TR 101 583 V0.0.1 (2014-05)
9

[bookmark: docnumber]TR 101 583 V0.0.1 (2014-05)
[bookmark: doctitle]Methods for Testing and Specification (MTS);
Security Testing;
Security testing terminology and concepts
[bookmark: doclogo]
<

[bookmark: GSBox]
[bookmark: doctypelong]TECHNICAL REPORT
[image: ETSI_BG_final_new]

[bookmark: page2]Reference
DTR/MTS-101583 SecTest_Terms
Keywords
Analysis, security, testing

[bookmark: ETSIinfo]ETSI
650 Route des Lucioles
F-06921 Sophia Antipolis Cedex - FRANCE

Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C
Association à but non lucratif enregistrée à la
Sous-Préfecture de Grasse (06) N° 7803/88

Important notice
Individual copies of the present document can be downloaded from:
http://www.etsi.org
The present document may be made available in more than one electronic version or in print. In any case of existing or perceived difference in contents between such versions, the reference version is the Portable Document Format (PDF). In case of dispute, the reference shall be the printing on ETSI printers of the PDF version kept on a specific network drive within ETSI Secretariat.
Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
[bookmark: mailto]If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification
No part may be reproduced except as authorized by written permission.
The copyright and the foregoing restriction extend to reproduction in all media.

[bookmark: copyrightaddon]© European Telecommunications Standards Institute yyyy.
[bookmark: tbcopyright]All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.
[bookmark: _Toc261687345]
Contents
Contents	3
Intellectual Property Rights	4
Foreword	4
Introduction	4
1	Scope	5
2	References	5
2.1	Normative references	5
2.2	Informative references	5
3	Definitions, symbols and abbreviations	6
3.1	Definitions	6
3.3	Abbreviations	8
4	Introduction to security testing	8
4.1	Categories of dynamic security testing	9
4.2	Test verdicts in security testing	10
4.3	Model-based Testing and Security	11
5	Risk Assessment	12
6	Functional Test of Security Features	12
7	Performance Test	13
8	Penetration Test	14
9	Robustness Test	14
History	16

[bookmark: _Toc300919380][bookmark: _Toc339380235]

[bookmark: _Toc261687346]Intellectual Property Rights
IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).
Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.
[bookmark: _Toc300919381][bookmark: _Toc339380236][bookmark: _Toc261687347]Foreword
[bookmark: For_doctype][bookmark: For_tbname]This Technical Report (TR) has been produced by ETSI Technical Committee Methods for Testing and Specification (MTS).
[bookmark: _Toc300919383][bookmark: _Toc339380238][bookmark: _Toc261687348]Introduction
[bookmark: _Toc300919384][bookmark: _Toc339380239]

[bookmark: _Toc261687349]1	Scope
The present document defines terminology and an ontology which together provide the basis for a common understanding of security testing techniques which can be used in testing communication products and systems. The terminology and ontology have been derived from latest research, but also current standards and best practices specified by a broad range of standards organizations and industry bodies. This work aims to provide guidance to practitioners on techniques used in testing, and assessment of security, robustness and resilience throughout the product and systems development lifecycle. This document lists terms and methods for the following security testing approaches:
· Verification of security functions and risk-based testing
· Load, stress and performance testing
· Resilience and robustness testing (fuzzing)
· Penetration testing
Static Application Security Testing (SAST) tools and techniques are out of scope for this document.
Target audience: for ETSI MTS and related committees, and the generic testing community.
[bookmark: _Toc300919385][bookmark: _Toc339380240][bookmark: _Toc261687350]2	References
References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references,only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.
Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.
NOTE:	While any hyperlinks included in this clause were valid at the time of publication ETSI cannot guarantee their long term validity.
[bookmark: _Toc300919386][bookmark: _Toc339380241][bookmark: _Toc261687351]2.1	Normative references
The following referenced documents are necessary for the application of the present document.
Not applicable.
[bookmark: _Toc300919387][bookmark: _Toc339380242][bookmark: _Toc261687352]2.2	Informative references
The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.
[bookmark: Ref_TS102165_1][i.1]	ETSI TS 102 165-1: "Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); Methods and protocols; Part 1: Method and proforma for Threat, Risk, Vulnerability Analysis"
[i.2]	IEEE Standard Glossary of Software Engineering Terminology, IEEE St. 610.121990
[i.3]	ISO/IEC 9646-1: 1994: "Information technology -- Open Systems Interconnection -- Conformance testing methodology and framework -- Part 1: General concepts"
[i.4]	ISO/IEC 15288: 2008: "Systems and software engineering -- System life cycle processes"
[i.5]	ISO/IEC 15408: 2009: "Information technology -- Security techniques -- Evaluation criteria for IT security -- Part 1: Introduction and general model"
[i.6]	ISO/IEC 15288:2008: “Systems and software engineering -- System life cycle processes”
[bookmark: Ref_TR187011][i.7]	ETSI TR 187 011 (2008): "Telecommunications and Internet converged Services and Protocols for Advanced Networking (TISPAN); NGN Security; Application of ISO-15408-2 requirements to ETSI standards - guide, method and application with examples"
[bookmark: Ref_Eckert_et_al][i.8]	C.Eckert 2004 Oldenburg-Verlag: IT-Sicherheit, Chapter 4 Security Engineering
[i.9]	Kaksonen, Rauli. A Functional Method for Assessing Protocol Implementation Security. 2001. Espoo. Technical Research Centre of Finland, VTT Publications 447. 128 p. + app. 15 p. ISBN 951-38-5873-1 (soft back ed.) ISBN 951-38-5874-X (on-line ed.).
[i.10]	ISTQB Standard glossary of terms used in Software Testing. Version 2.2 (dd. October 19th, 2012).
[i.11]	Takanen, Ari. Fuzzing for Software Security Testing and Quality Assurance. 2008. Artech House. 287 p. ISBN-13: 978-1596932142
[i.12]	IETF. Augmented BNF for Syntax Specifications: ABNF. RFC 2234. http://www.ietf.org/rfc/rfc2234.txt
[i.13]	ETSI TR 101 590 V1.1.1 (2013-03): “IMS/NGN Security Testing and Robustness Benchmark”
[i.14]	ETSI TR 101 577 V1.1.1 (2011-12): "Methods for Testing and Specifications (MTS); Performance Testing of Distributed Systems; Concepts and Terminology"
[i.15]	ETSI (European Telecommunication Standards Institute): Methods for Testing & Specification (MTS); Model-Based Testing (MBT); Requirements for Modelling Notations, ES 202 951 v 1.1.1 (2011)
[i.16]	Masson A., M.-L. Potet, J.Julliand, R.Tissot, G.Debois, B.Legeard, B. Chetali, F. Bouquet, E. Jaffuel, L. Van Aertrick, J. Andronick, A. Haddad: An access control model based testing approach for smart card applications: Results of the POSE project, JIAS, Journal of Information Assurance and Security, 5(1), 335–351 (2010)

[bookmark: _Toc300919388][bookmark: _Toc339380243]<PAGE BREAK>
[bookmark: _Toc261687353]3	Definitions, symbols and abbreviations
[bookmark: _Toc300919389][bookmark: _Toc339380244][bookmark: _Toc261687354]3.1	Definitions	Comment by Ari Takanen: Check against TEDDI
For the purposes of the present document, the following terms and definitions apply:
Attack: A process or script, malicious code or malware that can be launched to exploit a vulnerability. Zero-day attack is a special form of attack that exploits an unknown vulnerability, and therefore cannot be protected against.
Attack surface: Attack surface consists of user interfaces, target protocol interfaces and reachable data paths that can be attacked within the SUT.
Black-box testing: Testing that ignores the internal mechanism of a system or component and focuses solely on the outputs generated in response to the selected inputs and execution conditions. [i.2]
Bottleneck: Severe limitation of the throughput capacity of a system service due to a single cause. [i.14]
Constant load: Load pattern where the SUT is exposed to a fixed rate of service requests per time unit. Constant load is commonly used in performance tests of stability and availability characteristics. [i.14]
Fail closed: The software will attempt to shut itself down in case of an undesired failure to prevent further corruption, or specifically in case of an attack to prevent further attack attempts.
Fail open: The software will attempt to recover from the failure and maintain service.
Fail safe: The software will attempt to control the failure and restrict the exploitability of the vulnerability.
Failure: A fault, an indication of a vulnerability.
False negative: A vulnerability was not detected even if one existed.
False positive: A vulnerability was detected, even if it did not exist or was not possible to exploit.
Fuzzing, Fuzz testing: Negative testing technique for intelligently and automatically generating and injecting into a target system anomalous invalid message sequences, broken data structures or invalid data, in order to find the inputs that result in making the system unavailable or that will result in degradation of service.
Grammar testing:, Testing where test are generated from abstract grammar of the data structure.
Input fault injection: Mutates the software or data at interfaces. [i.9]
Load testing: Load testing uses large volumes of valid protocol traffic to ensure that a system is able to handle a predefined amount of traffic. [i.13]
Model-based security testing: Approach of automatically generating functional, load or robustness tests from behavioral models, and executed either online or offline.
Negative testing: Testing for the absence of (undesired) functionality.
Offline testing: Automated test generation technique where test is generated and stored for later execution, typically as a test script.
Online testing: Automated test generation and execution technique where test is generated and executed at the same time, possibly with capability to modify the test based on earlier test or the current test sequence.
Performance test: Act of running a test that enables collection of performance data according to specified conditions. [i.14]
Penetration test: Act of testing a system for vulnerabilties with scripts and tools that would trigger known weaknesses in software. Non-intrusive penetration test will base its test results on non-hostile checks such as behavioral changes or version numbers returned by the SUT. Hostile penetration test will actually trigger the flaw, often resulting in a crash or system compromise.
Response time: Elapsed time from receiving a service request to the beginning of sending the response to the request. [i.14]
Risk: The combination of the consequences of an event with respect to an objective and the associated likelihood of occurrence.
Risk-based testing: Testing is prioritized on the likelihood of detecting significant failures.
Robustness: The degree to which a system or component can function correctly in the presence of invalid inputs or stressful environmental conditions. [i.2]
Robustness testing: Robustness testing sends large volumes of invalid, malformed or otherwise unexpected traffic to the SUT in order to make it fail. It is usually able to find completely new vulnerabilities from a tested system, in addition to pointing out existing, already known vulnerabilities. Robustness testing is also called fuzzing or fuzz testing. [i.13]
Security test pattern: A process, sequence, structure or data element that is known to find weaknesses in software, and that can be applied across multiple domains or communication techniques.
Syntax testing: A grammar serves as the basis for testing the syntax of an explicit or implicit language for test automation.
System Under Test (SUT): Set of hardware and software components constituting the tested object.
Threat: The possibility of a successful attack.
Threat agent: The person or automated software which would realize the threat.
Vulnerability: A weakness or a bug in code resulting from design, implementation and configuration mistakes that can be used by malicious people to cause a failure in the operation of the software.
Known vulnerability: A known weakness in a specific peace of software that has been found in the past.
Unknown vulnerability: a weakness or a bug that is hiding in software waiting for later discovery and exploitation. Also known as Zero-day vulnerability.
Vulnerability scanning: vulnerability scanning tests a system for security vulnerabilities that have already been reported in the public, i.e. known vulnerabilities. [i.13] See also penetration test.
Workload: Description of what a System Under Test is expected to handle during a performance test. [i.14]
[bookmark: _Toc300919391][bookmark: _Toc339380246][bookmark: _Toc261687355]3.3	Abbreviations	Comment by Ari Takanen: Check the text that these are still used and
For the purposes of the present document, the following abbreviations apply:
ABNF	Augmented Backus–Naur Form
CC	Common Criteria
CI	Continuous Integration
CTMF	Conformance Test Methodology and Framework
DAST	Dynamic Application Security Testing
DoS	Denial of Service
DDoS	Distributed Denial of Service
ICS	Implementation Conformance Statement
IUT	Implementation Under Test
SAST	Static Application Security Testing
SFR	Security Functional Requirement
SDLC	System/Software Development Lifecycle
TOE	Target of Evaluation
TSFI	TOE Security Functional Interface
TVRA		Threat, Vulnerability and Risk Analysis
[bookmark: _Toc300919392][bookmark: _Toc339380247]<PAGE BREAK>
[bookmark: _Toc230154160][bookmark: _Toc261687356]4	Introduction to security testing
The purpose of security testing is to find weaknesses in software implementation, configuration or deployment. These weaknesses can potentially create vulnerabilities in the system. Various security testing techniques are applied at various phases in the product/system lifecycle, starting from requirements definition and analysis and continuing through design, implementation, verification, operations and maintenance.
Security tests can be performed in two complementary approaches. Security tests using Static Analysis, also called Static Application Security Testing (SAST), analyse the source code or the binary for security weaknesses without executing it. Security tests using Dynamic Analysis, or Dynamic Application Security Testing (DAST), execute the code and analyse the behaviour. Our focus here is in dynamic tests.
As depicted in Figure 1, the actors in the security testing activities include developers, internal testers and external security evaluators. Our focus is in internal testing. The activities performed by internal testers during Verification and Validation (V&V) include:
· Risk Assessment and Risk-based Testing (Section 5)
· Functional Test of Security Features (Section 6)
· Performance Test (Section 7)
· Robustness Test (Section 8)
· Penetration Test (Section 9)
[image:]
Figure 1: Mapping the security testing techniques to different actors in the SDLC
[bookmark: line-711][bookmark: line-63]In software engineering terms, security can be seen as an umbrella activity. The assessment of the security of a system is not a single, stand-alone activity but, rather, takes place at a number of different stages of the System or Software Development Lifecycle (SDLC). Examples of various internal assurance activities that can include one or several of the security testing approaches include:
[bookmark: line-101]Specification Validation: Security functionality should be reviewed as part of the specification reviews. These are formal mathematical reviews that focus on the correct and secure functionality, especially in the area of cryptography.
[bookmark: line-111]Unit Test: First place to catch implementation mistakes in the code is in unit tests. Programmers often use test automation enabled by their continuous integration (CI) platform where security tests are often automated. As an example, if changes are made to an interface or industry standard protocol, then most of the tests related to that interface can automatically be executed. Unit tests can also happen in daily or weekly test automation, especially in agile development processes.
[bookmark: line-122]Product Test: When the (sub) product is complete, the first full test can be executed. Security mistakes triggered by integrated operations between software modules can be found. Each external interface should be tested. Product tests can also be conducted by a separate V&V team, or a third-party security assessment team.
[bookmark: line-143][bookmark: line-132]System Test: Security review and assessment on the system level is often also called acceptance test. This is usually the last gate before the product is ready for release. In security review processes where all security tests are postponed until here, the security tests such as fuzzing can cause major surprises and product release delays.
Note that several of the testing approaches described here can have other meanings in other type of testing. Functional testing typically covers all aspects of dynamic tests including conformance, interoperability, performance and robustness. This is why in this document we decided to talk about testing of security functionality. Performance and robustness tests are both also used to indicate testing the quality and efficiency of tests themselves, but this is not the meaning in this document.
Several of the testing categories discussed in this document have other names in different standardization bodies and industry practises. The definition for security testing itself is often limited to only touch the tests focused on security functionality only, and excludes performance and robustness. Performance testing can be called stress test or load test. Penetration tests can be called vulnerability tests or susceptability tests. Robustness tests are often called fuzzing, fuzz tests or syntax/grammar tests.
[bookmark: _Toc230154161][bookmark: _Toc261687357]4.1	Categories of dynamic security testing
After risk assessments (Section 5), static code reviews and required test planning, the actual dynamic security testing can be divided in three main domains [i.5], as shown in Figure 2:
· testing for security features and functionality (see Section 6);
· testing for performance, load and stress situations (see Section 7); and
· testing for robustness and reliability with unexpected or broken inputs (see Section 8).
[bookmark: line-154][bookmark: line-144][image:]
[bookmark: _Ref220127359]Figure 2: Categories of dynamic application security testing domains [i.11]
If all tests cannot be executed, the dynamic tests can be prioritized based on the risk analysis (Section 5). Especially in the fields of penetration testing and third party security audits, additional tests for attack surface analysis and scanning for known vulnerabilities are used (Section 9).
[bookmark: _Toc230154163][bookmark: _Toc261687358]4.2	Test verdicts in security testing
The Observability of Failures/Faults is of prime importance in security testing, and therefore all fault tolerance features should be disabled during security tests. Detecting and identifying different types of failures is essential in analysing the root causes in order to get the problems fixed. Failure traces, audit traces, and crash traces are critical for analysing the exploitability of failures. Informative log files and debug logs are required for fault identification and repair. For security testing, a debug build of the system might be required, although tests should still be also run in the release build mode.
Test verdicts in security testing should be mapped to the following three categories:
· Pass
· Fail
· Inconclusive
Depending on the testing approach, these verdicts have different meanings. A "pass" verdict almost never means there is no method of compromising the security, as the quality of tests is based on the selected test coverage and quality of the tests.	Comment by Ari Takanen: Check please if understandable
After detection, a failed security test can be further analysed based on the exploitability of the flaw. Exploitability is often categorized by which security target or requirement the vulnerability threatens: Confidentiality, Integrity or Availability. For example, a Denial of Service exploit will aim to halt or break a system, or make it unavailable for valid users. A Distributed Denial of Service attack will launch a range of requests to the system from a distributed source, making the system unavailable under heavy load. Buffer Overflow Exploits and other memory handling bugs alter the internal system behaviour by overwriting memory areas. In worst case, this will result in the target system executing the input data. SQL Injection Exploits and other Execution Exploits will inject parameters to executed commands. Directory Traversal Exploits and other file handling attacks will modify file names and directory names to access data that was not intended to be accessible to the attacker. Other availability issues include Busy Loops, Memory Leaks and other resource limitations.
[bookmark: line-52]Security test requirements are drawn security requirements and objectives, identified by:
[bookmark: line-62]Hazard/Threat Analysis
[bookmark: line-710]Vulnerability Analysis
[bookmark: line-81]Risk Analysis
Control Selection
[bookmark: line-152][bookmark: line-142]Hazard analysis and threat analysis should be performed early in the SDLC, but should also be revised during the lifecycle. Vulnerability analysis on the other hand should be performed against an operational system. Control selection affects security test requirements, as it is the starting point for selecting security functionalities in the system. Risk Assessment is the process of analysing potential threats to a system in order to calculate the likelihood of their occurrence [i.2]. The analysis involves the evaluation of the effort required to mount an attack and the gain an attacker might expect from executing the threat successfully.
ETSI TS 102 165‑1 [1] specifies a method for carrying out Threat, Risk and Vulnerability Analysis (TVRA) within a standardization environment. This is a 10-step process involving both subjective and numerical analysis to determine the risk factor associated with each identified threat.
[bookmark: _Toc261687359]4.3	Model-based Security Testing
Model-based Testing (MBT) constitutes a number of technologies, methods, and approaches with the aim, to improve the quality, the efficiency, and the effectiveness of test processes, tasks and artifacts. Model-based Security Testing (MBST) is a special form of MBT that is focused on security aspects, including features, performance and robustness. The model is usually an abstract, partial representation of the system under test specifying the desired behavior and the interaction with the environment.
Model-based security testing involves defining the system and security requirements, building the behavioral model, defining test selection or generation criteria and transforming them into operational test case specifications, generating tests, conceiving and setting up adaptor components and the test environment and then executing the tests on the SUT. Figure 3 shows a generic model-based testing process as defined in [i.15].

[image: Description: MBTD]
Figure 3: Artifacts and activities for model-based testing [reference]
Test selection criteria is either based on model coverage or risk ratings that are taken from risk assessment. The latter is referred to as Risk-based Security Testing (RBST).
[bookmark: _Toc261687360][bookmark: _Ref220128135][bookmark: _Toc230154162]5	Risk Assessment and Risk-based Testing
The purpose of security testing is to determine whether a system meets its specified security objectives and security requirements. The security objectives and requirements should include statements about security functions, performance limitations and software reliability. The security engineering process begins with the specification of security objectives and associated requirements and involves iterative Threat, Vulnerability and Risk Analysis (TVRA) [i.1].
Risk is a metric that indicates the combination of the consequences of an event with respect to an objective and the associated probability of occurrence. Security risk assessment is a process for identifying security risks consisting of the following steps: establishing context, security risk identification, security risk estimation, security risk evaluation, and security risk treatment. The resulting risk should always be quantitive metric, a number or a simple risk level.
In model-based security risk assessment, the security risk assessment is conducted with a language for documenting assessment results and a clearly defined process for conducting the assessment. When combined, the model-based security risk assessment uses testing for verifying the correctness of the initial estimated risk assessment results.
Risk based testing is focused on selecting or prioritizing tests that are intended to check for a specific risk or a set of risks that are previously identified through risk analysis. Risk-based security testing approaches help to optimize the overall test process. Risk-based testing is especially useful when a complex system requires numerous tests for adequate coverage, and when the execution speed of testing is slow, and test execution time is limited.
Combined with attack surface analysis, risk analysis can focus on identifying the most likely functions and features that can be used to attack the system, and to identify the actual lines of code that need special attention and more detailed analysis.
Furthermore, risk-based testing approaches can help to optimize the risk assessment itself. A feedback loop from test results to the risk analysis helps in refining the risk models and related probabilities. Knowledge on past vulnerabilities and their location in the code can also help in identifying new threats and their potential locations in the code.
At minimum, risk analysis should be used to prioritize various testing approaches, the required test coverage for each testing approach, and the time allocated for testing. For example, a system that is not performance critical might not require that much performance testing. On the other hand, a system that is directly exposed to Internet might require more thorough robustness testing. An especially slow system that performs client-side functionality such as a mobile application might require special attention to simulated test environments and parallelized testing.
[bookmark: _Toc230154165][bookmark: _Toc261687361]6	Functional Test of Security Features
[bookmark: line-41][bookmark: line-3]Functional testing considers the system from the system functionality perspective. It comprises of both interoperability and conformance testing. Functional security testing adopts the same approach but, in addition to benign, legitimate users, also considers possible attackers such as those attempting to use the resources from the system without legitimate right to use it. Whereas conformance tests focus on use cases, functional security tests are usually described as misuse cases, explanations on how something can go wrong. It addresses both positive and negative tests.
In tests for security functionality, the test verdics have the same meaning as in any traditional functional tests. Most significant difference is that some security requirements are expressed as negative requirements such as "system should not accept wrong password", and therefore can require tens or sometimes millions of unique tests to validate the functionality.
Functional testing is based on analysing the specification of the functionality of a component or a system without knowledge of the internal structure (black-box testing). The phase and scope of tests varies. There are significantly less test in component or function level unit tests when compared to system tests, although test coverage in unit tests can be much higher. Although security tests can be integrated in all phases of testing, the focus is usually in unit and system tests as opposed to integration, conformance or interoperability. Security is usually a critical focus area during third-party system evaluation.
Many of the details for the functional security testing process can be derived and reused from their definitions given in the conformance test methodology and framework (CTMF) as specified in ISO/IEC 9646‑1 [i.3]. It defines a distinction between abstract (specification) and executable (program/script) test suites. Furthermore, it specifies that a single test objective should be implemented by a single test case and the full list of test cases forms the test suite. As security tests are often described as negative requierments, each security test objective can result in hundreds or millions of individual tests.
A test architecture or configuration that describes the setting of the target system under test (SUT) in contrast to the environment including the test system and e.g. communication utilities (middleware or network). The expectations, regarding test outcome or results that have been marked by test verdicts. These can be very different from traditional conformance tests as they might require extensive instrumentation of the target system or monitoring of the communications.
The development procedure of security tests is based on the set of security requirements of the system/service under test that are to be used for the synthesis of the definition of test purposes. Test purposes for security tests include a description of attack scenarios and means to reproduce them in an informal or formal language. As a result of this test design procedure, the so called test model is created. It may include test selection criteria considering special prerequisites/configurations and (conditional) ordering for test execution. Test development is followed by the implementation or generation of the test, and finally execution of the test, i.e. the interaction of the target Implementation under Test (IUT) and the test system. This step may require dedicated test tools/harness and/or a specific test bed configuration. Any parameterization within the test model requires concrete value settings which should be provided using e.g. Implementation Conformance Statement (ICS) and/or Implementation eXtra Information for Testing (IXIT) [i.3]. Test generation may also consider on-the-fly observations from current or previous test execution. This type of dynamic test behaviour is called online testing.
Functional security testing in the context of system evaluation and certification as defined by or adapted from the Common Criteria (CC) [i.5] has been described in a similar way but often using different terminology. It focus on the Target of Evaluation (TOE) and its Security Functional Interfaces (TSFI) that have been identified as enforcing or supporting Security Functional Requirements (SFRs) identified and stated for the TOE (Figure 4).
[image:]
Figure 4: Functional Security Testing in the evaluation process
The CC includes fewer guidelines about the derivation of the test specification (model) and put emphasis of the test documentation that consist of a test plan (a detailed overview of the tests and its configuration) including the expected and observed test results. The test plans shall identify the tests to be performed and describe the scenarios for performing each test. These scenarios shall include any ordering depending on the results of other tests. Further requirements for the test plan (or procedure) may be given in national application notes. It could be an informal description of the tests, but also a description that uses pseudo code, flow diagram, but also concrete reference to e.g. test programs/vectors. Further details in the context of network testing are provided in [i.1].
[bookmark: _Toc230154166][bookmark: _Toc261687362]7	Performance Test
[bookmark: line-5][bookmark: line-4]A common and easy to perform attack against systems is the Distributed Denial of Service (DDoS) attack. In this attack, messages or message sequences are sent to the target system in order to restrict or limit valid access to the system. The attack exhausts resources either on the target or on the way to the target: The target system will not receive legitimate messages or information due to performance limitations in the application, limited network bandwidth, resource limitations of the platform operating system, or physical resource limits of the used hardware. In worst case, the entire system can crash under overwhelming load, which is often the goal of the hacker.	Comment by Ari Takanen: Explain further.
In traditional load or performance tests, the system is stressed just slightly above the load that is expected in real deployment. In security tests, however, the system is pushed to its limits by fast sequential or parallel load (Figure 4). Each parallel session can bind resources, and each sequential session can push the processing power to the limits. Both test scenarios are typically required to measure the performance limits, and to demonstrate what happens when those limits are reached.
[image:]
Figure 5: Simplified visualization of sequential and parallel sessions.
The actual threat scenarios related to load can be much more complex than simple repetition of valid sessions, such as half-open sessions where a session is opened but never closed resulting in consumption of target resources.
If countermeasures for DDoS are applied, then the load and performance tests should be written also as functional tests against the relevant countermeasures.	Comment by Ari Takanen: Explain
[bookmark: _Toc230154167][bookmark: _Toc261687364]8	Robustness Test
Robustness testing, often referred to as "Fuzzing", is a form of testing where system inputs are randomly mutated or systematically modified in order to find security-related failures such as crashes, busy-loops or memory leaks. Hackers use these flaws as stepping-stones in order to inject malicious code into the system, compromising the integrity of the system.
In some areas, fuzzing is also used to find reliability and robustness errors caused by corrupted packets or interoperability mistakes. Robustness testing is a more generic name for fuzzing, as the name "fuzz" typically refers to random white noise anomalies.
Fuzzing tests a live executable system to uncover unknown vulnerabilities. Fuzzing is a form of dynamic risk-based system evaluation and should be used as part of the post-development TVRA activities. It is not a conformance activity although it can be used as part of testing the error handling conformity. There is no expected response to a test input, and therefore conformance oracles are very difficult to build for fuzz testing. Fuzzing is typically performed as black-box testing through the exposed interfaces but there are gray-box variants of fuzzing where the code execution is instrumented and fuzz test generation changes based on actions inside the tested binary.
Fuzzing techniques are typically categorized based on how the behavior is modelled, and how the behavior is altered, and what type of anomalies are used.
[bookmark: line-7][bookmark: line-6]"Smart Fuzzing" is typically based on a behavioural model of the protocol being tested with. Such testing needs to be protocol aware and have optimized anomaly generation. When fuzz tests are generated from a model built from the specifications, the tests and expected results can also be documented automatically. Protocol awareness increases test efficiency and coverage by going deep into the behaviour in order to test areas of the interfaces that rarely appear within typical use cases. Smart fuzzing is dynamic in behaviour with the model implementing the required functionality for exploring deeper in the message sequence. The creation of anomalies can be optimized and can go beyond simple boundary value analysis. Smart model-based fuzzers explore a much wider range of attacks by testing with data, structure and sequence anomalies. Libraries of anomalies are typically built by inspecting the system or design to determine what and where potential errors might occur, selecting known hostile data and then systematically trying it in all areas of the interface specification. Many different names for smart fuzzers are used. Generation or generational fuzzing refers to the fact that tests are directly generated from a behavioral model. Behavioral fuzzers sometimes are referred to, when the behavior is mutated. Grammar fuzzers or grammar testers can also sometimes be categorized under smart fuzzing.
"Dumb Fuzzing" is typically template based, building a simple structural model of the communication from network activity capture or files. In its simplest form, a template-based fuzzer will use the template sample as a binary block of data, which it mutates. Depending on the algorithm used, template-based fuzzing can appear similar to random white noise ad-hoc testing. Random test generators include everything from simple bit-flipping routines to more complex mutation algorithms such as moving input data around, removing data, or replacing data with other unexpected data. Other names for dumb fuzzers include mutation fuzzers and data fuzzers, although majority of smart fuzzers also do mutations and data fuzzing.
[bookmark: x___x___x]Test generation can be on-line or off-line. Online test generation has the benefit of adapting to the behaviour and feature set of the test target. Offline tests can sometimes save time from the test execution, but may require a significant amount of disk space. Offline tests will also require regeneration in case the interface changes, and therefore maintenance of the tests consumes a lot of time.
Fuzzer types (note that a fuzzing tool can feature several of these techniques or classifications):
Specification-based fuzzer is a tool that is always also model-based, and where the behavioural model is build from the interface/protocol specification.
Model-based fuzzer is a test generator that uses a behavioural model internally in order to generate and execute the fuzz tests. The model can be interpreted from an abstract test notation, formal specification, or from a template (traffic capture or a file).
[bookmark: line-31]Block-based fuzzer is a simple model where the structure of a message is described as data blocks, with meta data to help test generation.
[bookmark: line-32]Random fuzzer applies random mutations in random places in the data.
[bookmark: line-33]Mutation fuzzer applies random or non-random mutations into the data. It can be either model-based or template based fuzzer.
[bookmark: line-34]Evolutionary/Learning fuzzer applies changes to the data based on replies from the target system, or based on information provided by other monitoring or instrumentation tools such as branch coverage information.
[bookmark: line-35]File fuzzer is a fuzzer that tests file formats such as videos, documents, pictures or audio.
[bookmark: line-36]Protocol fuzzer is a fuzzer that tests communication protocols.
[bookmark: line-37]Client-side fuzzer tests the client side implementation such as browser.
Server-side fuzzer tests the server-side implementation such as a web server.

[bookmark: _Toc261687363]9	Penetration Test
[bookmark: _GoBack]In penetration testing, the system, device or a software component is analysed using various available hacking tools and methods, with the mentality of a hacker. Some of the available tools are collections of specific exploits or hacker scripts, whereas others are commonly used tools for mapping the attack surface or scanning for common weaknesses in software. Penetration tests will use all above testing practices: functional tests, performance and robustness.
Known vulnerabilities are scanned by trying to trigger vulnerabilities or by checking version numbers of software from responses. A vulnerability scanner is a library of vulnerability fingerprints and friendly attacks in order to reveal known vulnerabilities in the system.
One part of a penetration test is to identify the attack surface. This can be done externally or internally. An internal study will look at which processes are listening to which network port. A port scanner is a piece of software that will send probes to all UDP and TCP ports in order to trigger responses, mapping the attack vectors by identifying open network services.
Identification of unknown "zero-day" vulnerabilities is done with fuzzing or static analysis of the code. Fuzzing tools, fuzzers, or robustness testing tools send a multitude of generated unexpected and abnormal inputs to a service in order to reveal both known and unknown vulnerabilities. These are studied later in Section X.
Catching a weakness in software requires monitoring of network data, logs and events, or process status. Monitoring tools and instrumentation tools, or instruments, analyse the network traffic, the executable binary, operating environment or the operating platform, in order to detect failures and abnormal behaviour that could indicate existence of a vulnerability.
Penetration test can also be based on trying out a wide range of hostile attack patterns. Exploit frameworks, or exploitation frameworks are collections of operational malware scripts and tools that will compromise the system under test.

[bookmark: _Toc300919400][bookmark: _Toc339380257][bookmark: _Toc261687365]History
This clause shall be the last one in the document and list the main phases (all additional information will be removed at the publication stage).
	Document history

	<Version>
	<Date>
	<Milestone>

	0.0.1
	Sep 2012
	First draft for TR

	0.0.2
	Jan 2013
	Stable draft for TS

	0.0.3
	May 2013
	Revised stable draft of TS based on review comments

	0.0.4
	Sep 2013
	Final draft for TS, decided to convert to TR

	0.0.5
	May 2014
	Revised draft as TR

ETSI
image2.emf

System Lifecycle Phases
Design and Implementation Verification and Validation Operation and Maintenance

AC
TO

RS

Te
ste

rs
In

te
rn

al

Penetration Test

Risk Assessment

Regression Test

Vulnerability mgmt.

Certification Test

Functional Test

Code Reviews

Penetration Test

Risk Assessment

Robustness Test

Performance Test

Penetration Test

Functional Test

Risk Assessment

Code Reviews

Static Analysis

Risk Assessment

image3.png
Security
Features

Robustness

Darformance

image4.png
Author

Requirements

Model

Generate

Abstract Test Cases

Control

Test Selection Criteria

Feedback

Observe

Issue

Feedback

Feedback}

<
@
s
=)
<
x
~

System Under Test

Feedback:

[qermmnnnnnad

image5.emf
System definition & analysis

1) TOE, subjects, assets,

2) threats, policies, assumptions

3) security objectives

4) Security functional requirements

identifying

testing

…

| | | | | |

TCL, JUnit, C++, TTCN-3, manual tests…

Test developer plan

a) concepts/architecture

b) purposes

c) Test suite structure



coverage of security

relevant TSFI

enforcing

TSFI supporting SFRs

non-interfering

SFRs (specification)

TSFI (realisation)

TOE

1

, TOE

2

, TOE

n

image6.png

image1.jpeg

