[image: image1.jpg]

ETSI ES 202 789 V1.2.2 (2013-12)
Methods for Testing and Specification (MTS);

The Testing and Test Control Notation version 3;

TTCN-3 Language Extensions: Extended TRI
ETSI Standard
Reference

RES/MTS-138ed121 T3ExtExtTRI
Keywords

testing, TTCN
ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification

No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2013.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Contents

4Intellectual Property Rights

Foreword
4
1
Scope
5
2
References
5
2.1
Normative references
5
2.2
Informative references
6
3
Definitions and abbreviations
6
3.1
Definitions
6
3.2
Abbreviations
6
4
Package conformance and compatibility
6
5
Package concepts for the core language
7
6
Package semantics
7
7
TRI extensions for the package
7
7.1
Changes to clause 5.2 of ES 201 873-5, Error handling
8
7.2
Changes to clause 5.5.2 Connection handling operations
8
7.3
Changes to clause 5.5.3 Message based communication operations
9
7.4
Addition to clause 5.5.3 Message based communication operations
11
7.5
Changes to clause 5.5.4 Procedure based communication operations
12
7.6
Changes to clause 5.6.3 Miscellaneous operations
20
7.7
Changes to clause 6 Java language mapping
21
7.8
Changes to clause 7 C language mapping
23
7.9
Changes to clause 8 C++ language mapping
25
7.10
Changes to clause 9 C# language mapping
27
8
TCI extensions for the package
29
History
30

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).
The present document relates to the multi-part standard covering the Testing and Test Control Notation version 3, as identified below:

ES 201 873-1 [1]:
"TTCN‑3 Core Language";

ES 201 873-3 [i.2]:
"TTCN‑3 Graphical presentation Format (GFT)";

ES 201 873-4 [2]:
"TTCN‑3 Operational Semantics";

ES 201 873-5 [3]:
"TTCN‑3 Runtime Interface (TRI)";

ES 201 873-6 [4]:
"TTCN‑3 Control Interface (TCI)";

ES 201 873-7 [i.3]:
"Using ASN.1 with TTCN‑3";

ES 201 873-8 [i.4]:
"The IDL to TTCN-3 Mapping";

ES 201 873-9 [i.5]:
"Using XML schema with TTCN‑3";

ES 201 873-10 [i.6]:
"TTCN-3 Documentation Comment Specification";

ES 202 784 [i.8]:
"TTCN-3 Language Extensions: Advanced Parameterization";

ES 202 781 [i.7]:
"TTCN-3 Language Extensions: Configuration and Deployment Support";

ES 202 782 [i.10]:
"TTCN-3 Language Extensions: Performance and Real-Time Testing Concepts";

ES 202 785 [i.9]:
"TTCN-3 Language Extensions: Behaviour Types".
1
Scope

The present document defines the Extended TRI package of TTCN‑3. TTCN‑3 can be used for the specification of all types of reactive system tests over a variety of communication ports. Typical areas of application are protocol testing (including mobile and Internet protocols), service testing (including supplementary services), module testing, testing of CORBA based platforms, APIs, etc. TTCN‑3 is not restricted to conformance testing and can be used for many other kinds of testing including interoperability, robustness, regression, system and integration testing. The specification of test suites for physical layer protocols is outside the scope of the present document.

TTCN‑3 packages are intended to define additional TTCN-3 concepts, which are not mandatory as concepts in the TTCN-3 core language or in its interfaces TRI and TCI, but which are optional as part of a package which is suited for dedicated applications and/or usages of TTCN-3.
This package defines a more efficient handling of software values by a version of TRI, that does not use binary encoded messages for the communication with the SUT, but uses the values as they are; meaning e.g. that software objects or serialized data can be passed directly between the SUT and the TE.
While the design of TTCN‑3 package has taken into account the consistency of a combined usage of the core language with a number of packages, the concrete usages of and guidelines for this package in combination with other packages is outside the scope of the present document.
2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the reference document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE:
While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

2.1
Normative references

The following referenced documents are necessary for the application of the present document.

[1]
ETSI ES 201 873-1: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language".
[2]
ETSI ES 201 873-4: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 4: TTCN-3 Operational Semantics".
[3]
ETSI ES 201 873-5: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 5: TTCN-3 Runtime Interface (TRI)".
[4]
ETSI ES 201 873-6: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 6: TTCN-3 Control Interface (TCI)".
[5]
Recommendation ITU-T X.290: "OSI conformance testing methodology and framework for protocol Recommendations for ITU-T applications - General concepts".
NOTE:
The corresponding ISO/IEC standard is ISO/IEC 9646-1: "Information technology -- Open Systems Interconnection -- Conformance testing methodology and framework -- Part 1: General concepts".

2.2
Informative references

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1]
Void.
[i.2]
ETSI ES 201 873-3: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 3: TTCN-3 Graphical presentation Format (GFT)".
[i.3]
ETSI ES 201 873-7: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 7: Using ASN.1 with TTCN-3".
[i.4]
ETSI ES 201 873-8: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 8: The IDL to TTCN-3 Mapping".
[i.5]
ETSI ES 201 873-9: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 9: Using XML schema with TTCN-3".
[i.6]
ETSI ES 201 873-10: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 10: TTCN-3 Documentation Comment Specification".
[i.7]
ETSI ES 202 781: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Configuration and Deployment Support".
[i.8]
ETSI ES 202 784: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Advanced Parameterization".
[i.9]
ETSI ES 202 785: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: Behaviour Types".
[i.10]
ETSI ES 202 782: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: TTCN-3 Performance and Real Time Testing".
[i.11]
ETSI ES 202 786: "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; TTCN-3 Language Extensions: TTCN-3 Continuous Signal Support".
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the terms and definitions given in ES 201 873-1 [1], ES 201 873‑4 [2],
ES 201 873-5 [3], ES 201 873-6 [4] and Recommendation ITU-T X.290 [5] apply.
3.2
Abbreviations

For the purposes of the present document, the abbreviations given in ES 201 873-1 [1], ES 201 873‑4 [2],
ES 201 873-5 [3], ES 201 873-6 [4], Recommendation ITU-T X.290 [5] and the following apply:
XTRI
Extended TRI
4
Package conformance and compatibility

The package has no package tag as the choice to use TRI and/or XTRI affects the test adaptor only, but not the test specifications in TTCN-3.
For an implementation claiming to conform to this package version, all features specified in the present document shall be implemented consistently with the requirements given in the present document, ES 201 873-1 [1] and
ES 201 873-4 [2].

The package presented in the present document is compatible to:
ES 201 873-1 [1] (V4.5.1)
ES 201 873-4 [2] (V4.4.1)
ES 201 873-6 [4] (V4.5.1)
ES 201 873-7 [i.3] (V4.5.1)
ES 201 873-8 [i.4] (V4.5.1)
ES 201 873-9 [i.5] (V4.5.1)
ES 201 873-10 [i.6] (V4.5.1)
If later versions of those parts are available and should be used instead, the compatibility of the package defined in the present document has to be checked individually.

The package defined in the present document is also compatible to:
ES 202 784 [i.8] (V1.3.1)
ES 202 781 [i.7] (V1.2.1)
ES 202 782 [i.10] (V1.2.1)
ES 202 785 [i.9] (V1.3.1)
ES 202 786 [i.11] (V1.2.1)
and can be used together with those packages.

If later versions of those packages are available and should be used instead, the compatibility to the package defined in the present document has to be checked individually.

5
Package concepts for the core language
Not applicable.

6
Package semantics
Not applicable.

7
TRI extensions for the package
Historically, TTCN has been used to test communication protocols which typically use encoded messages. This has been reflected in the TRI SA and TCI CD design of TTCN-3 by encoding and decoding messages to and from bitstrings. However, TTCN-3 also supports signature-based communication for which the transformation of objects into bitstrings and vice versa is cumbersome. Furthermore, some protocols use also structured messages for which the bitstring encoding is not helpful.

Therefore, an alternative API is being defined in this extension package of TTCN-3 along which TTCN-3 values can be directly passed to/from the SUT. It is defined by redefining the operations in TRI SA and PA as follows.
7.1
Changes to clause 5.2 of ES 201 873-5, Error handling

The SA or PA can in addition provide notifications about unrecoverable error situations by use of the operations xtriSAErrorReq and xtriPAErrorReq, respectively.
5.2.1
triSAErrorReq (xtriSAErrorReq

	Signature
	void xtriSAErrorReq(in string message, in any cause)

	In Parameters
	message

A string value, i.e. the error phrase describing the problem.

cause

(Optional) cause of the problem.

	Return Value
	void

	Constraint
	Shall be called whenever an error situation has occurred in the SA with the exception of errors occurring when processing SA calls initiated by the TE. These errors are reported in the operation return. The optional cause parameter can be used to provide information in addition to the error phrase in message.

	Effect
	The TE will be notified about an unrecoverable error situation within the SA and may forward the error indication to the test management.

5.2.2
triPAErrorReq (xtriPAErrorReq

	Signature
	void xtriPAErrorReq(in string message, in any cause)

	In Parameters
	message

A string value, i.e. the error phrase describing the problem.

cause

(Optional) cause of the problem.

	Return Value
	Void

	Constraint
	Shall be called whenever an error situation has occurred in the PA with the exception of errors occurring when processing PA calls initiated by the TE. These errors are reported in the operation return. The optional cause parameter can be used to provide information in addition to the error phrase in message.

	Effect
	The TE will be notified about an unrecoverable error situation within the PA and may forward the error indication to the test management.

7.2
Changes to clause 5.5.2 Connection handling operations
5.5.2.3
triMapParam (xtriMapParam
	Signature
	TriStatusType xtriMap(in TriPortIdType compPortId,
 in TriPortIdType tsiPortId,
 in TciParameterListType paramList)

	In Parameters
	compPortId
identifier of the test component port to be mapped
tsiPortId
identifier of the test system interface port to be mapped
paramList
parameters of the parameterized map

	Out Parameters
	n.a.

	Return Value
	The return status of the triMap operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN‑3 map operation.

	Effect
	The SA can establish a dynamic connection to the SUT for the referenced TSI port.
The triMap operation returns TRI_Error in case a connection could not be established successfully, TRI_OK otherwise. The operation should return TRI_OK in case no dynamic connection needs to be established by the test system.

5.5.2.5
triUnmapParam (xtriUnmapParam
	Signature
	TriStatusType xtriUnmap(in TriPortIdType compPortId,
in TriPortIdType tsiPortId,
in TciParameterListType paramList)

	In Parameters
	compPortId
identifier of the test component port to be unmapped
tsiPortId
identifier of the test system interface port to be unmapped
paramList
parameters of the parameterized map

	Out Parameters
	n.a.

	Return Value
	The return status of the triUnmap operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes any TTCN‑3 unmap operation.

	Effect
	The SA shall close a dynamic connection to the SUT for the referenced TSI port.

The triUnmap operation returns TRI_Error in case a connection could not be closed successfully or no such connection has been established previously, TRI_OK otherwise. The operation should return TRI_OK in case no dynamic connections have to be closed by the test system.

7.3
Changes to clause 5.5.3 Message based communication operations

5.5.3.1
triSend (xtriSend
	Signature
	TriStatusType xtriSend(in TriComponentIdType componentId,
in TriPortIdType tsiPortId,
in Value SUTaddress,
in Value sendMessage)

	In Parameters
	componentId
identifier of the sending test component

tsiPortId
identifier of the test system interface port via which the message is sent to the SUT
Adaptor

SUTaddress
(optional) destination address value within the SUT

sendMessage
the value to be sent

	Out Parameters
	n.a.

	Return Value
	The return status of the triSend operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN‑3 unicast send operation on a component port, which has been mapped to a TSI port. This operation is called by the TE for all TTCN‑3 send operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.

The encoding of sendMessage has to be done in the TE prior to this TRI operation call.

	Effect
	The SA can send the message to the SUT.

The triSend operation returns TRI_OK in case it has been completed successfully. Otherwise TRI_Error shall be returned. Notice that the return value TRI_OK does not imply that the SUT has received sendMessage.

5.5.3.2
triSendBC (xtriSendBC
	Signature
	TriStatusType xtriSendBC(in TriComponentIdType componentId,

in TriPortIdType tsiPortId,
in Value sendMessage)

	In Parameters
	componentId
identifier of the sending test component

tsiPortId
identifier of the test system interface port via which the message is sent to the SUT
Adaptor

sendMessage
the value to be sent

	Out Parameters
	n.a.

	Return Value
	The return status of the triSendBC operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN‑3 broadcast send operation on a component port, which has been mapped to a TSI port. This operation is called by the TE for all TTCN‑3 send operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.

The encoding of sendMessage has to be done in the TE prior to this TRI operation call.

	Effect
	The SA can broadcast the message to the SUT.

The triSendBC operation returns TRI_OK in case it has been completed successfully. Otherwise TRI_Error shall be returned. Notice that the return value TRI_OK does not imply that the SUT has received sendMessage.

5.5.3.3
triSendMC (xtriSendMC
	Signature
	TriStatusType xtriSendMC(in TriComponentIdType componentId,

in TriPortIdType tsiPortId,
in TciValueList SUTaddresses,
in Value sendMessage)

	In Parameters
	componentId
identifier of the sending test component

tsiPortId
identifier of the test system interface port via which the message is sent to the
SUT Adaptor

SUTaddresses
destination address values within the SUT

sendMessage
the values to be sent

	Out Parameters
	n.a.

	Return Value
	The return status of the triSendMC operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN‑3 multicast send operation on a component port, which has been mapped to a TSI port. This operation is called by the TE for all TTCN‑3 send operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.

The encoding of sendMessage has to be done in the TE prior to this TRI operation call.

	Effect
	The SA can multicast the message to the SUT.

The triSendMC operation returns TRI_OK in case it has been completed successfully. Otherwise TRI_Error shall be returned. Notice that the return value TRI_OK does not imply that the SUT has received sendMessage.

5.5.3.4
triEnqueueMsg (xtriEnqueueMsg
	Signature
	void xtriEnqueueMsg(in TriPortIdType tsiPortId,
in any SUTaddress,
in TriComponentIdType componentId,
in any receivedMessage)

	In Parameters
	tsiPortId
identifier of the test system interface port via which the message is enqueued
by the SUT Adaptor

SUTaddress
(optional) source address value within the SUT
componentId
identifier of the receiving test component
receivedMessage
the received value

	Out Parameters
	n.a.

	Return Value
	void

	Constraints
	This operation is called by the SA after it has received a message from the SUT. It can only be used when tsiPortId has been either previously mapped to a port of componentId or has been referenced in the previous triExecuteTestCase statement.

In the invocation of a triEnqueueMsg operation receivedMessage shall contain an encoded value.

	Effect
	This operation shall pass the message to the TE indicating the component componentId to which the TSI port tsiPortId is mapped.

The decoding of receivedMessage has to be done in the TE.

7.4
Addition to clause 5.5.3 Message based communication operations

In order to interpret unknown values along a type hypothesis, an additional xtriConvert operation is defined. It can be used in all cases where the type of the incoming value is not known. Please note that typically the value type is known in procedure-based communication and sometimes in message-based communication.

5.5.3.5
xtriConvert
	Signature
	Value xtriConvert(in any value, in Type typeHypothesis)

	In Parameters
	value
the value to be converted

typeHypothesis
the type hypothesis

	Out Parameters
	n.a.

	Return Value
	Returns the converted value, if the value is of a compatible type as the typeHypothesis, else the distinct value null.

	Constraints
	This operation shall be called whenever the TE has to convert a value. The TE might convert immediately after reception of the value, or might for performance considerations postpone the conversion until the actual access to the value.

	Effect
	This operation converts a value and returns a value according to the type hypothesis if it matches. The typeHypothesis determines whether the value can be converted. If not, the distinct null value shall be returned.

7.5
Changes to clause 5.5.4 Procedure based communication operations

5.5.4.1
triCall (xtriCall
	Signature
	TriStatusType xtriCall(in TriComponentIdType componentId,

in TriPortIdType tsiPortId,
in Value SUTaddress,
in TriSignatureIdType signatureId,
in TciParameterListType parameterList)

	In Parameters
	componentId
identifier of the test component issuing the procedure call

tsiPortId
identifier of the test system interface port via which the procedure call is sent
to the SUT Adaptor
SUTaddress
(optional) destination address within the SUT
signatureId
identifier of the signature of the procedure call
parameterList
a list of encoded parameters which are part of the indicated signature. The parameters in parameterList are ordered as they appear in the TTCN‑3 signature declaration

	Out Parameters
	n.a.

	Return Value
	The return status of the triCall operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN‑3 unicast call operation on a component port, which has been mapped to a TSI port. This operation is called by the TE for all TTCN‑3 call operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
All in and inout procedure parameters contain encoded values.
The procedure parameters are the parameters specified in the TTCN‑3 signature template. Their encoding has to be done in the TE prior to this TRI operation call.

	Effect
	On invocation of this operation the SA can initiate the procedure call corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triCall operation shall return without waiting for the return of the issued procedure call (see note). This TRI operation returns TRI_OK on successful initiation of the procedure call, TRI_Error otherwise. No error shall be indicated by the SA in case the value of any out parameter is non‑null. Notice that the return value of this TRI operation does not make any statement about the success or failure of the procedure call.
Note that an optional timeout value, which can be specified in the TTCN‑3 ATS for a call operation, is not included in the triCall operation signature. The TE is responsible to address this issue by starting a timer for the TTCN‑3 call operation in the PA with a separate TRI operation call, i.e. triStartTimer.

	NOTE:
This might be achieved for example by spawning a new thread or process. This handling of this procedure call is, however, dependent on implementation of the TE.

5.5.4.2
triCallBC (xtriCallBC
	Signature
	TriStatusType xtriCallBC(in TriComponentIdType componentId,

in TriPortIdType tsiPortId,
in TriSignatureIdType signatureId,
in TciParameterListType parameterList)

	In Parameters
	componentId
identifier of the test component issuing the procedure call

tsiPortId
identifier of the test system interface port via which the procedure call is sent to the SUT Adaptor

signatureId
identifier of the signature of the procedure call

parameterList
a list of encoded parameters which are part of the indicated signature. The parameters in parameterList are ordered as they appear in the TTCN‑3 signature declaration.

	Out Parameters
	n.a.

	Return Value
	The return status of the triCallBC operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN‑3 broadcast call operation on a component port, which has been mapped to a TSI port. This operation is called by the TE for all TTCN‑3 call operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
All in and inout procedure parameters contain encoded values.
The procedure parameters are the parameters specified in the TTCN‑3 signature template. Their encoding has to be done in the TE prior to this TRI operation call.

	Effect
	On invocation of this operation the SA can initiate and broadcast the procedure call corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triCallBC operation shall return without waiting for the return of the issued procedure call (see note). This TRI operation returns TRI_OK on successful initiation of the procedure call, TRI_Error otherwise. No error shall be indicated by the SA in case the value of any out parameter is non‑null. Notice that the return value of this TRI operation does not make any statement about the success or failure of the procedure call.
Note that an optional timeout value, which can be specified in the TTCN‑3 ATS for a call operation, is not included in the triCallBC operation signature. The TE is responsible to address this issue by starting a timer for the TTCN‑3 call operation in the PA with a separate TRI operation call, i.e. triStartTimer.

	NOTE:
This might be achieved for example by spawning a new thread or process. This handling of this procedure call is, however, dependent on implementation of the TE.

5.5.4.3
triCallMC (xtriCallMC
	Signature
	TriStatusType xtriCallMC(in TriComponentIdType componentId,

in TriPortIdType tsiPortId,
in TciValueList SUTaddresses,
in TriSignatureIdType signatureId,
in TciParameterListType parameterList)

	In Parameters
	componentId
identifier of the test component issuing the procedure call

tsiPortId
identifier of the test system interface port via which the procedure call is sent to the SUT Adaptor

SUTaddresses
destination addresses within the SUT

signatureId
identifier of the signature of the procedure call

parameterList
a list of encoded parameters which are part of the indicated signature. The parameters in parameterList are ordered as they appear in the TTCN‑3 signature declaration.

	Out Parameters
	n.a.

	Return Value
	The return status of the triCallMC operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN‑3 multicast call operation on a component port, which has been mapped to a TSI port. This operation is called by the TE for all TTCN‑3 call operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
All in and inout procedure parameters contain encoded values.
The procedure parameters are the parameters specified in the TTCN‑3 signature template. Their encoding has to be done in the TE prior to this TRI operation call.

	Effect
	On invocation of this operation the SA can initiate and multicast the procedure call corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triCallMC operation shall return without waiting for the return of the issued procedure call (see note). This TRI operation returns TRI_OK on successful initiation of the procedure call, TRI_Error otherwise. No error shall be indicated by the SA in case the value of any out parameter is non‑null. Notice that the return value of this TRI operation does not make any statement about the success or failure of the procedure call.
Note that an optional timeout value, which can be specified in the TTCN‑3 ATS for a call operation, is not included in the triCallMC operation signature. The TE is responsible to address this issue by starting a timer for the TTCN‑3 call operation in the PA with a separate TRI operation call, i.e. triStartTimer.

	NOTE:
This might be achieved for example by spawning a new thread or process. This handling of this procedure call is, however, dependent on implementation of the TE.

5.5.4.4
triReply (xtriReply
	Signature
	TriStatusType xtriReply(in TriComponentIdType componentId,

in TriPortIdType tsiPortId,
in Value SUTaddress,
in TriSignatureIdType signatureId,
in TciParameterListType parameterList,
in Value returnValue)

	In Parameters
	componentId
identifier of the replying test component

tsiPortId
identifier of the test system interface port via which the reply is sent to the SUT Adaptor

SUTaddress
(optional) destination address within the SUT

signatureId
identifier of the signature of the procedure call

parameterList
a list of encoded parameters which are part of the indicated signature. The parameters in parameterList are ordered as they appear in the TTCN‑3 signature declaration

returnValue
(optional) encoded return value of the procedure call

	Out Parameters
	n.a.

	Return Value
	The return status of the triReply operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN‑3 unicast reply operation on a component port that has been mapped to a TSI port. This operation is called by the TE for all TTCN‑3 reply operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
All out and inout procedure parameters and the return value contain encoded values.
The parameterList contains procedure call parameters. These parameters are the parameters specified in the TTCN‑3 signature template. Their encoding has to be done in the TE prior to this TRI operation call.

If no return type has been defined for the procedure signature in the TTCN‑3 ATS, the distinct value null shall be passed for the return value.

	Effect
	On invocation of this operation the SA can issue the reply to a procedure call corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triReply operation will return TRI_OK on successful execution of this operation, TRI_Error otherwise. The SA shall indicate no error in case the value of any in parameter or an undefined return value is different from null.

5.5.4.5
triReplyBC (xtriReplyBC
	Signature
	TriStatusType xtriReplyBC(in TriComponentIdType componentId,

in TriPortIdType tsiPortId,
in TriSignatureIdType signatureId,
in TciParameterListType parameterList,
in Value returnValue)

	In Parameters
	componentId
identifier of the replying test component

tsiPortId
identifier of the test system interface port via which the reply is sent to the SUT Adaptor

signatureId
identifier of the signature of the procedure call

parameterList
a list of encoded parameters which are part of the indicated signature. The parameters in parameterList are ordered as they appear in the TTCN‑3 signature declaration

returnValue
(optional) encoded return value of the procedure call

	Out Parameters
	n.a.

	Return Value
	The return status of the triReplyBC operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN‑3 broadcast reply operation on a component port that has been mapped to a TSI port. This operation is called by the TE for all TTCN‑3 reply operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
All out and inout procedure parameters and the return value contain encoded values.
The parameterList contains procedure call parameters. These parameters are the parameters specified in the TTCN‑3 signature template. Their encoding has to be done in the TE prior to this TRI operation call.

If no return type has been defined for the procedure signature in the TTCN‑3 ATS, the distinct value null shall be passed for the return value.

	Effect
	On invocation of this operation the SA can broadcast the reply to procedure calls corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triReplyBC operation will return TRI_OK on successful execution of this operation, TRI_Error otherwise. The SA shall indicate no error in case the value of any in parameter or an undefined return value is different from null.

5.5.4.6
triReplyMC (xtriReplyMC
	Signature
	TriStatusType xtriReplyMC(in TriComponentIdType componentId,

in TriPortIdType tsiPortId,
in TciValueList SUTaddresses,
in TriSignatureIdType signatureId,
in TciParameterListType parameterList,
in Value returnValue)

	In Parameters
	componentId
identifier of the replying test component

tsiPortId
identifier of the test system interface port via which the reply is sent to the SUT Adaptor

SUTaddresses
destination addresses within the SUT

signatureId
identifier of the signature of the procedure call

parameterList
a list of encoded parameters which are part of the indicated signature. The parameters in parameterList are ordered as they appear in the TTCN‑3 signature declaration

returnValue
(optional) encoded return value of the procedure call

	Out Parameters
	n.a.

	Return Value
	The return status of the triReplyMC operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN‑3 multicast reply operation on a component port that has been mapped to a TSI port. This operation is called by the TE for all TTCN‑3 reply operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.
All out and inout procedure parameters and the return value contain encoded values.
The parameterList contains procedure call parameters. These parameters are the parameters specified in the TTCN‑3 signature template. Their encoding has to be done in the TE prior to this TRI operation call.

If no return type has been defined for the procedure signature in the TTCN‑3 ATS, the distinct value null shall be passed for the return value.

	Effect
	On invocation of this operation the SA can multicast the reply to procedure calls corresponding to the signature identifier signatureId and the TSI port tsiPortId.
The triReplyMC operation will return TRI_OK on successful execution of this operation, TRI_Error otherwise. The SA shall indicate no error in case the value of any in parameter or an undefined return value is different from null.

5.5.4.7
triRaise (xtriRaise
	Signature
	TriStatusType xtriRaise(in TriComponentIdType componentId,

in TriPortIdType tsiPortId,
in Value SUTaddress,
in TriSignatureIdType signatureId,
in Value exc)

	In Parameters
	componentId
identifier of the test component raising the exception

tsiPortId
identifier of the test system interface port via which the exception is sent to the SUT Adaptor

SUTaddress
(optional) destination address within the SUT
signatureId
identifier of the signature of the procedure call which the exception is associated with

exc
the encoded exception

	Out Parameters
	n.a.

	Return Value
	The return status of the triRaise operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN‑3 unicast raise operation on a component port that has been mapped to a TSI port. This operation is called by the TE for all TTCN‑3 raise operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.

The encoding of the exception has to be done in the TE prior to this TRI operation call.

	Effect
	On invocation of this operation the SA can raise an exception to a procedure call corresponding to the signature identifier signatureId and the TSI port tsiPortId.

The triRaise operation returns TRI_OK on successful execution of the operation, TRI_Error otherwise.

5.5.4.8
triRaiseBC (xtriRaiseBC
	Signature
	TriStatusType xtriRaiseBC(in TriComponentIdType componentId,

in TriPortIdType tsiPortId,
in TriSignatureIdType signatureId,
in Value exc)

	In Parameters
	componentId
identifier of the test component raising the exception

tsiPortId
identifier of the test system interface port via which the exception is sent to the SUT Adaptor

signatureId
identifier of the signature of the procedure call which the exception is associated with

exc
the encoded exception

	Out Parameters
	n.a.

	Return Value
	The return status of the triRaiseBC operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN‑3 broadcast raise operation on a component port that has been mapped to a TSI port. This operation is called by the TE for all TTCN‑3 raise operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.

The encoding of the exception has to be done in the TE prior to this TRI operation call.

	Effect
	On invocation of this operation the SA can raise and broadcast an exception to procedure calls corresponding to the signature identifier signatureId and the TSI port tsiPortId.

The triRaiseBC operation returns TRI_OK on successful execution of the operation, TRI_Error otherwise.

5.5.4.9
triRaiseMC (xtriRaiseMC
	Signature
	TriStatusType xtriRaiseMC(in TriComponentIdType componentId,

in TriPortIdType tsiPortId,
in TciValueList SUTaddresses,
in TriSignatureIdType signatureId,
in Value exc)

	In Parameters
	componentId
identifier of the test component raising the exception

tsiPortId
identifier of the test system interface port via which the exception is sent to the SUT Adaptor

SUTaddresses
destination addresses within the SUT
signatureId
identifier of the signature of the procedure call which the exception is associated with

exc
the encoded exception

	Out Parameters
	n.a.

	Return Value
	The return status of the triRaiseMC operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a TTCN‑3 multicast raise operation on a component port that has been mapped to a TSI port. This operation is called by the TE for all TTCN‑3 raise operations if no system component has been specified for a test case, i.e. only a MTC test component is created for a test case.

The encoding of the exception has to be done in the TE prior to this TRI operation call.

	Effect
	On invocation of this operation the SA can raise and multicast an exception to a procedure calls corresponding to the signature identifier signatureId and the TSI port tsiPortId.

The triRaiseMC operation returns TRI_OK on successful execution of the operation, TRI_Error otherwise.

5.5.4.10
triEnqueueCall (xtriEnqueueCall
	Signature
	void xtriEnqueueCall(in TriPortIdType tsiPortId,
in any SUTaddress,
in TriComponentIdType componentId,
in TriSignatureIdType signatureId,
in TciParameterListType parameterList)

	In Parameters
	tsiPortId
identifier of the test system interface port via which the procedure call is enqueued by the SUT Adaptor

SUTaddress
(optional) source address within the SUT

componentId
identifier of the receiving test component

signatureId
identifier of the signature of the procedure call
parameterList
a list of encoded parameters which are part of the indicated signature. The parameters in parameterList are ordered as they appear in the TTCN‑3 signature declaration. Description of data passed as parameters to the operation from the calling entity to the called entity

	Out Parameters
	n.a.

	Return Value
	void

	Constraints
	This operation can be called by the SA after it has received a procedure call from the SUT. It can only be used when tsiPortId has been either previously mapped to a port of componentId or referenced in the previous triExecuteTestCase statement.

In the invocation of a triEnqueueCall operation all in and inout procedure parameters contain encoded values.

	Effect
	The TE can enqueue this procedure call with the signature identifier signatureId at the port of the component componentId to which the TSI port tsiPortId is mapped. The decoding of procedure parameters has to be done in the TE.

The TE shall indicate no error in case the value of any out parameter is different from null.

5.5.4.11
triEnqueueReply (xtriEnqueueReply
	Signature
	void xtriEnqueueReply(in TriPortIdType tsiPortId,
in any SUTaddress,
in TriComponentIdType componentId,
in TriSignatureIdType signatureId,
in TciParameterListType parameterList,
in Value returnValue)

	In Parameters
	tsiPortId
identifier of the test system interface port via which the reply is enqueued by the SUT Adaptor

SUTaddress
(optional) source address within the SUT
componentId
identifier of the receiving test component

signatureId
identifier of the signature of the procedure call

parameterList
a list of encoded parameters which are part of the indicated signature. The parameters in parameterList are ordered as they appear in the TTCN‑3 signature declaration

returnValue
(optional) encoded return value of the procedure call

	Out Parameters
	n.a.

	Return Value
	void

	Constraints
	This operation can be called by the SA after it has received a reply from the SUT. It can only be used when tsiPortId has been either previously mapped to a port of componentId or referenced in the previous triExecuteTestCase statement.
In the invocation of a triEnqueueReply operation all out and inout procedure parameters and the return value contain encoded values.

If no return type has been defined for the procedure signature in the TTCN‑3 ATS, the distinct value null shall be used for the return value.

	Effect
	The TE can enqueue this reply to the procedure call with the signature identifier signatureId at the port of the component componentId to which the TSI port tsiPortId is mapped. The decoding of the procedure parameters has to be done within the TE.
The TE shall indicate no error in case the value of any in parameter or an undefined return value is different from null.

5.5.4.12
triEnqueueException (xtriEnqueueException
	Signature
	void xtriEnqueueException(in TriPortIdType tsiPortId,
in any SUTaddress,
in TriComponentIdType componentId,
in TriSignatureIdType signatureId,
in any exc)

	In Parameters
	tsiPortId
identifier for the test system interface port via which the exception is
enqueued by the SUT Adaptor

SUTaddress
(optional) source address within the SUT

componentId
identifier of the receiving test component

signatureId
identifier of the signature of the procedure call which the exception
is associated with

exc
the encoded exception

	Out Parameters
	n.a.

	Return Value
	void

	Constraints
	This operation can be called by the SA after it has received a reply from the SUT. It can only be used when tsiPortId has been either previously mapped to a port of componentId or referenced in the previous triExecuteTestCase statement.

In the invocation of a triEnqueueException operation exception shall contain an encoded value.

	Effect
	The TE can enqueue this exception for the procedure call with the signature identifier signatureId at the port of the component componentId to which the TSI port tsiPortId is mapped.

The decoding of the exception has to be done within the TE.

7.6
Changes to clause 5.6.3 Miscellaneous operations

5.6.3.1
triExternalFunction (xtriExternalFunction
	Signature
	TriStatusType xtriExternalFunction(

in TriFunctionIdType functionId,
inout TciParameterListType parameterList,
out Value returnValue)

	In Parameters
	functionId
identifier of the external function

	Out Parameters
	returnValue
(optional) encoded return value

	InOutParameters
	parameterList
a list of encoded parameters for the indicated function. The parameters in parameterList are ordered as they appear in the TTCN‑3 function declaration.

	Return Value
	The return status of the triExternalFunction operation. The return status indicates the local success (TRI_OK) or failure (TRI_Error) of the operation.

	Constraints
	This operation is called by the TE when it executes a function which is defined to be TTCN‑3 external (i.e. all non‑external functions are implemented within the TE).

In the invocation of a triExternalFunction operation by the TE all in and inout function parameters contain encoded values. No error shall be indicated by the PA in case the value of any out parameter is non‑null.

	Effect
	For each external function specified in the TTCN‑3 ATS the PA shall implement the behaviour. On invocation of this operation the PA shall invoke the function indicated by the identifier functionId. It shall access the specified in and inout function parameters in parameterList, evaluate the external function using the values of these parameters, and compute values for inout and out parameters in parameterList. The operation shall then return encoded values for all inout and out function parameters and the encoded return value of the external function.

If no return type has been defined for this external function in the TTCN‑3 ATS, the distinct value null shall be used for the latter.

The triExternalFunction operation returns TRI_OK if the PA completes the evaluation of the external function successfully, TRI_Error otherwise.

Note that whereas all other TRI operations are considered to be non‑blocking, the triExternalFunction operation is considered to be blocking. That means that the operation shall not return before the indicated external function has been fully evaluated. External functions have to be implemented carefully as they could cause deadlock of test component execution or even the entire test system implementation.

5.6.3.3
triRnd (xtriRnd
	Signature
	FloatValue xtriRnd(in TriComponentIdType componentId, in FloatValue seed)

	In Parameters
	componentId
identifier of the component for which to generate the random number

	
	seed

the seed to be used for generation of the random number or null

	Out Parameters
	n.a.

	Return Value
	The generated float random number

	Constraints
	This operation is called by the PA to generate a random number in the context of an external function.

	Effect
	A random number is generated in the scope of the component identified by the given component ID using the given seed (if any) according to the specification of the predefined rnd function defined in ES 201 873‑1 [2].

7.7
Changes to clause 6 Java language mapping

Addition of the following subclause in clause 6.3 Type mapping.
6.3.3
Any type mapping

The IDL any type is represented by Java java.lang.Object.

6.5.2.1
Changes to triCommunicationSA

The extension to the triCommunicationSA interface is mapped to the following interface:

// TriCommunication

// TE ‑> SA

package org.etsi.ttcn.xtri;

public interface xTriCommunicationSA {

public TriStatus xtriMapParam(TriPortId compPortId, TriPortId tsiPortId,
 TciParameterList paramList);

// Ref: TRI‑Definition 5.5.2.3

public TriStatus xtriUnmapParam(TriPortId compPortId, TriPortId tsiPortId,
 TciParameterList paramList);

// Ref: TRI‑Definition 5.5.2.4

// Message based communication operations

// Ref: TRI‑Definition 5.5.3.1

public TriStatus xtriSend(TriComponentId componentId, TriPortId tsiPortId,

Value sutAddress, Value sendMessage);

// Ref: TRI‑Definition 5.5.3.2

public TriStatus xtriSendBC(TriComponentId componentId, TriPortId tsiPortId,

Value sendMessage);

// Ref: TRI‑Definition 5.5.3.3

public TriStatus xtriSendMC(TriComponentId componentId, TriPortId tsiPortId,

TciValueList sutAddresses, Value sendMessage);

// Procedure based communication operations

// Ref: TRI‑Definition 5.5.4.1

public TriStatus xtriCall(TriComponentId componentId,

TriPortId tsiPortId, Value sutAddress,

TriSignatureId signatureId, TciParameterList parameterList);

// Ref: TRI‑Definition 5.5.4.2

public TriStatus xtriCallBC(TriComponentId componentId,

TriPortId tsiPortId,

TriSignatureId signatureId, TciParameterList parameterList);

// Ref: TRI‑Definition 5.5.4.3

public TriStatus xtriCallMC(TriComponentId componentId,

TriPortId tsiPortId, TciValueList sutAddresses,

TriSignatureId signatureId, TciParameterList parameterList);

// Ref: TRI‑Definition 5.5.4.4

public TriStatus xtriReply(TriComponentId componentId,

TriPortId tsiPortId, Value sutAddress,

TriSignatureId signatureId, TciParameterList parameterList,

Value returnValue);

// Ref: TRI‑Definition 5.5.4.5

public TriStatus xtriReplyBC(TriComponentId componentId,

TriPortId tsiPortId,

TriSignatureId signatureId, TciParameterList parameterList,

Value returnValue);

// Ref: TRI‑Definition 5.5.4.6

public TriStatus xtriReplyMC(TriComponentId componentId,

TriPortId tsiPortId, TciValueList sutAddresses,

TriSignatureId signatureId, TciParameterList parameterList,

Value returnValue);

// Ref: TRI‑Definition 5.5.4.7

public TriStatus xtriRaise(TriComponentId componentId, TriPortId tsiPortId,

Value sutAddress,

TriSignatureId signatureId,

Value exc);

// Ref: TRI‑Definition 5.5.4.8

public TriStatus xtriRaiseBC(TriComponentId componentId,

TriPortId tsiPortId,

TriSignatureId signatureId,

Value exc);

// Ref: TRI‑Definition 5.5.4.9

public TriStatus xtriRaiseMC(TriComponentId componentId, TriPortId tsiPortId,

TciValueList sutAddresses,

TriSignatureId signatureId,

Value exc);

// Miscellaneous operations

// Ref: TRI‑Definition 5.5.3.5

public Value xtriConvert(Object value, Type typeHypothesis);
}

6.5.2.2
Changes to triCommunicationTE

The extension to the triCommunicationTE interface is mapped to the following interface:

// TriCommunication

// SA ‑> TE

package org.etsi.ttcn.xtri;

public interface xTriCommunicationTE {

// Message based communication operations

// Ref: TRI‑Definition 5.5.3.4

public void xtriEnqueueMsg(TriPortId tsiPortId,

Object sutAddress, TriComponentId componentId,

Object receivedMessage);

// Procedure based communication operations

// Ref: TRI‑Definition 5.5.4.10

public void xtriEnqueueCall(TriPortId tsiPortId,

Object sutAddress, TriComponentId componentId,

TriSignatureId signatureId, TciParameterList parameterList);

// Ref: TRI‑Definition 5.5.4.11

public void xtriEnqueueReply(TriPortId tsiPortId, Object sutAddress,

TriComponentId componentId, TriSignatureId signatureId,

TciParameterList parameterList, Value returnValue);

// Ref: TRI‑Definition 5.5.4.12

public void xtriEnqueueException(TriPortId tsiPortId,

Object sutAddress, TriComponentId componentId,

TriSignatureId signatureId, Object exc);

// Error handling

// Ref: TRI‑Definition 5.2.1

public void
xtriSAErrorReq (String message, Object cause);

}

6.5.3.1
Changes to TriPlatformPA

The extension to the triPlatformPA interface is mapped to the following interface:

// TriPlatform

// TE ‑> PA

package org.etsi.ttcn.xtri;

public interface xTriPlatformPA {

// Ref: TRI‑Definition 5.6.3.1

public TriStatus xtriExternalFunction(TriFunctionId functionId,

 TciParameterList parameterList, Value returnValue);

}

6.5.3.2
Changes to TriPlatformTE

The extension to the triPlatformTE interface is mapped to the following interface:

// TriPlatform

// PA ‑> TE

package org.etsi.ttcn.xtri;

public interface xTriPlatformTE {

// Error handling

// Ref: TRI‑Definition 5.2.2

public void
xtriPAErrorReq (String message, Object cause);

// Ref: TRI-Definition 5.6.3.3

public FloatValue xtriRnd(TriComponentId componentId, FloatValue seed);}

7.8
Changes to clause 7 C language mapping

7.2.1
Changes to Abstract type mapping

	TRI ADT
	ANSI C Representation
	Notes and comments

	any
	typedef enum {
 e_char = 1,

// character
 e_unsigned_char = 2,

// unsigned char
 e_signed_char = 3,

// signed char

 e_short = 4,

// short signed integer
 e_short_int = 5,

// short signed integer
 e_signed_short = 6,

// short signed integer
 e_signed_short_int = 7,

// short signed integer

 e_unsigned_short = 8,

// unsigned short
 e_unsigned_short_int = 9,

// unsigned short integer

 e_int = 10,

// integer

 e_signed_int = 11,

// signed integer

 e_unsigned = 12,

// unsigned
 e_unsigned_int = 13,

// unsigned integer

 e_long = 14,

// long integer

 e_long_int = 15,

// long integer

 e_signed_long = 16,

// signed long integer

 e_signed_long_int = 17,
// signed long integer

 e_unsigned_long = 18,

// unsigned long integer
 e_unsigned_long_int = 19,

// unsigned long integer

 e_long_long = 20,

// long long integer

 e_long_long_int = 21,

// long long integer

 e_signed_long_long = 22,
// signed long long integer

 e_signed_long_long_int = 23, // signed long long integer

 e_unsigned_long_long = 24,
// unsigned long long integer

 e_unsigned_long_long_int = 25,// unsigned long long integer

 e_float = 26,

// float
 e_double = 27,

// double
 e_long_double = 28,

// long double

 e_ptr = 29,

// void *

 e_char_string = 30,

// char *
 e_wchar_string = 31

// wchar_t *

} type_kind;

typedef void *value;

typedef struct {
 type_kind tag;
 value val;
} Object;
	

7.2.4
Changes to TRI operation mapping

TriStatus xtriMapParam

 (const TriPortId* compPortId,

 const TriPortId* tsiPortId,

 const TciParameterListType* parameterList)

TriStatus xtriUnmapParam

(const TriPortId* compPortId,

 const TriPortId* tsiPortId,

 const TciParameterListType* parameterList)

TriStatus xtriSend

(const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const Value* sutAddress,

 const Value* sendMessage)

TriStatus xtriSendBC

(const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const Value* sendMessage)

TriStatus xtriSendMC

(const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TciValueList* sutAddresses,

 const Value* sendMessage)

void xtriEnqueueMsg

(const TriPortId* tsiPortId,

 const Object* sutAddress,

 const TriComponentId* componentId,

 const Object* receivedMessage)

TriStatus xtriCall

(const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const Value* sutAddress,

 const TriSignatureId* signatureId,

 const TciParameterListType* parameterList)

TriStatus xtriCallBC

(const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TriSignatureId* signatureId,

 const TciParameterListType* parameterList)

TriStatus xtriCallMC

(const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TciValueList* sutAddresses,

 const TriSignatureId* signatureId,

 const TciParameterListType* parameterList)

TriStatus xtriReply

 (const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const Value* sutAddress,

 const TriSignatureId* signatureId,

 const TciParameterListType* parameterList,

 const Value* returnValue)

TriStatus xtriReplyBC

 (const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TriSignatureId* signatureId,

 const TciParameterListType* parameterList,

 const Value* returnValue)

TriStatus xtriReplyMC

 (const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TciValueList* sutAddresses,

 const TriSignatureId* signatureId,

 const TciParameterListType* parameterList,

 const Value* returnValue)

TriStatus xtriRaise

 (const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const Value* sutAddress,

 const TriSignatureId* signatureId,

 const Value* exception)

TriStatus xtriRaiseBC

 (const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TriSignatureId* signatureId,

 const Value* exception)

TriStatus xtriRaiseMC

 (const TriComponentId* componentId,

 const TriPortId* tsiPortId,

 const TciValueList* sutAddresses,

 const TriSignatureId* signatureId,

 const Value* exception)

void xtriEnqueueCall

 (const TriPortId* tsiPortId,

 const Object* sutAddress,

 const TriComponentId* componentId,

 const TriSignatureId* signatureId,

 const TciParameterListType* parameterList)

void xtriEnqueueReply

 (const TriPortId* tsiPortId,

 const Object* sutAddress,

 const TriComponentId* componentId,

 const TriSignatureId* signatureId,

 const TciParameterListType* parameterList,

 const Value* returnValue)

void xtriEnqueueException

 (const TriPortId* tsiPortId,

 const Object* sutAddress,

 const TriComponentId* componentId,

 const TriSignatureId* signatureId,

 const Object* exception)

TriStatus xtriExternalFunction

 (const TriFunctionId* functionId,

 TciParameterListType* parameterList,

 Value* returnValue)

Value xtriConvert
 (Object* value,

 Type* typeHypothesis)

TFloat xtriRnd(TriComponentId *componentId, TFloat* seed)
void xtriPAErrorReq

 (const char* message,

 const Object* cause)

void xtriSAErrorReq

 (const char* message,

 const Object* cause)

7.9
Changes to clause 8 C++ language mapping

Addition of the following subclause in clause 8.5 Type mapping.
8.5.3
Any type mapping

The IDL any type is represented by struct type of type tag and value:

typedef enum {
 e_char = 1,

// character
 e_unsigned_char = 2,

// unsigned char
 e_signed_char = 3,

// signed char

 e_short = 4,

// short signed integer
 e_short_int = 5,

// short signed integer
 e_signed_short = 6,

// short signed integer
 e_signed_short_int = 7,

// short signed integer

 e_unsigned_short = 8,

// unsigned short
 e_unsigned_short_int = 9,

// unsigned short integer

 e_int = 10,

// integer

 e_signed_int = 11,

// signed integer

 e_unsigned = 12,

// unsigned
 e_unsigned_int = 13,

// unsigned integer

 e_long = 14,

// long integer
 e_long_int = 15,

// long integer

 e_signed_long = 16,

// signed long integer

 e_signed_long_int = 17,

// signed long integer

 e_unsigned_long = 18,

// unsigned long integer
 e_unsigned_long_int = 19,

// unsigned long integer

 e_long_long = 20,

// long long integer
 e_long_long_int = 21,

// long long integer

 e_signed_long_long = 22,

// signed long long integer
 e_signed_long_long_int = 23,
// signed long long integer

 e_unsigned_long_long = 24,
// unsigned long long integer

 e_unsigned_long_long_int = 25,
// unsigned long long integer

 e_float = 26,

// float
 e_double = 27,

// double
 e_long_double = 28,

// long double

 e_ptr = 29

// void *

 e_char_string = 30,

// char *
 e_wchar_string = 31

// wchar_t *

} type_kind;

typedef void *value;

typedef struct {
 type_kind tag;
 value val;
} Object;

8.6.1
Changes to TriCommunicationSA

The extension to the triCommunicationSa class is mapped to the following class:

class xTriCommunicationSa {

public:

//Destructor.

virtual ~xTriCommunicationSA ();

//To establish a dynamic connection between two ports.

virtual TriStatus xtriMapParam (const TriPortId *comPortId, const TriPortId *tsiPortId,
 TciParameterList *parameterList)=0;

//To close a dynamic connection to the SUT for the referenced TSI port.

virtual TriStatus xtriUnmapParam (const TriPortId *comPortId, const TriPortId *tsiPortId,

TciParameterList *parameterList)=0;

//Send operation on a component which has been mapped to a TSI port.

virtual TriStatus xtriSend (const TriComponentId *componentId, const TriPortId *tsiPortId, const
TciValue *SUTaddress, const TciValue *sendMessage)=0;

//Send (broadcast) operation on a component which has been mapped to a TSI port.

virtual TriStatus xtriSendBC (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TciValue *sendMessage)=0;

//Send (multicast) operation on a component which has been mapped to a TSI port.

virtual TriStatus xtriSendMC (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TciValueList *SUTaddresses, const TciValue *sendMessage)=0;

//Initiate the procedure call.

virtual TriStatus xtriCall (const TriComponentId *componentId, const TriPortId *tsiPortId, const
TciValue *sutAddress, const TriSignatureId *signatureId, const TciParameterList
*parameterList)=0;

//Initiate and broadcast the procedure call.

virtual TriStatus xtriCallBC (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TriSignatureId *signatureId, const TciParameterList *parameterList)=0;

//Initiate and multicast the procedure call.

virtual TriStatus xtriCallMC (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TciValueList *sutAddresses, const TriSignatureId *signatureId, const TciParameterList
*parameterList)=0;

//Issue the reply to a procedure call.

virtual TriStatus xtriReply (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TciValue *sutAddress, const TriSignatureId *signatureId, const TciParameterList *
parameterList, const TciValue *returnValue)=0;

//Broadcast the reply to a procedure call.

virtual TriStatus xtriReplyBC (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TriSignatureId *signatureId, const TciParameterList *parameterList, const TciValue
*returnValue)=0;

//Multicast the reply to a procedure call.

virtual TriStatus xtriReplyMC (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TciValueList *sutAddresses, const TriSignatureId *signatureId, const TciParameterList
*parameterList, const TciValue *returnValue)=0;

//Raise an exception to a procedure call.

virtual TriStatus xtriRaise (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TciValue *sutAddress, const TriSignatureId *signatureId, const TciValue *exc)=0;

//Raise a broadcast an exception to a procedure call.

virtual TriStatus xtriRaiseBC (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TriSignatureId *signatureId, const TciValue *exc)=0;

//Raise a multicast an exception to a procedure call.

virtual TriStatus xtriRaiseMC (const TriComponentId *componentId, const TriPortId *tsiPortId,
const TciValueList *sutAddresses, const TriSignatureId *signatureId, const TciValue *exc)=0;

// Miscellaneous operations

virtual TciValue *xtriConvert(const Object *value, const TciType *typeHypothesis)=0;
}

8.6.2
Changes to TriCommunicationTE

The extension to the triCommunicationTe class is mapped to the following class:

class xTriCommunicationTe {

public:

//Destructor.

virtual ~xTriCommunicationTE ();

//Called by SA after it has received a message from the SUT.

virtual void xtriEnqueueMsg (const TriPortId *tsiPortId, const Object *SUTaddress, const
TriComponentId *componentId, const Object *receivedMessage)=0;

//Called by SA after it has received a procedure call from the SUT.

virtual void xtriEnqueueCall (const TriPortId *tsiPortId, const Object *SUTaddress, const
TriComponentId *componentId, const TriSignatureId *signatureId, const TciParameterList
*parameterList)=0;

//Called by SA after it has received a reply from the SUT.

virtual void xtriEnqueueReply (const TriPortId *tsiPortId, const Object *SUTaddress, const
TriComponentId *componentId, const TriSignatureId *signatureId, const TciParameterList
*parameterList, const TciValue *returnValue)=0;

//Called by SA after it has received an exception from the SUT.

virtual void xtriEnqueueException (const TriPortId *tsiPortId, const Object *SUTaddress,
const TriComponentId *componentId, const TriSignatureId *signatureId, const Object
*exc)=0;

// Error handling

virtual void xtriSAErrorReq (const String message, const Object *cause);

}

8.6.3
Changes to TriPlatformPA

The extension to the TriPlatformPA class is mapped to the following class:

class xTriPlatformPa {

public:

//Destructor.

virtual ~xTriPlatformPA ();

//For each external function specified in the TTCN-3 ATS implement the behaviour.

virtual TriStatus xtriExternalFunction (const TriFunctionId *functionId, TciParameterList
*parameterList, TciValue *returnValue)=0;

}

8.6.4
Changes to TriPlatformTE

The extension to the triPlatformTe class is mapped to the following interface:

class TriPlatformTe {

public:

//Destructor.

virtual ~xTriPlatformTE ();

//Called by PA in unrecoverable error situations.

virtual void xtriPAError (const Tstring &message, const Object *cause)=0;

//Generate random number.

virtual FloatValue* xtriRnd (const TriComponentId *componentId, const FloatValue *seed)=0;
}

7.10
Changes to clause 9 C# language mapping

Addition of the following subclause in clause 9.4 Type mapping.
9.4.3
Any type mapping

The IDL any type is represented by C# object.

9.5.2.1
Changes to ITriCommunicationSA

The extension to the ITriCommunicationSA interface is defined as follows:

public interface IXTriCommunicationSA {

// Reset operation

// Ref: TRI-Definition 5.5.1

TriStatus XTriMapParam(ITriPortId compPortId, ITriPortId tsiPortId,

ITciParameterList parameterList);

// Ref: TRI-Definition 5.5.2.3

TriStatus XTriUnmapParam(ITriPortId compPortId, ITriPortId tsiPortId,

ITciParameterList parameterList);

// Ref: TRI-Definition 5.5.2.4

// Message based communication operations

// Ref: TRI-Definition 5.5.3.1

TriStatus XTriSend(ITriComponentId componentId, ITriPortId tsiPortId,

ITciValue address, ITciValue sentMessage);

// Ref: TRI-Definition 5.5.3.2

TriStatus XTriSendBC(ITriComponentId componentId, ITriPortId tsiPortId,

ITciValue sentMessage);

// Ref: TRI-Definition 5.5.3.3

TriStatus XTriSendMC(ITriComponentId componentId, ITriPortId tsiPortId,

ITciValueList addresses, ITciValue sentMessage);

// Procedure based communication operations

// Ref: TRI-Definition 5.5.4.1

TriStatus XTriCall(ITriComponentId componentId, ITriPortId tsiPortId,

ITciValue sutAddress, ITriSignatureId signatureId,

ITciParameterList parameterList);

// Ref: TRI-Definition 5.5.4.2

TriStatus XTriCallBC(ITriComponentId componentId, ITriPortId tsiPortId,

ITriSignatureId signatureId, ITciParameterList parameterList);

// Ref: TRI-Definition 5.5.4.3

TriStatus XTriCallMC(ITriComponentId componentId, ITriPortId tsiPortId,

ITciValueList sutAddresses, ITriSignatureId signatureId,

ITciParameterList parameterList);

// Ref: TRI-Definition 5.5.4.4

TriStatus XTriReply(ITriComponentId componentId, ITriPortId tsiPortId,

ITciValue sutAddress, ITriSignatureId signatureId,

ITciParameterList parameterList, ITciValue returnValue);

// Ref: TRI-Definition 5.5.4.5

TriStatus XTriReplyBC(ITriComponentId componentId, ITriPortId tsiPortId,

ITriSignatureId signatureId, ITciParameterList parameterList,

ITciValue returnValue);

// Ref: TRI-Definition 5.5.4.6

TriStatus XTriReplyMC(ITriComponentId componentId, ITriPortId tsiPortId,

ITciValueList sutAddresses, ITriSignatureId signatureId,

ITciParameterList parameterList, ITciValue returnValue);

// Ref: TRI-Definition 5.5.4.7

TriStatus XTriRaise(ITriComponentId componentId, ITriPortId tsiPortId,

ITciValue sutAddress, ITriSignatureId signatureId,

ITciValue exc);

// Ref: TRI-Definition 5.5.4.8

TriStatus XTriRaiseBC(ITriComponentId componentId, ITriPortId tsiPortId,

ITriSignatureId signatureId, ITciValue exc);

// Ref: TRI-Definition 5.5.4.9

TriStatus XTriRaiseMC(ITriComponentId componentId, ITriPortId tsiPortId,

ITciValueList sutAddresses, ITriSignatureId signatureId,

ITciValue exc);

// Ref: TRI‑Definition 5.5.3.5

ITciValue XTriConvert(object value, ITciType typeHypothesis);
}

9.5.2.2
Changes to ITriCommunicationTE

The extension to the ITriCommunicationTE interface is defined as follows:

public interface IXTriCommunicationTE {

// Message based communication operations

// Ref: TRI-Definition 5.5.3.4

void XTriEnqueueMessage(ITriPortId tsiPortId, object sutAddress,

ITriComponentId componentId, object msg);

// Procedure based communication operations

// Ref: TRI-Definition 5.5.4.10

void XTriEnqueueCall(ITriPortId tsiPortId, object sutAddress,

ITriComponentId componentId, ITriSignatureId signatureId,

ITciParameterList parameterList);

// Ref: TRI-Definition 5.5.4.10

void XTriEnqueueReply(ITriPortId tsiPortId, object sutAddress,

ITriComponentId componentId, ITriSignatureId signatureId,

ITciParameterList parameterList, ITciValue returnValue);

// Ref: TRI-Definition 5.5.4.11

void XTriEnqueueException(ITriPortId tsiPortId, object sutAddress,

ITriComponentId componentId, ITriSignatureId signatureId,

object exc);

// Ref: TRI Definition 5.2.1

void XTriSAErrorReq (string message, object cause);

}
9.5.2.3
Changes to ITriPlatformPA

The extension to the ITriPlatformPA interface is defined as follows:

public interface IXTriPlatformPA {

// Ref: TRI-Definition 5.6.1
// Miscellaneous operations

// Ref: TRI-Definition 5.6.3.1

TriStatus XTriExternalFunction(ITriFunctionId functionId,

ITciParameterList parameterList, ITciValue returnValue);
}

9.5.2.4
Changes to ITriPlatformTE

The extension to the ITriPlatformTE interface is defined as follows:

public interface ITriPlatformTE {

// Ref: TRI Definition 5.2.2

void XTriPAErrorReq (string message, object cause);

// Ref: TRI Definition clause 5.6.3.3

FloatValue XTriRnd(ITriComponentId componentId, FloatValue seed);
}

8
TCI extensions for the package
Not applicable.

History

	Document history

	V1.1.1
	April 2012
	Publication

	
	
	

	V1.2.1
	April 2013
	Publication

	V1.3.1
	December 2013
	Draft for Approval

	
	
	

