
© ETSI 2014. All rights reserved

STF 476: TDL Phase 2
Status Report

© ETSI 2014. All rights reserved

Document History

• 2014-09-25: Document submitted for MTS #63

• long form for SG #5 / Technical Session

• short form for MTS #63

• 2014-05-10: Document submitted for MTS #62

• long form for SG #3 / Technical Session

• short form for MTS #62

• 2014-03-19: Document submitted for SG #2

2

© ETSI 2014. All rights reserved

Session and Milestone Planning

© ETSI 2014. All rights reserved

Session Planning

• 6 sessions in total

• 2 sessions per milestone

• 1 preparatory / debriefing

• 1 finalising

• Homework and remote coordinated work in between

4

© ETSI 2014. All rights reserved

Session Overview

• WK09 Feb 24-28 - Session 1 @ETSI

• WK15 Apr 07-11 - Session 2 @ETSI

• WK23 Jun 02-06 - Session 3 @FOKUS

• WK36 Sep 01-05 - Session 4 @ETSI

• WK42 Oct 13-17 - Session 5 @Siemens

• WK49 Dec 01-05 - Session 6 @ETSI

5

© ETSI 2014. All rights reserved

Milestone 3 Timeline

• WK42 Oct 13-17 - Session 5 @Siemens

• 5 experts, 25 days, define roadmaps, prepare final drafts

• WK49 Dec 01-05 - Session 6 @ETSI

• 5 experts, 25 days, finalise final drafts

• WK50 Dec 15-19 - Deliverables ready

• WK05 Jan 27-28 2015 - MTS #64 @Ericsson

6

© ETSI 2014. All rights reserved

Milestone Resources

• ~15 days/expert per milestone

• assuming roughly equal resource allocation per expert

• 2x4 days sessions, ~7 days homework

• Milestone 1: ~60 days planned, 44.5 used (4 experts)

• Milestone 2: ~75 days planned, 73/77.5 used* (5 experts)

• Milestone 3: ~75 days planned, 90.5/106 available** (5 experts)

7

* 4.5 from extension for Part 4
** 50 days allocated for two sessions, ~80 days used after Session 6 (TAM unavailable ATM)

© ETSI 2014. All rights reserved

Session Summaries

© ETSI 2014. All rights reserved

Session 5 Summary

• Goals

• Part 1: address outstanding items (time, data), technical review, validation

• Part 2: align with Part 1, outstanding constructs, update example, notation

• Part 3: address outstanding items (multiple inheritance, etc.)

• Part 4: extend integration (time, data), prepare evaluation

• Plan milestone timeline

9

© ETSI 2014. All rights reserved

Part 1

© ETSI 2014. All rights reserved

Fixed, Improved, Consolidated, …

11

© ETSI 2014. All rights reserved

© ETSI 2014. All rights reserved

© ETSI 2014. All rights reserved

© ETSI 2014. All rights reserved

© ETSI 2014. All rights reserved

© ETSI 2014. All rights reserved

© ETSI 2014. All rights reserved

Part 2

© ETSI 2014. All rights reserved

Notational Conventions

19

© ETSI 2014. All rights reserved

Ttype g1:G1type

g2:G2type

g3:G3type

G1type
interaction: 100_TRYING

TestConfiguration
EmergencyCall

TESTER
tester : Ttype

g1 g2 g3

g:G1type g:G2type

G2type
interaction: INVITE, RESPONSE

g:G3type

G3type
interaction: MESSAGE, PRACK

SUT
PSAP : Ptype

g

SUT
E_CSCF : Etype

g

SUT
PSUE : Utype

g

timer:

variable:

Etype

timer:

variable:

Ptype

timer:

variable:

Utype

timer:

variable:

© ETSI 2014. All rights reserved

TestDescription
UC15

Parameter

TestObjective

Phase 3 must get accepted

Configuration

EmergencyCall

Behaviour

TESTER
tester : Ttype

SUT
E_CSCF : Etype

SUT
PSAP: Ptype

SUT
PSUE : Utype

parallelparallel

[Reliably_sent]

Create INVITE for PSAP

INVITE

g1 g2 g3

Create 100 Trying for E_CSCF

100_TRYING

unboundedLoopunboundedLoop

alternativealternative

Store session data and
Create 180, 183 for PS_UE

conditional

TestDescription
UC16Ref1

Other cases:
200, 300-699

Responses

RESPONSE (100)

RESPONSE (180, 183)

MESSAGE(180,183)

PRACK

RESPONSE(101..179, 181 182, 184..199)

MESSAGE(101..179, 181 182, 184..199)

© ETSI 2014. All rights reserved

TestDescription
UC15

Parameter

TestObjective

Phase 3 must get accepted

Configuration

EmergencyCall

Behaviour

TESTER
tester : Ttype

SUT
E_CSCF : Etype

SUT
PSAP: Ptype

SUT
PSUE : Utype

parallelparallel

[Reliably_sent]

Create INVITE for PSAP

INVITE

g1 g2 g3

Create 100 Trying for E_CSCF

100_TRYING

unboundedLoopunboundedLoop

alternativealternative

Store session data and
Create 180, 183 for PS_UE

conditional

TestDescription
UC16Ref1

Other cases:
200, 300-699

Responses

RESPONSE (100)

RESPONSE (180, 183)

MESSAGE(180,183)

PRACK

RESPONSE(101..179, 181 182, 184..199)

MESSAGE(101..179, 181 182, 184..199)

© ETSI 2014. All rights reserved

Part 4

© ETSI 2014. All rights reserved

Page ! of !1 12 STF 476

Technical Report
Prepared for: ETSI CTI and ETSI MTS
Prepared by: Philip Makedonski (makedonski@informatik.uni-goettingen.de)
6 Nov 2014

OVERVIEW

Scope
This document illustrates the application of the Advanced Test Objective Specification extension for the Test
Description Language. It outlines the core concepts behind the extension and their application by means of
the concrete syntax described in Part 4 of TDL.

Advanced Test Objective Specification with TDL
Part 4 of TDL defines an extension for the specification of structured test objectives. Rather than rely on
external documents or informal text provided by the default test objective specification facilities of TDL, this
extension enables users to describe test objectives in a more structured and formalised manner which can
enable subsequent generation of test description skeletons and consistency checking against test
descriptions realising a given test objective. In addition, the structured approach to test objective specification
also enables syntactical and semantical consistency checking of the test objectives themselves.

The abstract concepts (see Figures 1, 2, 3) and the concrete syntax (see Figures 4, 5, 6, BNF Production
Rules) are based on TPLan to a large extent, as they also reflect concepts and practices already established at
ETSI. The fundamental concept in the specification of a StructuredTestObjectives is the EventOccurrence
which describes the occurrence of an abstract Event involving one or more Entities and an EventArgument.
Events and Entities need to be defined in advance as part of the domain description which can then be reused
across all StructuredTestObjective specifications in that domain. An EventArgument may either refer to a
DataInstance for data already defined within TDL, or relying on a more light weight approach, describe data
inline without the need to define all data types and instances in advance. Pre-defined data and inline data can
be integrated to a certain degree in that inline data may refer to pre-defined data, but not the other way
around. It is one of the goals of the case studies described below to evaluate the usage and need for both
approaches to EventArgument specification. While there is a dedicated concrete syntax for the specification of
a subset of pre-defined data for the purposes of the present study, in practice any concrete syntax or other
means for specifying data in TDL may be used instead. EventOccurrence specifications are organised in the
different compartments of a StructuredTestObjective, including InitialConditions, ExpectedBehaviour, and
FinalConditions.

Page ! of !5 12 STF 476

Data {
 type STRING;
 type NUMBER;
 type FILE containing
 PATH of type STRING,
 CONTENT of type STRING,
 SIZE of type NUMBER;

 STRING "/tmp/data.tplan2x";
 STRING "Package data { ... }";
 STRING data_path;
 STRING data_content;
 STRING workspace_path;

 NUMBER 20;
 NUMBER data_size;

 FILE fileWithLiterals with
 PATH indicating value "/tmp/data.tplan2x",
 CONTENT indicating value "Package data { ... }",
 SIZE indicating value 20
 ;
 FILE fileWithSymbols with
 PATH indicating value data_path,
 CONTENT indicating value data_content,
 SIZE indicating value data_size
 ;
}

Here, the DataTypes STRING, NUMBER, and FILE are defined, where a FILE has three Members (PATH,
CONTENT, and SIZE, of types STRING, STRING, and NUMBER respectively. Subsequently, several
DataInstances of these DataTypes are defined. Note that all DataInstances (even “literals”) need to be 1

 TDL has no concept of literals, all DataInstances are symbolic representations of an underlying data type system. Depending on the 1

mapping to the underlying data type system, symbols can be mapped to their literal representation.

TP Id TP/1/2/3/4
Test objective Check if the outline works
Reference R002
PICS Selection «PICS»

Initial conditions

with { «with body»
}

Expected behaviour

ensure that {
when {

the User changes the current FILE
}
then {

the Outline is immediately updated
}

}
Final conditions

Table 3: TP/1/2/3/4.

TP Id TP/1/2/3/4/5
Test objective Check if the file is saved when closed
Reference R003
PICS Selection «PICS»

Initial conditions

with {
the User having opened a FILE

}
Expected behaviour

ensure that {
when {

the User closes the currently opened FILE
}
then {

the User is asked to save the currently opened FILE
}

}
Final conditions

Table 4: TP/1/2/3/4/5.

4
Figure 6. PDF Export Example (via LaTeX Template)

© ETSI 2014. All rights reserved

Page ! of !6 12 STF 476

declared in advance, even if they are used in MemberAssignments, e.g. for SIZE in fileWithLiterals to be

assigned to ’20’, ’20’ needs to be defined as a DataInstance of DataType NUMBER in advance. In this

example, another DataInstance of DataType FILE has been defined containing named symbols that can also

represent the underlying concrete data type system concepts.

To illustrate the differences between the predefined and inline data specification approaches, consider the

following example:

Test Purpose {
 TP Id TP/2/1/1
 Test objective "Check file copy with predefined data"
 Reference "R010"
 PICS Selection
 Initial conditions
 with {
 the Editor opened
 }
 Expected behaviour
 ensure that {
 when {
 the User copies the fileWithLiterals
 }
 then {
 the Editor displays the fileWithSymbols with
 PATH indicating value workspace_path
 }
 }
}

Here the predefined DataInstances are referenced with the PATH MemberAssignment being overridden with a

different value. In contrast, consider the following example where inline data is used instead:

Test Purpose {
 TP Id TP/2/1/2
 Test objective "Check file copy with inline data"
 Reference "R011"
 PICS Selection
 Initial conditions
 with {
 the Editor opened
 }
 Expected behaviour
 ensure that {
 when {
 the User copies the fileWithLiterals
 }
 then {
 the Editor displays a new file
 containing path indicating value "/home/workspace/data.tplan2x" ,
 containing content indicating value "",
 containing size indicating value 0
 ;
 }
 }
}

Page ! of !6 12 STF 476

declared in advance, even if they are used in MemberAssignments, e.g. for SIZE in fileWithLiterals to be

assigned to ’20’, ’20’ needs to be defined as a DataInstance of DataType NUMBER in advance. In this

example, another DataInstance of DataType FILE has been defined containing named symbols that can also

represent the underlying concrete data type system concepts.

To illustrate the differences between the predefined and inline data specification approaches, consider the

following example:

Test Purpose {
 TP Id TP/2/1/1
 Test objective "Check file copy with predefined data"
 Reference "R010"
 PICS Selection
 Initial conditions
 with {
 the Editor opened
 }
 Expected behaviour
 ensure that {
 when {
 the User copies the fileWithLiterals
 }
 then {
 the Editor displays the fileWithSymbols with
 PATH indicating value workspace_path
 }
 }
}

Here the predefined DataInstances are referenced with the PATH MemberAssignment being overridden with a

different value. In contrast, consider the following example where inline data is used instead:

Test Purpose {
 TP Id TP/2/1/2
 Test objective "Check file copy with inline data"
 Reference "R011"
 PICS Selection
 Initial conditions
 with {
 the Editor opened
 }
 Expected behaviour
 ensure that {
 when {
 the User copies the fileWithLiterals
 }
 then {
 the Editor displays a new file
 containing path indicating value "/home/workspace/data.tplan2x" ,
 containing content indicating value "",
 containing size indicating value 0
 ;
 }
 }
}

Page ! of !5 12 STF 476

Data {
 type STRING;
 type NUMBER;
 type FILE containing
 PATH of type STRING,
 CONTENT of type STRING,
 SIZE of type NUMBER;

 STRING "/tmp/data.tplan2x";
 STRING "Package data { ... }";
 STRING data_path;
 STRING data_content;
 STRING workspace_path;

 NUMBER 20;
 NUMBER data_size;

 FILE fileWithLiterals with
 PATH indicating value "/tmp/data.tplan2x",
 CONTENT indicating value "Package data { ... }",
 SIZE indicating value 20
 ;
 FILE fileWithSymbols with
 PATH indicating value data_path,
 CONTENT indicating value data_content,
 SIZE indicating value data_size
 ;
}

Here, the DataTypes STRING, NUMBER, and FILE are defined, where a FILE has three Members (PATH,
CONTENT, and SIZE, of types STRING, STRING, and NUMBER respectively. Subsequently, several
DataInstances of these DataTypes are defined. Note that all DataInstances (even “literals”) need to be 1

 TDL has no concept of literals, all DataInstances are symbolic representations of an underlying data type system. Depending on the 1

mapping to the underlying data type system, symbols can be mapped to their literal representation.

TP Id TP/1/2/3/4
Test objective Check if the outline works
Reference R002
PICS Selection «PICS»

Initial conditions

with { «with body»
}

Expected behaviour

ensure that {
when {

the User changes the current FILE
}
then {

the Outline is immediately updated
}

}
Final conditions

Table 3: TP/1/2/3/4.

TP Id TP/1/2/3/4/5
Test objective Check if the file is saved when closed
Reference R003
PICS Selection «PICS»

Initial conditions

with {
the User having opened a FILE

}
Expected behaviour

ensure that {
when {

the User closes the currently opened FILE
}
then {

the User is asked to save the currently opened FILE
}

}
Final conditions

Table 4: TP/1/2/3/4/5.

4
Figure 6. PDF Export Example (via LaTeX Template)

© ETSI 2014. All rights reserved

Page ! of !5 12 STF 476

Data {
 type STRING;
 type NUMBER;
 type FILE containing
 PATH of type STRING,
 CONTENT of type STRING,
 SIZE of type NUMBER;

 STRING "/tmp/data.tplan2x";
 STRING "Package data { ... }";
 STRING data_path;
 STRING data_content;
 STRING workspace_path;

 NUMBER 20;
 NUMBER data_size;

 FILE fileWithLiterals with
 PATH indicating value "/tmp/data.tplan2x",
 CONTENT indicating value "Package data { ... }",
 SIZE indicating value 20
 ;
 FILE fileWithSymbols with
 PATH indicating value data_path,
 CONTENT indicating value data_content,
 SIZE indicating value data_size
 ;
}

Here, the DataTypes STRING, NUMBER, and FILE are defined, where a FILE has three Members (PATH,
CONTENT, and SIZE, of types STRING, STRING, and NUMBER respectively. Subsequently, several
DataInstances of these DataTypes are defined. Note that all DataInstances (even “literals”) need to be 1

 TDL has no concept of literals, all DataInstances are symbolic representations of an underlying data type system. Depending on the 1

mapping to the underlying data type system, symbols can be mapped to their literal representation.

TP Id TP/1/2/3/4
Test objective Check if the outline works
Reference R002
PICS Selection «PICS»

Initial conditions

with { «with body»
}

Expected behaviour

ensure that {
when {

the User changes the current FILE
}
then {

the Outline is immediately updated
}

}
Final conditions

Table 3: TP/1/2/3/4.

TP Id TP/1/2/3/4/5
Test objective Check if the file is saved when closed
Reference R003
PICS Selection «PICS»

Initial conditions

with {
the User having opened a FILE

}
Expected behaviour

ensure that {
when {

the User closes the currently opened FILE
}
then {

the User is asked to save the currently opened FILE
}

}
Final conditions

Table 4: TP/1/2/3/4/5.

4
Figure 6. PDF Export Example (via LaTeX Template)

Page ! of !7 12 STF 476

In this case, it is not necessary to declare the ‘file’ DataType in advance. In fact there is no ‘file’ DataType to

speak of - the inline data may feature arbitrary contents and structures. This reduces declaration overhead and

provides more flexibility at the expense of potential inconsistency between multiple cases where a ‘file’ is

described and possible redundancy if the same or similar data is to be used. The differences between

predefined and inline data are also highlighted by different colours in the editor. Note, however, that this is not

just plain text. There is an underlying composite structure as reflected in the abstract syntax on Figure 3, which

can then be traversed (see Figure 7) and mapped to a predefined DataType or an underlying concrete data

type system. Finally, inline and predefined data may be combined, where predefined data may be referenced

and related to the structure and contents of inline data, as shown in the following example:

Test Purpose {
 TP Id TP/2/1/3
 Test objective "Check file copy with mixed data"
 Reference "R012"
 PICS Selection
 Initial conditions
 with {
 the Editor having opened a new window
 }
 Expected behaviour
 ensure that {
 when {
 the User copies the fileWithLiterals
 }
 then {
 the Editor displays a new file
 containing path indicating value "/home/workspace/data.tplan2x" ,
 containing content corresponding to data_content,
 containing size corresponding to data_size
 ;
 }
 }
 Final conditions
 with {
 the Editor closes the new window
 containing file derived from fileWithLiterals with
 PATH indicating value data_path
 ;
 }
}

There more elaborate ways to define and interrelate inline structured data and the users are encouraged to

explore these with the help of the BNF Production Rules Reference and the prototypical tooling. Synthetic

examples illustrating some of the possible uses are also included in the example workspace.

Getting Started
To get started with the tooling, a user first needs to have the latest version of Java installed. Then, a user has

to download the pre-configured Eclipse distribution available at http://user.informatik.uni-goettingen.de/

~fmakedon/tdl.to/eclipse-kepler.zip and unpack the archive. Next, the user has to start the Eclipse platform

and select a workspace. The user may use the pre-configured workspace containing selected examples

© ETSI 2014. All rights reserved

Page ! of !5 12 STF 476

Data {
 type STRING;
 type NUMBER;
 type FILE containing
 PATH of type STRING,
 CONTENT of type STRING,
 SIZE of type NUMBER;

 STRING "/tmp/data.tplan2x";
 STRING "Package data { ... }";
 STRING data_path;
 STRING data_content;
 STRING workspace_path;

 NUMBER 20;
 NUMBER data_size;

 FILE fileWithLiterals with
 PATH indicating value "/tmp/data.tplan2x",
 CONTENT indicating value "Package data { ... }",
 SIZE indicating value 20
 ;
 FILE fileWithSymbols with
 PATH indicating value data_path,
 CONTENT indicating value data_content,
 SIZE indicating value data_size
 ;
}

Here, the DataTypes STRING, NUMBER, and FILE are defined, where a FILE has three Members (PATH,
CONTENT, and SIZE, of types STRING, STRING, and NUMBER respectively. Subsequently, several
DataInstances of these DataTypes are defined. Note that all DataInstances (even “literals”) need to be 1

 TDL has no concept of literals, all DataInstances are symbolic representations of an underlying data type system. Depending on the 1

mapping to the underlying data type system, symbols can be mapped to their literal representation.

TP Id TP/1/2/3/4
Test objective Check if the outline works
Reference R002
PICS Selection «PICS»

Initial conditions

with { «with body»
}

Expected behaviour

ensure that {
when {

the User changes the current FILE
}
then {

the Outline is immediately updated
}

}
Final conditions

Table 3: TP/1/2/3/4.

TP Id TP/1/2/3/4/5
Test objective Check if the file is saved when closed
Reference R003
PICS Selection «PICS»

Initial conditions

with {
the User having opened a FILE

}
Expected behaviour

ensure that {
when {

the User closes the currently opened FILE
}
then {

the User is asked to save the currently opened FILE
}

}
Final conditions

Table 4: TP/1/2/3/4/5.

4
Figure 6. PDF Export Example (via LaTeX Template)

Page ! of !7 12 STF 476

In this case, it is not necessary to declare the ‘file’ DataType in advance. In fact there is no ‘file’ DataType to

speak of - the inline data may feature arbitrary contents and structures. This reduces declaration overhead and

provides more flexibility at the expense of potential inconsistency between multiple cases where a ‘file’ is

described and possible redundancy if the same or similar data is to be used. The differences between

predefined and inline data are also highlighted by different colours in the editor. Note, however, that this is not

just plain text. There is an underlying composite structure as reflected in the abstract syntax on Figure 3, which

can then be traversed (see Figure 7) and mapped to a predefined DataType or an underlying concrete data

type system. Finally, inline and predefined data may be combined, where predefined data may be referenced

and related to the structure and contents of inline data, as shown in the following example:

Test Purpose {
 TP Id TP/2/1/3
 Test objective "Check file copy with mixed data"
 Reference "R012"
 PICS Selection
 Initial conditions
 with {
 the Editor having opened a new window
 }
 Expected behaviour
 ensure that {
 when {
 the User copies the fileWithLiterals
 }
 then {
 the Editor displays a new file
 containing path indicating value "/home/workspace/data.tplan2x" ,
 containing content corresponding to data_content,
 containing size corresponding to data_size
 ;
 }
 }
 Final conditions
 with {
 the Editor closes the new window
 containing file derived from fileWithLiterals with
 PATH indicating value data_path
 ;
 }
}

There more elaborate ways to define and interrelate inline structured data and the users are encouraged to

explore these with the help of the BNF Production Rules Reference and the prototypical tooling. Synthetic

examples illustrating some of the possible uses are also included in the example workspace.

Getting Started
To get started with the tooling, a user first needs to have the latest version of Java installed. Then, a user has

to download the pre-configured Eclipse distribution available at http://user.informatik.uni-goettingen.de/

~fmakedon/tdl.to/eclipse-kepler.zip and unpack the archive. Next, the user has to start the Eclipse platform

and select a workspace. The user may use the pre-configured workspace containing selected examples

© ETSI 2014. All rights reserved

Session 6 Planning

• Goals

• Review all documents thoroughly

• Discuss and address any outstanding minor issues

• Identify and delegate any open issues for Phase 3

• Update, align, and extend examples for all parts where applicable

• Discuss feedback from Part 4 evaluation, assist with setup if needed

• Catch up with Mantis?

28

© ETSI 2014. All rights reserved

Change Logs…

29

© ETSI 2014. All rights reserved

Change Logs…

30

Continued Discussion on MM changes, Session #5, Munich

© ETSI 2014. All rights reserved

Change Logs…

31

© ETSI 2014. All rights reserved

Change Logs…

32

Continued Discussion on MM changes, Session #5, Munich
==

x... changes covered in an updated MM
o... changes partially implemented in MM and/or MM document
!... suggestion not implemented, conflict identified

FOUNDATION
ElementImport

distinguish between package import and import of elements from one package

DATA
DataSet

rename to DataType
DataInstance

shall they be packageable? Yes
AnyValue

considered only within a DataInstanceSpecification, not as a special DataInstance
TupleElement (open)

term "tuple" might be not well understood, change to Member
introduce distinction of mandatory/optional elements, isOptional: Boolean = false

! --> optional elements stir complexity (requiring functions with data type parameters like
isPresent() and distinction of * vs. ?); use case for this feature is not clear; data description shall
largely remain in a type system outside of TDL
TupleElementInstance

change to MemberAssignment
shall refer to a special kind of DataInstanceSpecification (without variables) instead of a

DataInstance
StructuredDataType

relax tupleElement[1..*] multiplicity to [*]
DataInstanceSpec

handle nested structured data instances for constants, proxies and function return values
StaticDataInstanceSpec

add new class to denote static expressions, used when defining structured data instances
DataInstanceSpecification

© ETSI 2014. All rights reserved

Continued Discussion on MM changes, Session #5,
==

x... changes covered in an updated MM
o... changes partially implemented in MM and/or MM document
!... suggestion not implemented, conflict identified

FOUNDATION
ElementImport

distinguish between package import and import of elements from one package

DATA
DataSet

rename to DataType
DataInstance

shall they be
AnyValue

considered only within a DataInstanceSpecification, not as a special DataInstance
TupleElement (open)

term "tuple" might be not well understood, change to Member
introduce distinction of mandatory/optional elements, isOptional: Boolean = false

! --> optional elements stir complexity (requiring functions with data type parameters like
isPresent() and distinction of *
largely remain in a type system outside of TDL
TupleElementInstance

change to MemberAssignment
shall refer to a special kind of DataInstanceSpecification (without variables) instead of a

DataInstance
StructuredDataType

relax tupleElement[1..*] multiplicity to [*]
DataInstanceSpec

handle nested structured data instances for constants,
StaticDataInstanceSpec

add new class to denote static expressions, used when defining structured data instances
DataInstanceSpecification

Change Logs…

• Determine scope and granularity of changes within current STF

• More diligence and consistent use recommended for the future

33

© ETSI 2014. All rights reserved

The Future of TDL

• ToR for Phase 3 approved!

• Preparatory meeting, CfE, etc. : TBD

• Date for additional meeting to discuss Phase 3 : TBD

• Launch event

• TDL logo

• Provide a list of keywords and ideas to Em by 05.12.2014

34

© ETSI 2014. All rights reserved

Any Other Business?

35

© ETSI 2014. All rights reserved

Backup Slides

© ETSI 2014. All rights reserved

Part 1 Status

• M2

• data concepts update

• time and time labels update (including predefined functions)

• move gate instances and variables to component types

• assertions and setting verdicts

37

© ETSI 2014. All rights reserved

Part 1 Status

• M3

• adaptations to behaviour

• integrating feedback, validation, proof-reading, finalisation, polish

• annex update (examples, BNF) ?

• no further features unless absolutely critical

38

© ETSI 2014. All rights reserved

Part 2 Summary

• M2

• shape updates to match current state of meta-model (no arg. spec. yet)

• formalisation - constraints and label derivation rules

• updates to notational conventions and document structure

• M3

• add missing shapes and descriptions, harmonisation with meta-model

• integrate feedback, validation, proof-reading, finalisation, polish

39

© ETSI 2014. All rights reserved

Part 3 Summary

• M2

• current XSD and derivation rules

• raised concerns regarding the usefulness of XSD and its limitations

• XMI derivation, examples

• M3

• updates related to changes in the meta-model, additional examples

• integrate feedback, validation, proof-reading, finalisation, polish

40

© ETSI 2014. All rights reserved

Part 4 Summary

• M2

• meta-model extensions (near complete, time constraints to be added)

• concrete-syntax proposal

• initial draft for introduction

• M3

• validation, decision on “inline” data, examples, 3GPP applicability

• integrate feedback, proof-reading, finalisation, polish

41

