[image: image23.jpg]

FinalDraft ETSI ES 203 119-1 V1.2.1 (2014-12)
Methods for Testing and Specification (MTS);

The Test Description Language (TDL);

Part 1: Abstract Syntax and Associated Semantics

<
ETSI Standard
Reference

RES/MTS-203119-1v1.2.1
Keywords

language, MBT, methodology, testing, TSS&TP, TTCN-3, UML

ETSI

650 Route des Lucioles

F-06921 Sophia Antipolis Cedex - FRANCE
Tel.: +33 4 92 94 42 00 Fax: +33 4 93 65 47 16

Siret N° 348 623 562 00017 - NAF 742 C

Association à but non lucratif enregistrée à la

Sous-Préfecture de Grasse (06) N° 7803/88

Important notice

The present document can be downloaded from:
http://www.etsi.org
The present document may be made available in electronic versions and/or in print. The content of any electronic and/or print versions of the present document shall not be modified without the prior written authorization of ETSI. In case of any existing or perceived difference in contents between such versions and/or in print, the only prevailing document is the print of the Portable Document Format (PDF) version kept on a specific network drive within ETSI Secretariat.

Users of the present document should be aware that the document may be subject to revision or change of status. Information on the current status of this and other ETSI documents is available at http://portal.etsi.org/tb/status/status.asp
If you find errors in the present document, please send your comment to one of the following services:
http://portal.etsi.org/chaircor/ETSI_support.asp
Copyright Notification

No part may be reproduced or utilized in any form or by any means, electronic or mechanical, including photocopying and microfilm except as authorized by written permission of ETSI.
The content of the PDF version shall not be modified without the written authorization of ETSI.
The copyright and the foregoing restriction extend to reproduction in all media.

© European Telecommunications Standards Institute 2014.

All rights reserved.

DECTTM, PLUGTESTSTM, UMTSTM and the ETSI logo are Trade Marks of ETSI registered for the benefit of its Members.
3GPPTM and LTE™ are Trade Marks of ETSI registered for the benefit of its Members and
of the 3GPP Organizational Partners.
GSM® and the GSM logo are Trade Marks registered and owned by the GSM Association.

Contents

6Intellectual Property Rights

Foreword
6
1
Scope
7
2
References
7
2.1
Normative references
7
2.2
Informative references
7
3
Definitions and abbreviations
8
3.1
Definitions
8
3.2
Abbreviations
8
4
Basic Principles
9
4.1
What is TDL?
9
4.2
Applicability of the present document
9
4.3
Design Considerations
10
4.4
Document Structure
11
4.5
Notational Conventions
11
4.6
Conformance
12
5
Foundation
12
5.1
Overview
12
5.2
Abstract Syntax and Classifier Description
12
5.2.1
Element
13
5.2.2
NamedElement
13
5.2.3
PackageableElement
14
5.2.4
Package
14
5.2.5
ElementImport
15
5.2.6
Comment
15
5.2.7
Annotation
16
5.2.8
AnnotationType
16
5.2.9
TestObjective
17
6
Data
17
6.1
Overview
17
6.2
Data Definition – Abstract Syntax and Classifier Description
18
6.2.1
DataResourceMapping
18
6.2.2
MappableDataElement
18
6.2.3
DataElementMapping
19
6.2.4
ParameterMapping
19
6.2.5
DataType
20
6.2.6
DataInstance
21
6.2.7
SimpleDataType
21
6.2.8
SimpleDataInstance
21
6.2.9
StructuredDataType
22
6.2.10
Member
23
6.2.11
StructuredDataInstance
23
6.2.12
MemberAssignment
23
6.2.13
Parameter
24
6.2.14
FormalParameter
25
6.2.15
Variable
25
6.2.16
Action
25
6.2.17
Function
26
6.3
Data Use – Abstract Syntax and Classifier Description
27
6.3.1
DataUse
27
6.3.2
ParameterBinding
28
6.3.3
StaticDataUse
28
6.3.4
DataInstanceUse
29
6.3.5
AnyNoneValueUse
29
6.3.6
AnyValue
29
6.3.7
AnyNoneValue
30
6.3.8
NoneValue
30
6.3.9
DynamicDataUse
31
6.3.10
FunctionCall
31
6.3.11
FormalParameterUse
32
6.3.12
VariableUse
32
7
Time
33
7.1
Overview
33
7.2
Abstract Syntax and Classifier Description
33
7.2.1
Time
33
7.2.2
TimeLabel
34
7.2.3
TimeLabelUse
34
7.2.4
TimeConstraint
34
7.2.5
TimeOperation
35
7.2.6
Wait
36
7.2.7
Quiescence
36
7.2.8
Timer
37
7.2.9
TimerOperation
38
7.2.10
TimerStart
38
7.2.11
TimerStop
38
7.2.12
TimeOut
39
8
Test Configuration
39
8.1
Overview
39
8.2
Abstract Syntax and Classifier Description
40
8.2.1
GateType
40
8.2.2
GateInstance
40
8.2.3
ComponentType
41
8.2.4
ComponentInstance
42
8.2.5
ComponentInstanceRole
42
8.2.6
GateReference
42
8.2.7
Connection
43
8.2.8
TestConfiguration
43
9
Test Behaviour
44
9.1
Overview
44
9.2
Test Description – Abstract Syntax and Classifier Description
45
9.2.1
TestDescription
45
9.2.2
BehaviourDescription
46
9.3
Combined Behaviour – Abstract Syntax and Classifier Description
47
9.3.1
Behaviour
47
9.3.2
Block
48
9.3.3
CombinedBehaviour
48
9.3.4
SingleCombinedBehaviour
49
9.3.5
CompoundBehaviour
49
9.3.6
BoundedLoopBehaviour
49
9.3.7
UnboundedLoopBehaviour
50
9.3.8
MultipleCombinedBehaviour
50
9.3.9
AlternativeBehaviour
51
9.3.10
ConditionalBehaviour
51
9.3.11
ParallelBehaviour
52
9.3.12
ExceptionalBehaviour
52
9.3.13
DefaultBehaviour
53
9.3.14
InterruptBehaviour
54
9.3.15
PeriodicBehaviour
54
9.4
Atomic Behaviour – Abstract Syntax and Classifier Description
55
9.4.1
AtomicBehaviour
55
9.4.2
Break
56
9.4.3
Stop
56
9.4.4
VerdictAssignment
56
9.4.5
Assertion
57
9.4.6
Interaction
58
9.4.7
Target
59
9.4.8
TestDescriptionReference
60
9.4.9
ComponentInstanceBinding
61
9.4.10
ActionBehaviour
62
9.4.11
ActionReference
62
9.4.12
InlineAction
63
9.4.13
Assignment
63
10
Predefined TDL Model Instances
64
10.1
Overview
64
10.2
Predefined Instances of 'SimpleDataType' Element
64
10.2.1
Boolean
64
10.2.2
Verdict
64
10.2.3
TimeLabelSet
64
10.3
Predefined Instances of 'SimpleDataInstance' Element
64
10.3.1
true
64
10.3.2
false
64
10.3.3
pass
65
10.3.4
fail
65
10.3.5
inconclusive
65
10.4
Predefined Instances of 'Time' Element
65
10.4.1
Second
65
10.5
Predefined Instances of 'Function' Element
65
10.5.1
Overview
65
10.5.2
Functions of Return Type 'Boolean'
65
10.5.3
Functions of Return Type 'TimeLabelSet'
66
10.5.4
Functions of Return Type of Instance of 'Time'
66
Annex A (informative): Technical Representation of the TDL Meta-Model
67
Annex B (informative): Examples of a TDL Concrete Syntax
68
B.1
Introduction
68
B.2
A 3GPP Conformance Example in Textual Syntax
68
B.3
An IMS Interoperability Example in Textual Syntax
70
B.4
An Example Demonstrating TDL Data Concepts
72
B.5
TDL Textual Syntax Reference
74
B.5.1
Conventions for the TDLan Syntax Definition
74
B.5.2
TDL Textual Syntax EBNF Production Rules
74
Annex C (informative): Bibliography
79
History
80

Intellectual Property Rights

IPRs essential or potentially essential to the present document may have been declared to ETSI. The information pertaining to these essential IPRs, if any, is publicly available for ETSI members and non-members, and can be found in ETSI SR 000 314: "Intellectual Property Rights (IPRs); Essential, or potentially Essential, IPRs notified to ETSI in respect of ETSI standards", which is available from the ETSI Secretariat. Latest updates are available on the ETSI Web server (http://ipr.etsi.org).

Pursuant to the ETSI IPR Policy, no investigation, including IPR searches, has been carried out by ETSI. No guarantee can be given as to the existence of other IPRs not referenced in ETSI SR 000 314 (or the updates on the ETSI Web server) which are, or may be, or may become, essential to the present document.

Foreword

This ETSI Standard (ES) has been produced by the ETSI Technical Committee Methods for Testing and Specification (MTS).

The present document is part 1 of a multi-part deliverable on the Test Description Language as detailed below:
Part 1: Abstract Syntax and Associated Semantics
Part 2: Graphical Syntax

Part 3: Exchange Format

Part 4: Structured Test Objective Specification

1
Scope

The present document specifies the abstract syntax of the Test Description Language (TDL) in the form of a meta‑model based on the OMG Meta Object Facility (MOF) [1] and also specifies the semantics of the individual elements of the TDL meta-model. The intended use of the present document is to serve as the basis for the development of TDL concrete syntaxes aimed at TDL users and enable TDL tools such as documentation generators, specification analyzers, and code generators.

The specification of concrete syntaxes for TDL is outside the scope of the present document. However, for illustrative purposes, an example of a possible textual syntax together with its application on some existing ETSI test descriptions are provided.
2
References

References are either specific (identified by date of publication and/or edition number or version number) or non‑specific. For specific references, only the cited version applies. For non-specific references, the latest version of the referenced document (including any amendments) applies.

Referenced documents which are not found to be publicly available in the expected location might be found at http://docbox.etsi.org/Reference.

NOTE:
While any hyperlinks included in this clause were valid at the time of publication, ETSI cannot guarantee their long term validity.

2.1
Normative references

The following referenced documents are necessary for the application of the present document.

[1]
"OMG Meta Object Facility (MOF) Core Specification V2.4.1", formal/2013-06-01.
NOTE:
Available at http://www.omg.org/spec/MOF/2.4.1/.

[2]
"OMG Unified Modeling LanguageTM (OMG UML) Superstructure, Version 2.4.1",
formal/2011-08-06.
[3]
ETSI ES 203 119-4 (V1.1.1): "Methods for Testing and Specification (MTS); The Test Description Language (TDL); Structured Test Objective Specification (Extension)".

[4]
ISO/IEC 9646-1:1994: "Information technology - Open Systems Interconnection -- Conformance testing methodology and framework -- Part 1: General concepts".
2.2
Informative references

The following referenced documents are not necessary for the application of the present document but they assist the user with regard to a particular subject area.

[i.1]
ETSI ES 201 873-1 (V4.5.1): "Methods for Testing and Specification (MTS); The Testing and Test Control Notation version 3; Part 1: TTCN-3 Core Language".
[i.2]
ETSI TS 136 523-1 (V10.2.0): "LTE; Evolved Universal Terrestrial Radio Access (E-UTRA) and Evolved Packet Core (EPC); User Equipment (UE) conformance specification; Part 1: Protocol conformance specification (3GPP TS 36.523-1 version 10.2.0 Release 10)".
[i.3]
ETSI TS 186 011-2: "Technical Committee for IMS Network Testing (INT); IMS NNI Interoperability Test Specifications; Part 2: Test descriptions for IMS NNI Interoperability".
3
Definitions and abbreviations

3.1
Definitions

For the purposes of the present document, the following terms and definitions apply:
abstract syntax: graph structure representing a TDL specification in an independent form of any particular encoding

NOTE:
The TDL abstract syntax is defined in terms of the TDL meta-model.

action: any procedure carried out by a component of a test configuration or an actor during test execution that could result in changes to the test verdict

actor: abstraction of entities outside a test configuration that interact directly with the components of that test configuration

component: active element of a test configuration that is either in the role tester or system under test

concrete syntax: particular representation of a TDL specification, encoded in a textual, graphical, tabular or any other format suitable for the users of this language

interaction: any form of communication between components that is accompanied with an exchange of data

NOTE:
An interaction can be a point-to-point or a point-to multipoint communication.

meta-model: modelling elements representing the abstract syntax of a language

System Under Test (SUT): role of a component within a test configuration whose behaviour is validated when executing a test description

TDL model: instance of the TDL meta-model

TDL specification: representation of a TDL model given in a concrete syntax

test configuration: specification of a set of components that contains at least one tester component and one system under test component plus their interconnections via gates and connections

test description: specification of test behaviour that runs on a given test configuration

test verdict: result from executing a test description [4].
Tester: role of a component within a test configuration that controls the execution of a test description against the components in the role system under test

3.2
Abbreviations

For the purposes of the present document, the following abbreviations apply:

EBNF
Extended Backus-Naur Form

IMS
IP Multimedia Subsystem

MBT
Model-Based Testing

MOF
Meta-Object Facility

SUT
System Under Test

TDD
Test Driven Development

TDL
Test Description Language

TTCN-3
Testing and Test Control Notation version 3

UML
Unified Modelling Language

URI
Unified Resource Identifier

UTP
UML Testing Profile

4
Basic Principles

4.1
What is TDL?

TDL is a language that supports the design and documentation of formal test descriptions that can be the basis for the implementation of executable tests in a given test framework, such as TTCN-3 [i.1]. Application areas of TDL that will benefit from this homogeneous approach to the test design phase include:

· Manual design of test descriptions from a test purpose specification, user stories in test driven development or other sources.
· Representation of test descriptions derived from other sources such as MBT test generation tools, system simulators, or test execution traces from test runs.

TDL supports the design of black-box tests for distributed, concurrent real-time systems. It is applicable to a wide range of tests including conformance tests, interoperability tests, tests of real-time properties and security tests based on attack traces.

Being a formal notation, TDL clearly separates the specification of tests from their implementation by providing an abstraction level that lets users of TDL focus on the task of describing tests that cover the given test objectives rather than getting involved in implementing these tests to ensure their fault detection capabilities onto an execution framework.

TDL is designed to support different abstraction levels of test specifications. On one hand, the concrete syntax of the TDL meta-model can hide meta-model elements that are not needed for a declarative (more abstract) style of specifying test descriptions. For example, a declarative test description could work with the time operations wait and quiescence instead of explicit timers and operations on timers (see clause 9).

On the other hand, an imperative (less abstract or refined) style of a test description supported by a dedicated concrete syntax could provide additional means necessary to derive executable test descriptions from declarative test descriptions. For example, an imperative test description could include timers and timer operations necessary to implement the reception of SUT output at a tester component and further details. It is expected that most details of a refined, imperative test description can be generated automatically from a declarative test description. Supporting different shades of abstraction by a single TDL meta-model offers the possibility of working within a single language and using the same tools, simplifying the test development process that way.

4.2
Applicability of the present document
The TDL language design is centred around the three separate concepts of abstract syntax, concrete syntax, and semantics (see figure 4.1). The present document covers the TDL abstract syntax given as the TDL meta-model and its associated semantics.
[image: image1.png]Concrete Syntax

TDL-TO

s
14 L 2 x
U] > =]
1) g
4 a |l 28
) o ||l 5
- o 0
=)
TDL-MM

Abstract Syntax

Legend:
TDL-TO:

TDL-GR:

TDL-XF:

TDL-MM:

Structured Test Objective
Language, part4

Graphical Syntax, part2
Exchange Format, part3
Abstract Syntax and
Associated Semantics, part 1

Figure 4.1: The TDL standards and their relation

The TDL concrete syntax is application or domain specific and is not specified in the present document. However, for information, see annex B for an example of a concrete textual syntax.

The semantics of the meta-model elements are captured in the individual clauses describing the meta-model elements defined in the present document.

[image: image2.png]User-defined
TDL Editor

TDLModel
Analyzer

TDL Test
Generator

I

TDL-GR
Editor

TDLDocument
Generator

l

TestCode P
~code,
Generator TICN3

Figure 4.2: A scalable TDL tool architecture

The TDL abstract syntax (TDL meta-model) and semantics defined in the present document serve as the basis for the development of TDL tools such as editors for TDL specifications in graphical, textual or other forms of concrete syntaxes, analyzers of TDL specifications that check the consistency of TDL specifications, test documentation generators, and test code generators to derive executable tests. The TDL exchange format serves as the connector to hold all TDL tools together (see figure 4.2).
4.3
Design Considerations

TDL makes a clear distinction between concrete syntax that is adjustable to different application domains and a common abstract syntax, which a concrete syntax is mapped to (an example concrete syntax can be found in annex B). The definition of the abstract syntax for a TDL specification plays the key role in offering interchangeability and unambiguous semantics of test descriptions. It is defined in this TDL standard in terms of a MOF meta-model.

A TDL specification consists of the following major parts that are also reflected in the meta-model:

· A test configuration consisting of at least one tester and at least one SUT component and connections among them reflecting the test environment.
· A set of test descriptions, each of them describing one test scenario based on interactions between the components of a given test configuration and actions of components or actors. The control flow of a test description is expressed in terms of sequential, alternative, parallel, iterative, etc. behaviour.
· A set of data definitions that are used in interactions and as parameters of test description invocations.
· Behavioural elements used in test descriptions that operate on time.

Using these major ingredients, a TDL specification is abstract in the following sense:

· Interactions between tester and SUT components of a test configuration are considered to be atomic and not detailed further. For example, an interaction can represent a message exchange, a remote function/procedure call, or a shared variable access.

· All behavioural elements within a test description are totally ordered, unless it is specified otherwise. That is, there is an implicit synchronization mechanism assumed to exist between the components of a test configuration.

· The behaviour of a test description represents the expected, foreseen behaviour of a test scenario assuming an implicit test verdict mechanism, if it is not specified otherwise. If the specified behaviour of a test description is executed, the 'pass' test verdict is assumed. Any deviation from this expected behaviour is considered to be a failure of the SUT, therefore the 'fail' verdict is assumed.
· An explicit verdict assignment can be used if in a certain case there is a need to override the implicit verdict setting mechanism (e.g. to assign 'inconclusive' or any user-defined verdict values).

· The data exchanged via interactions and used in parameters of test descriptions are represented as values of an abstract data type without further details of their underlying semantics, which is implementation-specific.

· There is no assumption about verdict arbitration, which is implementation-specific. If a deviation from the specified expected behaviour is detected, the subsequent behaviour becomes undefined. In this case it is recommended that an implementation stops executing the TDL specification.

A TDL specification represents a closed system of tester and SUT components. That is, each interaction of a test description refers to one source component and at least one target component that are part of the underlying test configuration a test description runs on. The actions of the actors (entities of the environment of the given test configuration) can be indicated in an informal way.

Time in TDL is considered to be global and progresses in discrete quantities of arbitrary granularity. Progress in time is expressed as a monotonically increasing function. Time starts with the execution of the first ('base') test description being invoked.

TDL can be extended with tool, application, or framework specific information by means of annotations.

4.4
Document Structure

The present document defines the TDL abstract syntax expressed as a MOF meta-model. The TDL meta-model offers language features to express:

· Fundamental concepts such as structuring of TDL specifications and tracing of test objectives to test descriptions (clause 5).

· Abstract representations of data used in test descriptions (clause 6).

· Concepts of time, time constraints, and timers as well as their related operations (clause 7).

· Test configurations, on which test descriptions are executed (clause 8).

· A number of behavioural operations to specify the control flow of test descriptions (clause 9).

· A set of predefined instances of the TDL meta-model for test verdict, time, data types and functions over them that can be extended further by a user (clause 10).

4.5
Notational Conventions

In the present document, the following notational conventions are applied:

'element'
The name of an element or of the property of an element from the meta-model, e.g. the name of a meta-class.

«metaclass»
Indicates an element of the meta-model, which corresponds to a node of the abstract syntax, i.e. an intermediate node if the element name is put in italic or a terminal node if given in plain text.

«Enumeration»
Denotes an enumeration type.

/ name
The value with this name of a property or relation is derived from other sources within the meta-model.

[1]
Multiplicity of 1, i.e. there exists exactly one element of the property or relation.

[0..1]
Multiplicity of 0 or 1, i.e. there exists an optional element of the property or relation.

[*] or [0..*]
Multiplicity of 0 to many, i.e. there exists a possibly empty set of elements of the property or relation.

[1..*]
Multiplicity of one to many, i.e. there exists a non-empty set of elements of the property or relation.

{unique}
All elements contained in a set of elements shall be unique.

{ordered}
All elements contained in a set of elements shall be ordered, i.e. the elements form a list.

{readOnly}
The element can be accessed read-only, i.e. cannot be modified. Used for derived properties.

Furthermore, the definitions and notations from the MOF 2 core framework [1] and the UML class diagram definition [2] apply.

4.6
Conformance

For an implementation claiming to conform to this version of the TDL meta-model, all features specified in the present document shall be implemented consistently with the requirements given in the present document. The electronic attachment in annex A can serve as a starting point for a TDL meta-model implementation conforming to the present document.
5
Foundation

5.1
Overview

The 'Foundation' package specifies the fundamental concepts of the TDL meta-model. All other features of the TDL meta-model rely on the concepts defined in this 'Foundation' package.
5.2
Abstract Syntax and Classifier Description
[image: image3.png]emetaclass»
H lement
name: tring [0.1]

emetaclass»
& NamedEtement
7 qualfiedName: Sting [1] (readOnly}

e packagedElement [{unique} prsem—
Package Dl Packageablebtement

L4

nestedPackage ['] {unique}

importedElement|[*]{unique)

importedPackage [1]

import [*] {unique

}

ametada
= tementimport

Figure 5.1: Foundational language concepts
5.2.1
Element

Semantics

An 'Element' represents any constituent of a TDL model. It is the super-class of all other metaclasses. It provides the ability to add comments and annotations. An 'Element' may contain any number of 'Comment's and 'Annotation's.

Generalization

There is no generalization specified.

Properties

· name: String [0..1]
The name of the 'Element'. It can contain any character, including white-spaces. Having no name specified is different from an empty name (which is represented by an empty string).

· comment: Comment [0..*] {unique}
The contained set of 'Comment's attached to the 'Element'.

· annotation: AnnotationType [0..*] {unique}
The contained set of 'Annotation's attached to the 'Element'.

Constraints

There are no constraints specified.

5.2.2
NamedElement

Semantics

A 'NamedElement' represents any element of a TDL model that mandatorily has a name and a qualified name.

The 'qualifiedName' is a compound name derived from the directly and all indirectly enclosing parent 'Package's by concatenating the names of each 'Package'. As a separator between the segments of a 'qualifiedName' the string '::' shall be used. The name of the root 'Package' that (transitively) owns the 'PackageableElement' shall always constitute the first segment of the 'qualifiedName'.

Generalization

· Element
Properties

· / qualifiedName: String [1] {readOnly}
A derived property that represents the unique name of an element within a TDL model.

Constraints

· Mandatory name
A 'NamedElement' shall have the 'name' property set.

· Distinguishable qualified names
All qualified names of instances of the same meta-class shall be distinguishable within a TDL model.

NOTE:
It is up to the concrete syntax definition and tooling to resolve any name clashes between instances of the same meta-class in the qualified name.

5.2.3
PackageableElement

Semantics

A 'PackageableElement' denotes elements of a TDL model that can be contained in a 'Package'.

The visibility of a 'PackageableElement' is restricted to the 'Package' in which it is directly contained. A 'PackageableElement' may be imported into other 'Package's by using 'ElementImport'. A 'PackageableElement' has no means to actively increase its visibility.

Generalization

· NamedElement

Properties

There are no properties specified.

Constraints

There are no constraints specified.

5.2.4
Package

Semantics

A 'Package' represents a container for 'PackageableElement's. A TDL model contains at least one 'Package', i.e., the root 'Package' of the TDL model. A 'Package' may contain any number of 'PackageableElement's, including other 'Package's.

A 'Package' constitutes a scope of visibility for its contained 'PackageableElement's. A 'PackageableElement' is only accessible within its owning 'Package' and within any 'Package' that directly imports it. 'PackageableElement's that are defined within a nested 'Package' are not visible from within its parent 'Package'.

A 'Package' may import any 'PackageableElement' from any other 'Package' by means of 'ElementImport'. By importing a 'PackageableElement', the imported 'PackageableElement' becomes visible and accessible within the importing 'Package'. Cyclic imports of packages are not permitted.

Generalization

· NamedElement
Properties

· packagedElement: PackageableElement [0..*] {unique}
The set of 'PackageableElement's that are directly contained in the 'Package'.

· import: ElementImport [0..*] {unique}
The contained list of import declarations.

· nestedPackage: Package [0..*] {unique}
The contained set of 'Package's contained within this 'Package'.
Constraints

· No cyclic imports
A 'Package' shall not import itself directly or indirectly.

5.2.5
ElementImport

Semantics

An 'ElementImport' allows importing 'PackageableElement's from arbitrary 'Package's into the scope of an importing 'Package'. By establishing an import, the imported 'PackageableElement's become accessible within the importing 'Package'.

Only those 'PackageableElement's can be imported via 'ElementImport' that are directly contained in the exporting 'Package'. That is, the import of 'PackageableElement's is not transitive. After the import, all the imported elements become accessible within the importing 'Package'. The set of imported elements is declared via the 'importedElement' property. If this set is empty, it implies that all elements of the imported 'Package' are imported.
Generalization

· Element

Properties

· importedPackage: Package [1]
Reference to the 'Package' whose 'PackageableElement's are imported.
· importedElement: PackageableElement [0..*] {unique}
A set of 'PackageableElement's that are imported into the context 'Package' via this 'ElementImport'.
Constraints

· Consistency of imported elements
All imported 'PackageableElement's referenced by an 'ElementImport' shall be directly owned by the imported 'Package'.

[image: image4.png]commentedElement (1]

annotatedElement [1]

comment [] {unique}

annotation [*] {unique}

metaclass metaclass metaclass
H comment H Annotation & TestObjective
body: String [1] Value: String [0.1] objectiveURL: String]

description: String [0..1]

ey [1)

metaclass

2 AmnotatonType

PackageableElement

Figure 5.2: Miscellaneous elements
5.2.6
Comment

Semantics

'Comment's may be attached to 'Element's for documentation or for other informative purposes. Any 'Element', except a 'Comment' or an 'Annotation', may contain any number of 'Comment's. The contents of 'Comment's shall not be used for adding additional semantics to elements of a TDL model.

Generalization

· Element

Properties

· commentedElement: Element [1]
The 'Element' to which the 'Comment' is attached.

· body: String [1]
The content of the 'Comment'.

Constraints

· No nested comments
A 'Comment' shall not contain 'Comment's.

· No annotations to comments
A 'Comment' shall not contain 'Annotation's.

5.2.7
Annotation

Semantics

An 'Annotation' is a means to attach user or tool specific semantics to any 'Element' of a TDL model, except to a 'Comment' and an 'Annotation' itself. An 'Annotation' represents a pair of a ('key', 'value') properties. Whereas the 'key' is mandatory for each 'Annotation', the 'value' might be left empty. This depends on the nature of the Annotation.

Generalization

· Element

Properties

· annotatedElement: Element [1]
The 'Element' to which the 'Annotation' is attached.

· key: AnnotationType [1]
Reference to the 'AnnotationType'.

· value: String [0..1]
The 'value' mapped to the 'key'.

Constraints

· No nested annotations
An 'Annotation' shall not contain 'Annotation's.

· No comments to annotations
An 'Annotation' shall not contain 'Comment's.

5.2.8
AnnotationType

Semantics

An 'AnnotationType' is used to define the 'key' of an 'Annotation'. It can represent any kind of user or tool specific semantics.
Generalization

· PackageableElement

Properties

There are no properties specified.

Constraints

There are no constraints specified.

5.2.9
TestObjective

Semantics

A 'TestObjective' specifies the reason for designing either a 'TestDescription' or a particular 'Behaviour' of a 'TestDescription'. A 'TestObjective' may contain a 'description' directly and/or refer to an external resource for further information about the objective.
The 'description' of a 'TestObjective' should be in natural language, however, it may be provided as structured (i.e. machine-readable) format. In the latter case, a structured test objective specification language is provided in part 4 of this standard series [3].
Generalization

· PackageableElement

Properties

· description: String [0..1]
A textual description of the 'TestObjective'.

· objectiveURI: String [0..*] {unique}
A set of URIs locating resources that provide further information about the 'TestObjective'. These resources are typically external to a TDL model, e.g. part of requirements specifications or a dedicated test objective specification.

Constraints

There are no constraints specified.

6
Data

6.1
Overview

The 'Data' package describes all meta-model elements required to specify data and their use in a TDL model. It introduces the foundation for data types and data instances and distinguishes between simple data types and structured data types. The package also introduces parameters and variables and deals with the definition of actions and functions. It makes a clear separation between the definition of data types and data instances (clause 6.2) and their use in expressions (clause 6.3). The following main elements are described in this package:
· Elements to define data types and data instances, actions and functions, parameters and variables;

· Elements to make use of data elements in test descriptions, e.g. in guard conditions or data in interactions;
· Elements to allow the mapping of data elements (types, instances, actions, functions) to their concrete representations in an underlying runtime system.

6.2
Data Definition – Abstract Syntax and Classifier Description
[image: image5.png](Foundation)
PackageableElement

metactu etocises
Sl bwasementiopping | mpoaeomssenene iy | Elmoppobevatafemet
ementUR Sing (011

dataResourceMapping (1]

metachazzs
emetachazzs parametetapping Uuning)| S purmetriapping

5 Datakezourcebapping parameterURL: String [0.1]

resourceURE String [0.1]
¢\m«m=w w

(Foundation)
Element

Parameter

Figure 6.1: Data mapping concepts
6.2.1
DataResourceMapping

Semantics

A 'DataResourceMapping' specifies a resource, in which the platform-specific representation of a 'DataType' or a 'DataInstance', i.e. their representation in a concrete data type system, is located as identified in the 'resourceURI' property. The 'DataResourceMapping' thus connects a TDL model with resources and artefacts that are outside of the TDL scope.

Generalization

· PackageableElement

Properties

· resourceURI: String [0..1]
Location of the resource that contains concrete data definitions. The location shall resolve to an unambiguous name.

Constraints

There are no constraints specified.

6.2.2
MappableDataElement

Semantics

A 'MappableDataElement' is the super-class of all data-related elements that can be mapped to a platform-specific representation by using a 'DataResourceMapping' and a 'DataElementMapping'. Each 'MappableDataElement' can be mapped to any number of concrete representations located in different resources. However the same 'MappableDataElement' shall not be mapped more than once to different concrete representations in the same 'DataResourceMapping'.

Generalization

· PackageableElement

Properties

There are no properties specified.

Constraints

There are no constraints specified.

6.2.3
DataElementMapping

Semantics

A 'DataElementMapping' specifies the location of a single concrete data definition within an externally identified resource (see clause 6.2.1). The location of the concrete data element within the external resource is described by means of the 'elementURI' property. A 'DataElementMapping' maps arbitrary data elements in a TDL model to their platform-specific counterparts.

If the 'DataElementMapping' refers to a 'StructuredDataType', an 'Action', or a 'Function', it is possible to map specific 'Members' (in the first case) or 'Parameters' (in the other cases) to concrete data representations explicitly.

Generalization

· PackageableElement

Properties

· elementURI: String [0..1]
Location of a concrete data element within the resource referred in the referenced 'DataResourceMapping' element. The location shall resolve to an unambiguous name within the resource.

· dataResourceMapping: DataResourceMapping [1]
The 'DataResourceMapping' that specifies the URI of the external resource containing the concrete data element definitions.

· mappableDataElement: MappableDataElement [1]
Refers to a 'MappableDataElement' that is mapped to its platform-specific counterpart identified in the 'elementURI'.

· parameterMapping: ParameterMapping [0..*] {unique}
The set of 'Member's of a 'StructuredDataType' or 'FormalParameter's of an 'Action' or 'Function' that are mapped.
Constraints

· Restricted use of parameter mapping
A list of 'ParameterMapping's shall only be provided if 'mappableDataElement' refers to a 'StructuredDataType', an 'Action' or a 'Function' definition.

6.2.4
ParameterMapping
Semantics

A 'ParameterMapping' is used to provide a mapping of 'Member's of a 'StructuredDataType' or 'FormalParameter's of an 'Action' or a 'Function'. It represents the location of a single concrete data element within the resource according to the 'DataResourceMapping', which the containing 'DataElementMapping' of the 'ParameterMapping' refers to. The location within the resource is described by means of the 'memberURI' property.

Generalization

· Element

Properties

· memberURI: String [0..1]
Location of a concrete data element within the resource referred indirectly via the 'DataElementMapping' in the 'DataResourceMapping' element. The location shall resolve to an unambiguous name within the resource.

· parameter: Parameter [1]
Refers to the 'Parameter' ('Member' of a 'StructuredDataType' or 'FormalParameter' of an 'Action' or a 'Function') to be mapped to a concrete data representation.
Constraints

There are no constraints specified.

[image: image6.png]MappableDataElement

pre—
Elbaterype

metada
2 SimplebataType

dataType [1]

emetaclass»
5 Datalnstance

et
£ Simplebatainstance

Figure 6.2: Basic data concepts and simple data
6.2.5
DataType
Semantics

An 'DataType' is the super-class of all type-related concepts. It is considered as abstract in several dimensions:

1) It is an abstract metaclass that is concretized by 'SimpleDataType' and 'StructuredDataType'.

2) It is abstract regarding its structure (simple or structured), semantics and operations that can operate on it. It, thus, shall be considered as an abstract data type (ADT).

3) It is abstract with respect to its manifestation in a concrete data type system.

A 'DataType' is expected to be mapped to a concrete data type definition contained in a resource, which is external to the TDL model.

Generalization

· MappableDataElement

Properties

There are no properties specified.

Constraints

There are no constraints specified.

6.2.6
DataInstance

Semantics

A 'DataInstance' represents a symbolic value of a 'DataType'.

Generalization

· MappableDataElement

Properties

· dataType: DataType [1]
Refers to the 'DataType', which this 'DataInstance' is a value of.

Constraints

There are no constraints specified.

6.2.7
SimpleDataType

Semantics

A 'SimpleDataType' represents a 'DataType' that has no internal structure. It resembles the semantics of ordinary primitive types from programming languages such as Integer or Boolean.

A set of predefined 'SimpleDataType's is provided by TDL by default (see clause 10.2).

Generalization

· DataType
Properties

There are no properties specified.

Constraints

There are no constraints specified.

6.2.8
SimpleDataInstance
Semantics

A 'SimpleDataInstance' represents a symbolic value of a 'SimpleDataType'.

EXAMPLE:
Assuming the 'SimpleDataType' Integer, 'SimpleDataInstance's of this type can be specified as Strings: "0", "1", "2", "max", "[-10..10]" etc. These symbolic values need to be mapped to concrete definitions of an underlying concrete type system to convey a specific meaning.

Generalization

· DataInstance
Properties

There are no properties specified.

Constraints

· SimpleDataInstance shall refer to SimpleDataType
The inherited reference 'dataType' from 'DataInstance' shall refer to instances of 'SimpleDataType' solely.
[image: image7.png]DataType

Datalnstance

e
£ StucturedbatiType

metachazzs
5 StructuredDatalnstance

member ('] {ordered, unique}

memberAssignment [{ordered, unique)

metaclass

T member 1]

v
= Memberhsignment

i2Optional: Boolean [1] = false

memberSpec [1]

(Foundation)

Parameter
Element

StaticDatalse

Figure 6.3: Structured data type and instance
6.2.9
StructuredDataType
Semantics

A 'StructuredDataType' represents a 'DataType' with an internal structure expressed by the concepts of 'Member' elements. It resembles the semantics of a complex data type in XML Schema, a record in TTCN-3 or a class in Java.

Generalization

· DataType
Properties

· member: Member [0..*] {ordered, unique}
The contained ordered set of individual elements of the 'StructuredDataType'.

Constraints

There are no constraints specified.

6.2.10
Member
Semantics

A 'Member' specifies a single part of the internal structure of a 'StructuredDataType'. It can be an optional or a mandatory part. By default, all 'Member's of a 'StructuredDataType' are mandatory.

An optional member of a structured data type has an impact on the use of 'StructuredDataInstance's of this type (see clause 6.3.1).

Generalization

· Parameter
Properties

· isOptional: Boolean [1] = false
If set to 'true' it indicates that the member is optional within the containing 'StructuredDataType'.
Constraints

· Different member names in a structured data type
All 'Member' names of a 'StructuredDataType' shall be distinguishable.

6.2.11
StructuredDataInstance

Semantics

A 'StructuredDataInstance' represents a symbolic value of a 'StructuredDataType'. It contains 'MemberAssignment's for none, some or all 'Member's of the 'StructuredDataType'. This allows initialising the 'Member's with symbolic values.

If a 'Member' of a 'StructuredDataInstance' has no 'MemberAssignment', it is assumed that it has no value assigned to it. This is equal to the explicit assignment of 'NoneValue' to this 'Member' (see clause 6.3.8).

Generalization

· DataInstance
Properties

· memberAssignment: MemberAssignment [0..*] {ordered, unique}
Refers to the contained list of 'MemberAssignment's, which are used to assign values to 'Member's.
Constraints

· StructuredDataInstance shall refer to StructuredDataType
The inherited reference 'dataType' from 'DataInstance' shall refer to instances of 'StructuredDataType' solely.

6.2.12
MemberAssignment
Semantics

A 'MemberAssignment' specifies the assignment of a symbolic value to a 'Member' of a 'StructuredDataType'.

Generalization

· Element

Properties

· member: Member [1]
Refers to the 'Member' of the 'StructuredDataType' definition that is referenced via the 'dataType' property of the 'StructuredDataInstance'.

· memberSpec: StaticDataUse [1]
The contained 'StaticDataUse' specification for the referenced 'Member'. The symbolic value of this 'StaticDataUse' will be assigned to the 'Member'.

Constraints

· 'Member' of the 'StructuredDataType'
The 'Member' shall be referenced in the 'StructuredDataType' that the 'StructuredDataInstance', which contains this 'MemberAssignment', refers to.
· Type of a 'memberSpec' and 'Member' shall coincide
The 'DataType' of the 'StaticDataUse' of 'memberSpec' shall coincide with the 'DataType' of the 'Member' of the 'MemberAssignment'.

[image: image8.png]DataType

dataType [1]

dataType [1]

metaclass

H Function

emetaclass»
H Parameter

FormalParameter [or

dered, unique)

(Foundation)
NamedElement

“metaclas

H Action

o

emetachazzs
] FormalParameter

metaclass

] Variable

body: String [0.1]

MappableDataElement

(Foundation)
Element

Figure 6.4: Action, function, parameter and variable

6.2.13
Parameter
Semantics

A 'Parameter' is used to define some common operations over 'FormalParameter' and 'Member' such as data mapping and assignments.

Generalization

· Element

Properties

· dataType: DataType [1]
Refers to the 'DataType', which the 'Parameter' can be bound to.
Constraints
There are no constraints specified.

6.2.14
FormalParameter

Semantics

A 'FormalParameter' represents the concept of a formal parameter as known from programming languages.

Generalization

· Parameter
Properties

There are no properties specified.

Constraints
There are no constraints specified.

6.2.15
Variable

Semantics

A 'Variable' is used to denote a component-wide local variable. When defined, the 'Variable' has no value assigned to it, which is equal to a 'NoneValue' assignment (see clause 6.3.8).

Generalization

· NamedElement
Properties

· dataType: DataType [1]
Refers to the 'DataType' of 'DataInstance's, which the 'Variable' can be bound to.

Constraints
There are no constraints specified.

6.2.16
Action

Semantics

An 'Action' is used to specify any procedure, e.g. a local computation, physical setup or manual task. The interpretation of the 'Action' is outside the scope of TDL. That is, its semantics is opaque to TDL. The implementation of an 'Action' can be provided by means of a 'DataElementMapping'.

An 'Action' may be parameterized. Actual parameters are provided in-kind. That is, executing an 'Action' does not change the values of the parameters provided; execution of an 'Action' is side-effect free.

Generalization

· MappableDataElement

Properties

· body: String [0..1]
An informal, textual description of the 'Action' procedure.

· formalParameter: FormalParameter [0..*] {ordered, unique}
The ordered set of contained 'FormalParameter's of this 'Action'.

Constraints
There are no constraints specified.

6.2.17
Function

Semantics

A 'Function' is a special kind of an 'Action' that has a return value. 'Function's are used to express calculations over 'DataInstance's within a 'TestDescription' at runtime. The execution of a 'Function' is side-effect free. That is, a 'Function' does not modify any passed or accessible 'DataInstance's or 'Variable's of the 'TestDescription'. The value of a 'Function' is defined only by its return value.

Generalization
· Action

Properties

· returnType: DataType [1]
The 'DataType' of the 'DataInstance' that is returned when the 'Function' finished its calculation.
Constraints
There are no constraints specified.

6.3
Data Use – Abstract Syntax and Classifier Description

[image: image9.png]— | (Foundation)

Member

Element
reduction [*]{ordered, unique)
emetaclass»
H DataUse
atalse DataType
daabselt emetaclass» ik
H staticDataUse
dataType (1]
argument [{ordered,unique}
emetac emetaclass emetaclass»

£ parameterBnding

5 DatalnstanceUse

2 AnyNonevatueuse

parameter [1]

datalnstance [1]

Parameter

?

Datalnstance

metaclass “metaclasss

Elanyvalue | | E AnyNonevalue

metaclass

] Nonevalue

Figure 6.5: Data use concepts and static data use
6.3.1
DataUse

Semantics

A 'DataUse' denotes an expression that evaluates to a 'DataInstance' of a given 'DataType'. Thus, a 'DataUse' delivers the symbolic value that can be used in assignments and invocations. Sub-classes of 'DataUse' are used in specific situations, e.g. to invoke a 'Function' or refer to a 'DataInstance'. The decision on what a 'DataUse' refers to is made by the concrete sub-classes. This is called the context of a 'DataUse'.

A 'DataUse' offers the capability to be parameterised. This is achieved by the use of a 'ParameterBinding'.

In case that the context of a 'DataUse' evaluates to a 'StructuredDataInstance', it is possible to specify a location expression over nested 'StructuredDataInstance's in order to reduce the 'DataUse' to the symbolic value contained in a potentially nested 'Member'. This is called reduction. The reduction is semantically equivalent to the dot-notation typically found in programming languages, e.g. in Java, in order navigate from a context object, i.e. the 'StructuredDataInstance', which this 'DataUse' evaluates to at runtime, to a specific location. The starting point of a location expression is the implicitly or explicitly referenced 'StructuredDataInstance' obtained after the 'DataUse' has been evaluated at runtime. The first element of the 'reduction' has to be a 'Member' of the context 'StructuredDataInstance'. In case that a 'Member' in the reduction list represents a 'SimpleDataType', no more 'Member's shall occur in the location expression after this 'Member'.

Generalization

· Element
Properties

· argument: ParameterBinding [0..*] {ordered, unique}
The contained ordered set of 'ParameterBinding's that handle the assignment of symbolic values to 'Parameter's or 'Member's depending on the respective context of this 'DataUse'.
· reduction: Member [0..*] {ordered, unique}
Location expression that refers to potentially nested 'Member's of a 'StructuredDataType'. Each 'Member' of the ordered set represents one fragment of the location expression. The location expression is evaluated after all 'argument' assignments have been put into effect.
Constraints

· No mixed use of 'Member' and 'FormalParameter' in 'argument' set
All 'ParameterBinding's that are referenced in the 'argument' set shall refer only to one kind of 'Member' or 'FormalParameter'.

· Occurrence of 'argument' and 'reduction'
Both, 'argument' and 'reduction', shall be provided only in case of a 'FunctionCall'.
· Structured data types in 'reduction' set
A 'Member' at index i of a 'reduction' shall be contained in the 'StructuredDataType' of the 'Member' at index (i – 1).

· Use of a 'StructuredDataInstance' with non-optional 'Member's
All the non-optional members of a 'StructuredDataInstance' shall have 'DataUse' specifications assigned to them that are different from 'NoneValue'.

6.3.2
ParameterBinding
Semantics

A 'ParameterBinding' is used to assign a 'DataUse' specification to a 'FormalParameter' or 'Member'.

Generalization

· Element
Properties

· dataUse: DataUse [1]
Refers to the contained 'DataUse' specification whose symbolic value shall be assigned to the 'Parameter'.
· parameter: Parameter [1]
Refers to the parameter, which gets the symbolic value of a 'DataUse' specification assigned to.
Constraints

· Matching data type
The provided 'DataUse' shall match the 'DataType' of the referenced 'Parameter'.

6.3.3
StaticDataUse

Semantics

A 'StaticDataUse' specification denotes an expression that evaluates to a symbolic value that does not change during runtime, in other words, a constant.

Generalization

· DataUse

Properties

There are no properties specified.

Constraints

· Static data use in structured data
If the 'DataInstance' refers to a 'StructuredDataInstance', all its members shall obtain 'ParameterBinding's that refer to 'StaticDataUse' elements.

6.3.4
DataInstanceUse

Semantics

A 'DataInstanceUse' refers either to a 'SimpleDataInstance' or a 'StructuredDataInstance'. It is provided as a 'DataUse' specification.

In case it refers to a 'StructuredDataInstance', its value can be modified inline by providing arguments as 'ParameterBinding's. This allows replacing the current value of the referenced 'Member' with a new value evaluated from the provided 'DataUse' specification.

Generalization

· StaticDataUse

Properties

· dataInstance: DataInstance [1]
Refers to the 'DataInstance' that is used in this 'DataUse' specification.
Constraints

· Either argument list or reduction list provided
Either one of the 'argument' list or 'reduction' list or none of them shall be provided.

6.3.5
AnyNoneValueUse
Semantics

An 'AnyNoneValueUse' is the super-class of all 'StaticDataUse' specifications that represent predefined wildcards instead of values.

Generalization

· StaticDataUse

Properties

· dataType: DataType [1]
Refers to the 'DataType' of the 'AnyNoneValueUse'.
Constraints

· Empty 'argument' and 'reduction' sets
The 'argument' and 'reduction' sets shall be empty.
6.3.6
AnyValue

Semantics

An 'AnyValue' denotes an undefined symbolic value from the set of all possible values of a 'DataType', excluding the none value.

Generalization

· AnyNoneValueUse
Properties

There are no properties specified.

Constraints

There are no constraints specified.

6.3.7
AnyNoneValue

Semantics

An 'AnyNoneValue' denotes an undefined symbolic value from the set of all possible values of a 'DataType', including the none value.

Generalization

· AnyNoneValueUse
Properties

There are no properties specified.

Constraints

There are no constraints specified.

6.3.8
NoneValue

Semantics

A 'NoneValue' denotes a symbolic value that represents no value at all. It is the default value of 'Variable's and 'Member's of a 'StructuredDataInstance' before the first assignment of a 'DataUse' (via 'Assignment' for variables and 'MemberAssignment' or 'ParameterBinding' for structured data).
NOTE:
A 'NoneValue' can be explicitly assigned to an optional 'Member' of a 'StructuredDataInstance' to indicate that the 'Member' is omitted.

Generalization

· AnyNoneValueUse
Properties

There are no properties specified.

Constraints

There are no constraints specified.

[image: image10.png]Datalse

etadosss
2 Oynomicdatotse

?

metaclas metac
E FormalParameterUse = FunctionCall

metach:

= Variab

componentlnstance [1]

variable [1] parameter [1] function [1]

(TestConfiguration)

Componentintance Variable FormalParameter Function

Figure 6.6: Dynamic data use

6.3.9
DynamicDataUse

Semantics

A 'DynamicDataUse' is the super-class for all symbolic values that are evaluated at runtime.

Generalization

· DataUse

Properties

There are no properties specified.

Constraints

There are no constraints specified.

6.3.10
FunctionCall

Semantics

A 'FunctionCall' specifies the invocation of a 'Function' with its arguments.

If the invoked 'Function' has declared 'FormalParameter's the corresponding arguments shall be specified by using 'ParameterBinding'.

If a 'reduction' is provided, it applies to the return value of the 'Function', which implies that the return value is of 'StructuredDataType'.

Generalization

· DynamicDataUse

Properties

· function: Function [1]
Refers to the function being invoked.
Constraints

· Matching parameters
The arguments specified by the 'ParameterBinding' shall match (in terms of number and data type) the list of 'FormalParameter's of the invoked 'Function'.
6.3.11
FormalParameterUse

Semantics

A 'FormalParameterUse' specifies the access of a symbolic value stored in a 'FormalParameter' of a 'TestDescription'.

Generalization

· DynamicDataUse

Properties

· parameter: FormalParameter [1]
Refers to the 'FormalParameter' of the containing 'TestDescription' being used.
Constraints

· Either argument list or reduction list provided
Either one of the 'argument' list or 'reduction' list or none of them shall be provided.

6.3.12
VariableUse

Semantics

A 'VariableUse' denotes the access to the symbolic value stored in a 'Variable'.

Generalization

· DynamicDataUse

Properties

· variable: Variable [1]
Refers to the 'Variable', whose symbolic value shall be retrieved.
· componentInstance: ComponentInstance [1]
Refers to the 'ComponentInstance' that references the 'Variable' via its 'ComponentType'.
Constraints

· Either argument list or reduction list provided
Either one of the 'argument' list or 'reduction' list or none of them shall be provided.

· Local variables only
All variables used in a 'DataUse' specification via the 'VariableUse' element shall be local to the same 'componentInstance'.

7
Time

7.1
Overview

The 'Time' package defines the elements to express time, time constraints, timers and operations over time and timers.
7.2
Abstract Syntax and Classifier Description

[image: image11.png](Data::DataDefinition)
SimpleDataType

(Foundation) (TestBehaviour:AtomicBehaviour)
Element AtomicBehaviour.

(Data:DataUse)
DynamicDataUse

“metac

HTime

timeCanstraint ') {unique}

timeLabel

0.1]

emetachazzs
5 TimeConstraint

<metach
& TimeLabel

timeConstraintExpression [1]

(Data:DataUse)
Datalse

(Foundation)
NamedElement

“metaclas

I TimeLabelUse

timeLabel [1]

Figure 7.1: Time, time label and time constraint
7.2.1
Time

Semantics

A 'Time' element extends the 'SimpleDataType' element and is used to measure time and helps expressing time-related concepts in a TDL model.

Time in TDL is considered to be global and progresses in discrete quantities of arbitrary granularity. Time starts with the execution of the first 'TestDescription' being invoked. Progress in time is expressed as a monotonically increasing function, which is outside the scope of TDL.

A time value is expressed as a 'SimpleDataInstance' of an associated 'Time' 'SimpleDataType'. The way how a time value is represented, e.g. as an integer or a real number, is kept undefined in TDL and can be defined by the user via a 'DataElementMapping'.
The 'name' property of the 'Time' element expresses the granularity of time measurements. TDL defines the predefined instance 'Second' of the 'Time' data type, which measures the time in the physical unit seconds. See clause 10.4.

NOTE:
It is recommended that the same instance of the 'Time' data type is used in all 'DataUse' expressions within a TDL model; let it be the predefined instance 'Second' or a user-defined instance. This assures a consistent use of time-related concepts throughout the TDL model.

Generalization

· SimpleDataType
Properties

There are no properties specified.

Constraints

There are no constraints specified.

7.2.2
TimeLabel

Semantics

A 'TimeLabel' is a symbolic name attached to an 'AtomicBehaviour' that represents an ordered list of timestamps of execution of this atomic behaviour. A 'TimeLabel' allows the expression of time constraints (see subsequent clauses). It is contained in the 'AtomicBehaviour' element that produces the timestamps at runtime.

If the atomic behaviour the 'TimeLabel' is attached to is executed once, the 'TimeLabel' contains only a single timestamp. Otherwise, if the atomic behaviour is executed iteratively, e.g. within a loop, the 'TimeLabel' represents a list of timestamps. In the latter case, some functions are predefined that return a single timestamp from this list (see clause 10.5.3). To enable the definition of these functions, it is assumed that all 'TimeLabel's belong to the predefined data type 'TimeLabelSet' (see clause 10.2.3).
Generalization

· NamedElement
Properties

There are no properties specified.

Constraints

There are no constraints specified.

7.2.3
TimeLabelUse

Semantics

A 'TimeLabelUse' element enables the use of a time label in a 'DataUse' specification. The most frequent use of that will be within a 'TimeConstraint' expression.
Generalization

· DynamicDataUse
Properties

· timeLabel: TimeLabel [1]
Refers to the time label being used in the 'DataUse' specification.

Constraints

· Empty argument and reduction lists
The 'argument' and 'reduction' lists shall be empty.

7.2.4
TimeConstraint

Semantics

A 'TimeConstraint' is used to express a time requirement for an 'AtomicBehaviour'. The ‘TimeConstraint’ is usually formulated over one or more 'TimeLabel's. A 'TimeConstraint' constrains the execution time of the 'AtomicBehaviour' that contains this ‘TimeConstraint’.
If the 'AtomicBehaviour' is an 'Interaction' with a 'Tester' component as 'target', the 'TimeConstraint' is evaluated after this 'Interaction'. If it evaluates to Boolean 'true' it implies a 'pass' test verdict; otherwise a 'fail' test verdict. In other cases of 'AtomicBehaviour', the 'TimeConstraint' is evaluated before its execution. Execution is blocked and keeps blocking until the 'TimeConstraint' evaluates to Boolean 'true'.
Generalization

· Element

Properties

· timeConstraintExpression: DataUse [1]
Defines the time constraint over 'TimeLabel' elements as an expression of predefined type 'Boolean'.

Constraints

· Time constraint expression of type Boolean
The expression given in the 'DataUse' specification shall evaluate to predefined type 'Boolean'.

· Use of local variables only
The expression given in the 'DataUse' specification shall contain only 'Variable's that are local to the 'AtomicBehaviour' that contains this time constraint. That is, all 'Variable's shall be referenced in the 'ComponentInstance' that executes the 'AtomicBehaviour'.
· No time constraint for 'TimeOut' or 'Quiescence'
A 'TimeConstraint' shall be not assigned to a 'TimeOut' or 'Quiescence' 'AtomicBehaviour'.

[image: image12.png](TestBehaviour:AtomicBehaviour)
AtomicBehaviour

(Data:DataUse)
Datalse

period [1] o

<metaclass» componentlnstance [0..1]
TimeOperation

(TestConfiguration)
Componentlnstance

“metaclass

H wait

mdm | geteReference [0.1]

H Quiescence

(TestConfiguration)
GateReference

Figure 7.2: Time operations

7.2.5
TimeOperation

Semantics

A 'TimeOperation' element summarizes the two possible time operations that can occur at a 'Tester' 'ComponentInstance': 'Wait' and 'Quiescence'.

Generalization

· AtomicBehaviour

Properties

· period: DataUse [1]
The 'period' defines the time duration of the 'TimeOperation'.

· componentInstance: ComponentInstance [0..1]
The 'ComponentInstance' element, to which the 'TimeOperation' is associated.

Constraints

· Time operations on tester components only
A 'TimeOperation' shall be performed only on a 'ComponentInstance' in the role 'Tester'.

· 'Time' data type for period expression
The 'DataUse' expression assigned to the 'period' shall evaluate to a data instance of the 'Time' data type.

7.2.6
Wait

Semantics

A 'Wait' element defines the time duration that a 'Tester' component instance waits before performing the next behaviour.

Any input arriving at the 'Tester' component during 'Wait' at runtime is handled by the following behaviour and is not a violation of the test description. The specific mechanism of implementing 'Wait' is not specified.

NOTE:
'Wait' is implemented typically by means of a timer started with the given time duration. After the timeout, the 'Tester' component continues executing the next behaviour.

Generalization

· TimeOperation

Properties

There are no properties specified.

Constraints

· Tester component for 'Wait' shall be known
The relation to a 'ComponentInstance' of a 'Wait' shall be set and refer to a 'Tester' component instance.

7.2.7
Quiescence

Semantics

A 'Quiescence' element defines the time duration, during which a 'Tester' component shall expect no input from a 'SUT' component at a given gate reference (if 'Quiescence' is associated to a gate reference) or at all the gate references the 'Tester' component instance contains of (if 'Quiescence' is associated to a component instance).
When a 'Quiescence' is executed, the 'Tester' component listens to 'Interaction's that occur at the defined gate reference(s). If such an 'Interaction' occurs during the defined 'period' (time duration), the test verdict is set to 'fail'; otherwise to 'pass'.

Input arriving during 'Quiescence' that matches an 'Interaction' of an alternative block in 'AlternativeBehaviour' or 'ExceptionalBehaviour' is allowed and not a violation of the test description. A similar statement holds for the use of 'Quiescence' in 'ParallelBehaviour' or 'PeriodicBehaviour'.

If 'Quiescence' is used as the first element in an alternative block as trigger in 'AlternativeBehaviour' or 'ExceptionalBehaviour', then its behaviour is defined as follows. The measurement of the quiescence duration starts with the execution of the associated alternative or exceptional behaviour. The check for no input during quiescence occurs only if none of the alternative blocks have been selected.

NOTE:
'Quiescence' is implemented typically by means of a timer with the given time duration and listening at the indicated gate reference(s). The execution of the timeout indicates the end of a 'Quiescence' with verdict 'pass'.
Generalization

· TimeOperation

Properties

· gateReference: GateReference [0..1]
The 'GateReference' element, to which the 'Quiescence' is associated.

Constraints

· Exclusive use of gate reference or component instance
if a 'GateReference' is provided, a 'ComponentInstance' shall be not provided and vice versa.

[image: image13.png](Foundation)
NamedElement

(TestBehaviour:AtomicBehaviour)
AtomicBehaviour

“metaclas

H Timer

metaciase:
/E timer [1] E TimerOperation

(Data:DataUse)
Datalse

(TestConfiguration)
Componentlnstance

componentlnstance [1]

period 1]

metaclas

H Timerstart

metaclass

S Timersten

metaclass

E Timeout

Figure 7.3: Timer and timer operations

7.2.8
Timer

Semantics

A 'Timer' element defines a timer that is used to measure time intervals. A 'Timer' is contained within a 'ComponentType' element assuming that each 'ComponentInstance' of the given 'ComponentType' has its own local copy of that timer at runtime.

Generalization

· NamedElement

Properties

There are no properties specified.

Constraints

· Initial state of a timer
When a timer is defined, it is operationally in the state idle.

7.2.9
TimerOperation

Semantics

A 'TimerOperation' operates on an associated 'Timer'. It is an element that summarizes the operations on timers: timer start, timeout and timer stop.

Generalization

· AtomicBehaviour

Properties

· timer: Timer [1]
This property refers to the 'Timer' element on which the 'TimerOperation' operates.

· componentInstance: ComponentInstance [1]
The 'ComponentInstance' element, to which the 'TimerOperation' is associated.

Constraints

There are no constraints specified.

7.2.10
TimerStart

Semantics

A 'TimerStart' operation starts a specific timer and the state of that timer becomes running. If a running timer is started, the timer is stopped implicitly and then (re-)started.

Generalization

· TimerOperation

Properties

· period: DataUse [1]
Defines the duration of the timer from start to timeout.

Constraints

· 'Time' data type for period expression
The 'DataUse' expression assigned to the 'period' shall evaluate to a data instance of the 'Time' data type.

7.2.11
TimerStop

Semantics

A 'TimerStop' operation stops a running timer. If an idle timer is stopped, then no action shall be taken. After performing a 'TimerStop' operation on a running timer, the state of that timer becomes idle.

Generalization

· TimerOperation

Properties

There are no properties specified.

Constraints

There are no constraints specified.

7.2.12
TimeOut

Semantics

A 'TimeOut' element is used to specify the occurrence of a timeout event when the period set by the 'TimerStart' operation has elapsed. At runtime, the timer changes from running state to the idle state.

Generalization

· TimerOperation

Properties

There are no properties specified.

Constraints

There are no constraints specified.

8
Test Configuration
8.1
Overview

The 'Test Configuration' package describes the elements needed to define a 'TestConfiguration' consisting of tester and SUT components, gates, and their interconnections represented as 'Connection's. A 'TestConfiguration' specifies the structural foundations on which test descriptions can be built upon. The fundamental units of a 'TestConfiguration' are the 'ComponentInstance's. Each 'ComponentInstance' specifies a functional entity of the test system. A 'ComponentInstance' may either be a (part of a) tester or a (part of a) SUT. That is, both the tester and the SUT can be decomposed, if required. The communication exchange between 'ComponentInstance's is established through interconnected 'GateInstance's via 'Connection's and 'GateReference's. To offer reusability, TDL introduces 'ComponentType's and 'GateType's.

8.2
Abstract Syntax and Classifier Description
[image: image14.png](Time)

Timer

(0ata)
Variable

timer '] {unique}

variable [*]{unique}

(Foundation)
PackageableElement

(Data) (Foundation)
DataType Element

metadas
2 ComponentType

dataType [L.*] {unique}

“metaclass

EeaeType

gatelnstance [1.] ordered, unique}

type [1]

<metach
H Gatelnstance

Figure 8.1: Component and gate type

8.2.1
GateType

Semantics

A 'GateType' represents a type of communication points, called 'GateInstance's, for exchanging information between 'ComponentInstance's. A 'GateType' specifies the 'DataType's that can be exchanged via 'GateInstance's of this type in both directions.

Generalization

· PackageableElement

Properties

· dataType: DataType [1..*] {unique}
The 'DataType's that can be exchanged via 'GateInstance's of that 'GateType'. The arguments of 'Interactions' shall adhere to the 'DataType's that are allowed to be exchanged.

Constraints

There are no constraints specified.

8.2.2
GateInstance

Semantics

A 'GateInstance' represents an instance of a 'GateType'. It is the means to exchange information between connected 'ComponentInstance's. A 'GateInstance' is contained in a 'ComponentType'.
Generalization

· Element

Properties

· type: GateType [1]
The 'GateType' of the 'GateInstance'.

Constraints

There are no constraints specified.

8.2.3
ComponentType

Semantics

A 'ComponentType' specifies the type of one or several functional entities, called 'ComponentInstance's, that participate in a 'TestConfiguration'. A 'ComponentType' contains at least one 'GateInstance' and may contain any number of 'Timer's and 'Variable's.

Generalization

· PackageableElement

Properties

· gateInstance: GateInstance [1..*] {ordered, unique}The 'GateInstance's used by 'ComponentInstance's of that 'ComponentType'.

· timer: Timer [0..*] {unique}
The 'Timer's owned by the 'ComponentType'.

· variable: Variable [0..*] {unique}
The 'Variable's owned by the 'ComponentType'.

Constraints

There are no constraints specified.

[image: image15.png](Foundation)

CompanentType NomedElement Gatelnstance
type 1] gate[1]
emetaclasss

2 Componentivtance

component [1]

o CompenentinsanceRole 1] P

emetachazzs
] GateReference

endPaint [2]

(Foundation)
Element

emetachazzs
H Connection

-

connection 1 ‘Humqu:¢

“Enumeration
5] ComponentinstanceRole

EE
= Tester

||

ametadan
D TestConfiguation

(Foundation)
PackageableElement

Figure 8.2: Test configuration

8.2.4
ComponentInstance

Semantics

A 'ComponentInstance' represents an active, functional entity of the 'TestConfiguration', which contains it. Its main purpose is to exchange information with other connected components via 'Interaction's. It acts either in the role of a 'Tester' or a 'SUT' component.
A 'ComponentInstance' derives the 'GateInstance's, 'Timer's, and 'Variable's from its 'ComponentType' for use within a 'TestDescription'. However, component-internal 'Timer's and 'Variable's shall be only used in 'TestDescription's if the role of the component is of 'Tester'.
Generalization

· NamedElement

Properties

· type: ComponentType [1]
The 'ComponentType' of this 'ComponentInstance'.

· role: ComponentInstanceRole [1]
The role that the 'ComponentInstance' plays within the 'TestConfiguration'. It can be either 'Tester' or 'SUT'.

Constraints

There are no constraints specified.

8.2.5
ComponentInstanceRole

Semantics

'ComponentInstanceRole' specifies the role of a 'ComponentInstance', whether it acts as a 'Tester' or as a 'SUT' component.

Generalization

There is no generalization specified.

Literals

· SUT
The 'ComponentInstance' assumes the role 'SUT' in the enclosing 'TestConfiguration'.

· Tester
The 'ComponentInstance' assumes the role 'Tester' in the enclosing 'TestConfiguration'.

Constraints

There are no constraints specified.

8.2.6
GateReference

Semantics

A 'GateReference' is an endpoint of a 'Connection', which it contains. It allows the specification of a connection between two 'GateInstance's of different components in unique manner (because 'GateInstance's are shared between all 'ComponentInstance's of the same 'ComponentType').

Generalization

· NamedElement

Properties

· component: ComponentInstance [1]
The 'ComponentInstance' that this 'GateReference' refers to.

· gate: GateInstance [1]
The 'GateInstance' that this 'GateReference' refers to.

Constraints

· Gate instance of the referred component instance
The referred 'GateInstance' shall be contained in the 'ComponentType' of the referred 'ComponentInstance'.

8.2.7
Connection

Semantics

A 'Connection' defines a communication channel for exchanging information between 'ComponentInstance's via 'GateReference's. It does not specify or restrict the nature of the communication channel that is eventually used in an implementation. For example, a 'Connection' could refer to an asynchronous communication channel for the exchange of messages or it could rather refer to a programming interface that enables the invocation of functions.
A 'Connection' is always bidirectional and point-to-point, which is assured by defining exactly two endpoints, given as 'GateReference's. A 'Connection' can be established between any two different 'GateReference's acting as 'endPoint' of this connection. That is, self-loop 'Connection's that start and end at the same 'endPoint' are not permitted.
A 'Connection' can be part of a point-to-multipoint communication relation. In this case, the same 'GateReference' occurs as 'endPoint' multiple times in different 'Connection's. However, multiple connections between the same 'endPoint's are not permitted in a 'TestConfiguration' (see clause 8.2.8).
Generalization

· Element

Properties

· endPoint: GateReference [2]
The two 'GateReference's that form the endpoints of this 'Connection'.
Constraints

· Self-loop connections are not permitted
The 'endPoint's of a 'Connection' shall be not the same. Two endpoints are the same if the referred 'ComponentInstance' and the referred 'GateInstance' are identical.
· Unique type of a connection
The 'GateInstance's of the two 'endPoint's of a 'Connection' shall refer to the same 'GateType'.

8.2.8
TestConfiguration

Semantics

A 'TestConfiguration' specifies the communication infrastructure necessary to build 'TestDescription's upon. As such, it contains all the elements required for information exchange: 'ComponentInstance's and 'Connection's.

It is not necessary that all 'ComponentInstance's contained in a 'TestConfiguration' are actually connected via 'Connection's. But for any 'TestConfiguration' at least the semantics of a minimal test configuration shall apply, which comprises one 'Tester' component and one 'SUT' component that are connected via one 'Connection'.

Generalization

· PackageableElement

Properties

· componentInstance: ComponentInstance [2..*] {unique}
The 'ComponentInstance's of the 'TestConfiguration'.

· connection: Connection [1..*] {unique}
The 'Connection's of the 'TestConfiguration' over which 'Interaction's are exchanged.

Constraints

· 'TestConfiguration' and components roles
A 'TestConfiguration' shall contain at least one 'Tester' and one 'SUT' 'ComponentInstance'.

· Minimal 'TestConfiguration'
Each 'TestConfiguration' shall specify at least one 'Connection' that connects a 'GateInstance' of a 'ComponentInstance' in the role 'Tester' with a 'GateInstance' of a 'ComponentInstance' in the role 'SUT'.

· Only one connection between two 'GateInstance's
Given the set of 'Connection's contained in a 'TestConfiguration'. There shall be no two 'Connection's containing the same pair of 'endPoint's. That is, there shall be at most one 'Connection' between the 'GateInstance's.

9
Test Behaviour

9.1
Overview

The 'TestBehaviour' package defines all elements needed to describe the behaviour of a test description.

9.2
Test Description – Abstract Syntax and Classifier Description
[image: image16.png](Foundation)
PackageableElement

(TestConfiguration)
TestConfiguration

onfiguration [1]

formalParhmeter '] ordered, unique}

Y

testObjective ['] unique}

behaviouDescription (0.1
prentttl (Foundstion)

TestObjective

(Data)

“metaclas

5 BehaviourDescription
:

FormalParameter

(Foundation)
Element

(TestBehaviour:CombinedBehaviour)

testObjective ['] unique}

behaviour [1]

Behaviour

Figure 9.1: Test description

9.2.1
TestDescription

Semantics

A 'TestDescription' is a 'PackageableElement' that may contain a 'BehaviourDescription' defining the test behaviour based on ordered 'AtomicBehaviour' elements. It may also refer to 'TestObjective' elements that it realizes.

A test description is associated with exactly one 'TestConfiguration' that provides 'ComponentInstance's and 'GateInstance's to be used in the behaviour. It may contain 'FormalParameter' elements that are used to pass data into behaviour.

If a 'TestDescription' with formal parameters is invoked within another test description then actual parameters are provided via the 'TestDescriptionReference' element. The mechanism of passing arguments into a 'TestDescription' that is invoked by a test management tool is not defined.

Generalization

· PackageableElement

Properties

· testConfiguration: TestConfiguration [1]
The property 'testConfiguration' refers to the 'TestConfiguration' that is associated with the 'TestDescription'.

· behaviourDescription: BehaviourDescription [0..1]
The property 'behaviour', if present, defines the actual behaviour of the test description in terms of a 'Behaviour' element.

· formalParameter: FormalParameter [0..*] {ordered, unique}
Formal parameters that shall be substituted by actual data elements when the 'TestDescription' is executed.

· testObjective: TestObjective [0..*]
The 'TestObjective's that are realized by the 'TestDescription'.

Constraints

Named test description
A test description shall have a name.

9.2.2
BehaviourDescription

Semantics

A 'BehaviourDescription' element contains the behaviour of a 'TestDescription'.

Generalization

· Element

Properties

· behaviour: Behaviour [1]
The definition of 'TestDescription' behaviour.

Constraints

There are no constraints specified.

9.3
Combined Behaviour – Abstract Syntax and Classifier Description

[image: image17.png](Foundation)
Element

emetaclass»
& Behaviour

emetaclass»
& CombinedBehaviour

behaviour [L.] {ordered, unique}

(Data:DataUse)
Datalse

guard 0.1]

“metaclass

H lock

block [1.7] {ordered, unique} block[1]

pre—
I MultpleCombinedBehaviosr

metaclass “metaclas
H ConditionalBehaviour E AtternativeBehaviour

emetachazzs
5 ParalilBehaviour

pre—
D SingleCombinedbehaviour

“metach

= Boundedloopbehaviou

v
2 Unboundedtoapehaviou

numiteration {1]

Datalse

(Data:DataUse)

metnda
2 Compoundsehaviou

Figure 9.2: Combined behaviour concepts

9.3.1
Behaviour

Semantics

A 'Behaviour' element is refined into 'AtomicBehaviour', 'CombinedBehaviour', 'ExceptionalBehaviour' and 'PeriodicBehaviour'. Some 'Behaviour's operate on gate instances or component instances and some are completely independent.

Generalization

· Element
Properties

· testObjective: TestObjective [0..*] {unique}
The 'TestObjective's that are realized by the 'Behaviour'.

Constraints

No additional constraints specified.

9.3.2
Block

Semantics

A 'Block' element is a container for 'Behaviour' elements that are executed in a strictly sequential way. A 'Block' element may have a 'guard' defined. If a 'Block' has a 'guard', that ‘Block’ shall only be executed if its guard condition evaluates to true. If a 'Block' element has no 'guard' it is unconditionally executed.
Generalization

· Element

Properties

· behaviour: Behaviour [1..*] {unique, ordered}
This property is a list of 'Behaviour' elements describing the behaviour of the 'Block' element. The 'Behaviour' elements shall be executed in their definition order.

· guard: DataUse [0..1]
A 'DataUse' expression of which the type resolves to the predefined 'DataType' Boolean.

Constraints

· Guard shall evaluate to Boolean
The type of 'guard' shall be Boolean.
9.3.3
CombinedBehaviour

Semantics

A 'CombinedBehaviour' element is a 'Behaviour' that involves all gate instances defined in the associated test configuration. It can contain a single potentially guarded 'Block' element (in case of 'SingleCombinedBehaviour') or a list of ordered and potentially guarded 'Block' elements (in case of 'MultipleCombinedBehaviour'). A 'CombinedBehaviour' may have any number of ordered 'PeriodicBehaviour' and 'ExceptionalBehaviour' elements. The 'PeriodicBehaviour' and the 'ExceptionalBehaviour' elements shall be evaluated in their definition order.

Generalization

· Behaviour

Properties

· periodic: PeriodicBehaviour [0..*] {unique, ordered}
A 'CombinedBehaviour' element can contain any number of 'PeriodicBehaviour' elements. The 'periodic' property refers to the list of 'PeriodicBehaviour' elements.

· exceptional: ExceptionalBehaviour [0..*] {unique, ordered}
A 'CombinedBehaviour' element can contain any number of 'ExceptionalBehaviour' elements. The 'exceptional' property refers to the list of 'ExceptionalBehaviour' elements.

Constraints

There are no constraints specified.

9.3.4
SingleCombinedBehaviour

Semantics

A 'SingleCombinedBehaviour' element is a 'CombinedBehaviour' that contains a single potentially guarded 'Block' element. It can be further refined to a 'CompoundBehaviour', a 'BoundedLoopBehaviour', an 'UnboundedLoopBehaviour', or an 'OptionalBehaviour'.

Generalization

· CombinedBehaviour

Properties

· block: Block [1]
The 'block' property refers to a 'Block' element that specifies the behaviour of the 'SingleCombinedBehaviour'.

Constraints

There are no constraints specified.

9.3.5
CompoundBehaviour

Semantics

A 'CompoundBehaviour' is a basic non-recurring 'SingleCombinedBehaviour' containing one optionally guarded 'Block'.

Generalization

· SingleCombinedBehaviour

Properties

There are no properties specified.

Constraints

There are no constraints specified.

9.3.6
BoundedLoopBehaviour

Semantics

A 'BoundedLoopBehaviour' element is a 'SingleCombinedBehaviour', therefore it shall contain one 'Block' element, which shall not have a guard condition. The 'Block' element shall be executed as many times as is determined by its 'numIteration' property.

The evaluation of the 'numIteration' expression happens only once at the beginning of the 'BoundedLoopBehaviour'. For dynamic evaluation of condition use 'UnboundedLoopBehaviour'. The increment mechanism of counting the iterations is not defined.

Generalization

· SingleCombinedBehaviour

Properties

· numIteration: DataUse [1]
Determines how many times the 'Block' element of a 'BoundedLoopBehaviour' element shall be executed.

Constraints

· No guard constraint
The 'Block' element of a 'BoundedLoopBehaviour' element shall not have a guard condition.

· Iterations number shall be countable and positive
The expression assigned to the 'numIteration' property shall evaluate to a countable and positive data instance of an arbitrary user-defined data type, e.g. a positive Integer value.

9.3.7
UnboundedLoopBehaviour

Semantics

An 'UnboundedLoopBehaviour' element is a 'SingleCombinedBehaviour', therefore it shall contain one 'Block' element, which may have a guard condition. The 'Block' element shall be executed as long as the guard condition of the 'Block' element evaluates to true. If the 'Block' element has no guard condition, it shall be executed an infinite number of times.

Generalization

· SingleCombinedBehaviour

Properties

There are no properties specified.

Constraints

There are no constraints specified.

9.3.8
MultipleCombinedBehaviour

Semantics

A 'MultipleCombinedBehaviour' element is a 'CombinedBehaviour' that contains at least one potentially guarded 'Block' element (in case of 'ConditionalBehaviour') or at least two ordered and potentially guarded 'Block' elements (in case of 'AlternativeBehaviour' or 'ParallelBehaviour').

Generalization

· CombinedBehaviour

Properties

· block: Block [1..*] {unique, ordered}
The 'block' property refers to a list of 'Block' elements that specifies the behaviour of the 'MultipleCombinedBehaviour' element.

Constraints

There are no constraints specified.

9.3.9
AlternativeBehaviour

Semantics

An 'AlternativeBehaviour' shall contain two or more 'Block's each of which starting with a distinct trigger behaviour. The trigger of an alternative 'Block' may be either 'Interaction', 'TimeOut' or 'Quiescence'. For the 'Interaction' element it is required that the 'Target' shall be associated to a 'ComponentInstance' with the 'role' of 'Tester'.

'Block's may have guard conditions. 'If a 'Block' element has no guard condition, it is equivalent to a 'Block' element with a guard condition of true. Guards of all blocks are evaluated at the beginning of an 'AlternativeBehaviour'. Only blocks with guards that evaluate to true are active in this alternative specification. If none of the guards is true, the behaviour is blocked.
Only one of the alternative 'Block's will be executed – the one of which the triggering event occurs while guard condition evaluates to true. If more than block can be triggered for execution, the one that comes first in the ordered list of blocks is selected.

The evaluation of 'Quiescence' in the context of 'AlternativeBehaviour' is explained in clause 7.2.7.

Generalization

· MultipleCombinedBehaviour

Properties

There are no properties specified.

Constraints

· Number of Blocks
An 'AlternativeBehaviour' element shall contain at least two 'Block' elements.

· First Behaviour of Blocks
Each block of an 'AlternativeBehaviour' element shall start with one of the following 'AtomicBehaviour' elements: 'Interaction' received by a 'Tester' component, 'TimeOut' or 'Quiescence'.

9.3.10
ConditionalBehaviour

Semantics

A 'ConditionalBehaviour' element is a 'MultipleCombinedBehaviour' that can contain one or more 'Block' elements. All the 'Block' elements shall have a guard condition except for the last 'Block' element, which may have no guard if the 'ConditionalBehaviour' element contains more than one 'Block' elements. In this case, the last 'Block' element is equivalent to a 'Block' element with a guard condition of true ("else" block). The guard conditions of the 'Block' elements are evaluated in the order of their definition. The first 'Block' element, whose guard condition is evaluated to true, will be executed. If none of the guard conditions are evaluated to true, the execution continues with the next behaviour after the 'ConditionalBehaviour' element.

Generalization

· MultipleCombinedBehaviour

Properties

There are no properties specified.

Constraints

· Guards required
All the 'Block' elements shall have a guard condition except for the last 'Block' element, which may have no guard if the 'ConditionalBehaviour' element contains more than one 'Block' elements. In this case, the last 'Block' element is equivalent to a 'Block' element with a guard condition of true ("else" block).

9.3.11
ParallelBehaviour

Semantics

A 'ParallelBehaviour' element is a 'MultipleCombinedBehaviour' that shall contain at least two 'Block' elements. Some or all of the 'Block' elements of a 'ParallelBehaviour' element may have a guard condition. If a guard condition is provided, it shall evaluate to true to enable the execution of that block. The 'Block' elements are executed in parallel (i.e. the relative execution order of the behaviours of the different 'Block' elements of a 'ParallelBehaviour' element is not specified). The execution of a 'ParallelBehaviour' element shall terminate when all its 'Block' elements are terminated.

Generalization

· MultipleCombinedBehaviour

Properties

There are no properties specified.

Constraints

There are no constraints specified.

[image: image18.png]periodic '} {ordered, unique}

emetachazzs
] periodicBehaviour

Behaviour

CombinedBehaviour

exceptional [*] {ordered, unique)

(TestConfiguration)
Componentlnstance

guardedComponent [0..1]

pre—
2 beptionalbehaviour

period 1]

block[1] block[1]

(Data:DataUse)
Datalse

Block

emetachazzs
5 DefaultBehaviour

metadan
S interupBehaviou

Figure 9.3: Exceptional and periodic behaviour

9.3.12
ExceptionalBehaviour

Semantics

'ExceptionalBehaviour' is optionally contained within a 'CombinedBehaviour' element. It is a 'Behaviour' that consists of one 'Block' element that shall have no guard and shall start with one of the following 'AtomicBehaviour' elements: 'Interaction', 'TimeOut', or 'Quiescence'. For the 'Interaction' element the target 'GateInstance' shall be associated to a 'ComponentInstance' with the 'role' of 'Tester'.

An 'ExceptionalBehaviour' element may have a 'guardedComponent' property.

An 'ExceptionalBehaviour' element defines a behaviour that is an alternative to every 'Interaction' element directly or indirectly contained in the enclosing 'CombinedBehaviour' element:

· whose target 'GateInstance' is associated to a 'ComponentInstance' with the role of 'Tester' (provided the 'guardedComponent' property is not present);

· whose target 'GateInstance' is associated to that 'ComponentInstance' with the role of 'Tester', which is referenced by the 'guardedComponent' property (provided the 'guardedComponent' property is present).

A 'CombinedBehaviour' can have several 'ExceptionalBehaviour' elements. It can be interpreted as a shorthand of replacing every 'Interaction' targeted to the 'Tester'(or if the 'guardedComponent' is present, then every 'Interaction' targeted to that 'Tester' component) of the containing 'CombinedBehaviour' element by an 'AlternativeBehaviour' that contains the given 'Interaction' targeted to the 'Tester'(or if the 'guardedComponent' is present, then to the referenced 'Tester' component) as its first alternative and the block(s) of the 'ExceptionalBehaviour' element(s) as the following alternative(s), in the order of which the 'ExceptionalBehaviour' elements are specified in the containing 'CombinedBehaviour' element.

An 'ExceptionalBehaviour' can be either a 'DefaultBehaviour' or an 'InterruptBehaviour'.

Generalization

· Behaviour

Properties

· block: Block [1]
This property refers to a 'Block' element that specifies the behaviour of the 'ExceptionalBehaviour'.

· guardedComponent: ComponentInstance [0..1]
This optional property refers to a 'Tester' component instance for which the behaviour specified by the 'ExceptionalBehaviour' element is to be applied.

Constraints

· No guard
The 'Block' element referred to by the 'block' property shall have no guard.

· First element in block allowed
The 'Block' element referred to by the 'block' property shall start with one of the following 'AtomicBehaviour' elements: 'Interaction', 'TimeOut', or 'Quiescence'. For the 'Interaction' element it is required that the target9 'GateInstance' shall be associated to a 'ComponentInstance' with the 'role' of 'Tester'.

· Guarded component role
The 'guardedComponent' can refer only to a 'Tester' component.

9.3.13
DefaultBehaviour

Semantics

A 'DefaultBehaviour' is an 'ExceptionalBehaviour'. If it is executed and the behaviour defined in the 'block' completes, the execution continues with the next 'Behaviour' element following the one that caused the execution of the 'DefaultBehaviour' element.

Generalization

· ExceptionalBehaviour

Properties

There are no properties specified.

Constraints

There are no constraints specified.

9.3.14
InterruptBehaviour

Semantics

An 'InterruptBehaviour' is an 'ExceptionalBehaviour'. If it is executed and the behaviour defined in the 'block' completes, the execution continues with the same 'Behaviour' element at which the execution of the 'InterruptBehaviour' started.

Generalization

· ExceptionalBehaviour

Properties

There are no properties specified.

Constraints

There are no constraints specified.

9.3.15
PeriodicBehaviour

Semantics

A 'PeriodicBehaviour' element is contained within a 'CombinedBehaviour' element. It is a 'Behaviour' that consists of one 'Block' element that shall not start with one of the following 'AtomicBehaviour' elements: 'Interaction', 'TimeOut', 'Quiescence' or 'Interaction' whose target 'GateInstance' is associated to a 'ComponentInstance' with the 'role' of 'Tester'.

A 'PeriodicBehaviour' element defines a behaviour that is executed periodically in parallel with the enclosing 'CombinedBehaviour' element. The recurrence interval of the execution is specified by its 'period' property. When the execution of the 'block' takes longer that specified by 'period', it is considered a runtime error.

Generalization

· Behaviour

Properties

· block: Block [1]
This property refers to a 'Block' element, whose behaviour will be executed periodically in parallel with the behaviour of the enclosing 'CombinedBehaviour' element.

· period: DataUse [1]
This property defines the recurrence interval of the execution of the behaviour of the 'Block' element specified by the 'block' property.

Constraints

· First event allowed
The 'Block' element referred by the 'block' property shall not start with one of the following 'AtomicBehaviour' elements: 'Interaction', 'TimeOut', 'Quiescence' or 'Interaction' whose target 'GateInstance' is associated to a 'ComponentInstance' with the 'role' of 'Tester'.

· 'Time' data type for period expression
The 'DataUse' expression assigned to the 'period' shall evaluate to a data instance of the 'Time' data type.

9.4
Atomic Behaviour – Abstract Syntax and Classifier Description

[image: image19.png](TestBehaviour:CombinedBehaviour)
Behaviour

emetacass»
5 AtomicBehaviour

metaclass metaclass “metaclass “metaclass

H verdictssignment H sertion S Break HSop

othenise [0.1] condition [1]

verdict (1) (Datatse)

Datalse

Figure 9.4: Global atomic behaviour concepts

9.4.1
AtomicBehaviour

Semantics

An 'AtomicBehaviour' element is a 'Behaviour' element that defines the simplest form of behavioural activity of a test description that cannot be decomposed further.

An 'AtomicBehaviour' can carry a symbolic 'TimeLabel' that holds the timestamp of this behaviour when it is executed (see clause 7.2.2). Because the behaviour is assumed to be atomic, no assumption is made whether the timestamp is taken at the start or the end of this activity or at any other point during its execution. It is however recommended to have it consistently defined in an implementation of a TDL model.

In addition, an 'AtomicBehaviour' may contain a list of 'TimeConstraint' expressions that affect the execution time of this behavioural activity (see clause 7.2.4).

Generalization

· Behaviour

Properties

· timeLabel: TimeLabel [0..1]
Refers to the time label contained in the 'AtomicBehaviour' element.
· timeConstraint: TimeConstraint [0..*] {unique}
Refers to a contained list of 'TimeConstraint' elements that determines the execution of the given 'AtomicBehaviour' element by means of a time constraint expression.

Constraints

There are no constraints specified.

9.4.2
Break

Semantics

A 'Break' element terminates the execution of the behavioural 'Block', in which the 'Break' is contained. If 'Break' is applied within 'Behaviour' elements that contain only one 'Block', e.g. a 'BoundedLoopBehaviour', or within 'AlternativeBehaviour' or 'ConditionalBehaviour', it implies the termination of this 'Behaviour' element. In case of 'ParallelBehaviour', a 'Break' terminates only the execution of its own block, but does not affect execution of the other parallel 'Block's.

Execution of the test description continues with the 'Behaviour' element that follows afterwards.

Generalization

· AtomicBehaviour

Properties

There are no properties specified.

Constraints

There are no constraints specified.

9.4.3
Stop

Semantics

'Stop' is used to describe an explicit and immediate stop of the execution of the entire test description that was initially invoked. No further behaviour shall be executed beyond a 'Stop'. In particular, a 'Stop' element in a referenced (called) test description shall also stop the behaviour of the referencing (calling) test description(s) recursively.

Generalization

· AtomicBehaviour

Properties

There are no properties specified.

Constraints

There are no constraints specified.

9.4.4
VerdictAssignment

Semantics

The 'VerdictAssignment' is used to set the verdict of the test run explicitly. This might be necessary if the implicit verdict mechanism described below is not sufficient.

By default, the test description specifies the expected behaviour of the system. If an execution of a test description performs the expected behaviour, the verdict is set to 'pass' implicitly. If a test run deviates from the expected behaviour, the verdict 'fail' will be assigned to the test run implicitly. Other verdicts, including 'inconclusive' and user-definable verdicts, need to be set explicitly within a test description.

Generalization

· AtomicBehaviour

Properties

· verdict: DataUse [1]
Stores the value of the verdict to be set.

Constraints

· Verdict of type 'Verdict'
The 'verdict' shall evaluate to a, possibly predefined, instance of a 'SimpleDataInstance' of data type 'Verdict'.

9.4.5
Assertion

Semantics

An 'Assertion' element allows the specification of a test 'condition' that needs to evaluate to 'true' at runtime for a passing test, in which case the implicit test verdict is set to 'pass'. If the 'condition' does not hold, the test verdict is set to 'fail' or to the optionally specified verdict given in 'otherwise'.
Generalization

· AtomicBehaviour

Properties

· condition: DataUse [1]
Refers to the test condition that is evaluated.
· otherwise: DataUse [0..1]
Refers to the value of the verdict to be set if the assertion fails.

Constraints

· Boolean condition
The 'condition' shall evaluate to predefined 'Boolean'.
· Otherwise of type 'Verdict'
The 'otherwise' shall evaluate to a, possibly predefined, instance of a 'SimpleDataInstance' of data type 'Verdict'.

[image: image20.png](AtomicBehaviour)
AtomicBehaviour (Foundation)
Element

metaclass target [1.*] {unique}

(Data) gument (1) H nteraction
Datatse g Boolean 1] =15
ourcete 1 W e 0.1

(TestConfiguration) (Data)
GateReference Variable

“metaclass

H Target

Figure 9.5: Interaction behaviour

9.4.6
Interaction

Semantics

An 'Interaction' element is an abstract representation of any information exchanged between gate instances assuming that they are connected via a connection. The 'ArgumentSpecification

' of an 'Interaction' element contained within refers to the data being exchanged between the components participating in the interaction via their connected gates. It can also carry parameters for this data.

In a concrete realization, an interaction can represent, among others, one of the following options:

· Message-based communication: The data of an interaction argument represents a message being sent (from source) and received (from target).

· Procedure-based communication: The data of an interaction argument represents a remote function call being initiated (from source) and invoked (at target) or its return values being transmitted back.

· Shared variable access: The data of an interaction argument represents a shared variable being read (source is the gate of the component that owns this variable, target is the gate of the reading component) or updated (source is the gate of the component that wants to change the value of a variable, target is the gate of the component that owns this variable).

The data description provided as an 'ArgumentSpecification' can be a (possibly parameterized) data instance, a data set, or a data proxy that is bound to either a data instance or a data set at runtime. Using a data set as part of the argument specification in an interaction enables the specification of a set of data instances that are all acceptable within this interaction.

EXAMPLE:
Consider the data set STATUS of data instances 200, 4xx, 5xx and the data instance HttpResponse(STATUS) of another data set. An interaction that refers to the latter data instance in its argument specification provides a shorthand notation for the data instances HttpResponse(200), HttpResponse(4xx), and HttpResponse(5xx) that are all accepted and valid within the given interaction. This notation comes in handy for specifying SUT output (source of an interaction is the gate of a SUT component) by a tester component gate (target) when the exact output is not known or irrelevant.

Generalization

· AtomicBehaviour

Properties

· isTrigger: Boolean [1] = false
If set to 'true', this property denotes a trigger interaction that is successful only if a matching 'argument' has occurred in this interaction. Previously occurring unmatched 'argument's are discarded.
· argument: DataUse [1]
Refers to a 'DataUse' element that is taken as the argument (data) of this interaction.

· sourceGate: GateReference [1]
Refers to a 'GateReference' element that acts as the source of this interaction.

· target: Target [1..*] {unique}
Refers to a contained list of 'Target' 'GateReference's of different component instances. If the list contains more than one element, it implies multicast communication.
Constraints

· Gate references of an interaction shall be different
All gate references that act as source or target(s) of an interaction shall be different from each other.

· Gate references of an interaction shall be connected
The gate references that act as source or target(s) of an interaction shall be interconnected by a connection.

· Typing of interaction arguments
The 'DataUse' specification referred to in the 'argument' shall match one of the 'DataType's referenced in the 'GateType' definition of the source and target gate instances of an interaction.
9.4.7
Target

Semantics

A 'Target' element holds 'GateReference' that acts as target for the 'Interaction', which contains this 'Target' element, and an optional 'Variable' that stores the received data from the interaction.
Generalization

· Element

Properties

· targetGate: GateReference [1]
Refers to the 'GateReference' that acts as target for an interaction.
· variable: Variable [0..1]
Refers to a 'Variable' that stores the received data from the interaction.
Constraints

· Variable and target gate of the same component instance
The referenced 'Variable' shall exist in the same 'ComponentInstance' as the 'GateReference' of the target gate.
[image: image21.png](Data)
Datalse

(TestConfiguration)
Componentlnstance

(TestBehaviour:AtomicBehaviour)
AtomicBehaviour

actualParameter '] {ordered, unique)

]
testDescription [1]

e
2 TestDeseipionReterence

(TestBehaviour:TestDescription)
TestDescription

(Foundation)
Element

componentlnstanceBinding [*] (unique}

Y

formalCamponent [1]

et
£ Componentinstanceinding

ctualComponent [1]

Figure 9.6: Test description reference

9.4.8
TestDescriptionReference

Semantics

A 'TestDescriptionReference' is used to describe the invocation of the behaviour of a test description within another test description. The invoked behaviour is executed in its entirety before the behaviour of the invoking test description is executed further. A 'TestDescriptionReference' has a possibly empty list of actual parameters which is passed to the referenced 'TestDescription'. It also has an optional list of bindings between component instances of the involved test configurations that shall be present if the test configurations of the referencing (invoking) and referenced (invoked) test descriptions are different.

If the 'TestConfiguration' of the invoked 'TestDescription' is different from the one of the invoking 'TestDescription', it shall be compatible with it. The compatibility rule is defined below. In case of different test configurations, 'ComponentInstance's contained in the 'TestConfiguration' of the invoked 'TestDescription' will be substituted with 'ComponentInstance's of the 'TestConfiguration' of the invoking 'TestDescription'. Substitution is implicit when both test configurations coincide. Explicit substitution is defined using the 'ComponentInstanceBinding' element.

Generalization

· AtomicBehaviour

Properties

· testDescription: TestDescription [1]
Refers the test description whose behaviour is invoked.

· actualParameter: DataUse [0..*] {ordered}
Refers to a list of actual parameters passed to the referenced test description.

· componentInstanceBinding: ComponentInstanceBinding [0..*] {unique}
Defines explicit bindings between 'ComponentInstance's from 'TestConfiguration' of invoking 'TestDescription' and those from the 'TestConfiguration' of the invoked 'TestDescription'.

Constraints

· Number of actual parameters
The number of actual parameters in the 'TestDescriptionReference' shall be equal with the number of formal parameters of the referenced 'TestDescription'.

· No use of variables in actual parameters
The 'DataUse' expressions used to describe actual parameters shall not contain variables directly or indirectly.

· Matching parameters
The actual parameter AP[i] of index i in the ordered list of 'actualParameter's shall match 'DataType' of the 'FormalParameter' FP[i] of index i in the ordered list of formal parameters of the referenced 'TestDescription'.

· Restriction to 1:1 component instance bindings
If component instance bindings are provided, the component instances referred to in the bindings shall occur at most once for the given test description reference.

· Compatible test configurations
The test configuration TConf2 of the referenced (invoked) test description shall be compatible with the test configuration TConf1 of the referencing (invoking) test description under the provision of a list of bindings between component instances in TConf1 and TConf2. Compatibility is then defined in the following terms:

· All component instances in TConf2 can be mapped to component instances of TConf1.

· A component instance B of test configuration TConf2 can be mapped to a component instance A of test configuration TConf1if and only if
a) there is a binding pair (A, B) provided, b) A and B refer to the same component type, and c) A and B have the same component instance role {SUT, Tester} assigned.

· All connections between component instances in TConf2 exist also between the mapped component instances in TConf1 and the type of a connection in TConf2 equals the type of the related connection in TConf1.

· The type of a connection is defined by the gate type of the gate instances that act as end-points for this connection.

NOTE 1:
The compatibility between test configurations is defined asymmetrically. That is, if TConf2 is compatible with TConf1, it does not imply that TConf1is compatible with TConf2. If TConf2 is compatible with TConf1, it is said that TConf2 is a sub-configuration of TConf1 under a given binding.

NOTE 2:
If two test configurations are equal, then they are also compatible.

9.4.9
ComponentInstanceBinding

Semantics

The 'ComponentInstanceBinding' element is used with the 'TestDescriptionReference' in case when the 'TestConfiguration' of the invoked 'TestDescription' differs from that of the invoking 'TestDescription'. It specifies that a (formal) 'ComponentInstance' in the invoked 'TestDescription' will be substituted with an (actual) 'ComponentInstance' from the invoking 'TestDescription'.

Additional rules and semantics are defined in the 'TestDescriptionReference' section.

Generalization

· Element

Properties

· formalComponent: ComponentInstance [1]
Refers to a 'ComponentInstance' contained in the 'TestConfiguration' of the invoked 'TestDescription'.

· actualComponent: ComponentInstance [1]
Refers to a 'ComponentInstance' contained in the 'TestConfiguration' of the invoking 'TestDescription'.

Constraints

· Matching component types
Both, the formal and the actual component instance, shall refer to the same 'ComponentType'.

· Matching component instance roles
Both, the formal and the actual component instance, shall have the same 'ComponentInstanceRole' assigned.

[image: image22.png]e
hsgnment

variable [1]

(Data)
Variable

AtomicBehaviour

emetacass»
5 ActionBehaviour

component:

ance [0.1]

(TestConfiguration)

Componentin

emetachazzs
5 ActionReference

<metach
H InlineAction

body: String [1]

actualParameter|*]{ordered, unique)

action [1]

(Data)
Datalse

(Data)
Action

Figure 9.7: Action behaviour concepts

9.4.10
ActionBehaviour

Semantics

An 'ActionBehaviour' is a refinement of 'AtomicBehaviour' and groups invocation of 'Action's and 'InlineAction's as well as 'Variable' 'Assignment's. It can be optionally restricted to be performed only on the indicated 'ComponentInstance'.
Generalization

· AtomicBehaviour

Properties

· componentInstance: ComponentInstance [0..1]
Refers to a 'ComponentInstance' element from the current test configuration on which the action behaviour shall be performed.

Constraints

· 'ActionBehaviour' on 'Tester' components only
The 'ComponentInstance' that an 'ActionBehaviour' refers to shall be of role 'Tester'.

9.4.11
ActionReference

Semantics

An 'ActionReference' element can be used to refer to an 'Action' element to be executed. It may have a 'componentInstance' property that specifies the component instance on which the action is to be performed and can carry a list of 'DataUse' specifications to denote actual parameters of this 'Action'.

Generalization

· ActionBehaviour

Properties

· action: Action [1]
This property is refers to the 'Action' element to be executed.

· actualParameter: DataUse [0..*] {ordered, unique}
Refers to a list of actual parameters passed to the referenced action.
Constraints

· Matching parameters
The actual parameter AP[i] of index i in the ordered list of 'actualParameter's shall match 'DataType' of the 'FormalParameter' FP[i] of index i in the ordered list of formal parameters of the referenced 'Action'.

9.4.12
InlineAction

Semantics

An 'InlineAction' element denotes the informal definition of an action that needs to be refined further in order to make it executable.

Generalization

· ActionBehaviour

Properties

· body: String [1]
The property describes the action as free text.
Constraints

There are no constraints specified.

9.4.13
Assignment

Semantics

An 'Assignment' element denotes the assignment of a value that is expressed as a 'DataUse' specification to a variable within a component instance.

Generalization

· ActionBehaviour

Properties

· variable: Variable [1]
Refers to the variable that gets a value assigned.
· expression: DataUse [1]
Refers to the 'DataUse' specification, which is evaluated at runtime and whose value is assigned to the referenced variable.
Constraints

· Known component instance
The derived property 'componentInstance' shall be set to identify the variable in this assignment.

· Matching data type
The provided 'DataUse' expression shall match the 'DataType' of the referenced 'Variable'.

10
Predefined TDL Model Instances
10.1
Overview

This clause lists the predefined element instances for various meta-model elements that shall be a part of a standard-compliant TDL implementation. It is not specified how these predefined instances are made available to the user. However it is implied that in different TDL models predefined instances with the same name are semantically equivalent. This statement implies further that predefined instances shall not be overwritten with different instances of the same name, but with a different meaning.
10.2
Predefined Instances of 'SimpleDataType' Element

10.2.1
Boolean

The predefined 'SimpleDataType' 'Boolean' denotes the common Boolean data type with the two values (instances of 'SimpleDataInstance') 'true' and 'false' to denote truth values (see clause 10.3) and support logical expressions.
No assumptions are made about how 'Boolean' is implemented in an underlying concrete type system.
10.2.2
Verdict

The predefined 'SimpleDataType' 'Verdict' denotes the data type that holds the possible test verdicts of a 'TestDescription' (see clause 10.3). The 'Verdict' allows the definition of functions that use this data type as an argument or as the return type.

No assumptions are made about how 'Verdict' is implemented in an underlying concrete type system.

10.2.3
TimeLabelSet

The predefined 'SimpleDataType' 'TimeLabelSet' denotes the data type that holds all instances of 'TimeLabel' elements defined in a 'BehaviourDescription' of a 'TestDescription'. Its mere purpose is to enable the definition of functions over time labels; some of them are predefined (see clause 10.5.2).

No assumptions are made about how 'TimeLabelSet' is implemented in an underlying concrete type system.

10.3
Predefined Instances of 'SimpleDataInstance' Element
10.3.1
true

The predefined 'SimpleDataInstance' 'true' shall be associated with the 'SimpleDataType' 'Boolean' (see clause 10.2.1). It denotes one of the two truth values with the usual meaning.

10.3.2
false

The predefined 'SimpleDataInstance' 'false' shall be associated with the 'SimpleDataType' 'Boolean' (see clause 10.2.1). It denotes one of the two truth values with the usual meaning.

10.3.3
pass

The predefined 'SimpleDataInstance' 'pass' shall be associated with the predefined 'SimpleDataType' 'Verdict' (see clause 10.2.2). It denotes the valid behaviour of the SUT as observed by the tester in correspondence to the definition in ISO 9646-1 [4].

10.3.4
fail

The predefined 'SimpleDataInstance' 'fail' shall be associated with the predefined 'SimpleDataType' 'Verdict' (see clause 10.2.2). It denotes the invalid behaviour of the SUT as observed by the tester in correspondence to the definition in ISO 9646-1 [4].

10.3.5
inconclusive

The predefined 'SimpleDataInstance' 'inconclusive' shall be associated with the predefined 'SimpleDataType' 'Verdict' (see clause 10.2.2). It denotes behaviour of the SUT as observed by the tester in cases when neither 'pass' nor 'fail' verdict can be given in correspondence to the definition in ISO 9646-1 [4].

10.4
Predefined Instances of 'Time' Element
10.4.1
Second

The predefined instance 'Second' of the 'Time' element denotes a data type that represents the physical quantity time measured in seconds. Values of this time data type, i.e. instances of 'SimpleDataInstance', denote a measurement of time with the physical unit second.

No assumptions are made about how 'Second' is implemented in an underlying concrete type system.

10.5
Predefined Instances of 'Function' Element

10.5.1
Overview

In this clause, the predefined functions are provided in one of the following tow syntax forms:

· Prefix notation: <function name>: <parameter type>, <parameter type>, ... (<return type>

· Infix notation: _<function name>_: <parameter type>, <parameter type> (<return type>

The <parameter type> and <return type> names from above refer to (predefined) instance names of meta-model elements. If arbitrary instances are supported, the function instanceOf(<element>) shall provide such an arbitrary instance of the given meta-model element.

No assumptions are made about how these functions are implemented in an underlying concrete type system.

10.5.2
Functions of Return Type 'Boolean'

The following functions of return type 'Boolean' shall be predefined.
· _==_: instanceOf(DataInstance), instanceOf(DataInstance) (Boolean
Denotes equality of any two data instances of arbitrary, but equal data type.
· _/=_: instanceOf(DataInstance), instanceOf(DataInstance) (Boolean
Denotes inequality of any two data instances of arbitrary, but equal data type.

· _and_: Boolean, Boolean (Boolean
Denotes the standard logical AND operation.

· _or_: Boolean, Boolean (Boolean
Denotes the standard logical OR operation.

· not: Boolean (Boolean
Denotes the standard logical NOT operation.

10.5.3
Functions of Return Type 'TimeLabelSet'

The following functions of return type 'TimeLabelSet' shall be predefined. Their purpose is to identify unique occurrences of a time label if it occurs in iterative behaviour, e.g. within bounded or unbounded loops. All functions listed below will return the time label itself if they are applied to time labels that are outside of iterative behaviour.
· first: TimeLabelSet (TimeLabelSet
Returns the first occurrence of a time label in iterative behaviour.
· last: TimeLabelSet (TimeLabelSet
Returns the last occurrence of a time label in iterative behaviour.
· prev: TimeLabelSet (TimeLabelSet
Returns the occurrence of a time label in the previous iteration. The previous occurrence of a time label in the first iteration shall equal with the first occurrence of this time label.
10.5.4
Functions of Return Type of Instance of 'Time'

The following functions of return type of instance of the 'Time' meta-model element shall be predefined.

· _+_: instanceOf(Time), instanceOf(Time) (instanceOf(Time)
Returns the sum of two time values of the same time data type, i.e. all instances of the 'Time' element in the function definition shall be equal.

· obs: TimeLabelSet (instanceOf(Time)
Returns the timestamp of a time label attached to an atomic behaviour instance, i.e. the time point when this behavioural activity is observed. The timestamp is returned as a time value of the given time data type.

· span: TimeLabelSet , TimeLabelSet (instanceOf(Time)
Returns the time span between two time labels attached to two atomic behaviour instances, i.e. the elapsed time between the two behavioural activities. The time span is returned as a value of the given time data type.
Annex A (informative):
Technical Representation of the TDL Meta-Model

The technical representation of the TDL meta-model is included as an electronic attachment es_203119v010101p0.zip which accompanies the present document. The purpose of this annex is to serve as a possible starting point for implementing the TDL meta-model conforming to the present document. See the readme contained in the zip file for details.
Annex B (informative):
Examples of a TDL Concrete Syntax

B.1
Introduction

The applicability of the TDL meta-model that is described in the main part of the present document depends on the availability of TDL concrete syntaxes that implement the meta-model (abstract syntax). Such a TDL concrete syntax can then be used by end users to write TDL specifications. Though a concrete syntax will be based on the TDL meta-model, it can implement only parts of the meta-model if certain TDL features are not necessary to handle a user's needs.

This annex illustrates an example of a possible TDL concrete syntax in a textual format that supports all features of the TDL meta-model, called "TDLan". Three examples are outlined below - two examples translated from existing test descriptions taken from [i.2] and [i.3], as well as an example illustrating some of the TDL data parameterization and mapping concepts. The examples are accompanied by a complete reference description of the textual syntax of TDLan given in EBNF.

B.2
A 3GPP Conformance Example in Textual Syntax

This example describes one possible way to translate clause 7.1.3.1 from TS 136 523-1 [i.2] into the proposed TDL textual syntax, by mapping the concepts from the representation in the source document to the corresponding concepts in the TDL meta-model by means of the proposed textual syntax. The example has been enriched with additional information, such as explicit data definitions and test configuration details for completeness where applicable.

//Translated from [i.5], Section 7.1.3.
TDLan Specification Layer_2_DL_SCH_Data_Transfer {
 //Procedures carried out by a component of a test configuration
 //or an actor during test execution
 Action preCondition : "Pre-test Conditions:
 RRC Connection Reconfiguration" ;
 Action preamble : "Preamble:
 The generic procedure to get UE in test state Loopback
 Activated (State 4) according to TS 36.508 clause 4.5
 is executed, with all the parameters as specified in the
 procedure except that the RLC SDU size is set to return no
 data in uplink.
 (reference corresponding behavior once implemented" ;
 //User-defined verdicts
 //Alternatively the predefined verdicts may be used as well
 Type Verdict ;
 Verdict PASS;
 Verdict FAIL;
 //User-defined annotation types
 Annotation TITLE ; //Test description title
 Annotation STEP ; //Step identifiers in source documents
 Annotation PROCEDURE ; //Informal textual description of a test step
 Annotation PRECONDITION ; //Identify pre-condition behaviour
 Annotation PREAMBLE ; //Identify preamble behaviour.
 //User-defined time units
 Time SECONDS;
 //Test objectives (copied verbatim from source document)
 Test Objective TP1 {
 from : "36523-1-a20_s07_01.doc::7.1.3.1.1 (1)" ;
 description : "with { UE in E-UTRA RRC_CONNECTED state }
 ensure that {
 when { UE receives downlink assignment on the PDCCH
 for the UE’s C-RNTI and receives data in the
 associated subframe and UE performs HARQ
 operation }
 then { UE sends a HARQ feedback on the HARQ
 process }
 }" ;
 }
 Test Objective TP2 {
 from : "36523-1-a20_s07_01.doc::7.1.3.1.1 (2)" ;
 description : "with { UE in E-UTRA RRC_CONNECTED state }
 ensure that {
 when { UE receives downlink assignment on the PDCCH
 with a C-RNTI unknown by the UE and data is
 available in the associated subframe }
 then { UE does not send any HARQ feedback on the
 HARQ process }
 }" ;
 }
 //Relevant data definitions
 Type PDU;
 PDU mac_pdu ;
 Type ACK ;
 ACK harq_ack ;
 Type C_RNTI;
 C_RNTI ue;
 C_RNTI unknown;
 Type PDCCH (optional c_rnti of type C_RNTI);
 PDCCH pdcch;
 Type CONFIGURATION;
 CONFIGURATION RRCConnectionReconfiguration ;
 Time SECONDS;
 Time NS;
 SECONDS five;
 //Gate type definitions
 Gate Type defaultGT accepts ACK, PDU, PDCCH, C_RNTI, CONFIGURATION ;
 //Component type definitions
 Component Type defaultCT having {
 gate g of type defaultGT;
 }
 //Test configuration definition
 Test Configuration defaultTC {
 create Tester SS of type defaultCT;
 create SUT UE of type defaultCT ;
 connect UE.g to SS.g ;
 }
 //Test description definition
 Test Description TD_7_1_3_1 uses configuration defaultTC {
 //Pre-conditions and preamble from the source document
 perform action preCondition with { PRECONDITION ; } ;
 perform action preamble with { PREAMBLE ; } ;
 //Test sequence
 SS.g sends pdcch (c_rnti=ue) to UE.g with {
 STEP : "1" ;
 PROCEDURE : "SS transmits a downlink assignment
 including the C-RNTI assigned to
 the UE" ;
 } ;
 SS.g sends mac_pdu to UE.g with {
 STEP : "2" ;
 PROCEDURE : "SS transmits in the indicated
 downlink assignment a RLC PDU in
 a MAC PDU" ;
 } ;
 UE.g sends harq_ack to SS.g with {
 STEP : "3" ;
 PROCEDURE : "Check: Does the UE transmit an
 HARQ ACK on PUCCH?" ;
 test objectives : TP1 ;
 } ;
 set verdict to PASS ;
 SS.g sends pdcch (c_rnti=unknown) to UE.g with {
 STEP : "4" ;
 PROCEDURE : "SS transmits a downlink assignment
 to including a C-RNTI different from
 the assigned to the UE" ;
 } ;
 SS.g sends mac_pdu to UE.g with {
 STEP : "5" ;
 PROCEDURE : "SS transmits in the indicated
 downlink assignment a RLC PDU in
 a MAC PDU" ;
 } ;
 //Interpolated original step 6 into an alternative behaviour,
 //covering both the incorrect and the correct behaviours of the UE
 alternatively {
 UE.g sends harq_ack to SS.g ;
 set verdict to FAIL ;
 } or {
 gate SS.g is quiet for five ;
 set verdict to PASS ;
 } with {
 STEP : "6" ;
 PROCEDURE : "Check: Does the UE send any HARQ ACK
 on PUCCH?" ;
 test objectives : TP2 ;
 }
 } with {
 Note : "Note 1: For TDD, the timing of ACK/NACK is not
 constant as FDD, see Table 10.1-1 of TS 36.213." ;
 }
} with {
 Note : "Taken from 3GPP TS 36.523-1 V10.2.0 (2012-09)" ;
 TITLE : "Correct handling of DL assignment / Dynamic case" ;
}
B.3
An IMS Interoperability Example in Textual Syntax

This example describes one possible way to translate clause 4.5.1 from TS 186 011-2 [i.3] into the proposed TDL textual syntax, by mapping the concepts from the representation in the source document to the corresponding concepts in the TDL meta-model by means of the proposed textual syntax. The example has been enriched with additional information, such as explicit data definitions and test configuration details for completeness where applicable.

//Translated from [i.6], Section 4.5.1.
TDLan Specification IMS_NNI_General_Capabilities {
 //Procedures carried out by a component of a test configuration
 //or an actor during test execution
 Action preConditions : "Pre-test conditions:
 - HSS of IMS_A and of IMS B is configured according to table 1
 - UE_A and UE_B have IP bearers established to their respective
 IMS networks as per clause 4.2.1
 - UE_A and IMS_A configured to use TCP for transport
 - UE_A is registered in IMS_A using any user identity
 - UE_B is registered user of IMS_B using any user identity
 - MESSAGE request and response has to be supported at II-NNI
 (TS 129 165 [16]
 see tables 6.1 and 6.3)" ;
 //User-defined verdicts
 //Alternatively the predefined verdicts may be used as well
 Type Verdict ;
 Verdict PASS ;
 Verdict FAIL ;
 //User-defined annotation types
 Annotation TITLE ; //Test description title
 Annotation STEP ; //Step identifiers in source documents
 Annotation PROCEDURE ; //Informal textual description of a test step
 Annotation PRECONDITION ; //Identify pre-condition behaviour
 Annotation PREAMBLE ; //Identify preamble behaviour.
 Annotation SUMMARY ; //Informal textual description of test sequence
 //Test objectives (copied verbatim from source document)
 Test Objective TP_IMS_4002_1 {
 //Location in source document
 from : "ts_18601102v030101p.pdf::4.5.1.1 (CC 1)" ;
 //Further reference to another document
 from : "TS 124 229 [1], clause 4.2A, paragraph 1" ;
 description : "ensure that {
 when { UE_A sends a MESSAGE to UE_B
 containing a Message_Body greater than 1 300
 bytes }
 then { IMS_B receives the MESSAGE containing the
 Message_Body greater than 1 300 bytes }
 }" ;
 }
 Test Objective UC_05_I {
 //Only a reference to corresponding section in the source document
 from : "ts_18601102v030101p.pdf::4.4.4.2" ;
 }
 //Relevant data definitions
 Type MSG (optional TCP of type CONTENT);
 MSG MESSAGE ;
 MSG DING ;
 MSG DELIVERY_REPORT ;
 MSG M_200_OK
 Type CONTENT ;
 CONTENT tcp;
 Time seconds;
 seconds default_timeout;
 //Gate type definitions.
 Gate Type defaultGT accepts MSG, CONTENT ;
 //Component type definitions
 //In this case they may also be reduced to a single component type
 Component Type USER having {
 gate g of type defaultGT ;
 }
 Component Type UE having {
 gate g of type defaultGT ;
 }
 Component Type IMS having {
 gate g of type defaultGT ;
 }
 Component Type IBCF having {
 gate g of type defaultGT ;
 }
 //Test configuration definition
 Test Configuration CF_INT_CALL {
 create Tester USER_A of type USER;
 create Tester UE_A of type UE;
 create Tester IMS_A of type IMS;
 create Tester IBCF_A of type IBCF;
 create Tester IBCF_B of type IBCF;
 create SUT IMS_B of type IMS;
 create Tester UE_B of type UE;
 create Tester USER_B of type USER;
 connect USER_A.g to UE_A.g ;
 connect UE_A.g to IMS_A.g ;
 connect IMS_A.g to IBCF_A.g ;
 connect IBCF_A.g to IBCF_B.g ;
 connect IBCF_B.g to IMS_B.g ;
 connect IMS_B.g to UE_B.g ;
 connect UE_B.g to USER_B.g ;
 }
 //Test description definition
 Test Description TD_IMS_MESS_0001 uses configuration CF_INT_CALL {
 //Pre-conditions from the source document
 perform action preConditions with { PRECONDITION ; };
 //Test sequence
 USER_A.g sends MESSAGE to UE_A.g with { STEP : "1" ; } ;
 UE_A.g sends MESSAGE to IMS_A.g with { STEP : "2" ; } ;
 IMS_A.g sends MESSAGE to IBCF_A.g with { STEP : "3" ; } ;
 IBCF_A.g sends MESSAGE to IBCF_B.g with { STEP : "4" ; } ;
 IBCF_B.g sends MESSAGE (TCP = tcp) to IMS_B.g with { STEP : "5" ; } ;
 IMS_B.g sends MESSAGE to UE_B.g with { STEP : "6" ; } ;
 UE_B.g sends DING to USER_B.g with { STEP : "7" ; } ;
 UE_B.g sends M_200_OK to IMS_B.g with { STEP : "8" ; } ;
 IMS_B.g sends M_200_OK to IBCF_B.g with { STEP : "9" ; } ;
 IBCF_B.g sends M_200_OK to IBCF_A.g with { STEP : "10" ; } ;
 IBCF_A.g sends M_200_OK to IMS_A.g with { STEP : "11" ; } ;
 IMS_A.g sends M_200_OK to UE_A.g with { STEP : "12" ; } ;
 alternatively {
 UE_A.g sends DELIVERY_REPORT to USER_A.g with { STEP : "13" ; } ;
 } or {
 gate USER_A.g is quiet for default_timeout;
 }
 } with {
 SUMMARY : "IMS network shall support SIP messages greater than
 1 500 bytes" ;
 }
} with {
 Note : "Taken from ETSI TS 186 011-2 V3.1.1 (2011-06)" ;
 TITLE : "SIP messages longer than 1 500 bytes" ;
}
B.4
An Example Demonstrating TDL Data Concepts

This example describes some of the concepts related to data and data mapping in TDL by means of the proposed TDL textual syntax. It illustrates how data instances can be parameterized, mapped to concrete data entities specified in an external resource, e.g. a TTCN-3 file, or to a runtime URI where dynamic concrete data values might be stored by the execution environment during runtime in order to facilitate some basic data flow of dynamic values between different interactions. The example considers a scenario where the SUT is required to generate and maintain a session ID between subsequent interactions using a similar test configuration as defined for the first example in clause B.2, and an alternative realisation where data flow is expressed with variables.

//A manually constructed example illustrating the data mapping concepts
TDLan Specification DataExample {
 //User-defined verdicts
 //Alternatively the predefined verdicts may be used as well
 Type Verdict ;
 Verdict PASS ;
 Verdict FAIL ;
 //Test objectives
 Test Objective CHECK_SESSION_ID_IS_MAINTAINED {
 //Only a description
 description : "Check whether the session id is maintained
 after the first response." ;
 }
 //Data definitions
 Type SESSION_ID;
 SESSION_ID SESSION_ID_1 ;
 SESSION_ID SESSION_ID_2 ;
 Type MSG (optional session of type SESSION_ID);
 MSG REQUEST_SESSION_ID(session = no SESSION_ID);
 MSG RESPONSE(session = any SESSION_ID);
 MSG MESSAGE(session = any SESSION_ID);
 //Data mappings
 //Load resource.ttcn3
 Use "resource.ttcn3" as TTCN_MAPPING ;
 //Map types and instances to TTCN-3 records and templates, respectively
 //(located in the used TTCN-3 file)
 Map MSG to "record_message" in TTCN_MAPPING as MSG_mapping with {
 session mapped to "session_id";
 };
 Map REQUEST_SESSION_ID to "template_message_request" in TTCN_MAPPING as REQUEST_mapping ;
 Map RESPONSE to "template_response" in TTCN_MAPPING as RESPONSE_mapping ;
 Map MESSAGE to "template_message" in TTCN_MAPPING as MESSAGE_mapping ;
 //Use a runtime URI for dynamic data available at runtime, such as
 //session IDs
 Use "runtime://sessions/" as RUNTIME_MAPPING ;
 //Map session ID data instances to locations within the runtime URI
 Map SESSION_ID_1 to "id_1" in RUNTIME_MAPPING as SESSION_ID_1_mapping ;
 Map SESSION_ID_2 to "id_2" in RUNTIME_MAPPING as SESSION_ID_2_mapping ;
 //Gate type definitions
 Gate Type defaultGT accepts MSG , SESSION_ID;
 //Component type definitions
 Component Type defaultCT having {
 gate g of type defaultGT ;
 }
 //Test configuration definition
 Test Configuration defaultTC {
 create SUT UE of type defaultCT;
 create Tester SS of type defaultCT;
 connect SS.g to UE.g ;
 }
 //Test description definition
 Test Description exampleTD uses configuration defaultTC {
 //Tester requests a session id
 SS.g sends REQUEST_SESSION_ID to UE.g ;
 //SUT responds with a session id that is assigned to the URI
 //provided by the execution environment
 UE.g sends RESPONSE (session=SESSION_ID_1) to SS.g ;
 //Tester sends a message with the session id
 //from the runtime URI
 SS.g sends MESSAGE (session=SESSION_ID_1) to UE.g ;
 alternatively {
 //SUT responds with the same session id
 UE.g sends RESPONSE (session=SESSION_ID_1) to SS.g ;
 set verdict to PASS;
 } or {
 //SUT responds with a new session id
 UE.g sends RESPONSE (session=SESSION_ID_2) to SS.g ;
 set verdict to FAIL;
 } with {
 test objectives : CHECK_SESSION_ID_IS_MAINTAINED ;
 }
 }
 //Alternative approach with variables
 //Component type definitions
 Component Type defaultCTwithVariable having {
 variable v of type MSG;
 gate g of type defaultGT ;
 }
 //Test configuration definition
 Test Configuration defaultTCwithVariables {
 create SUT UE of type defaultCT;
 create Tester SS of type defaultCTwithVariable;
 connect SS.g to UE.g ;
 }
 Test Description exampleTD uses configuration defaultTC {
 //Tester requests a session id
 SS.g sends REQUEST_SESSION_ID to UE.g ;
 //SUT responds with a response message containing a session ID
 //The response could contain any of the known session IDs
 //The received response is stored in the variable v of the SS
 UE.g sends RESPONSE to SS.g where it is assigned to v;
 //Tester sends a message with the session ID
 //from the response stored in the variable v of the SS
 SS.g sends MESSAGE(session=SS->v.session) to UE.g ;
 alternatively {
 //SUT responds with the same session ID that is stored in
 //the variable v of the SS from the previous response
 UE.g sends RESPONSE(session=SS->v.session) to SS.g ;
 set verdict to PASS;
 } or {
 //SUT responds with a any session ID, including the one from the
 //previous response stored in v. The ordering of evaluation will
 //always select the first alternative in that case. Alternatively
 //a function can be defined and called that checks explicitly that
 //a the specific session ID from the previous response stored in v
 //is not received e.g.
 // UE.g sends RESPONSE(session=not(SS->v.session)) to SS.g;
 UE.g sends RESPONSE to SS.g ;
 set verdict to FAIL;
 } with {
 test objectives : CHECK_SESSION_ID_IS_MAINTAINED ;
 }
 }
}
B.5
TDL Textual Syntax Reference

B.5.1
Conventions for the TDLan Syntax Definition

This annex describes the grammar of the used concrete textual syntax in the Extended Backus-Naur Form (EBNF) notation. The EBNF representation is generated from a reference implementation of the TDL meta-model. The EBNF representation can be used either as a concrete syntax reference for TDL end users or as input to a parser generator tool. Table B.1 defines the syntactic conventions that are to be applied when reading the EBNF rules. To distinguish this concrete textual syntax from other possible concrete textual syntax representations, it is referred to as "TDLan". This proposed syntax is complete in the sense that it covers the whole TDL meta-model.
	Table B.1: Syntax definition conventions used

	::=
	is defined to be

	abc
	the non-terminal symbol abc

	abc xyz
	abc followed by xyz

	abc | xyz
	alternative (abc or xyz)

	[abc]
	0 or 1 instance of abc

	{abc}+
	1 or more instances of abc

	{abc}
	0 or more instances of abc

	'a'-'z'
	all characters from a to z

	(...)
	denotes a textual grouping

	'abc'
	the terminal symbol abc

	;
	production terminator

	\
	the escape character

B.5.2
TDL Textual Syntax EBNF Production Rules

	TDLSpec
	::=
	'TDLan Specification' Identifier '{' [ElementImport { ElementImport }] [PackageableElement { PackageableElement }] [Package { Package }] '}' ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ;

	Action
	::=
	Action_Impl | Function ;

	ActionReference
	::=
	'perform' 'action' Identifier ['(' DataUse { ',' DataUse } ')'] ['on' Identifier] ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] ['time' 'label' TimeLabel] ['time' 'constraints' ':' TimeConstraint { ',' TimeConstraint } ';'] '}'] ';' ;

	Action_Impl
	::=
	'Action' Identifier ['(' FormalParameter { ',' FormalParameter } ')'] [':' String0] ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ';' ;

	AlternativeBehaviour
	::=
	'alternatively' Block { 'or' Block } ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] [PeriodicBehaviour { PeriodicBehaviour }] [ExceptionalBehaviour { ExceptionalBehaviour }] '}'] ;

	Annotation
	::=
	Identifier [':' String0] ['with' '{' [Comment { Comment }] [Annotation { Annotation }] Identifier '}'] ';' ;

	AnnotationType
	::=
	'Annotation' Identifier ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ';' ;

	AnyNoneValue
	::=
	'any' 'or' 'no' Identifier ['with' '{' ['reduction' '(' Identifier { ',' Identifier } ')'] ['argument' '{' ParameterBinding { ',' ParameterBinding } '}'] [Comment { Comment }] [Annotation { Annotation }] ['name' Identifier] '}'] ;

	AnyValue
	::=
	'any' Identifier ['with' '{' ['reduction' '(' Identifier { ',' Identifier } ')'] ['argument' '{' ParameterBinding { ',' ParameterBinding } '}'] [Comment { Comment }] [Annotation { Annotation }] ['name' Identifier] '}'] ;

	ParameterBinding
	::=
	Identifier '=' DataUse ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['name' Identifier] '}'] ;

	Assertion
	::=
	'assert' DataUse ['otherwise' 'set verdict' 'to' DataUse] ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] ['time' 'label' TimeLabel] ['time' 'constraints' ':' TimeConstraint { ',' TimeConstraint } ';'] '}'] ';' ;

	Assignment
	::=
	[Identifier '->'] Identifier '=' DataUse ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] ['time' 'label' TimeLabel] ['time' 'constraints' ':' TimeConstraint { ',' TimeConstraint } ';'] '}'] ';' ;

	Behaviour
	::=
	TimerStart

	
	
	 | TimerStop

	
	
	 | TimeOut

	
	
	 | Wait

	
	
	 | Quiescence

	
	
	 | PeriodicBehaviour

	
	
	 | AlternativeBehaviour

	
	
	 | ParallelBehaviour

	
	
	 | BoundedLoopBehaviour

	
	
	 | UnboundedLoopBehaviour

	
	
	 | ConditionalBehaviour

	
	
	 | CompoundBehaviour

	
	
	 | DefaultBehaviour

	
	
	 | InterruptBehaviour

	
	
	 | VerdictAssignment

	
	
	 | Assertion

	
	
	 | Stop

	
	
	 | Break

	
	
	 | Assignment

	
	
	 | InlineAction

	
	
	 | ActionReference

	
	
	 | TestDescriptionReference

	
	
	 | Interaction ;

	BehaviourDescription
	::=
	Behaviour ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['name' Identifier] '}'] ;

	Block
	::=
	['[' DataUse ']'] '{' [Comment { Comment }] [Annotation { Annotation }] ['name' Identifier] Behaviour { Behaviour } '}' ;

	Boolean
	::=
	'true' | 'false' ;

	BoundedLoopBehaviour
	::=
	'repeat' DataUse 'times' Block ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] [PeriodicBehaviour { PeriodicBehaviour }] [ExceptionalBehaviour { ExceptionalBehaviour }] '}'] ;

	Break
	::=
	'break' ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] ['time' 'label' TimeLabel] ['time' 'constraints' ':' TimeConstraint { ',' TimeConstraint } ';'] '}'] ';' ;

	Comment
	::=
	'Note' Identifier ':' String0 ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ';' ;

	ComponentInstance
	::=
	'create' ComponentInstanceRole Identifier 'of type' Identifier ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ';' ;

	ComponentInstanceBinding
	::=
	'bind' Identifier 'to' Identifier ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['name' Identifier] '}'] ;

	ComponentType
	::=
	'Component Type' Identifier 'having' '{' { Timer } { Variable } { GateInstance } '}' ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ;

	CompoundBehaviour
	::=
	Block ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] [PeriodicBehaviour { PeriodicBehaviour }] [ExceptionalBehaviour { ExceptionalBehaviour }] '}'] ;

	ConditionalBehaviour
	::=
	'if' Block [(('else' Block)) | ({ 'else' 'if' Block } | ('else' Block))] ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] [PeriodicBehaviour { PeriodicBehaviour }] [ExceptionalBehaviour { ExceptionalBehaviour }] '}'] ;

	Connection
	::=
	'connect' GateReference 'to' GateReference ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['as' Identifier] '}'] ';' ;

	DataElementMapping
	::=
	'Map' Identifier ['to' String0] 'in' Identifier ['as' Identifier] ['with' '{' { ParameterMapping } [Comment { Comment }] [Annotation { Annotation }] '}'] ';' ;

	DataInstance
	::=
	SimpleDataInstance_Impl | StructuredDataInstance ;

	DataInstanceUse
	::=
	Identifier ['(' ParameterBinding { ',' ParameterBinding } ')'] { '.' Identifier } ['with' '{' ['name' Identifier] [Comment { Comment }] [Annotation { Annotation }] '}'] ;

	DataResourceMapping
	::=
	'Use' String0 ['as' Identifier] ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ';' ;

	DataType
	::=
	SimpleDataType_Impl

	
	
	 | StructuredDataType

	
	
	 | Time ;

	DataUse
	::=
	DataInstanceUse

	
	
	 | FunctionCall

	
	
	 | FormalParameterUse

	
	
	 | TimeLabelUse

	
	
	 | VariableUse

	
	
	 | AnyValue

	
	
	 | AnyNoneValue

	
	
	 | NoneValue ;

	DefaultBehaviour
	::=
	'default' ['on' Identifier] Block ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] '}'] ;

	Identifier
	::=
	ID ;

	IdentifierDot
	::=
	ID '.' ID ;

	ElementImport
	::=
	'Import' ('all' | (Identifier | { ',' Identifier })) 'from' Identifier ['with' '{' [Comment { Comment }] [Annotation { Annotation }] Identifier '}'] ';' ;

	ExceptionalBehaviour
	::=
	DefaultBehaviour | InterruptBehaviour ;

	Function
	::=
	'Function' Identifier '(' [FormalParameter { ',' FormalParameter }] ')' 'returns' Identifier [':' String0] ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ';' ;

	FunctionCall
	::=
	'instance' 'returned' 'from' Identifier '(' [ParameterBinding { ',' ParameterBinding }] ')' { '.' Identifier } ['with' '{' ['name' Identifier] [Comment { Comment }] [Annotation { Annotation }] '}'] ;

	GateInstance
	::=
	'gate' Identifier 'of type' Identifier ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ';' ;

	GateReference
	::=
	Identifier '.' Identifier ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['name' Identifier] '}'] ;

	GateType
	::=
	'Gate Type' Identifier 'accepts' Identifier { ',' Identifier } ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ';' ;

	InlineAction
	::=
	'perform' 'action' ':' String0 ['on' Identifier] ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] ['time' 'label' TimeLabel] ['time' 'constraints' ':' TimeConstraint { ',' TimeConstraint } ';'] '}'] ';' ;

	Interaction
	::=
	IdentifierDot ('sends' | Trigger) DataUse 'to' Target { ',' Target } ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] ['time' 'label' TimeLabel] ['time' 'constraints' ':' TimeConstraint { ',' TimeConstraint } ';'] '}'] ';' ;

	Trigger
	::=
	'triggers' ;

	InterruptBehaviour
	::=
	'interrupt' ['on' Identifier] Block ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] '}'] ;

	MappableDataElement
	::=
	SimpleDataType_Impl

	
	
	 | SimpleDataInstance_Impl

	
	
	 | StructuredDataType

	
	
	 | StructuredDataInstance

	
	
	 | Action_Impl

	
	
	 | Function

	
	
	 | Time ;

	Member
	::=
	Optional Identifier 'of type' Identifier ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ;

	Optional
	::=
	'optional' ;

	MemberAssignment
	::=
	Identifier '=' StaticDataUse ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['name' Identifier] '}'] ;

	ParameterMapping
	::=
	Identifier ['mapped' 'to' String0] ['as' Identifier] ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ';' ;

	NoneValue
	::=
	'no' Identifier ['with' '{' ['argument' '{' ParameterBinding { ',' ParameterBinding } '}'] ['reduction' '(' Identifier { ',' Identifier } ')'] [Comment { Comment }] [Annotation { Annotation }] ['name' Identifier] '}'] ;

	Package
	::=
	'Package' Identifier '{' [ElementImport { ElementImport }] [PackageableElement { PackageableElement }] [Package { Package }] '}' ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ;

	PackageableElement
	::=
	AnnotationType

	
	
	 | TestObjective

	
	
	 | DataResourceMapping

	
	
	 | DataElementMapping

	
	
	 | SimpleDataType_Impl

	
	
	 | SimpleDataInstance_Impl

	
	
	 | StructuredDataType

	
	
	 | StructuredDataInstance

	
	
	 | Action_Impl

	
	
	 | Function

	
	
	 | ComponentType

	
	
	 | GateType

	
	
	 | Time

	
	
	 | TestConfiguration

	
	
	 | TestDescription ;

	ParallelBehaviour
	::=
	'run' Block { 'in' 'parallel' 'to' Block } ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] [PeriodicBehaviour { PeriodicBehaviour }] [ExceptionalBehaviour { ExceptionalBehaviour }] '}'] ;

	Parameter
	::=
	Member | FormalParameter ;

	FormalParameter
	::=
	Identifier 'of type' Identifier ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ;

	TimeLabelUse
	::=
	Identifier ['with' '{' ['name' Identifier] [Comment { Comment }] [Annotation { Annotation }] '}'] ;

	FormalParameterUse
	::=
	'parameter' Identifier ['(' ParameterBinding { ',' ParameterBinding } ')'] { '.' Identifier } ['with' '{' ['name' Identifier] [Comment { Comment }] [Annotation { Annotation }] '}'] ;

	PeriodicBehaviour
	::=
	'every' DataUse Block ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] '}'] ;

	Quiescence
	::=
	(('component' | Identifier) | ('gate' | IdentifierDot)) 'is' 'quiet' 'for' DataUse ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] ['time' 'label' TimeLabel] ['time' 'constraints' ':' TimeConstraint { ',' TimeConstraint } ';'] '}'] ';' ;

	SimpleDataInstance_Impl
	::=
	Identifier Identifier ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ;

	SimpleDataType_Impl
	::=
	'Type' Identifier ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ';' ;

	StaticDataUse
	::=
	DataInstanceUse

	
	
	 | AnyValue

	
	
	 | AnyNoneValue

	
	
	 | NoneValue ;

	Stop
	::=
	'terminate' ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] ['time' 'label' TimeLabel] ['time' 'constraints' ':' TimeConstraint { ',' TimeConstraint } ';'] '}'] ';' ;

	String0
	::=
	STRING ;

	StructuredDataInstance
	::=
	Identifier Identifier ['(' MemberAssignment { ',' MemberAssignment } ')'] ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ';' ;

	StructuredDataType
	::=
	'Type' Identifier ['(' Member { ',' Member } ')'] ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ';' ;

	Target
	::=
	IdentifierDot ['where it is' 'assigned' 'to' Identifier] ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['name' Identifier] '}'] ;

	TestConfiguration
	::=
	'Test Configuration' Identifier '{' ComponentInstance { ComponentInstance } Connection { Connection } '}' ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ;

	TestDescription
	::=
	'Test Description' Identifier ['(' FormalParameter { ',' FormalParameter } ')'] 'uses' 'configuration' Identifier (BehaviourDescription | ';') ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] '}'] ;

	TestDescriptionReference
	::=
	'execute' Identifier ['(' DataUse { ',' DataUse } ')'] ['with' '{' ['bindings' '{' ComponentInstanceBinding { ',' ComponentInstanceBinding } '}'] [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] ['time' 'label' TimeLabel] ['time' 'constraints' ':' TimeConstraint { ',' TimeConstraint } ';'] '}'] ';' ;

	TestObjective
	::=
	'Test Objective' Identifier '{' ['from' ':' String0 ';' { 'from' ':' String0 ';' }] ['description' ':' String0 ';'] '}' ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ;

	Time
	::=
	'Time' Identifier ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ';' ;

	TimeConstraint
	::=
	Identifier DataUse ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] '}' ;

	TimeLabel
	::=
	Identifier ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ';' ;

	TimeOut
	::=
	Identifier '.' Identifier 'times' 'out' ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] ['time' 'label' TimeLabel] ['time' 'constraints' ':' TimeConstraint { ',' TimeConstraint } ';'] '}'] ';' ;

	Timer
	::=
	'timer' Identifier ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ';' ;

	TimerStart
	::=
	'start' Identifier '.' Identifier 'for' DataUse ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['time' 'label' TimeLabel] ['time' 'constraints' ':' TimeConstraint { ',' TimeConstraint } ';'] ['name' Identifier] '}'] ';' ;

	TimerStop
	::=
	'stop' Identifier '.' Identifier ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] ['time' 'label' TimeLabel] ['time' 'constraints' ':' TimeConstraint { ',' TimeConstraint } ';'] '}'] ';' ;

	UnboundedLoopBehaviour
	::=
	'repeat' Block ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] [PeriodicBehaviour { PeriodicBehaviour }] [ExceptionalBehaviour { ExceptionalBehaviour }] '}'] ;

	Variable
	::=
	'variable' Identifier 'of type' Identifier ['with' '{' [Comment { Comment }] [Annotation { Annotation }] '}'] ';' ;

	VariableUse
	::=
	Identifier '->' Identifier ['(' ParameterBinding { ',' ParameterBinding } ')'] { '.' Identifier } ['with' '{' ['name' Identifier] [Comment { Comment }] [Annotation { Annotation }] '}'] ;

	PredefinedVerdict
	::=
	'Verdict' ;

	VerdictAssignment
	::=
	'set verdict' 'to' DataUse ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] ['time' 'label' TimeLabel] ['time' 'constraints' ':' TimeConstraint { ',' TimeConstraint } ';'] '}'] ';' ;

	Wait
	::=
	('component' Identifier) 'waits' 'for' DataUse ['with' '{' [Comment { Comment }] [Annotation { Annotation }] ['test objectives' ':' Identifier { ',' Identifier } ';'] ['name' Identifier] ['time' 'label' TimeLabel] ['time' 'constraints' ':' TimeConstraint { ',' TimeConstraint } ';'] '}'] ';' ;

	ComponentInstanceRole
	::=
	('SUT' | 'Tester') ;

	ID
	::=
	(['^'] ('a'-'z' | 'A'-'Z' | '_') { 'a'-'z' | 'A'-'Z' | '_' | '0'-'9' }) ;

	INT
	::=
	'0'-'9' ;

	STRING
	::=
	(('"' | { ('\\' | ('b' | 't' | 'n' | 'f' | 'r' | 'u' | '"' | "'" | '\\')) | ('\\' | '"') } | '"') | ("'" | { ('\\' | ('b' | 't' | 'n' | 'f' | 'r' | 'u' | '"' | "'" | '\\')) | ('\\' | "'") } | "'")) ;

	ML_COMMENT
	::=
	('/*' '*/') ;

	SL_COMMENT
	::=
	('//' ('\\n' | '\\r') [['\\r'] '\\n']) ;

	WS
	::=
	{ ' '

	
	
	 | '\\t'

	
	
	 | '\\r'

	
	
	 | '\\n' }+ ;

Annex C (informative):
Bibliography

ETSI ES 202 553 (V1.2.1): "Methods for Testing and Specification (MTS); TPLan: A notation for expressing Test Purposes".

ISO/IEC/IEEE 29119-3:2013: "Software and Systems Engineering - Software Testing; Part 3: Test Documentation".

OMG: "UML Testing Profile (UTP) V1.2", formal/2013-04-03.

History

	Document history

	V1.1.1
	February 2014
	Membership Approval Procedure
MV 20140418:
2014-02-17 to 2014-04-18

	V1.1.1
	April 2014
	Publication

	V1.2.1
	February 2015
	Membership Approval Procedure

	
	
	

	
	
	

�Review its semantics.

�Review its semantics.

�Review its semantics.

�Review its semantics.

�‘ArgumentSpec’ on the Figure 6.5. But isn’t it ‘DataInstanceSpecification’ instead?

�I guess better to use the name of the property: The ‘argument’ of an 'Interaction' element refers

�???

�I guess this part shall be reformulated according the modifications made in Data chapter

�Can be a bit simpler?

�Is it needed? Since the connections are between ports and from the restrictions above related to the component types, from this for me it is clear that the gate types of the connections in the two configurations are the same.

