurence in self.events
EventSequenceLabel ::= [<QualifierLabel>] e.entityReference.entity.name

 [<QualifierLabel>] e.eventReference.event.name

 [EventArgumentLabel]

 [<OppositeEntityLabel>]

Foreach o : EntityReference in e.oppositeEntityReference
OppositeEntityLabel ::= [<QualifierLabel>] o.entity.name

EventArgumentLabel ::= DataReferenceArgumentLabel | LiteralValueArgumentLabel |

 LiteralValueReferenceArgumentLabel | ContentReferenceArgumentLabel
context DataReference
DataReferenceArgumentLabel ::= [<QualifierLabel>] StructuredDataSpecLabel
StructuredDataSpecLabel ::= self.content.structuredDataInstance.name [‘with’ <StructuredDataArgumentLabel>]
DataReferenceLabel ::= ReferenceLabel StructuredDataSpecLabel
context StructuredDataSpec

Foreach a : self.argument

StructuredDataArgumentLabel ::= a.tupleElement.name ‘indicating’ ‘value’ StructuredDataSpecLabel
context LiteralValue
LiteralValueArgumentLabel ::= [ArticleLabel] ‘new’ [<QualifierLabel>] self.name [<ContentLabel>]

ContentLabel ::= ‘containing’ [<QualifierLabel>] self.name [ValueLabel]

ValueLabel ::= DataReferenceLabel | LiteralValueLabel | LiteralValueReferenceLabel | ContentReferenceLabel
LiteralValueLabel ::= ‘indicating’ ‘value’ [<QualifierLabel>] self.name [<ContentLabel>]

context LiteralValueReference
LiteralValueReferenceArgumentLabel ::= ‘the’ ‘value’ ‘of’ self.content.name
LiteralValueReferenceLabel ::= ReferenceLabel LiteralValueReferenceArgumentLabel

context ContentReference
ContentReferenceArgumentLabel ::= ‘the’ ‘value’ ‘contained’ ‘in’ self.content.name
ContentReferenceLabel ::= ReferenceLabel ContentReferenceArgumentLabel
Constraints

Comments

Editor Note: The two different notations on Figure 6.1 and Figure 6.2 are presented for consideration. Figure 6.1 represents an identical notation to the one currently in use, whereas Figure 6.2 represents a notation that is similar to the common shapes used in the Graphical Representation Format for TDL. One of the alternatives may be removed in the final draft.

Example
[image: image7.emf]TP Id

Test Objective

Reference

TP/CAM/INA/DOP/BV/02

Checks that CAM message includes DoorOpen

information 30s after closed

TS 102 637-2 [1], clauses 7.1 and 7.2

PICS Selection

PICS_PUBTRANSVEH

Initial Conditions

Expected Behaviour

with{

theIUT having reached aninitial_state

and

theIUT having sent anewvalid CAM message

containingDoorOpen TaggedValue

}

ensure that {

when{

thedoor is closed

}

then{

theIUT sends anewCAM message

containingDoorOpen TaggedValue

}

}

Figure 6.1: Structured Test Objective Concrete Syntax Example

6.1.2
Entity
6.1.3
Event
6.1.4
PICS

6.2
Textual Representation Format
The textual representation format covers the additional concepts
and the minimal set of required TDL concepts to facilitate the specification and representation of ‘StructuredTestObjective’s in pure text. The syntax for the constituents of the ‘StructuredTestObjective’s, such as ‘InitialConditions’, ‘ExpectedBehaviour’, and ‘FinalConditions’ shall be identical to the corresponding compartment specifications in Clause 6.1.
6.2.1
Package

Syntax Notation

	Package
	::=
	'Package' Identifier '{'

 ['Domain' '{'

 ['pics' ':' { PICS }+ ';']

 ['entities' ':'{ Entity }+ ';']

 ['event' 'types' ':'{ EventType }+ ';']

 ['events' ':' { Event }+ ';']

 '}']

 ['Data' '{'

 { StructuredDataType }

 { StructuredDataInstance }

 '}']

 { PackageableElement }

 { Group }

'}';

Formal Description
Identifier ::= self. name
Constraints
Comments

The syntax notation prescribes a certain structure to what is otherwise an ordered set of ‘PackageableElement’s, including the order of definitions for domain- and data-related definitions.
Example
Package p {

Domain {

pics :

- ALL

- SELECTED

- RANDOM ("5")

- PICS_PUBTRANSVEH

;

 entities :

 - IUT

 - SUT

 - Tester

 - door

 ;

 event types :

 - radio

 - wire

 - mixed

 ;

 events :

 - sends

 - receives (wire,radio)

 - opened

 - transmit (radio)

 - sent

 - closed

 - reached

 ;

}

Data {

type INT ;

type STRING ;

type message containing
id of type INT,
name of type STRING,
content of type STRING ;

type encrypted_message containing
code of type STRING,
content of type message ;

type STATE ;

INT ONE; INT TWO; INT THREE; INT 1; INT 2; INT 3.2;

STRING s1; STRING s2; STRING s3; STRING "secret code"; STRING "Open Sesame";

STATE initial_state;

message
m1 with
id indicating value 1,
name indicating value s1,
content indicating value s2;

message
m2 with
id indicating value 3.2,
name indicating value s3,
content indicating value s2;

encrypted_message em1 with
code indicating value s3,
content indicating value m1 with
name indicating value s3;

encrypted_message em2 with
code indicating value "secret code",
content indicating value s2;

}
6.2.2
AnnotationType

Syntax Notation

	EventType
	::=
	'-' Identifier;

Formal Description
Identifier ::= self. name
Constraints
Comments

The EventType syntax notation describes a special use for ‘AnnotationType’s.
Example

 event types :

 - radio

 - wire

 - mixed

 ;
6.2.3
Entity

Syntax Notation

	Entity
	::=
	'-' Identifier;

Formal Description
Identifier ::= self. name
Constraints
Comments
Example

 entites :

 - IUT

 - SUT

 - Tester

 ;
6.2.4
Event

Syntax Notation

	Event
	::=
	'-' Identifier ['(' EventTypeReference { ',' EventTypeReference } ')'];

Formal Description
Identifier ::= self. Name
Constraints
Comments
Example

 events :

 - sends

 - receives (wire,radio)

 - opened

 - transmit (radio)

 - sent

 - closed

 - reached

 ;
6.2.5
PICS

Syntax Notation

	PICS
	::=
	'-' Identifier ['(' Qualifier ')'];

Formal Description
Identifier ::= self. name
Constraints
Comments
Example

pics :

- ALL

- SELECTED

- RANDOM ("5")

;
6.2.6
StructuredTestObjective
Syntax Notation

	StructuredTestObjective
	::=
	'TestPurpose' '{'

 'TP Id' Identifier

 'Test objective' STRING

 'Reference' [STRING { ',' STRING }]

 'PICS Selection' { PICSReference }

 [InitialConditions]
 [ExpectedBehaviour]
 [FinalConditions]
'}';

Formal Description
Identifier ::= self. name
Constraints
Comments
Example

TestPurpose {
 TP Id "TP/CAM/INA/DOP/BV/02"
 Test objective "Checks that CAM message includes DoorOpen information 30s after closed
"
 Reference "TS 102 637-2 [1], clauses 7.1 and 7.2"
 PICS Selection PICS_PUBTRANSVEH
 Initial conditions:
 with {
 the IUT having reached an initial_state
 and
 the IUT having sent a new valid CAM message
 containing DoorOpen TaggedValue
 }
 Expected behaviour :
 ensure that {
 when {
 the door is closed
 }
 then {
 the IUT sends a new CAM message
 containing DoorOpen TaggedValue
 }
 }

}
6.2.7
StructuredDataType

Syntax Notation

	StructuredDataType
	::=
	'type' Identifier ['containing' TupleElement
{ ',' TupleElement }] ';';

Formal Description
Identifier ::= self. name
Constraints
Comments
Example

type INT ;

type STRING ;

type message containing
id of type INT,
name of type STRING,
content of type STRING ;

type encrypted_message containing
code of type STRING,
content of type message ;

type STATE ;
6.2.8
StructuredDataInstance

Syntax Notation

	StructuredDataInstance
	::=
	Identifier (Identifier | NumberAsIdentifier
) ['with' TupleElementInstance
{ ',' TupleElementInstance }] ';';

Formal Description
TypeIdentifier ::= self.type.name

Identifier ::= self. name
Constraints
Comments
Example

INT ONE; INT TWO; INT THREE; INT 1; INT 2; INT 3.2;

STRING s1; STRING s2; STRING s3; STRING "secret code"; STRING "Open Sesame";

STATE initial_state;

message
m1 with
id indicating value 1,
name indicating value s1,
content indicating value s2;

message
m2 with
id indicating value 3.2,
name indicating value s3,
content indicating value s2;

encrypted_message em1 with
code indicating value s3,
content indicating value m1 with
name indicating value s3;

encrypted_message em2 with
code indicating value "secret code",
content indicating value s2;
Proforma copyright release text block

This text box shall immediately follow after the heading of an element (i.e. clause or annex) containing a proforma or template which is intended to be copied by the user. Such an element shall always start on a new page.

Notwithstanding the provisions of the copyright clause related to the text of the present document, ETSI grants that users of the present document may freely reproduce the <proformatype> proforma in this {clause|annex} so that it can be used for its intended purposes and may further publish the completed <proformatype>.

Annexes

Each annex shall start on a new page (insert a page break between annexes A and B, annexes B and C, etc.).

Use the Heading 8 style for the title and the Normal style for the text.
Specify if the annex is normative or informative.
<PAGE BREAK>

Annex A (normative):
BNF Production Rules
A.1
Overview and Conventions
This annex describes the grammar for the representation of structured test objectives in pure text. It covers the additional concepts and the minimal set of required TDL concepts to facilitate the specification and representation of ‘StructuredTestObjective’s. The notations is based on the Extended Backus-Naur Form (EBNF) notation. The EBNF representation may be used either as a concrete syntax reference for Advanced Test Objective Specification with TDL for end users or as input to a parser generator tool. Table B.1 defines the syntactic conventions that are to be applied when reading the EBNF rules.
	Table A.1: Syntax definition conventions used

	::=
	is defined to be

	abc
	the non-terminal symbol abc

	abc xyz
	abc followed by xyz

	abc | xyz
	alternative (abc or xyz)

	[abc]
	0 or 1 instance of abc

	{abc}+
	1 or more instances of abc

	{abc}
	0 or more instances of abc

	'a'-'z'
	all characters from a to z

	(...)
	denotes a textual grouping

	'abc'
	the terminal symbol abc

	;
	production terminator

	\
	the escape character

A.1
Production Rules
	Package
	::=
	'Package' Identifier '{'

 ['Domain' '{'

 ['pics' ':' { PICS }+ ';']

 ['entities' ':'{ Entity }+ ';']

 ['event' 'types' ':'{ EventType }+ ';']

 ['events' ':' { Event }+ ';']

 '}']

 ['Data' '{'

 { StructuredDataType }

 { StructuredDataInstance }

 '}']

 { PackageableElement }

 { Group }

'}';

	PackageableElement
	::=
	StructuredTestObjective ;

	GroupedElement
	::=
	StructuredTestObjective | Group;

	Group
	::=
	'Group' Identifier '{' { GroupedElement } '}';

	PICS
	::=
	'-' Identifier ['(' Qualifier ')'];

	PICSReference
	::=
	['and' | 'or'] Identifier;

	Entity
	::=
	'-' Identifier;

	EventType
	::=
	'-' Identifier;

	EventTypeReference
	::=
	Identifier;

	Event
	::=
	'-' Identifier ['(' EventTypeReference { ',' EventTypeReference } ')'];

	StructuredTestObjective
	::=
	'TestPurpose' '{'

 'TP Id' Identifier

 'Test objective' STRING

 'Reference' [STRING { ',' STRING }]

 'PICS Selection' { PICSReference }

 [InitialConditions]
 [ExpectedBehaviour]

 [FinalConditions]
'}';

	InitialConditions
	::=
	'Initial conditions' ':' 'with' '{' EventSequence '}';

	ExpectedBehaviour
	::=
	FullExpectedBehaviour | PartialExpectedBehaviour;

	FullExpectedBehaviour
	::=
	'Expected behaviour' ':'

'ensure that' '{'

 'when' '{' EventSequence '}'

 'then' '{' EventSequence '}'

'}';

	PartialExpectedBehaviour
	::=
	Expected behaviour' ':' 'ensure that' '{' EventSequence '}';

	FinalConditions
	::=
	Final conditions’ ':' 'with' '{' EventSequence '}';

	EventSequence
	::=
	EventOccurence { 'and' EventOccurence };

	EventOccurence
	::=
	EntityReference EventReference Argument [OppositeEntityReference { ',' OppositeEntityReference }];

	EntityReference
	::=
	ArticleQualifier Identifier;

	OppositeEntityReference
	::=
	[DirectionQualifier] [ArticleQualifier] Identifier;

	EventReference
	::=
	{ Qualifier } Identifier;

	Argument
	::=
	LiteralValueArgument

	
	
	 | DataReferenceArgument

	
	
	 | ContentReferenceArgument

	
	
	 | LiteralValueReferenceArgument;

	Value
	::=
	LiteralValue

	
	
	 | DataReference

	
	
	 | ContentReference

	
	
	 | LiteralValueReference;

	LiteralValueArgument
	::=
	[ArticleQualifier] 'new’ { Qualifier } (Identifier | NumberAsIdentifier) [Content { ',' Content }];

	LiteralValue
	::=
	'indicating value' { Qualifier } (Identifier | NumberAsIdentifier) [Content { ',' Content }];

	Content
	::=
	'containing' { Qualifier } (Identifier | NumberAsIdentifier) Value;

	Identifier
	::=
	STRING | ID;

	Qualifier
	::=
	Identifier;

	ArticleQualifier
	::=
	'a' | 'an' | 'the';

	DirectionQualifier
	::=
	'from' | 'to';

	ReferenceQualifier
	::=
	'corresponding to' | 'derived from' | 'carrying the';

	StructuredDataSpec
	::=
	(Identifier | NumberAsIdentifier) ['with' ActualTupleElement { ',' ActualTupleElement }] ;

	ActualTupleElement
	::=
	Identifier 'indicating value' StructuredDataSpec;

	ContentReference
	::=
	ReferenceQualifier 'the' 'value' 'contained' 'in' Identifier;

	LiteralValueReference
	::=
	ReferenceQualifier 'the' 'value' 'of' Identifier;

	ContentReferenceArgument
	::=
	'the' 'value' 'contained' 'in' Identifier;

	LiteralValueReferenceArgument
	::=
	'the' 'value' 'of' Identifier;

	DataReference
	::=
	Identifier ReferenceQualifier StructuredDataSpec;

	DataReferenceArgument
	::=
	[ArticleQualifier] StructuredDataSpec;

	NumberAsIdentifier
	::=
	['-'] INT ['.' INT];

	StructuredDataType
	::=
	'type' Identifier ['containing' TupleElement { ',' TupleElement }] ';';

	TupleElement
	::=
	Identifier 'of' 'type' Identifier;

	StructuredDataInstance
	::=
	Identifier (Identifier | NumberAsIdentifier) ['with' TupleElementInstance { ',' TupleElementInstance }] ';';

	TupleElementInstance
	::=
	Identifier 'indicating value' StructuredDataSpec;

	ID
	::=
	['^'] ('a'-'z' | 'A'-'Z' | '_') { 'a'-'z' | 'A'-'Z' | '_' | '0'-'9' | '/' } ;

	INT
	::=
	'0'-'9' ;

	SQ
	::=
	'"' ;

	DQ
	::=
	"'" ;

	STRING
	::=
	(DQ | { ('\\' | ('b' | 't' | 'n' | 'f' | 'r' | 'u' | '"' | "'" | '\\')) | ('\\' | DQ) } | DQ) | (SQ | { ('\\' | ('b' | 't' | 'n' | 'f' | 'r' | 'u' | '"' | "'" | '\\')) | ('\\' | SQ) } | SQ);

	ML_COMMENT
	::=
	'/*' '*/') ;

	SL_COMMENT
	::=
	'//' ('\\n' | '\\r') [['\\r'] '\\n'];

	WS
	::=
	{ ' '
 | '\\t'
 | '\\r'
 | '\\n' }+ ;

Annex B (informative):
Examples
This text shall only be used for ATSs using TTCN version 2 (TTCN-2):

This ATS has been produced using the Tree and Tabular Combined Notation version 2 (TTCN-2) according to ISO/IEC 9646-3 [<x>].
Annex <X+2> (informative):
Title of informative annex (style H8)
<Text>

<X+2.1
>First clause of the annex (style H1)
<Text>

<X+2.1.1>
First subdivided clause of the annex (style H2)
<Text>

<PAGE BREAK>
Annex <X+3> (informative):
Change History

This informative annex is optional. If present, it describes the list of changes implemented in a new version of the deliverable.

Its format is tabular, it may contain the Change Request numbers and titles or textual explanations of the changes that lead to each new version number of the deliverable.
	date
	Version
	Information about changes

	October 2011
	v1.1.1
	First publication of the TS after approval by TC SPAN at SPAN#19
(30 September - 2 October 2011; Prague)

	February 2012
	v1.2.1
	Implemented Change Requests:

SPAN(12)20_019 Error message information clarifications

SPAN(12)20_033 Revised error message information

SPAN(12)20_046 update of figure 3 clause 9.2

These CRs were approved by TC SPAN#20 (3 - 5 February 2012; Sophia)

Version 1.2.1 prepared by the Rapporteur

	July 2013
	v1.3.1
	Implemented Changes:

Correction needed because the previously approved version did not contain the last version of the ASN.1 and XML attachments.

Version 1.3.1 prepared by the Rapporteur

<PAGE BREAK>

Annex <X+4> (informative):
Bibliography

The annex entitled "Bibliography" is optional.

It shall contain a list of standards, books, articles, or other sources on a particular subject which are not mentioned in the document itself (see clause 12.2 of the EDRs http://portal.etsi.org/edithelp/Files/other/EDRs_navigator.chm).

It shall not include references mentioned in the document.

Use the Heading 8 style for the title and B1+ or Normal for the text.

· <Publication>: "<Title>".

OR

<Publication>: "<Title>".

<PAGE BREAK>
History

This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).

	Document history

	<Version>
	<Date>
	<Milestone>

	
	
	

	
	
	

	
	
	

	
	
	

A few examples:

	Document history

	V1.1.1
	April 2001
	Publication

	V1.2.1
	February 2002
	Membership approval Procedure
MV XXXX: yyyy-mm-dd to yyyy-mm-dd

	V1.3.1
	June 2011
	Pre-Processing done before TB approval
e-mail: mailto:edithelp@etsi.org

	V1.3.2
	July 2013
	Clean-up done by editHelp!
e-mail: mailto:edithelp@etsi.org

	
	
	

Latest changes made on 2014-02-19
�Note that time constraints and states are not included in the early draft.

�EventSequence, InitialCondtions, ExpectedBehaviour, FinalConditions – At the meta-model level likely no need for further distinctions => as a consequence they are likely to be merged/removed so that StructuredTestObjective directly contains 3-4 sequences of EventOccurence

�May also be moved to an informative annex if normative specification is declined.

�Textual or graphical representation? Combined domain representation?

�Also include non-packageable concepts? Or leave them for the annex? (especially where constraints apply or examples are needed)

�Note again that time constraints are not included yet as there is still ongoing work on the concept within Part 1

�Note that these have been renamed in the meta-model and will be updated here accordingly

�To be merged

�To be renamed

�Will require separate names for the different identifiers

